Some remarks on the Kirby-Siebenmann class

By Shigeyuki MORITA

§1. Statement of results.

Let $k \in H^4(B \operatorname{Top}; \mathbb{Z}_2)$ be the Kirby-Siebenmann class, *i.e.* the unique obstruction to stable PL reducibility of Top bundles. In this note, we show some elementary properties of k and using them we show the existence of certain non-triangulable manifolds.

First we show

PROPOSITION 1. k is primitive, i.e. let $\mu: B \text{ Top } \times B \text{ Top } \rightarrow B \text{ Top }$ be the natural H-space structure on B Top defined by the Whitney sum. Then

$$\mu^*(k) = k \times 1 + 1 \times k$$
.

For a topological manifold M, we define the Kirby-Siebenmann class of M, k(M), to be that of the tangent micro-bundle of M. Then we have

COROLLARY 2.

- (i) $k(M) = k(\nu(M))$, where $\nu(M)$ is the stable normal bundle of M.
- (ii) $k(M \times N) = k(M) \times 1 + 1 \times k(N)$.

Thus, if M and N are closed topological manifolds of dimension greater than 4, then $M \times N$ is triangulable as a PL manifold if and only if so are M and N. (Of course, this is a well known fact.)

Next we consider the following commutative diagram

$$Top/PL \xrightarrow{i'} G/PL \xrightarrow{p'} G/Top \atop j \qquad \qquad j' \atop B PL \xrightarrow{p} B Top \xrightarrow{k} B(Top/PL) = K(\mathbf{Z}_2, 4)$$

and we show

PROPOSITION 3. $m=k_2^2+x \mod 2 \in H^4(G/\text{Top}; \mathbb{Z}_2)$, where k_2 is the first Kervaire obstruction and $x \mod 2$ is the reduction mod 2 of the fundamental class of $K(\mathbb{Z}_{(2)}, 4)$. (Recall that G/Top localized at $2=\prod_{i\geq 0}K(\mathbb{Z}_2, 4i+2)\times \prod_{i\geq 1}K(\mathbb{Z}_{(2)}, 4i)$, cf. Sullivan [5] and Kirby-Siebenmann [4].

REMARK. Let $P_1 \in H^4(B \text{ Top}; \mathbb{Z})$ be the first Pontrjagin class. Then

$$24x = (j') * P_1$$
.

As a corollary, we obtain

COROLLARY 4. Let $I_j = (i_{n_j}^j, \dots, i_i^j)$ be admissible $(j=1, \dots, m)$ n_j -ple such that, $e(I_j) < 4$ and $i_j^i \neq 1$, then

$$P(\operatorname{Sq}^{I_1}(k), \dots, \operatorname{Sq}^{I_m}(k)) \neq 0$$

for any polynomial $P(x_1, \dots, x_m) \not\equiv 0$.

On the other hand, it is easy to show

Proposition 5. $\operatorname{Sq}^1(k) \neq 0$.

Now we make the following definition.

DEFINITION. Let M^n be a closed topological manifold. An element $\gamma \in H^4(M; \mathbb{Z}_2)$ is said to be "k-realizable" if there is a homotopy equivalence of closed topological manifolds

$$f:N^n\to M^n$$

such that

$$k(N) = f^*(\gamma) .$$

By using Proposition 3 and the surgery theory in the Top category, we obtain

PROPOSITION 6. Let M^n $(n \ge 5)$ be a closed topological manifold and let $\eta \in H^4(M; \mathbb{Z}_2)$ be an element. Then η is k-realizable if and only if there is a map

$$g: M \to G/\text{Top}$$

such that

- (i) $\eta = g^*(k_2^2 + x \mod 2) + k(M)$
- (ii) $\mathcal{S}(g:M\to G/\text{Top})=0$ in $L_n(\pi_1(M), w_1(M))$,

where \mathcal{S} is the surgery obstruction and L_n is the Wall group.

COROLLARY 7. Let M^n $(n \ge 5)$ be a closed topological manifold. Assume k(M) is not of the form $\alpha^2 + \beta \mod 2$ for any $\alpha \in H^2(M; \mathbb{Z}_2)$ and $\beta \in H^4(M; \mathbb{Z})$. Then M is not homotopy equivalent to any closed PL manifold.

REMARK. By Kirby's t-regularity theorem [5], the result of Browder, Liulevicious and Peterson on the unoriented cobordism group [1] is valid in the Top category except in dimension 4. Thus there is a closed topological manifold M^5 such that the number $\langle w_1(M)k(M), [M] \rangle$ is non zero. Since $w_1(M)k(M) = \operatorname{Sq}^1 k(M)$ by the Wu formula, M is not homotopy equivalent to any closed PL manifold by Corollary 7.

Now if we wish to apply Proposition 6 to a given manifold M, we must calculate the set (topological normal invariants) [M, G/Top], and the surgery obstruc-

tion $\mathcal{S}: [M, G/\text{Top}] \to \text{Wall group [7]}$. Since we know the homotopy type of G/Top, it is rather easy to calculate [M, G/Top] in some cases. However, since the known results of the Wall groups and the surgery obstruction formula are limited, we must assume that $\pi_1(M)$ is rather simple, e.g. 0, \mathbb{Z}_2 or free abelian.

By the argument of Sullivan [6] and Kirby-Siebenmann [4], we have

$$(G/\text{Top})_7 = K(\mathbf{Z}_2, 2) \times K(\mathbf{Z}, 4) \times K(\mathbf{Z}_2, 6)$$
,

where $(G/\text{Top})_7$ is the 7-coskeleton (the 7-th stage in the Postnikov system) of G/Top. Let $p:G/\text{Top} \to (G/\text{Top})_7$ be the natural map, and let X be a space homotopy equivalent to a finite CW-complex. Then we have

LEMMA 8. If the cohomology (with any coefficient group) of X vanishes for degree ≥ 7 , then the natural map

$$[X, G/\text{Top}] \xrightarrow{p_*} [X, (G/\text{Top})_7]$$

is bijective.

Recall that, by Kirby and Siebenmann [4], any closed topological manifold M^n has the homotopy type of a finite CW-complex. Therefore we can apply Lemma 8 and obtain

$$[M, G/\text{Top}] \approx H^2(M; \mathbb{Z}_2) \oplus H^4(M; \mathbb{Z}) \oplus H^6(M; \mathbb{Z}_2)$$
.

Now we give an application of Proposition 6. COROLLARY 9.

- (i) Let M^5 be an oriented closed PL manifold with $\pi_1(M) = \mathbb{Z}_2$, Then there is a non-triangulable topological manifold N^5 having the same homotopy type as M.
- (ii) Let M^5 be a non-orientable closed topological manifold with $\pi_1(M) = \mathbb{Z}_2$. Then for any homotopy equivalence

$$f: N \rightarrow M$$

we have

$$k(N) = f^*(k(M))$$
.

- (iii) Let M^6 be a closed PL orientable manifold with $\pi_1(M) = 0$ or Z. Then any $\eta \in H^4(M; \mathbb{Z}_2)$ is k-realizable.
- (iv) Let M^6 be a closed PL orientable manifold with $\pi_1(M) = \mathbb{Z}_2$. Then $\eta \in H^4(M; \mathbb{Z}_2)$ is k-realizable if and only if η is the reduction mod 2 of an integral class.

The k-realizability problem was first considered by S. Ichiraku [3]. Here I

wish to express my sincere thanks to him for introducing me to this subject. Thanks are also due to Y. Matsumoto for several discussions.

After I had finished the work in this note, I was informed that Siebenmann [5] and Hollingsworth and Morgan [2] have also obtained the main results of this note independently.

§ 2. Proofs.

PROOF OF PROPOSITION 1. Consider the following commutative diagram

$$\begin{array}{ccc} B \operatorname{PL} \times B \operatorname{PL} & \xrightarrow{\mu} B \operatorname{PL} \\ & \downarrow p \times p & & \downarrow p \\ B \operatorname{Top} \times B \operatorname{Top} & \xrightarrow{\mu} B \operatorname{Top} . \end{array}$$

Clearly $p^*(k)=0$. Hence $(p\times p)^*\mu^*(k)=0$. But since

$$H^i(B \operatorname{Top}; \mathbb{Z}_2) \cong H^i(B \operatorname{PL}; \mathbb{Z}_2)$$

for $i \leq 3$, we have the result.

Q.E.D.

PROOF OF PROPOSITION 3. By Sullivan [6] and Kirby-Siebenmann [4] G/PL localized at 2

$$=K(Z_2,2)\underset{_{3\mathrm{Sq}^2}}{ imes}K(Z_{(2)},4) imes \underset{_{i\geq 1}}{\Pi}K(Z_2,4i+2) imes \underset{_{i\geq 2}}{\Pi}K(Z_{(2)},4i)$$
 ,

$$G/\mathrm{Top}$$
 localized at $2=\prod\limits_{i\geq 0}K(\pmb{Z}_2,\,4i+2) imes\prod\limits_{i\geq 1}K(\pmb{Z}_{(2)},\,4i)$.

Therefore $H^4(G/\text{Top}: \mathbb{Z}_2) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$ generated by k_2^2 and $x \mod 2$. The Serre exact sequence of the fibering

$$Top/PL \longrightarrow G/PL \longrightarrow G/Top$$

yields

$$0 \longrightarrow H^{3}(\operatorname{Top/PL}; \mathbb{Z}_{2}) \xrightarrow{\tau} H^{4}(G/\operatorname{Top}; \mathbb{Z}_{2}) \xrightarrow{p'^{*}} H^{4}(G/\operatorname{PL}; \mathbb{Z}_{2}) \longrightarrow \cdots$$

Thus $m=\tau(u)$ is the non-zero element of Ker p'^* . $(u \in H^3(\text{Top/PL}; \mathbb{Z}_2))$ is the fundamental class.)

Now clearly $p'^*(k_2^2) \neq 0$ and $p'^*(x \mod 2) \neq 0$. Hence we have

$$m=k_2^2+x \mod 2.$$
 Q.E.D.

PROOF OF COROLLARY 4. Consider the following natural projection map.

$$q:G/\text{Top localized at }2\to K(Z_2,2)\times K(Z_{(2)},4)$$
.

Then

$$m = q^*(v^2 + w)$$
.

where v and w are the generators of $H^2(K(\mathbf{Z}_2,2);\mathbf{Z}_2)$ and $H^4(K(\mathbf{Z}_{(2)},4);\mathbf{Z}_2)$ respectively.

Now clearly

$$P(\operatorname{Sq}^{I_1}(v^2+w), \dots, \operatorname{Sq}^{I_m}(v^2+w)) \neq 0$$
.

Since $q^*: H^*(K(\mathbf{Z}_2, 2) \times K(\mathbf{Z}_{(2)}, 4) \to H^*(G/\text{Top}; \mathbf{Z}_2)$ is a monomorphism, we have the result. Q.E.D.

PROOF OF PROFOSITION 5. This follows from the Serre exact sequence of the fibering

$$Top/PL \rightarrow B Spin PL \rightarrow B Spin Top$$
. Q.E.D.

PROOF OF PROPOSITION 6. Let M^n $(n \ge 5)$ be a closed topological manifold and assume that $\eta \in H^4(M; \mathbb{Z}_2)$ is k-realizable. Thus we have a homotopy equivalence

$$f: N^n \to M^n$$

such that

$$k(N) = f^*(r)$$
.

Let $g: M \to G/\text{Top}$ be the map for the associated topological normal invariant. Then clearly $\mathcal{S}(g: M \to G/\text{Top}) = 0$ and

$$g^*(m) = k(\tau(M) \oplus \tilde{f}^*(\nu(N)))$$
.

where \overline{f} is a homotopy inverse to f. Now by Proposition 1, we have

$$k(\tau(M) \oplus \bar{f}^*(\nu(N))) = k(M) + \bar{f}^*(k(N)) = k(M) + \eta$$
.

Hence,

$$\eta = g^*(m) + k(M)$$
.

Conversely assume that there is a map $g: M \to G/T$ op satisfying the conditions (i) and (ii). Then by (ii), there is a homotopy equivalence

$$f: N \to M$$

whose normal invariant is the given one. Moreover we have

$$k(N) = f*q*(m) + f*k(M)$$

by the above argument. Hence

$$k(N) = f^*(\eta)$$
. Q.E.D.

PROOF OF COROLLARY 9.

(i) We first recall that $L_5(\mathbb{Z}_2,+)=0$ ([7]). Now there is a fibering sequence

$$\cdots \longrightarrow \operatorname{Top/PL} \longrightarrow G/\operatorname{PL} \longrightarrow G/\operatorname{Top} \xrightarrow{m} B(\operatorname{Top/PL}) \longrightarrow \cdots$$

Thus we have an exact sequence

$$\cdots \longrightarrow H^3(M; \mathbb{Z}_2) \longrightarrow [M, G/PL] \longrightarrow [M, G/Top] \xrightarrow{m_*} H^4(M; \mathbb{Z}_2) \longrightarrow \cdots$$

By Lemma 8, $[M, G/\text{Top}] \cong H^2(M; \mathbb{Z}_2) \oplus H^4(M; \mathbb{Z})$ and by Proposition 3, m_* is given by

$$m_*(\alpha \oplus \beta) = \alpha^2 + \beta \mod 2$$
,

where $\alpha \in H^2(M; \mathbb{Z}_2)$ and $\beta \in H^4(M; \mathbb{Z})$. Since M is orientable and $\pi_1(M) = \mathbb{Z}_2$, we have

$$H^4(M; \mathbf{Z}) \xrightarrow{mod 2} H^4(M; \mathbf{Z}_2)$$
.

Therefore there is a map $g: M \to G/\text{Top}$ such that $g^*(m)$ is the non-zero element of $H^4(M; \mathbb{Z}_2)$. Since the surgery obstruction is zero, by Proposition 6 we have the result.

(ii) Let $f: N \to M$ be a homotopy equivalence. It suffices to show that if M is triangulable, then the unique non-zero element $\eta \in H^4(M; \mathbb{Z}_2)$ is not k-realizable. Since M is non-orientable, we have

$$Sq^1(\eta) \neq 0$$
.

Hence η is not of the form $\alpha^2 + \beta \mod 2$ for any $\alpha \in H^2(M; \mathbb{Z}_2)$ and $\beta \in H^4(M; \mathbb{Z})$. This proves (ii). (cf. Corollary 7 and the Remark after it.)

(iii) Recall that $L_6(0) \cong L_6(\mathbf{Z}, +) \cong \mathbf{Z}_2$ detected by the Kervaire invariant [7]. Consider the following exact sequence

$$\cdots \longrightarrow H^{4}(M; \mathbf{Z}) \xrightarrow{\text{mod } 2} H^{4}(M; \mathbf{Z}_{2}) \xrightarrow{\hat{o}} H^{5}(M; \mathbf{Z}) \xrightarrow{\times 2} H^{5}(M; \mathbf{Z}) \xrightarrow{} \cdots$$

Since $H^s(M; \mathbb{Z}) \cong 0$ or \mathbb{Z} , the map \hat{o} is trivial. Hence any $\eta \in H^s(M; \mathbb{Z}_2)$ is the reduction mod 2 of an integral class. Thus choose an element $\beta \in H^s(M; \mathbb{Z})$ such that

$$\eta = \beta \mod 2$$
.

Let

$$g: M \to G/\text{Top}$$

be the map corresponding to $(0, \beta, 0)$ under the bijection $[M, G/\text{Top}] \approx H^2(M; \mathbb{Z}_2) \oplus H^4(M; \mathbb{Z}) \oplus H^6(M; \mathbb{Z}_2)$. Then clearly $g^*(m) = \eta$ and $\mathscr{S}(g: M \to G/\text{Top}) = 0$. Hence, by Proposition 6, η is k-realizable.

(iv) Recall that $L_6(\mathbf{Z}_2, +) = \mathbf{Z}_2$ detected by the Kervaire obstruction [7]. By the proof of (iii), it is clear that if η is integral, then it is k-realizable. Conversely assume that η is k-realizable. Then by Proposition 6, we have

$$Sq^1(\eta)=0$$
.

Consider the following exact sequence

$$\cdots \longrightarrow H^4(M; \mathbf{Z}) \longrightarrow H^4(M; \mathbf{Z}_2) \xrightarrow{\delta}$$

$$H^5(M; \mathbf{Z}) \xrightarrow{\times 2} H^5(M; \mathbf{Z}) \xrightarrow{\text{mod } 2} H^5(M; \mathbf{Z}_2) \longrightarrow \cdots$$

Since M is orientable and $\pi_1(M) = \mathbb{Z}_2$, we have

$$H^5(M; \mathbf{Z}) \xrightarrow{\sim \mod 2} H^5(M; \mathbf{Z}_2)$$
.

Hence if $Sq^{1}(\eta)=0$, then $\delta(\eta)=0$. Therefore η is integral.

Q.E.D.

References

- [1] Browder, W., A. Liulevicious and F. P. Peterson, Cobordism theories, Ann. of Math. (2) 84 (1966), 91-101.
- [2] Hollingsworth, J. and J. Morgan, Homotopy triangulations and topological manifolds (preprint).
- [3] Ichiraku, S., On realization of Kirby-Siebenmann's obstructions by 6-manifolds, to appear.
- [4] Kirby, R.C. and L.C. Siebenmann, On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc. 75 (1969), 742-749.
- [5] Siebenmann, L.C., Topological manifolds, to appear.
- [6] Sullivan, D., Triangulating and smoothing homotopy equivalences and homeomorphisms, Geometric topology seminar notes, Princeton University, 1967.
- [7] Wall, C. T. C., Surgery on Compact Manifolds, Academic Press, 1970.

(Received December 10, 1971)

Department of Mathematics Faculty of Science University of Tokyo Hongo, Tokyo 113 Japan