On continuation of regular solutions of partial differential

equations to compact convex sets 11

By Akira KANEKO

This is a continuation of an earlier paper [3]. In [3], Theorem 3, we proved
that any real analytic solution of a single equation P(D)u-==0 defined on the
complement U\K of a compact convex set K relative to a domain U can be ex-
tended to a real analvtic solution on U if and only if no factor of the irreducible
decomposition of p(l) is elliptic. Here we extend this result to the case of systems
of equations (Theorem 2.3). As a tool for this, we prove the fundamental
prineciple for the space CZ:[\K{] of entire functions of the Fourier transform of
«Z[K] (Theorem 3.8). The same proof also applies to 2;(135’ where K is any
compact convex set in C". The readers are expected to have some knowledge of
the definitions and the results in the book [7] of Palamodov and in the lecture
notes [5] (or [6]) of Komatsu.

§1. General results on continuation of solutions of systems with constant
coefficients.

Let 0e Kc UcC R", where K is a compact convex set containing the origin, U
is one of its convex open neighborhoods in the n-dimensional real Euclidean space
R*. Let p({): &P°— &P be a txs-matrix with elements in the ring of polynomials
of n variables &, ---,Z,. We study the associated differential operator (D),
where D=-(D,, ---, D,) and Djsx/:ib—%f. Put M=Coker p’= G ip’ P!, where

p’ is the transposed matrix of p. From’ now on we often say ‘“the system M~
instead of “the system p”. M is said to be determined when Hom (M, &7)=0, over-
determined when Hom (M, &P)=Ext' (M, &P)==0. (ef. [7] Chap. VIII, §14, 1°.,)
We employ the notations in [3]. Namely, <Z,(U) denotes the space of hyper-
funetion solutions of the system M in U, £Z[K] denotes the space of hyperfunc-
tions with support in K ete.

Let

p
(1.1) 0 M P o Gt s

be a free resolution of M. Applying the functor Hom (-, &%) we obtain a cochain
complex :
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01— G G

Here the following is exact

A,ng)S_}_)_, P
Recalling that <Z K] is a faithfully Aat &P(D)-module for any compact convex
set K ([6] p.230), we have the exact sequence

0~—— Hom (M, &7)

o(D)
—_— (

(1.2) 00—+ Hom (M, PR FK|— (F K] K,

from which we can see the well-known fact that M is determined if and only if
the corrcsponding equation p(D)u=:0 does not have any non-trivial solution with

compact support.
Next we consider the sequence

(1.3) 0 — Ext! (M, GP)—— P Ip ' —2s P11 |

which is exact by definition. Again using the fact that <#[K] is <P(D)-flat, we
obtain the exact sequence:

(D
0— Extt (M, G7)R F K] — (P12 F K] 2L Z (K ) .
Thus
(1.4) Ext! (M, )97 [K|=F » [Kp(D)F K .

On the other hand, we recall that <#(U) is an injective P (D)-module for any
convex open set U ([6} p.228). Therefore we obtain from (1.1) the exact sequence
of sheaves

(D) D
(1.5) 0-— Fy 720 5 2D ot L

from which we get the following cochain complexes of modules of sections

D W(D
"2 @0y 22 gy .

0~ Zy(U)~—> (F(U))
(1.6) (D) D)
1
> B ulK|—— (F[K]) — (F[K)) »(FK)2— -
Since <& is a flabby sheaf, {(1.5) is a flabby resolution of <#,. Thus the co-
homology groups of the complexes (1.6) agrec with the cohomology groups of

&#y. Especially, we have

1.m HYU, &8 w)=58, (U)p(DNZ (U))'=0

0
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(1.8) Hy(U, &) =8, [Klp(D)Z (K] .

Finally we can write the exact sequence of the relative cohomology (the local co-

homology) of the sheaf <%, with respect to the pair Ko U:

0- @M[K] - é%ju(U) s ,?I(U\K) R4 H}\(Uy gg;u) - HY{(U, Sy
i
0
LTI

Thus if we define <, (U)=#Z,(U) <# 41K] we have

(1.9) g@‘*\f(U\\K)ﬂ{/?‘u(U)‘f\?H}(( U, &) .

Combining (1.4), (1.8) and (1.9) we obtain the isomorphism

(1.10) B UK 8 5(U)=Ext' (M, P)QFIK],

from which we can see the well-known fact that M is overdetermined if and only
if any hyperfunction solution can be continued uniquely to compact convex ex-
ceptional sets (ef. Komatsu [5]).

Now for &7’ (analogously for &), we take some open convex neighborhood
V of K which is relatively compact in U. Noticing that &2’ and &~ are soft
sheaves, we obtain in a similar way using the corresponding results for &/ or
&=

. , =@u(U\V) ’
1.11 Hy(U, &)= =g, (V) plD Vv
(1.11) vl &) U ) (VDD & (V)Y

=Ext! (M, P)® & (V).

Here we used the symbol & /(V) in the usual sense of the distributions with com-
pact supports contained in V. Passing to the limit we obtain (ef. Palamodov [7])

(1.12)

L(UNK)Y S, (U) > lim UAYS = lim (Ext! (M, )B (V)
: = IO EN)

where the symbol 9,(U) {ue ZWU\NK); UDYV K, 3y, € 2, (U) such that
w=y; on U\V} is the one defined by Palamodov [7], Chap. VIII, §14, 2°, and
the first isomorphism is the one defined by the mapping which takes u € 2 (U \K)
to the element {#|y\w mod. (ZL(U)Y & 4(V)}v-x. Here lim and & are, of course,
non-commutative. We give a similar meaning to & ‘5‘}&}), then similar isomor-
phisms hold for &3.

ProroSITION 1.1. If M s determined, then

ue Fuy(N (UK implies ue & (U),
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wue F UV 77 (U K)* implies u€ & 5(U),
w€ 2, (U)o (U K) implies u€ .57, (U) .

) ) . . Y I
Proor. Since p is determined by the assumption, 0—— 7°—— &7’ is

exact, so that p’(Dju~—f can be solved in [ZZ7/(R"}]' with no compatibility con-
o 07
dition on f€[S7(RY)]". Let o" be the diagonal matrix | - | of size sxs. Let

| ]
L0 o}
Kel'(R")) " be a solution of p(D)E--3*. (Such E exists, e.g., by [7], Chap.

VI, 88, 17, Theorem 1.) Then, for a function a€ % 5(U) which is equal to one
in a neighborhood of K, we have on K

way o =au) (B ep(D)oys(au)== E'(p(D)auw)) .

Here I is the transposed matrix of E. Hereafter the proof goes just in the
same way as in the proof of Theorem 1 in [3].
The following weaker result holds even in the underdetermined case.
ProprositioN 1.2. For any compact convex set K'< U which contains K in
its interior, the relations

UKy @ Uy D40+ FylK'
& U KN y(Ue e g(U)+ Fy[KY]
take place.
Proor. Let w be an element of & (UNK)N &Z,(U). Let a be a function
in «7F7(U) such that suppac K’, and «(x)==1 in a neighborhood of K. Then
p(DNau) € (£27K'}), so that, by the inequality of division (see [7], Chap. III, §5,

Theorem, and Chap. V, §3, Propositions 5 and 6), there is an element v € (<2 /[K'])*
satisfying p(D)e= p(D)an). Thus,

wx(l-ah-baus {(T—ayu-+v} - (au—v) .

Here (I-aju-tv€ 23(U) and au—v€ <7 y[K’). Since K’ is arbitrarily close to
K, our assertion is proved in the case of &2/, Similarly in the case of &',
ProrosITION 1.3. If M is underdetermined,

o (U)+ By KNS S (UNK)N F (U,

that is, the left side is properly contained in the right.
Proor. For simplicity, we assume that K contains the origin. Since p is
underdetermined, there is a non-zero matrix ¢ with polynomial elements for which

G2 ey
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is exact. Let ¢=(q,;). Then, some of the elements, say, 9.,{0) is not identically
equal to zero. Choose an elliptic polynomial »() which is not a constant and
relatively prime to ¢;;({), and choose a fundamental solution E of »([J)E--4. Then
the function

/0
[

Lo
u=q(D) E | j,
2

belongs to &7 (U\K)" .27 ,(U), but does not belong to &7 (U) however we
modify # on K. In fact, if we have g ;(D)E-—=f+w for some elements fe .5 (U),
w€ £# K}, then

D) frr(Dyw=r(ID)q: (DVE=q, Dy D) E=q, (D)o .
Hence,

i f=q{DYo—~r(Dyw .

Here, the left hand side belongs to &7 (U), and the right hand side belongs to
<ZK]. Therefore by the unigqueness of analytic continuation we have

(D) f=0, @ D)o==r(Dyw .
Applying the Fourier transform to the second eguality, we have
¢ (O=r)w .
Due to Hilbert’s Nullstellensatz, this contradicts the assumption that () is rela-
tively prime to q;;(2). q.e.d.
In a way similar to the proof of Proposition 1.2, we can prove the GA(D)-
flatness of <F K/ <D'[K] ete. Now, from these inclusion relations we sce easily:

COROLLARY 1.4. The following natural mappings are all injective
™

N =
(1.16) FolU\K) & 2(U)S 2 W UNK)Y 2 (UG B (UNK) H(U)

As for (UK U)—— B w(UNK).ZFuU), it is injective when M is
determined, and is nat when M is underdetermined. .

Next, we derive an isomorphie expression of #y(U\K ),//—,?,\,?U ) by a space
of holomorphic functions on {NExt' (M, 7))}, the family of algebraic varieties
associated to the module Ext! (M, &7) (ef. [7] Chap. 1V, §1, 1° also ¢f. Chap. VIII,
§ 14, 2° Theorem 1). First, applying the Fourier transform to (1.10), we have

P s
(1.10 Z w(UNK)| B n(U)y=Ext' (M, )38 K] .
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On the other hand, we have the exact commutative diagram:

0 0

T 25, Ker p,(2) — Extt (M, G7) — 0

H ) ,
G* 2=, Ft ——  Cokerp ——0
()

R W Pla

Now consider the following diagram:

0 0

1

<.@3|[K/1>" P, (K )y, —— Extt (M, GYRZIK] —0
1

ri |

Gk X Gy - ZFiR Coker p, d,} »0
Ps(%) :
(FE): == (ZK):

Here ,?/3’[ J{Coker p, d,} is the space of holomorphic functions on the family of
varieties associated to the module Coker p, which have the growth order of type
%[Iﬁ, and which are locally the images of the noetherian operator d, associated
to p (7] Chap. IV, §5, 1°). In this diagram, the second row is exact by the
Ffundamental principle of Ehrenpreis-Palamodov (see §3 Theorem 3.8). The first
row and the second column are exact by the ZP(J)-flatness of /‘Q??[‘K/]. The first
column and the third row is clearly exact. The dotted arrow in the third column
ig the restrietion of %{Coker p,d,} to the component of dimension n of the
varieties associated with Coker p. It is known that p(<) is the component of the
noetherian operator d, corresponding to this component of dimension n associated
to Coker p ([7], Chap. 1V, §4, Proposition 1). Thus the diagram is commutative
and we see by a simple diagram chase that the third column is also exact.
Therefore we have
__ (The components of %{Coker p, d»} correspond-

Extt (M, &F )®§TK[ﬁ ing to the subfamily of {N;(Coker p)} of dimension
=n—1. .
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We introduce the notation .53?{ HExt* (M, &7), d,} for the space in the right
hand side of this isomorphism. Thus we have the exact sequence

(Z[K) — ),@’p [K1-~L> ZZIRWEst (M, Z), dj}—— 0,

and the isomorphism

(1.17) B[ KYp(DNF K == R WExt (M, &), d1) ,

where d/, is the composition of Fourier transform and the map d), the components
of the noetherian operator d, corresponding to the varieties of dimension Sn—1.
Combining (1.17) with (1.9) and (1.8) we have finally

T d_ o ———
(1.18) B u(U\K)| B y(U) === & | K{Ext' (M, &), d}} .

Here the symbol d denotes the composition of the operator d} with some co-
homological maps.

Again we can give another expression of the map d, so as to derive the esti-
mates analogous to Lemma 5 of [3]. Let u be an element of & ,(U\K), and {u]
be an arbitrary extension of % to an element of <Z(U). Then, p(D)u] defines
an element of <%, [K] modulo (DY Z[K))°. Thus d-u is obviously equal to
d;m[&/]. Let @ be an element of &°5(U) whose value is equal to 1 on a suf-
ficiently small neighborhood of K. Then, for u € &4 (U\K), p(D)au) is identical-
ly zero on some neighborhood of K. Extending this function by zero on K, we
obtain an element of & /(U\K), which we denote by [p(D)}au)l,, Thus we have
obviously

p(DYaluly=[p(DYaw)lo+p(D)u] .

Here afu] really has a compact support. Applying the Fourier transform to both
sides and operating d’, we have

0=d, p(&)alul=d}[p(D)( au)]o+d (p D)[u]
Hence
[ e e
d-u=d,p(D)ul=—dip(D)au)lo .
The last term is the desired expression (cf. [7] Chap. VIII, §14, 2° Theorem 1).

§ 2, Continuation of real analytic solutions

From the expression derived at the end of the preceding section we can get
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the following estimates similar to those in Lemma 5 in {3].

LeMMA 2.1, On each of the varieties N, (Ext'(M, &7)) the corresponding
component of the vector-function v*r‘fdﬁ,[f/)(f}}mlo satisfies the following:

If we U K), then (vCN=C.A+ED exp (H(D+:Im ) for any >0
and for some k- k(c).

If we (U K), then [w(0O1ZC (1 +iZD  exp (H(D)4-elIm L)) for any >0
and for eny k.

If we . o7 y(UNK), then 10()J(2C, . exp (H(D)+<Im L)) for any >0 and
for any entire infra-exponential function J(). (For the definitions of infra-
exponential functions and associated differential operators of infinite order see [3],
§2.

Proor. Since the operator d’, has polynomial cocflicients, the first two estimates
are immediate. Moreover, the third estimate follows as in the proof of Lemma 5
in [3] when we take into account the following lemma:

LemMa 2.2. Let Xz, D) be a normal noetherian operator (see [7] Chap. IV,
§4, 1°, Definition 1) associated with a primary component p of pP°® in FPL.
Then, for any e 7 and for any f€ & which is invertible at 0, we have®

where 9(z, D) 18 a matriz of differential operators with coefficients in the
rational functions whose denominators do mnol vawish identically on N().
Moreover, if 8(z, D) is well ordered in the lexicographic way with respect to
the order of the normal derivatives, then 0'(z, D) has the form

1 0
9'(z, D)==
* ’ 1

o'z, D) is determined indevendently of f or F.

Proor. Expanding é(z, DY(fF) by the Leibniz formula, we get a differential
operator 3'(z, f, D) which satisfies ¢/(z, f, D)F'==0(z, D)F and whose coeflicients are
linear combinations of the derivatives of f with polynomial coefficients. If the
function f does not vanish at the considered point, the operator ¢’{z, f, D), ob-
viously, also serves as a “noetherian operator”, except that it has not polynomial
coefficients. Thus from the proof of [7] Chap. 1V, §4, 1° Theorem, we see that
'(z, f, Dy=1A(2)o(z, D), where :1(z) is a matrix whose elements are linear functions

b Of amrseA\\; assume that the operator d(z, I)) does not have any term whose coef-
ficient vanishes identically on N(p).
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of the derivatives of f with coefficients in the rational functions. Thus .l{z)=
3z, D)f, where &'(z, D) is a differential operator with coeflicients in the rational
functions whose denominators do not vanish identically on N(p). Since the process
used there is independent of the noetherian operator diz, D} in the left hand side
of the formula (1.4) in [7] Chap. IV, §4, we see that ¢'(z, D} is determined in-
dependently of f. Comparing the both sides of a(z, D) fF)—0'(z, D) f oz, D)F,
we see that ¢’(z, D) has the form stated above. q.e.d.

Now we can prove:

THEOREM 2.3. In order that the image of the natural map

S UNK S (U ) = Z8 yy( UNK) 7 (U)

is zero, it is mecessary and sufficient that Ext'(M, &7) has no elliptic compo-
nent in its primary decomposition. In order that &7 y(UNK)/.S7y(U)=-0, it
is mecessary and suflicient that M is determined and satisfies the condition
above.

Proor. The proof of the first statement can ke carried out just as in the
case of single equations (cf. [3] Theorem 3). In fact, the proof of the necessity
is reduced to the case of single equations using Lech’s theorem. For the details
see the proof of the necessity in [7] Chap. VIII, 514, 4°, Corollary 4. We only
remark that at the last step of the proof there we have in our case F=pG’,
where F is a polynomial vector and G’ is a vector of (infra-exponential) entire
functions. Since by Corollary 3 in [7] Chap. IV, §4, 2° we have F=pG" for some
G'' e 7%, the proof goes as well. The proof of the sufficiency is carried out in
the same way as in the single case ([8] Theorem 3) since Lemma 2.1 holds.

For the second assertion of the theorem, we see that 7 (UNK)/ S y(U)-=0 is
equivalent to the assertion: “The map .27 y(U \K)/.&u(U) » B UNK) 6 u(U)
is injective and has zero image”. Thus the second assertion follows from Corollary
1.4. q.e.d.

§3. Cohomology with bounds and the fundamental principle for /’I/s;’[K]

We prove here the fundamental principle of Ehrenpreis-Palamodov for the
space :53’71(] We n{ainly follow Palamodov [7] and show only the necessary
modifications. However, we employ Hormander [1], [2] to prove the vanishing of
eohomology with bounds. The proof of Theorem 3.1 is suggested from the work of
T. Kawai [4]. I am grateful to Mr. Kawai who has kindly shown me the manu-
seript of his master’s thesis.

Let W,={U®, ze€ C™, a=1, 2, --- be a countable fundamental system of elemen-
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tary coverings of parameter zero (i.e., coverings whose elements are the polydisks
with a fixed diameter, see [7], Chap. III, §3, 3°). We assume that the diameter

r(11,) of the elements of the covering U, is not greater than 1, and T(llam)éé“?‘(ua)-

We employ another fundamental system of coverings U7, a=1, 2, --- with the fol-
lowing properties: 1) W/ is a subfamily of l,; 2) elements of a U/, have a non-void
intersection only if the number of the eclements does not exceed some constant;
and 3) W, a=1,2, ---, are cofinal with 1,, a=1,2, ---. An example of such
is given in Hormander [2], 7.6.

Let C*{l,, %ﬁ{/}} denote the space of holomorphic v-cochains ¢=={¢, . ..... ()}
with the topology defined by the countable seminorms:

] )
3.1 lelnu,= sup  sup w:{,..“.“(a)exp(wj’;s:|~HK<:>), m=1,2, -,

() ‘
vee, 2. L6
25 v 3y ‘CUZO"""%

where Uz‘g',’...,cv:’:U,oﬁ -+ nU,,. Thus C"{H(,,W]}, a=1,2, --- are Fréchet
gspaces. We denote by

P P
3.2) K= [CH L, ZKY, a=1,2, -]
the increasing family of topological modules C{li,, ‘%’\[\I{]}, a=1,2, -+ in the sense
of Palamodov [7], Chap. I, §1, 8°, Definition 2.

Our first purpose is to prove:

THEOREM 3.1. The following is an exact sequence of homomorphisms of the
inereasing families (in the sense of Palamodov {7], Chap. I, §1, 5°, Definition 8):

P o e a P} P —— g
0—— DR —— B K| — - FK] —— -
Here & denotes the coboundary operator.
Proor. First, note that 11/ is cofinal with ., so that,

v ZK]= im C-QU, Z(K),
where C*(114, ﬁﬁ) denotes a space of holomorphie v-cochains on the covering
S
I}, with seminorms similar to (8.1). Further, for the space C*(l1Z, ,% {K]) we can
employ another seminorms to define the topology.
. 1 . . 1/2
33 el m.,.u;,z:[ 2o e exn (= 20 —2H0)dr |
{ U"O‘“i“ m ]

g 2oy ty)
where we put W.={U;,7€1l}, and U, ..;,=U;;n --- NU;,. The symbol dz de-
notes the Lebesgue measure on C". These seminorms are well defined since by
the assumption the number of summands is finite in a neighborhood of every point
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2z€C”, From the inequality

exp( 1 RZH~2HK(Z)):EC(1~:--EZ§)“"exp(‘LIZE :42HA.<:))
m+1 m

and Cauchy's theorem, we see easily that these seminorms are as a whole equivalent
to the seminorms (3.1) of supremum type for U},

Now we have
LEMMA 3.2. Let UcC" be a domain of holomorphy which is either bounded

or equal to C” itself. We put

Xo=Lh o (U, L0 2H Q) -4 10g 1)
Yn=L% oun (U, i[:wzm(:wzmg <1-+-1:|2)) ,

Za=L% 000 (U, L !«Zi«:—zH;{(Z)) .
m

Here we employ the notations of Hormander [2]. Namely, LXU,¢) denotes the
Hilbert space of measurable functions with the inner product S f-gevdp.
L2, o (U, ©) denotes the Hilbert space of (p, q)-forms with coefficients gn LXU, ¢)
defined above. Let o be the Cauchy-Riemann operator im the semse of the
maximal operator. Then,

X Yy Zo
is an exact sequence. The norm of the right inverse map of the second o de-
pends only on the diameter of U and does not depend on the shape or the
position of U.
For proof, see Hormander [1] Theorem 2.2.3, and [2] Theorem 4.4.2. Note
that our ¢ are obviously plurisubharmonic.
LeEvMMa 3.3. Put

Xn=C* (u;, (‘7%1@!+2HK(§)+410g (1+i:l2)>) ,

YumCr (u;, (*i’lCH’ZHK(iH-Z 1og<1+|:|2))) ,
Z,=C* (ua, (“1"!ZI+ZHK(Q)>) :
m

where v=0,1,2, ---, or v=—1 (t.e. X,=L%, 4, (C”, *WIL‘KH~2HK(£)+4log (1+l§|2))
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etc. in this case). These are Hilbert spaces of L*-cochains with the norms

179

r 2
N S Mhig-.i,12e7de |,
wy JU 1 .

Lige, (ir)"'?»

H{uio~-~i,}ﬂm’“‘

where ¢ denotes the weight function corresponding to each space. Then, the

sequence
Xy V-1 7,
with the maps naturally induced from the 0 operator, is exact.

Proor. This follows easily from the preceding lemma, when we notice that
the norm of the inverse correspondence of the second ¢ in Lemma 3.2 is bounded
by a constant independent of Us,...;,, and the number of different elements U, ell/,
with a non-empty intersection does not exceed a constant, so that, we can construet
the inverse correspondences of 0 in the above sequence by taking the direct product
of all the inverse correspondences of ¢ on each U, ...;, constructed in Lemma 3.2.

Next, we must pass to the projective limit len For this purpose, we give:

<
m

LemMA 3.4, Let 0—> X, —~>Y,—>Z,,—>0, m=1,2, --- be exact sequences
of F'réchet spaces. Put X=limX,, Y=1imY,, Z=limZ,. Assume that these

m m n

maps are commutative with the maps in the projective systems. Assume that
Xn<—Xu has a dense range for m=1,2, ---. Then 0—>X—>Y—>Z—>(
8 also exact.

For proof see Palamodov [7] Chap. V, §1, Proposition 11. Direct verification

is not difficult.

fm g
LeEMMA 3.4, Let 0O X. Y. L 0, m=1,2, - be ezxact

sequences of Fréchet spaces, where f. are continuous linear operators, and O
are closed linear operators. Assume that

1) wn the projective system Y,, the domain of gm.. is mapped in the
domain of gm, and fu, gu are commutative with the maps in the projective
systems and,

2) Xu<—Xni has dense range for m=1,2, ---,

Then the limit sequence

0 —— lim Xp—" lim Y — 2 lim Z. ——0

18 also exact.
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5

Proor. Consider

(fme 0} prg

0 X, I'{g..) Z,, 0, m=1,2,..-,

Here 7'(g,) is the graph of g,, which is a Fréchet space, (f,.,0) is a map which
brings z€ X, to (f.z, 0)€I'(g,), and =, is the projection operator of I'(g..) to the
second component Z,. We see easily that these are exact sequences. Thus Lemma

3.4 is applied to these sequences and we obtain an exact sequence
(5,0 =
0—lim X,,~—— lim I'(g,,) ——lim Z,,—— 0 .
Obviously, lim I'(g,,) is equal to /(g), and = is equal to the projection of I'(y) to
the second component lim Z,. Thus we see that the limit sequence in the lemma

m

is exact. g.e.d.
END or PROOF OF THEOREM 3.1. First we show that the following are exact
sequences :

. maq . maqs"l . .
lim X, —1limY,——1limZ,, m=1,2, ---.
— e €

m n m

Here, X, etc. are the spaces in Lemma 3.3 or the spaces in Lemma 3.2 corre-
sponding to the case of U==C". We decompose the sequences into two parts:

. im i
0—-Ker ,,0,— X, — Image ,,0,— 0
(3.4)

tm 74
> Yo —— Image ,, 04y, —— 0

=
O — Ker 711(}!1-3.’1

and verify the conditions of Lemma 3.4’.

X, Ker,0, etc. are Hilbert spaces and the condition 1) of Lemma 3.4’ is
clearly satisfied. We must verify that the projective system of the first terms
consists of the maps with dense range. For the spaces X, ete. of v-cochains (v 0)
or the corresponding ‘subspaces Ker .0, ete., we can easily see that X, <— Xpn.; or
Ker ,0,<—Ker n.,3, ete. have dense ranges, when we take into account that in
these spaces the following cochains are dense: the cochains whose components,
corresponding to those U, sufficiently apart from the origin, are equal to zero.
For the spaces X, of global functions or forms (v=—1) or for the corresponding
subspaces Ker ,0,~Image .0,.; with ¢=1, we can employ the functions in crien
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and confirm also that X,<— Xn.. or Ker .o,<~—ZKer .0, have dense ranges.
Finally, for the spaces Ker .0, with ¢=0, namely, for the spaces of entire holo-
morphic functions or forms, we need the following lemma.

LEMMA 3.5. Let KCC" be a compact convex set which contains the origin
in its interior. Let Hy(2) be its supporting function. Put o({)=Hi(0)+(Q),
where ()20, HL)E0(87) for 0<t<s, and ¢(Q)=o(ll]) for large |Zl. Let Hlp)
be the Hilbert space of entire functions with the imner product:

(o | Qe .

Then, the polynomials of & are denmse in Hlg).

Proor. For any compact convex set L C" (O€ L), let £7(L) denote the space
of holomorphic functions in a neighborhood of L. Let ¢7’(L) be its dual space.
By Fourier transform, ¢#’(L) is isomorphic to the Fréchet Schwartz space H(L)
of entire functions such that:

F0-exp (—Hil0)~ —31 m)l

A= sup

are finite for j==1,2, ---. Note that the polynomials are dense in H(L). For, by
the unique continuation property of holomorphic functions the linear combinations
of the derivatives of the delta function with support at the origin are weakly
dense in ¢?/(L). Since (L) is reflexive, these are also strongly dense.

Choose a sequence of compact convex sets L,CK° k=1,2,---, such that
Oe L, Li€Ly,,, LkJLkme". (K® is the interior of K. We assumed that K°+#@.)
Then the natural injections H(L,)—> H(¢) are clearly continuous. We first prove
that LkJ H(L,) is dense in H(¢). Choose f({)€ H(¢) arbitrary. Then for any real
number ¢ (0<t<1), g{)=F0%) belongs to H{e(tl)). Choose k so that o(tl)=
H O+t s H, (O +c for a constant ¢ independent of { and ¢. The following
inequality can be obtained by the termwise integration of the Taylor series, and is
well-known.

gD < i«S o) d: .
T Jijz=Zls1

Thus for any { we have

lg:(3) exp (— H, (NP =

o2
< et S lg:(2)I* exp (—2¢(t2))d .
T e

Sl lo@Pexp (2@

i
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Here C:’s:q&lexp (2H, ,(2)—2H, ()= ;Su£ 2H{(z) is a constant. Thus ¢.(J) be-

longs to some of the H{(I.).
Since we have for 1/258<1,

g t= {70 <
gzzng !f(t:){2 e—?.sa(z:&tznd‘”:?'aw nf(:)ﬂ% ,

there is some sequence {t;}, ¢;.71, for which the sequence ggj(;) converges weakly
to some element g({)€ H{y). Especially on each bounded region 2cC%, g, J3) con-
verges weakly to g(£) in the Hilbert space H{(%2, ¢) with the norm

(1,11 exp (~2enar)™.

(Recall that the natural restriction H(p)—> H(2, ¢) is continuous, so that weakly
continuous.) On the other hand, by the Lebesgue convergence theorem glj(i) con-
verges strongly to f({) in H(%2, ¢) on each of the 2. Thus g({)=£(0), and g, ,—>f
weakly in H{¢). We have proved that LL_JII(LI,) is weakly dense, hence strongly
dense in H{¢). Recalling that polynomials are dense in each of the H(L,), we have
proved that polynomials are also dense in H{¢). q.ed.

Thus, in any case, by Lemma 8.4’ we can pass to the projective limit in the
sequences (3.4) and get the following exact sequences:

0 — lim Ker ,0, — lim X,, — lim Image .0, —— 0

0 — lim Ker 044 — lim Y,, —— lim Image ,.0¢4, —— 0 .
— - ——
m m m

lim Image 0,

m

Since the growth condition in the spaces lim X,, ete. agrees with the growth condi-

m

——
tion of type <Z[K], connecting these short exact sequences for ¢==0,1,2, --- we
obtain the following exact sequence:

S . 5
(3.5) 0— C (117, FK)— C* (g, Lo (F LKD) —
F] — @
— C* (g, Lo (FZKD)— - .

Here, ?o_m(%]) denotes the Fréchet space of locally summable functions whose
g
seminorms are the same as those in the L? form of the Fréchet space Z[K].
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L, M%[K/)) denotes the space of (0, q)-forms with coefficients in the Fréchet

space L% ,.( 777[1{}; Lastly C*(1t7, L% ., (//'3’ {K ]) denotes the space of cochains
with values in Lge.q;(.~f/§;‘Ik/l). This is a Fréchet space with the norms -/l 1.,

m=1,2, -+ given in (3.3).
Now we consider C*(IV, L%, ,, (//?[

as

])), a=1,2, ---, as an increasing family
of topological modules in the sense of Palamodov [7] Chap. I, §1, 8° Definition 2
and denote it by L%, (<H# [K]). Then we obtain the sequence:

0 * )= * Lty o (F RN~ * L2y (B[R —— - .

(Reecall that C”(llg,:;?fﬁl), a:=1,2,--- is a family equivalent to C*(1l,, (@"/m),
a=1,2, .-+, because W, is cofinal with 1,.) It is evident that this is an exact
sequence of “homomorphisms” of the increasing families in the sense similar to [7]
Chap. I, §1, 5° Definition 8. in the
meaning that “there exists a continuous right inverse”.) Though in our case the
mappings ¢ are not defined on the whole spaces, we meet no difficulties in the fol-
lowing.

(We use here the word “homomorphism”

Now in the diagram

1) a é
—— P e S 5 — E;
0— L F[K] 1LY o (SF[K]) ~— L% (F[K]) ~——

Il
0—— 2B K]
J

6

N

o

=1

e

LR o (FTR))

d Lgo m((_é?[[(]

In fact, this is shown in the following way.
C (U, L2, (ZZ[K]) which satisfy dp=0.
subordinate to the covering 1U7.

)
[

= Lo\ (F[K]) — - -

>

all the rows are exact in the sense stated above.
columns except the first one are exact in the sense of Palamodov quoted above.
Let o={g,,

0

i

A {

]

Lo BIE]) s - ..

=]

On the other hand, all the

.-i,} be an element of
Let {X} be a C™-partition of unity
Without loss of generality we may assume that

{4, is a refinement of the covering consisting of the sets {X;=1}. (For detailed
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study of the construction see Hormander [2], 7.6). We define €C* (Il
L?o.q;(%)) by the following formula:

[ 2, — NV 4
‘r"—{s”z‘o-u iy_,} s Pigrer iy ™ 2.. Lithisg o iyt -
£

The sum in the right hand side is well defined since there are only finitely
many U, which have non-void intersection with Ui, ...;,_,. We see easily that
p.0b=p,¢, where p, is the restriction map corresponding to a refinement 7., —1,.
Thus the columns are exact except the first one. Moreover, we see easily that if
¢ is in the domain of 0 operator, this ¢ is also in the domain of é. Noticing this
fact, we can perform a diagram chase similar to that of Weil's lemma to the above
diagram. Thus the first column is also exact.

Finally by a more precise diagram chase similar to that of [7] Chap. I, §2,
in the first column are topological homomor-

o

Theorem 1, we see that all the ¢
phisms of the increasing families, since the 4 in the other columns and the o in
the rows are of similar nature. Thus the theorem 3.1 is proved.

From now on, we follow the proof in [7]. The part pp. 138-150 of Chap. IlI,
§5 is a local theory and does not depend on the family of majorants, so that we
can employ it without any modification.

Next we consider

LEMMA 3.6. (ef. [7] Chap. III, §5, 7°, Lemma 4.) For any FP-matriz p
and for every v=0,

¢ BIRY) —— (- B K) N Ker T —0

is exact and p is a homomorphism. Here < is the p-operator of Palamodov
[7]1 (Chap. II, §14, 1°, Theorem 1).

Proor. Fix v=20 and «. Put W,={U)} and WU.,,=={V.}. By assumption
rl, .S —};T(u“)’ Thus, employing the notations of Palamodov (ef. Lemma 4

quoted above), we have
Vzon tee m szc Vzocea:o'rceio'fzzvzoc Uzon e ﬂ Uzv , 7":«")‘(“(,4 3) .
Let ¢ be an arbitrary cochain of (c*(u,, .fQTTR{]))‘HKer Z, and let ¢ ...., be its

component corresponding fo the domain Uzo ...z,. To the restriction of ¢. ..., on
e%'”, we can apply the operator

B’o-’ I nKer & — Ul U NKerp,

constructed by the local theory ([7] Chap. III, §5, 5°). Let ¢, ..., be a repre-
sentative of the class B. .9, ...,. By the inequality (19) of [7] Chap. III, §5,
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5°, we have

inf {sup |, ..., — %, 2€ E 2" NnKer p} £Clizf+1)* " sup le. oo ]

T S0
2 ]

Thus we have with another constant C,

inf sup  {¢. .. ., X exp(»— il 12| MHK(Z))

pv
z A,z,LzO ces 2y

1
5Oty o= i HA@)

v

Here we used the fact that

1
m-+1

int (el 1D exp (el Bu®) 2Cexp (A 104 HD)
fee-flm1/4 m

If we define = 3 ¢, s, VoA o0 A V.,, we obtain the inequality
inf HQ'}_me.Umfzgc“?’“m«kl.na .

Here infimum is taken for all the cochains X€ C*(ll .., %f}) such that px=0.
From the property of the operator B.., we have p¢=¢. Thus we have con-
structed a continuous inverse of the map p. g.e.d.

THEOREM 3.7. For any P-matrix p, the following is an exact sequence
of homomorphisms.

(B K —— (ZK) " Ker & —0.
We can prove this theorem in the same way as in the proof of [7] Chap. 1lj,

§5, 1°, Theorem given in p. 152, using Theorem 3.1 and Lemma 3.6, so we do not
repeat it.

SR

THEOREM 3.8. Let :%[K]{p, d} be the space of holomorphic p-functions
F={f*Y with the seminorms

[ flla==max sup |7l exp (- lel—Hy(@)

(ef. [7], Chap. 1V, §5, 1°). Here p is a FP-matrixz and {N?} is the associated
family of algebraic varieties, d is the associated moetherian operator. Then,
— P e d
(ZIK) — (Z K] — Z[Klip, d}—0
18 an exact sequence of homomorphisms.
The proof of this theorem is similar to that of [7] Chap. IV, §5, 2°, Theorem
2. The only difference to be noted is the use of seminorms of Fréchet type. The
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corresponding modification in the estimates in [7] Chap. IV, §5, 2°, Theorem 1 is

P

the same as the modification of [7] Chap. UI, §5, 7°, Lemma 4 to our Lemma

3.6, so that we do not repeat it here.
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