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1. Introduction and announcement of results

In 1963, Haefliger and Hirsch [2] classified the embeddings of an orientable
manifold M” in the Euclidean 2n-space KE* when n>4.

The purpose of this paper is to classify the embeddings of a non-orientable
manifold M™ in R*" when n is even >4.

When a non-orientable manifold M” is embedded in R?*, the Euler class of
the normal bundle can be identified with an integer. We will call it the normal
Euler class of the embedding.

A necessary condition for the normal Euler classes of a non-orientable manifold
was given by Mahowald [4], and Malyi [5] determined all the possible values for
the normal Euler classes when » is even >4. In the case n=2, Massey [6] also
determined all the possible values for the normal Euler classes as a proof of
Whitney’s conjecture [7].

Our line of proof is to classify the embeddings by normal Euler classes. After
I completed the first draft of this paper, I found out Malyi’s paper. As we can
recover both Mahowald's theorem [4] and Malyi’s result in our line independently
of their works, we will present the proofs briefly in Theorem 2.2 and in the ap-
pendix.

Our main result is as follows.

THEOREM 1.1. Let M" be a non-orientable manifold with n even >>4. Then
the isotopy classes of embeddings of M™ in R™ correspond bijectively with
Z+H"(M; Z)|K where K is a certain subgroup of H"'(M; Z) and the first
Sfactor Z corresponds to the difference of normal Euler classes.

COROLLARY 1.2. If in addition H™(M; Z)=0, then the isotopy classes of
embeddings are classified by normal Euler classes.

We can easily see that Corollary 1.2 holds for real projective spaces RP™ with
7% even >4 and for Dold manifolds P{m,n) with both m and n even. Here
P(m, n) is obtained from S™xCP" by identifying (z, z) with (—=z, 2) and is of di-
mension m+2n.
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2. Euler classes of normal bundles

In this paper we will assume that M” is & non-orientable closed manifold with
% even .- 4.

Let W?!' be the submanifold of M" expressing the Poincaré dual of the first
Stiefcl-Whitney class w,(M). W™ is orientable and moreover we may assume
that it is connected. Let N be the closed tubular neighborhood of W*' in M™
and put Q=M-- int N.

Let f be an embedding of M™ in R*". Then the Euler class of the normal
bundle X(v,) can be considered as the obstruction to constructing a non-singular
normal vector field over M*. Since N is a manifold with boundary, the embedding
fIN is unique up to isotopy ([2]). Therefore we may assume that f(ON)cC R*
and that the intersection of M™ to R¥ ' is normal. We can find non-singular
normal vector fields # and v over @ and N respectively because bQ=-bN #¢. Then
the obstruction to construeting a non-singular normal vector field over M™ is given
by

LECSBQ), wQ)— LE(F(BN), v(BN'))

where Lk is the linking coefficient in R*' and u#(bQ) denotes the (n—1)-chain
determined as the image of b@ under the normal vector field «, similarly for ¢(bN).
Hence X(vp)==Lk( fbQ), w(b@))-- LE( f(ON), v(bN})).

Now, let f; {7:20, 1) be any two embeddings of M" in R*". As before we may
agsume that fIN-=:fIN and that the intersection of M" with R*' is normal.
Let uy, %, and » be non-singular normal vector fields over f(Q), fil@) and f(N)
== f{(N) respectively. Then

X)) =X p)= LE(fi(BN), u (@) — LE( fo(bN ), uo(b@)) .

Take an n-chain C in R*"' whose homological boundary dC is equal to the
(n-1)-chain f;(bBN). Decompose C as C’--C” where C” has no intersection with
the tubular neighborhood of f5(bN) in R**~i. Let C., C!/, and C!’ be the n-chains
in R* obtained from the n-chains C, C' and C’’ respectively by parallel transla-
tion along the a.,-axis by the small amount s. Here we may assume that fi{(N)
is contained in the lower half-space of E®*" given by 2.,<0. Define an n-chain T
in R* by

T:0Qx[0,¢] » R !X R=R™"
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Tz, £)=(folz), )=(filx), ) .
Then

LECSBN), w;(0Q))=Cous(bQ)
=(C!+TYou;(@) in R
=(C 4 T~ fH{@Nou{(@)~Cl'ou{g) in R™

since fH{Q)Nu;{@=0. C.+T and f;(Q) coincide near the boundary, therefore there
exists an (n-+-1)<chain K; in R® whose homological boundary dK; does not meet
fi(N) and satisfies dK;=C.+7T—fi(Q). Then we have

(Co+ T—Fi@)euil Q) =dK;ou(@)=—K;sbN and —Clui(@=—Cfi(Q),
because %;(Q) is homologous to fi(Q) in R*"—C!’. Hence
X(Vfl)“‘-X(Ufo):'ccl,"(fo(Q)"fl(Q))‘:“'(Kn"‘“Kl)Qfé(bN) .

Let Q"' be the complement of a neighborhood of N, which is also diffeomorphic to

Q. Then £,/Q" and f,|Q"" define a map F': DQ" — R* (DQ" is the double of Q")
with the orientation of fi(Q’') reversed. Then

X(vs)—X(ws)=C/oF(DQ")—(Ko—K;)ofi(bN)
=Lk(dCl’, F(DQ"))+ Lk(d(K,—K,), fi(bN))
= Lk(dC, F(DQ"))-+Lik(— F(DQ"), fi(bN))
=2Lk(fi(bN), F(DQ"))
=4 Lk(f{(W), F(DQ')) .

Thus, we have shown the following lemma.
LEMMA 2.1. With the notations above,

X(vs)— Xy )=4aLk( ful W), FDQ"y in E*.

As a direct application of Lemma 2.1, we obtain the result of Malyi [5].
THEOREM 2.2. Let f, be an embedding of M" in R*. Then for any integer
k, there exists an embedding f of M" in R* with

X(uy)—Xlys) =4k .
PRrOOF. The}'e exists a map
| Q> R —oN)
such that f/|bQ" =f,1bQ" and that
F'=(—f"UflQ"”): DQ" > R*—fi(N)
represents kw in H,(R™—f(N)) where w is the generator of H (R*"—f,(N)) cor-
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responding to the Alexander dual of fy(W™*) in R*. Without loss of generality,
we may assume that f’ is an immersion. Using the method of removing the double
points of f’ [8], we can make f’ an embedding f’’. Then clearly f”’ also satisfies
the same conditions as f’. Define an embedding f of M by fiM—int@'=f,!M
—int @’/ and fI1Q""=f"". It is easily verified that f is the reqguired embedding by
Lemma 2.1.

3. Proof of Theorem 1.1

First we will examine the relation between the Euler class of normal bundles
and embeddings of a non-orientable manifold more closely.

Take two disks Dy and D7 in M™ such that D}!Cint Df, and put M;=M"
~int D% (j=1,2). The embedding of M, in RE* is unique up to isotopy ([2]).
Therefore, if we fix an embedding f, of M" in K®*, then for any other embedding
f of M", there exists and embedding f’ which is isotopic to f and coincides with
Jo restricted on M;. Then filD? and f/|D} define a map

{(—fo Uf’) DD — Rzn"‘fo(Mz)

where D(D?) is the double of D? and —f, means that the orientation of f,(D?}) is
reversed. By a general position argument and Alexander duality, R*—fi(M,) is
(n—1)-connected. Then the map (—f,USf’) defines an element in

Tu( B - fo( M) = H o (R™ — fo(Mp)) = H"~(Mp) .

(In this section, all homology and cohomology groups have Z-coefficients.) This
element will be denoted by d(f’, /o).

LeMMA 3.1 Let fy and f, be embeddings of M" in R*™ with f\M=f,|M,.
If b, (0:5¢<C1) 4s an isotopy of R* with hilfo(M,)=tidentity, then d(hi=fi, hiofo)
==d( fu, fo).

ProoF. Let L be an (n-+1)-chain in R* satisfying dL=d(f,, fo), then d(f1, fo)
€ H™(M,) is defined by d{(fi, fo)le)==Lee for each (n—1)-cell ¢ of M,. On the
other hand, since d(h,(L))=d(hofi, hiof;), we have d(h,of, hiofo)e)=h,(L)ee which
is equal to Lee.

Let K(f;) be the subset of H"(M,) which is composed of elements of the
form d(Jf, f;) where f is an embedding of M" in R* isotopic to f; and fIM,=f,I M.

LEMMA 3.2 K(f,) 18 a subgroup of H" '(M,).

Proor. Take an element of K(f,) expressed as d(fy, fo). Let k. be an isotopy
of R** which covers an isotopy between f, and fi, then fi=h,oh,. Clearly, d(hi*=fq, fo)
is the inverse element of d{(f, f;). Take two elements d(f’, fo) and d{f", fo) in
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K(f;) and let h! (resp. hi’) be an isotopy of R* covering an isotopy between f,
and f’ (resp. f’). Then it is easy to see that the composition of d(f’,f,) with
d(f"”, fo) is given by d(h{’<hisfy, fo).

LEMMA 3.3. Let f and ¢ be two embeddings of M" in R™ with f|M,=g|M,,
then K(f)=K(g).

PROOF. Let h, be an isotopy of R*™™ with k| f(M,)=identity. Then any element
of K(f) has the form d(h;of, f), hence it is enough to show that d(h,°f, f)
=d(h°g, 9).

d(hieg, @)—d(hiof, fl=d(hi°g, hief)+d(hiof, g)—d(hiof, ) .
But from Lemma 3.1,
dlhsog, hief)=dlg, f).
Hence

d(k1°g, .(})"‘d(h;"f, f)
=d(g, f)—d{g, hyof)—dhof, f)
=d(g, /)—d(g, /)=0.

Let f be an embedding of M" in R*™. We can find an embedding f’ which is
isotopic to f and f/IM,=f,lM,. Then we define d{f, fo)€ H* (M) E(f,) to be the
quotient class of d(f’,f,). This class is independent of the choice of f’/ and is
well-defined.

LEMMA 3.4. Let Emb (M™) denote the isotopy classes of embeddings of M™
in R¥™. Then there i8 a bijective correspondence between Emb(M") and
H™ (MK fs) where fs is a fized embedding.

Proor. To each class of Emb (M") represented by an cmbedding f, we assign
the class d{f, fy). Surjectivity: Any element of H" '(M.) can be represented by a
map {(—foUf) : D(D}) ~» R™—f(M,) where f; is a map of D} into R*— fi{M,) with
filbD==f,|bD}. Moreover, we may assume that fy is an embedding ([2]). fulM;
and f; (by smoothing corners if necessary) give the required embedding. Injectivity:
Let f and g be embeddings of M" in R* with d(f, fo=dlg, f;). We can find an
embedding f’/ (resp. ¢’) which is isotopic to f (resp. g) and f/|M,=f,|M, (resp.
g'\My=£IM,). Then d(f’, f)—d(g’,f)) belongs to K(f;). From Lemma 3.3,
d(f’,g") is an eclement of K{g’). Therefore there exists an embedding g’/ which
is isotopic to ¢’, g”/|M,=¢’|M, and d(f’, g')=d(g"”’, ¢'). Then d{(f’, ¢’’}==0 hence
f/\D? and g¢”’|D; are homotopic keeping the boundary fixed. Therefore f/|D} and
g’/ Dt are isotopic keeping the boundary fixed. This shows that f’ and g’/ are
isotopic. Consequently f and g are isotopic.
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Proor or THEOREM 1.1. Fix an embedding f; of M” in R*". Let f be an
embedding of M™ and f/ be an embedding isotopie to f with f/IM,=fIM,. Asin
section 2, we have

X)) X =2 LI fy U f)DADY), fbN)
~ALR(—fo U f)D (DY), fo W)
=4 S

Here 4”7 is the inclusion map W-» M,. Consider the cohomology exact sequences
of the pairs (M, N) and (M, N ).

o i
H Ny = H" My, N) = H" (M)

! * . |
‘ ; k* i * l

H"HN) = o HY M, N (M) s H* '(N) — H"(M, N)
0’ i *

> H*"(N) — H"(M;, N)

a

Since the map H™(M, N)-> H*(M) is onto and H*(N), H"(M, N) are infinite cyclic,
the map H*WN) » H*M,N) is injective and the map H" '(M)—->H"'(N) is
trivial. In addition, I{"(M,, N) must vanish because H’L(Mg,N):Hn(Q““IB;,I)N)
and I)(Q'wI%‘)"-'b[\:’k,)bl’)i‘. If we identify H"'N)=H"(W) with the group of
integers Z, the map +'* may be substituted by a : H""(M,) — Z where « is defined
by alz) @ @)W1 for x€ H*XM.). Fk* is an isomorphism from the exact
sequence of the triple (M, M,, N). By diagram chasing, 4™ is injective. Now it
is clear that the following sequence is exact.
* «@
0—— H"" (M)~ H""Y(M,) —— Z——0

Therefore

{Y(d(f,9 .f())):''A(-X'(l"f)_'-XP(”’_:’())):‘!‘/1 .

Hence K(fyyo:Kera and K(f,) is contained in the image of H""'(M) under k'*.
Thus, by Lemma 3.4, the proof is complete.

Appendix: Proof of Mahowald’s theorem

We will give a geometric proof of the theorem of Mahowald [4] in our line.

MAHOWALD'S THEOREM. Let o(M"™) be an integer defined by o(M™)=0 if
W (M )ity M)=0 and o(M™=1 if b, M)®,(M)#0. Then for any embedding
fof M™ in R*, X(v/)=20(M") (mod. 4) holds.

PROOF. By Lemma 2.1, the normal Euler class of M" is an invariant mod. 4.
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Therefore it is sufficient to show that X(v,):=2¢(M*) for a special embedding g
which we are going to construct.

Let ¢’ be an embedding of W** in R**. By the natural inclusion of R*"
in R®™ ' we obtain an embedding e of W" ' in R*"'. Let ¢ denote the inclusion
map of W™ in M™ and v, its normal bundle. The vector bundle Hom (v, v.) admits
a non-singular section since dim Hom (v, v.)>dim W*"'. This non-singular seetion
can be identified with an inclusion map of vector bundles because v; is a line bundle.
Therefore, ¢ can be extended to an embedding & of N in R*™'. Let R} denote
the set of points of R*" with 2., >0. Then ¢ can be regarded as an embedding of
N™in bRY". Since RY* is contractible, there exists an embedding g. of Q" in R”
with ¢.1bQ"=¢|bN™ and g7\ (bR¥) " Q*=bQ". ¢ and g, yield an embedding g of A"
in R?* by smoothing corners along bN=-bQ.

Next we will compute X{»,). From §2, we have
X(v,)=Lk(g(b@), u(bQ))-— Lk(E(bN ), »(bN)) in R

Let S be an n-chain in R*' with dC=g¢(bQ) and let S. be the n-chain in R*" ob-
tained by moving S parallel along the .,-axis in the positive direction by small
amount =. Define an n-chain V in R* by V:bQx[0,¢]—» R*"—=R*" ' xR, V(x, t)
=(g(z),t). Then from the definition of linking coefficients,

Lk(g(hQ), w(b@)==S-ub@) in R
s (S£+ V)gu(Q) in RZ”.

The difference between S.-+V and g(Q) is equal to the boundary of an {(n--1)-
chain in the interior of R%*. Hence,

(Se-+ V)ewl@Qy=g(Q)ou((d) 0
since g{Q)Nu(Q)==¢@. Therefore we have
X(v))=:—LEEWBN), v(bN)) in R*.

Since BN is a 2-fold covering of W™ and é(N) does not meet o(hN), é(bN) is
homologous to 2e(W) in R*'—v(bN). Therefore, we have

X{vy)=—2Lk(e(W), v(bN )} .
Similarly, »(bN) is homologous to é(bN) in B*"~'—e(W). Hence,
Xtvy)=—2Lk{e(W), é(bN)) in R,
Lastly we will show that

Llk(e(W), é(bN ))==0(M™) mod. 2.
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In what follows ( ); and [ ], mean reduction mod. 2.

(U(M"))zma)lwn~1[M]z=“:’17)n—1(731 iy [M]g)::i*'ﬁ)n_l[ W]zzwn-x(”pl W)[ W]z
=(X(u| W) W], .

Let W’ be the image of a cross-section of v;| W*' which is t-regular to W™,
Then since the Euler class can be identified with the self-intersection of the base
space, we have

(Xl W)z (WP od (W)= (W o@(N ))o =(LE(W’, é(bN )))o==(Lkle( W), EBN))): .
This completes the proof.
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