A mnote on nonlinear dispersive operators
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(Communicated by S. Ité)

1. Introduction. Let B be a Banach lattice imbedded in a vector lattice B
and let ¢ be an element of B such that

1.1 enfeDB if fexy.
We have introduced in [4] a funectional

(1.2) @Jﬂgkﬁﬂﬁ;‘%mf~e+€m+w—Mf—wﬂD

for f, g€, and called an operator A (¢, y)-dispersive if
(1.3) ou, Au)=rillu—e)*l whenever u€(A) and (u—e)*+0,

7 being a real number. Under some additional conditions on e, we have proved
that if A is the infinitesimal generator of a strongly continuous semigroup
{T:; tz0} of linear operators, then (¢,, 7)-dispersiveness is a necessary and sufficient
condition in order that T, be e-majoration preserving and have norm =<e’. In this
note we will prove similar results for nonlinear operators and show examples. A
typical result is that if an operator A (nonlinear in general) is (¢., 7)-dispersive
and . is a strongly continuous mapping of {0, T] into B and satisfies

(1.4) (d/dt)u,= Au, , 0<t< T,
then
(1.5) e il (uy—e)tl 2e 7 2l (u,—e)t)| whenever 0<¢,<t,s7 .

We will discuss various definitions of dispersiveness which are equivalent to (1.3)
if the operator is linear and e¢=0. There is a freedom of choice of other func-
tionals than ¢., as is investigated in [4]. One of them is the functional ¢} defined
by

(1.6) ol f, 9)=—ef, —9) .

In concrete Banach lattices such as C and L,, we can find explicit expression of
the functional ¢,. Hence we can find typical examples of operators which are

dispersive in these spaces.
In case ¢=0, closely related results are found in Calvert [1] and Konishi [2].
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2. A lemma. The following lemma reveals that the introduction of the func-
tional ¢, is quite natural.

LEMMA. Let w, be a strongly continuous mapping of [0, T] into B whick
possesses a strony right derivative

(d/dt)u,== sz-lium E 4 (sen—ue)

for te(0, T), and let v be a real number. Then, the following three conditions
are equivalent:

(a) (1.5) holds.

(b) For all te(0, T},

(2.1) Oolue, (didt),u) =7 (u—e)* ||
holds.
(¢) There is a positive number « satisfying
(2.2) (uo—e)*ll <a
and having the property that (2.1) holds for any t€(0, T) that satisfies
(2.3) 0<e U —e)ti<e .
Proor. Let (d/dt),u,=w,. Noting that
leern—e) IS Wewn—ne—Rhwd) 4w —e+hw) ™|,
(e —e+hw) | £ N uen—wc—Rw) |+ (u—e)*ll
we have
W oterr—e)* = | (e—e--hw) | -+olh) , A0+,
since |l oy-~u—~hw —olh). Hence we have
(2.4) Lim R (Mween—e) e —e) ) =edlue, wi)
by the definition (1.2) of ¢.. It follows that
(2.5) (d/dt) e Il(u~—e)* N =e"" (o, w7 (u.—e)*|} ,

where (d/dt), denotes right derivative. Hence, using a generalization of the mean
value theorem to right derivatives, we see the equivalence of (a) and (b). (b) im-
plies (c) trivially. Suppose that (¢) holds, and let us prove (a). First we claim

(2.6) e (ue—e)* | <a

for all te[0, T]. In fact, suppose that (2.6) does not hold for some t€(0, T1.
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Then we ecan find 0=¢,<#;< T such that
e T2 {uy,—e) i a

and (2.3) holds for any t€[t,, t.). Hence (d/dt).(e"'{[(us—e)"]}) is positive at some
t€(t,, t;), which contradicts the assumption. Thus we have (2.6). Let 0=¢,<t.s 7.
In case (w.—e)*=0 for all t€(f, ), then (2.1) holds for all t€ (¢, t,) by (e), and
hence the inequality in (1.5) holds. In case (u.—e)*=0 for some t€ (¢, ¢.), then

we have (u;,,—e)*=0. For, if (u,,—e)"#0, then we can find t,€({,, ¢;) such that
(uey—e)*=0 and [[(u,—e)"| >0 for all t€ (¢, t.], and it follows from (c) that

(didt) (e " [ (u,—e)* =0

for all t€(f,, £,), which is absurd. Hence the proof is complete.

REMARK 2.1. Let us denote the strong left derivative of u, by (d/dt)u;. The
above lemma remains valid if we replace “right”, (d/dt),, and ¢, by “left”,
(didt), and ¢, respectively. The proof is quite similar,

3. Various definitions of nonlinear dispersiveness. Let A be an operator
{nonlinear in general) with domain and range in 8. Let a be a positive number
or +co, and 7 be a real number. We introduce the following three conditions.
Die, 1, a): ¢lu, Aw)Syl(u—e)*| for every u€D(A) such that 0<|(u—e)"|| <a.
Dye, 7, a): ¢(—u, —Au)<yll(u-+e)|| for every € D(A) such that 0<|[(u+te) | <a.
Dye, 7, 0): ¢lu—v, Au—Av)Sy{u—v—e)"] for every u,v€D(A) such that

0< {(u—v—e)t| <a.
If 0eD(A) and A0==0, then Dile,;, ) implies Dle, 7, «) and Dile, 7, ). If we
define B by Bu=-—A(—wu), then the condition D.le, 7, «) for A is equivalent to
De,7,e) for B. If A is linear and e=0, then each of Dile,7, @), 11,283, is
equivalent to (1.3), as is seen from the properties

(8.1) o, f, ag)=ag(f,9) for az0,

(3.2) eolaf, g)=eulf, ¢) for a>0.

The following proposition shows the implieation of the properties Dile, 7, a) of A
for the mapping w%: which satisfies

(3.3) (d/dt),ui=Au, .

PROPOSITION. Let u, be a strongly continuous mapping of 10, T] into T(A)
which has a strong right derivative for t€(0, T) and satisfies (3.3). Let
A=min {ae” "7, a}.

(iy If A satisfies Dde, 7, o) and (u,—e)* i <2, then (1.5} holds.
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(iiy If A satisfies Dile, 7, @) and {(uy+e) <5, then
(3.4) e "l u e i e e (e, be) || whenever 05,5t =T

(iiiy If v, t€l0, T'), satisfies the same assumption as is stated for w. and
if A satisfies Die, 7, @) and us—vo—e)™ 1 <5, then

8.8) e "lllug v o) e (v, )| whenever 0=, <S8, =T .

(iv) If A satisfies Dy(0, 7, o), then
(3.6) e "l(Aw ) ze el (Au)
3.7 e "(Auy) T ze T [(Auy)"ll for 0<t,=t.<T.

PRroor. Suppose that A satisfies Dile, 7, o) and [{u,—e)*l|<pf. By (3.3) the
inequality in the condition Dle, 7, @) is no other than (2.1). If 0<e " |{(us—e)" | <5,
then we have 0<|{u,~e)*||<a. Thus the condition (¢) follows with 5 in place of
«, and (1.5) follows by the lemma. Hence we have (i). The assertions (ii) and (iii)
are proved likewise. In order to prove (iv), choose ¢>>0 so small that (u.—u)" || <p.
Noting (3.83) and (d/dt), %5 =2 Aur. and using the assertion (iii) we have

e (e e—we )T Ze T e e e —un) T for 0<t St < T—¢ .
Divide the both sides by ¢ and let ¢-50-4-. Then we get
e "Hlwlilze T lwl ]l for 0<t,={.<T
where w,=(d/dt),u,, and hence (3.6). Similarly we get (3.7), completing the proof.

REMARK 3.1. We define the conditions Di(e, 7, #), i==1,2,3, replacing ¢, by
¢l in Dile, 1, ), 1771, 2, 8, respectively. The above proposition remains true if
we replace “right”, (d/dt),, D,, D, and D, by “left”, (djdt), D!, D) and D},
respectively. It is easy to rewrite the proof using Remark 2.1. The conditions
D!, D! and Dj are weaker than the conditions D;, D. and D,, respectively, since
(3.8) elfimsedf o).

REMARK 3.2. Let 7==1,2 or 3 and let ¢, and ¢, be nonnegative numbers. If
A, and A, satisfy Dile, ri, @) and Dile, 13, a), respectively, then ¢,4,+¢,A; satisfies
Dile, eiritesrs, @), The same assertion does not hold for D! in place of D;. But,
if A, satisfies Di(e, 7, @) and A, satisfies Dile, s, a), then ¢, A;+¢.4, satisfies
Dl{e, e,y-+-¢s52, @). These are seen from (3.1) and

(3.9) elf, gh)=edf, @)+ fi k)

This property of ¢. is found in [4] pp.434 and 436 together with the properties
(3.1), (8.2) and (3.8).
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REMARK 3.3. By the equivalence of (a), (b) and (¢) proved in the Lemma,
the conditions Dle, 7, @) of A are close to necessary for the solution of (3.3) to
have the properties stated in the proposition.

4. Examples in lattices like C.

4.1. If B is a Banach lattice of real-valued bounded functions on a set X with
Il fll being the supremum of |f(z)! and fAg being the pointwise minimum of f and
g, and if e(x) is a function (possibly unbounded) on X satisfving (1.1), then we
have

(4.1) olf,9)= lim  sup
el xE X (f—

(f—e,¢

gla) if (f-e)'#0,

where X(f—e, ¢) is the set of points & such that f(z)—e(x)>|(f—e)*|—<. The
proof is similar to [3] p. 433.

4.2. Consider the Banach lattice C(R?) of bounded continuous functions on R*,
and let 4 be the Laplacian restricted to C? functions u such that du(x)—0 as
jzl = co. 4 is then (g, 0)-dispersive for any constant function e. Suppose that a

given operator A is expressed as
4.2) (Au)z)=dulz)+O(ulz)) ,

where @ is a mapping of R! into R'. The following assertions are easily proved
from (4.1). If —oco<ag<b<-+co and if ®(E)=0 for a<i<b, then A satisfles
Dy(e, 0, b—a) where e(z)=a (constant function). It follows that if —oolhg b oo
and O(6)<0 for £<b, then max uo{x)<b implies

max %, (2)= max w,{x) for 0st:isi,=T,

provided that w, is strongly continuous on [0, T'], has a strong right derivative on
(0, T) and satisfies (3.3). If —co<a<b<-+co and @(&)z0 for a<{<b then A
satisfies Dyle, 0, b—a) where e(x)=—b (constant function). It similarly follows that
if —co<a<+oo and ¢(&)=0 for £>a, then nlin us{2)>a implies

min u, () Sminu,(2) for 0SSt st.57T.

4.3. If @ is 2 monotone nonincreasing mapping of R! into R' and if A is an
operator in C(R?) such that

(4.3) (Au)z)y=0(ulz)) ,

then A satisfies Dsle, 0, +oo) for any nonnegative continuous function e. In fact,
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we have (Au—Av)(x)=0 for any z such that (u—v—e)(z)z0.
4.4. In 4.4-4.8, we consider the Banach lattice C,(R') of continuous functions

on R! vanishing at +co. For any continuous function ¢ satisfying (1.1), we have

(4.4) olf, 9) = max gl@) if (f—e)*+0,

where X(f-~e) is the set of points z such that (f—e}z)=[[(f—e)*|l. (See [4] p. 437.
This is also a consequence of (4.1).) Let @(%,7,{) be a mapping of R? into R!
which is monotone nonincreasing in ¢ and monotone nondecreasing in {, and let

(4.5) (Au)(z)=0(ulz), w'(xz), u"(2)) .
Then, A satisfies Dyle, 0, --c0) for any nonnegative constant function e. In fact,
if w-—v—e attains a positive maximum at a point x,, then u=v, u'==v", and w" <v"
at x,, and hence
Ay—Av=@lu, u’, u”’)—-0(v, v/, v )0 at 2.
Simple examples are
A= —y2 g/ and  Au==(y/) iyt

7 and m being nonnegative integers.

4.5. Let @ be a mapping of R® intoc R! such that @(%,0,0)=<0 if £=0 and
{=0, let B be an operator such that Bu=0 for any # € D(B), and let
(4.6) (Au)z)=0ulz), w'(z), w(x))-(Bu)z) .
Then A satisfies Dyle, 0, --o0) for any nonnegative constant function e, since w20,
#'="0, and #” =0 at the point x, where u~e attains a positive maximum.

4.6. Let ¢ be a mapping of R! into R! such that @(0)=0, let B be any
operator, and let
4.7 (Au)(x)=d(u'(x)) (Bu)(x) .

Then A satisfies D(e, 0, +c2) and Dsle, 0, +o0) for any nonnegative constant func-
tion e, since (Au)wx,)==0 at the point x, where % attains a maximum or minimum.

In the above examples the Laplacian (or the second order derivative in one-
dimensional case) can be replaced by infinitesimal generators of Markov processes.
Infinitesimal generators of spatially homogeneous Markov processes are (g, 0)-
dispersive for any nonnegative constant function e also in L,(R?%, 1=5p< 4o,
Hence, using Remark 3.2 on sums of operators, we can make many examples in
L, and L. from operators considered below.
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-

5. Examples in L.

5.1. Let B be the real L, space on a measure space (X, <&, m), and let ¢ be
a nonnegative <Z-measurable function. Then we have, [4] p. 437,

5.1) ol f, )= g (z)mdz) + g o @ym(d) .

{z:f(z)>elz)} [ERURCIENIFIN]

It follows that if A is an operator in this space represented as (4.3) by a mono-
tone nonincreasing mapping @ of R!' into R!, then A satisfies Dile, 0, - o0).

5.2. Let ®¥(%,7) be a C? mapping of R? into R!, which is monotone non-
decreasing in 7, and let A be an operator in L,(R') represented as

5.2 (Au)(z)= % O(ulz), u'(z))
dz

with the domain ©(A) being a class of C? functions u such that » and %’ belong
to Co(RY). Let ¢ be a nonnegative constant function. Then A satisfies Dy{e, 0, +o0),
Dyle, 0, +o0), and D4(0,0, +o0). In case @ is a function only of 7, A satisfies also
Diyle, 0, +c0). Proof is as follows. In order to show D0, 0, +o0), it suffices to
prove

(5.3) ‘E“&% @Du, w)—P, v)dx =<0,
a2 N S .
(5.4) Sp(dx {D(u, w)— 0, v )}) da=0

for every pair of u,v€D(A), where E={z:u{z)>v(x)} and F={z:uw(z)=v(z)}.
Let {a, b) be a connected component of E. If (a,b) is a finite interval, then

Sb?z%{{@(“’ w )~ V) =[0(u, u')~bv, v)] <0 ,

gince ula)=v(a), u'(a)=v"(a), uw(b)=v(b), and w'(BD)Sv'(h). If (¢, b) i3 an infinite
interval, we can get the same conclusion, noting that %, », and their derivatives
vanish at +oco. Hence we get (5.3). Decompose F=F,JF, where F, is the set
of accumulation points of F' and F’; is the set of isolated points of F', and further
F,=F,,UF,, where F,, is the set of accumulation points of F,; and F. is the set
of isolated points of F,. Since F, and F,, are countable, they do not contribute
to the integral in (5.4). We see u=v and u’=v’ everywhere on F,, and hence
(d}dz){@(u, ' )—B{(v, v')} vanishes on F';. Thus (5.4) follows. The other assertions
are proved quite similarly. This example includes an operator
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du

i with a(u)z0.

.4 du
(Awa)= - (a(u) dm) Fblu)

6. Examples in L,.

6.1. In case B is the real L, space on a measure space (X, &#,m) and ¢ is
a nonnegative <& -measurable function, we have, [4] p. 437,

6.1) ol f, )= Sx(fw)"‘gm(dx)/ WF—e)l  if (f—e)*0.

Hence an operator A represented as (4.3) by a monotone nonincreasing mapping
D(&) satisfies Dyle, 0, -+co) in this space.

6.2. If ¢(¢) is a monotone nondecreasing C! mapping of R! into R! and A is
an operator in L.(R!') with the form

6.2) (Au)z)= T o)) ,
dx

the domain ©(A4) being a class of bounded C? functions u such that %’ belongs to
Cy(RY), then A satisfies Dyle, 0, +oo) for any nonnegative constant function e. In
fact, let (a, b) be a connected component of the set {z:u(z)—v(x)—e>0}. If (a,b)
is a finite interval, we have

Sb (u--v-—e) a (@u')—D(v"))dx
dx

3

==[(u v e Plu ) G0N — Sb(u’wv’)(@(u’)—ﬂv’))drc ,

and in the right-hand side the first term is zero by the vanishing of u—v—e at
a and b and the integral is nonnegative by the monotonicity of @. If (a,d) is an
infinite interval, the same conclusion holds by the assumption on the domain of
A. Thus we have

g " u—v—e)* % (@)~ 0w )dz =<0 ,
do

—

and the assertion follows immediately.
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