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§1. Introduction and summary

This paper is concerned with the following initial value problem for the
degenerate system of parabolic semi-linear equations,

9 =du,~-d U~ dst U ,
ot

a—;il =Ayy—dsusu,+dau Us ,

(1.1)

?‘Z&‘s‘ = dsustts—dat us ,
ot

d

g—‘f = —du U datau, ,

in R*x[0, o) with the initial data
(1.2) ui(xr O):gfj;(x) i:“l; 2) 3, 4 ¥

where 4 denotes the n-dimentional Laplacian, and d,, d: and d; are all nonnegative
constants.

From now on, we shall denote this initial value problem by (L.V.P).

Such a system arises in describing the diffusion accompanied by an immobilizing
reaction of second order. For this (I.V.P) M. Mimura [2] proved global existence
of the nonnegative solution by difference scheme method. In this paper we shall
prove similar results by the iteration method which is different from Mimura's.
Our method is applicable to the mixed problem, that is, the initial value problem
with the boundary condition (the Dirichlet, or the Neumann condition) considered
in £2x{0, o), where £ is an open set in R™.

In construction of the nonnegative global solution, the parabolicity of the equa-
tion is essential. An a priori bound, important for global existence of the solution
of (I.LV.P), is easily obtained using elementary properties of parabolic equations.

Now we give some definitions.
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DEFINITION 1.1. <Z(R") is the set of all &(z)={¢.(x)} (=1, 2,3, 4) such that
each component ¢;(x) of @(z) is boundedly continuous in R*. <Z(R" is a Banach

space normed by
4
@i o= 3 suplele) .
i1 xER®

DEFINITION 1.2. <7, is the set of all Ulz, t)={ui(z, )} (1=1, 2, 3, 4) such that
each component u;(z,t) of Ulz,t) is boundedly continuous in (z,t)e R"x<[0, T).

&7, is a Banach space, its norm being

WUl = 2 sup w2, t)l -
il rEnn

ist<T

Wi(t, #, ¥) means the fundamental solution of the heat equation, that is,

a2
Wi(t, z, y)= exp<~ L“L__ZI_L) (z, ye R, t>0).

1
(4mt)"2 at

Next we shall define solutions of (I.V.P). We treat only bounded classical
solutions which belong to .

DEFINITION 1.3. Ulzx, £)={u:z, t)} is said to be a solution of (I.V.P) in
R*<[0, T, if wilz, t) (1=1, 2, 3, 4) satisfy the equations (1.1) in R"x(0, T) in the
classical sense, and as for initial values the relations

lm udz, t)=¢;z) (1=1,2,3,4)

tiu
hold.

Our main theorem is the following.

MAIN THEOREM. Let the inttial value O(z)={¢(x)} be in <F(R™), and sup-
pose that all ¢(z) are nonnegative and ¢s(x) and ¢dx) are locally Hdélder
continuous. Then the solution Ulx, ty={ux, )} of (I.V.P), whose components
wi(z, t) are all nonnegative, exists globally in time. It belongs to H; and is
unique there for an arbitrary T>0.

§2. Elementary properties of parabolic equations

In this section we shall summarize elementary properties of parabolic equa-
tions (heat equation) in lemmas. (See, Friedman [1]). We shall need these lemmas
in later sections.

Set

_a .
(2.1) L= o d—qlz, t),
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LN

where ¢(z, t) is bounded and continuous in R*x{0, T)=:R;.

In the following two lemmas, we shall assume that f{(x, t), a continuous func-
tion defined in R*x[0, T), is twice continuously differentiable in % and once in ¢ in
R*x(0, T)=R;.

LEMMA 2.1. Suppose that a bounded function f(x,1) satisfies Lfz0 and
flx, +0)=20. Then flz, t)=20 in Er.

Since it is well-known, the proof is omitted.

LEMMA 2.2. For a nonnegative bounded function f(x,t), Lf is non-positive
(Lf<0) and boundedly continuous in }%1 Then

2.2) Sflaz, t)ge’f‘zselfg [fla, 00,

where
k= sup qlz,1).

{(z,0)ERp

PRrRoOOF. According to the representation formula for the non-homogeneous
initial value problem, we have, noticing nonnegativity of W(t, z, %) and f(, ?),

2.3) Oéf(a:,t)ég Wt, =, y).f(y, O)dy+ Stdsg Wit—s, z, w)o(y, 8)f(y, s)dy .
Rn 0 v

k

Putting F(t)= SEQ. flz, t), we can easily derive the inequality
t
2.4) OgF(t)gF(OH—S kF(s)ds .
0

In getting (2.4), we have made use of S nW(t, z, y}dy=1. From the integral

I
inequality (2.4),

F{t)s F(0)e**,
can be shown.
This implies (2.2). Q.E.D.
LEMMA 2.8. Let g(x,t) and hiz,t) be in &Fr. Let ulz,t) be the solution,
uniquely determined in %r, of the integral equation,

ulz, £)= Stdsg Wit—s, z, )9y, s)uly, s)dy+ SldSS Wit—s, z, Wiy, 8)dy .
0 }rid 4 r®

Then wulz,t) i8 continuously differentiable in z in R"x<(0, T). In addition, if
g(z,t) and h(z,t) are locally Holder comtinuous in « uniformly with respect
to t >0, then ulz,t) satisfies the differential equation,

%%— —dy—glz, tyu—hiz, t)=0,
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and ljérgu(a:, t)=0 holds.
These facts are based on the potential theory, that is, estimates of the funda-
menta] solution W(t, z, ). We refer the reader to Friedman [1] for the details.

§3. Unigueness

PROPOSITION 3.1. Let Uz, t) and V(x,t) be two solutioms of (L.V.P) in
R*x[0, T) whose initial values are O(x) and ¥(x) respectively. Assume that
WUorl VI <M.

Then we have the following estimate

NU=VI . p=l0—~¥| > exp(5EMT),
where
k= max (d,, ds, ds) .
Proor. It is obvious that (I.V.P) can be transformed to the following system

of the integral equations for Ulz, t)={u:(x, t)} with the aid of the fundamental
solution W(t, z, y):

W, =, wedy)dy

Rﬁ
14

odsgnn Wit—s, 2, y)d,urly, hudly, )+ daui(y, shusly, s)idy ,

Wit, ©, y)e.(y)dy
Rﬂ
3.1) ¢
- Sodsg W(t—s, 2, ¥){du.ly, s)udy, s)—dau,(y, syus(y, s)idy ,
Rﬂ

t t
uslx, t)==py(x) xg dyus(z, 8)ulz, s)ds— S dau(z, s)uslz, s)ds ,
0 1]

t t
walt, £)=4(x) — S sz, udw, s)ds — S detualw, S)udz, s)ds .
[ [

Also, for Via, t)={vix, t)} similar equations are obtained.
Introducing

3.2) |u."‘“‘v¢)«,.‘~"g = félfgtlu;(a:, t)—vi(z, £)

and

(3.3) il o= fggﬂl‘iﬁi(x)—'ff"i(x)i ’
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and using S W, z, y)dy=1, we have for (u;—uv,),

£
Uy — 5, Sl —diles +kz’|/[§ {2]1&1“‘?/'1{(«, %‘luswl‘ﬂw,’?‘lungd s 3ds
0
t
la—al s, < lpp— el ~:~kM§ Hot =21l s, = ps) ., -l —als,
0

“+lws— 4l s}dS )
(3.4)

¢
(s —vsl 5, Sles— O3l s +kMS {luy =il Hlua—2o| 5y +lus—1y .,
0

+luy—vil 5, Mds

¢

[Us—v4ln, Slos— 4] s +kMX {lur—vil s, +lus—ve] o, +2lus—v,l 2, }ds .
(]

Adding these four inequalities, we obtain the integral inequality

4 t 4
(3.5) S el 2, S 10—V +5IcM§ S fui—vl s, ds .

0 t=1

After an elementary calculation, (8.5) gives
4
(8.6) El fi—vile, SOV » exp (BEML) .
Finally, (3.6) implies
WU~V 2lo—¥) - exp BEMT) . Q.E.D.

COROLLARY 8.2. (uniqueness).
The solution of (I.V.P) is unique in <Z;.

§4. Construction of a local (in time) nonnegative solution

In this section we construct a nonnegative solution of (L.V.P) for a nonnegative
initial value @(x)={p;(x)} in & (R") locally in time by the iteration method. We
assume that ¢y(z) and ¢,(z) are locally Holder continuous.

Define the sequence U™(z,t)={ul(z,t)} in the following way. Uz, t) is the
solution of the initial value problem:

U ... g0

o

oul

A

at uZy
(4.1) ot

Uz

ot 0,
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a0
Gy ==
- —J
ot

with the initial data uiz, 0)=¢;(z) (:==1,2, 3, 4).
For n=1 we define U™z, t) by the solution of the following initial value

problem:
au;l n Nyl L |
”_at :V-J/Lh '~-(l1u1 U ‘(lz'llzx U3 y
[7
aun
2 - .
Ayt —dadul T dauiul Tt
af
(4.2)
du
e dsus " 'ui-—daul " ui
au? =1, % Nl
"'..jt c = —dul T ul—daud T 'ul,
\ U

with the initial data w?(x, 0)=¢(z) (¢==1, 2, 3, 4).

The sequence U™z, t) is well-defined. From (4.1) U%z, t) is defined and ob-
viously ui(z, t) and wui(x,t) are locally Holder continuous in z, uniformly with
regspect to ¢ (£>0). Suppose that U™ 'z, t) is known and u} Yz, t) and u} '(x,t)
are locally Hélder continuous in z, uniformly with respeect to ¢t (¢>0). Then %z, t)
and ui{x, t) are easily obtained, and it is clear that they satisfy the same condition
of Hélder continuity as «3 '(x, ¢t) and «? '(z, t) satisfy. To get ul(x,t) we solve

the integral equation,

@3)  wlle, t)= S Wt, o, y)euy)dy

R™

t
S dsS Wit-—s, x, y){d.ul(y, )ui "y, 8)+duly, s)ui'(y, 9)}dy .
n®

o

(4.3) can be solved by means of successive approximation. Next we get ul(x,t)
in the same way. By the assumption of Holder continuity of u) 'z, ¢) and
wl Ha, t), U™z, t) satisfies the system (4.2) with the aid of Lemma 2.3.

LEMMA 4.1, The sequence U™z, t) defined by (4.1) and (4.2) is nonnegative,
that s, wi(z, )20 (1=1,2,3,4).

Proor. The proof is by induction. Since all ¢,(%) are nonnegative, vz, t) are
nonnegative. Assume thal ul~'(z, £)=0 (=1, 2, 3,4). By Lemma 2.1 u}{z, t)=0 and

obviously wi(x, t)=0. Hence

An
ouz(z, L =
e (;w’ ) —dui +dauiuit =0,
o
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oul
ot

Thus it follows from Lemma 2.1 that wj(z, ¢)=0, and ul(x, £)=0.

LEMMA 4.2. For the sequence U™z, t) (n=0,1,2, --+) we have an a Priort
estimate, for 0< T< oo,
(4.4) HU™ep =2]000 .

PRrOOF. For =0 it is obvious that [|U? 5+ =21@]l » . For nz1, from equations
(4.2) and Lemma 4.1, we have

+doul ' ulz0 .

6(u}‘;~u) —dul+ud)=—duiui ' —duiul 's0,

o(uf+ - ) —daur i —durur <0 .
ot
Hence, by Lemma 2.2, we conclude that

0=ul(e, ) +ulz, )= sup o () + sup o)),

0=ui(z, t)+uiz, t)s seulgnl%(m)lﬂ-‘* sup loda)l .

Then [|U™(z, )]l ., =2ll¢lls . Q.E.D.

Existence of a local (in time) nonnegative solution is now established.
PROPOSITION 4.3. The sequence U™x,t) defined by (4.1) and (4.2) converges
to a nonnegative solution Ulx,t) of (LV.P). More precisely, U™x,t) converges

to Ulz, t) in &Br,, where To=—-,— 18loM k= max (d,, ds, d3) and M=|/0| .

PROOF. The initial value problem for (4.2) may be rewritten in the form of
the following system of integral equations:

uiz, t)= S Wit, z, y)e(y)dy
R'n
- S‘dsg Wit—s, #, w)dui(y, sui-y, )dy
0 R®

H
— S dsg Wt—s, z, y)dulty, sui~(y, s)dy ,
0 Rr®

uz{z, t)= S W, =, w)es(y)dy
Rﬁ

(4.5) ¢
— S dss Wi(t—s, z, dui(y, s)ul "y, s)dy
)] Rr®

-+ desg Wit—s, =, y)dul(y, s)ui~'(y, 8)dy ,
[ Rr®
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) ¢
ui(z, t):r%(x)JrX dyut Nz, sluilz, S)ds—g dul Nz, slui(z, s)ds ,
[ [+]

t
Uz, 8)=p,(x)~— Sldlu?“(x, syulz, s)ds— g dsur Mz, s)ui(z, s)ds .
1] 0

We now consider the difference u?**(x, t)—ul{z, ). Putting

1

(A HPES seulg!u?“(:v, t)—ul(x, t)l, k= max (d,, ds, ds) and M=[|P|=,

we can derive

t
i — ufl s, < ZchS Rlul =] o, lud =g

a
+lur—ui~'l s, }ds,
t
' = ul s, < 2kM§ Hut i —adl s+ g =gl »,
[
tud—ui o lul—uis }ds ,

(4.6) t
gt —ufly, s ZkMS {lut—uf ' vt lud—ui ' o Hlus ™ —uil -,
0

+Huitt—ull 5 Mds,

and

1
g ,;tészS e e R
0

+2uit —ulls }ds .

Adding these incqualities, we can get
4 . t 4
2wl —ulls, 2 6EMY 3 (urt—ullo Hlul—ull . )ds .
Y t 0 it ¢ ?

For t€0, T,), where Ty= , we have

1
18kM
4

3 (0t =l ooy SRM T U™ = Uy, HN U= Uy )

Therefore
(A—=6kMT) U™~ U, S6EMTo| U™~ U,y ,

At n 1 n n—1h
1™ = Uy, S 5 MU= U™y

This implies that the sequence U™(z,t) converges to a limit U(z,¢t) in By
We now verify that Ulz,t) is a solution of (I.V.P). Letting n->oc in the
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system of integral equations (4.5), Ulz, t) satisfies (3.1). On account of Lemma 2.3,
%z, t) and us(z, ¢) are continuously differentiable in z. Hence, noting that ¢sx)
and ¢,(x) are locally Holder continuous and making use of Lemma 2.3 again, we
find that w(=, t) and w,(x, t) satisfy the parabolic equations,

9—;%— =4y, —duus—domuius ,

Ous
ot

?—’Auz ~d3u2u¢ + dgulus .

Obviously wus(z, t) and u(z, £) satisfy the equations,

-

0;;3 :d3u2u4—d2uxu3 ’
7]
”g:;—" :—dﬂhui"dauzuc ,
and Ulz, t) satisfies the initial condition U(z, 0)=®(x). Q.E.D.

§5. Global existence of nonnegative solutions

To extend the local (in time) solution obtained in the previous section to a
global solution, we shall need an a prioré bound.

LEMMA 5.1 (A priori bound). Suppose that a nonnegative solution Uz, t)
exists in 0St<T. Then we have an estimate

(5.1) 1Uz, )] .3 =2 Uz, 0). .
Proor. Since all u;(z, t) are nonnegative,
Awtus) g 4o,
at
ustus) <0
at -

Hence we can easily get the estimate (5.1) from these differential inequalities.
Q.E.D.

Now we are going a study global existence of nonnegative solutions.

ProOF OF MAIN THEOREM. We shall prove that the nonnegative solution Uz, ¢)
assured to exist by Proposition 4.2 can be extended to a larger interval. It is clear
that we can construct a solution V(z, t) of (I.V.P) starting at the initial moment
To—e, ¢>0 arbitrary small, and with the initial value Uz, T,—¢). From the
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foregoing argument, it follows that V(z, t) is defined in the interval [To—e,—g—’l‘o
) because of | Ulx, To—e)ll » =21 Uz, Ol ., =2M.
We easily verify that Uz, t) defined by

Ulz,t), 02t<T,,

Ij(:ﬁ, t)‘:: 3
V(xy t)r T()_‘sét<—2“TO»—E y

is a solution of original (I.V.P) in &Zw/are-:, because for t€[To—e, To) Ulz, t) and
Vix,t) are coincident in view of the uniqueness. >0 is arbitrary, so we have
a solution of (I.V.P) in &Fu/mr,. By writing Ulz,t) instead of Ulz,t), we have
gstablished that the solution Ulz, t)€ &#r, can be extended from [0, T,) to
{‘0, "2‘ To) and in ZFwur,

Moreover, the a priori estimate (Lemma 5.1)

Uz, )ll» 221Uz, 0)ll= ,

(d/?)T =
holds.

Since this procedure can be continued indefinitely, Ulz,t) is extended to
[0, Tyt 215) (0=1,2,3, ) within the class Frgeinure

Again recalling the uniqueness, we have proved Main Theorem.

§6. Concluding remarks

In the previous sections we have only discussed the Cauchy problem. But as
mentioned in the introduction, even for mixed problems global existence of non-
negative solutions can be shown by the same method. In fact, in order to show
existence of a global nonnegative solution of (I.V.P), we have made use of ele-
mentary properties of parabolic equations. Such properties are well-known for
mixed problems (the Dirichlet problem, or the Neumann problem) of parabolic
equations, Iteration procedure to construct a nonnegative solution is the same,
and the corresponding a priori bound can be obtained similarly.

Also we can treat the Cauchy problem for the following system of an immo-
bilizing reaction of high order:

et 8 __Jul do’h’,”ln po+l_dlu{)5+~1uf6+1 )

(8.1) }9t =duytdauf v ulst ~daufet lult
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u ‘

L= —daulrtulst + dgulet yltt
ot

"

U »

‘a“f = —daufuldt —dubs P ulett,

with the initial conditions ui(x, 0)=¢;(2), where p; (i=1, 2, ---, 6) are nonnegative

integers.
In fact, we can construct a nonnegative solution of the Cauchy problem of the

system (6.1) by the following iteration:
(i) »=0

%:d 0
at !

with the initial data u¥z, 0)=¢;(z) (i=1, 2, 3, 4).
(i) n=1,2,8,---,

u?
T e O T e A (L i

ouf .
Lhe, :dué‘+d2(ui'“‘)”x(u5"“)”a‘“ui‘-—da(u;"’)”s(u;‘“‘)”ﬁ‘ué‘ ,

ot

oug
a; = —dy(ur ) wud ) s daug e (ud )Pl

oul Do _ —1\D, - -
“a“t“”—“— —dg(ud e (up )l —dy(u P (u ) Peu?

with the initial data u?(z, O)=¢(z) (i=1, 2, 3, 4).
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