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§1. Introduction

In the present paper we shall consider the scattering theory for a pair of self-
adjoint operators determined by the negative Laplacian with the Dirichlet boundary
condition, the one being defined in a semi-cylinder S and the other in a perturbed
semi-cylinder. The main problems we shall consider are the unitary equivalence
of these operators and the construction of perturbed eigenfunction expansions.
Throughout the present paper, our cylinder S is supposed to have the form

S=1x[0, o0)={x=(%, z,) € R*; 2€l, %, =0},

where | is an (n—1)-dimensional bounded domain with sufficiently smooth boundary.

Recently this problem was investigated by C. Goldstein [1], [2] under the condi-
tion that 2 coincides with S for sufficiently large z,. In treating this problem he
constructed in [1] a set of generalized eigenfunctions by solving the boundary value
problems with the aid of the principle of limiting absorption. In this paper we
shall prove some of his results under different assumptions which are considerably
weaker than his assumptions in some respects.

We treat this problem by transforming the Laplacian in L*({) unitarily to a
second order elliptic differential operator in L3*(S) by means of a suitable coordinate
transformation. Then we apply a method of smooth perturbation in the scattering
theory. Goldstein [2] also uses a coordinate transformation from 2 to S. By means
of that transformation, however, he reduced the problem to nonselfadjoint perturba-
tion. On the contrary, we will always remain with selfadjoint operators. In §2
we formulate and prove our results for differential operators in L*S), where we
shall apply a method of smooth perturbation due to Kato and Kuroda ([3}, [4], [6]).

In §3 we consider the negative Laplacian in L({2).

§ 2. Perturbation of negative Laplacian in a semifinite cylinder
We begin with some notations. £ #:(S) is the Sobolev space of order & over
S and 2 £(S) is the completion of Z(S), the Schwartz space of test functions,
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in % 5(S). We define the closed Hermitian form h, as follows:

%

halu, v]= % (Gew, d0)s for w, v€ Fia(S)
i

where (f, ﬂ)sf'*fgf(x){}ajdsc and 9,=9/6x;. Thus, the form h, is defined on the

domain Z(h,)— 7 ':S). We denote by H, the selfadjoint operator associated with

h,. Then, one has H,==K,%K,, where K, is the negative Laplacian with the zero
2

Dirichlet condition in L*(1), and Ku'—«%;; in L0, o) with the zero Dirichlet

n
condition at z,==0.

Following Goldstein [1] we shall first give a spectral representation for H,. We
denote by v, the eigenvalues of K, ordered increasingly with repetitions according
to multiplicity, and by 7.(#) the corresponding orthonormal systems of eigenfune-
tions of K, and introduce the Hilbert space

)2dé .

Sy

S = 3 ®LH0, ), FIE.= ig”w
For each f(x)€ L3S), we set

(@ae=1jm. | | o f@de, >0,

L tJo
2\ . -
Wwa 2, §)= (—;) 8in §n 7n(@)

where li.m. signifies that the limit is to be taken in the sense of the Hilbert space
977’ Then it can be shown that T is a unitary operator from L*S) onto 577/,
and TH, f={(&24+v,M(T).(6)}. Next we set

. 1
Ff= {(Tf),,,<<;r~vm>”“) ' W}

for each f(z)€ L3*S). Then F is a unitary transformation from L*S) onto

™m

S = T DLy, o) (H{fm} =5 S” |l dp)
and

FH f={e(Ff)m(t)} .

In other words FH,F-! is the operator of multiplication by gz Thus F gives a
spectral representation of the selfadjoint operator H,.
Next we define the Hermitian form h. as follows:
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holu, v1= 3 (a:,(2)0,u, 6:0)s-+ 2 AUb,(2),u, v)s(u, bla)d e)st+(glaeyu, o)
for u,ve€ Z:A8).

We impose following conditions on a;;(%), b(z), g(x):
(C.1) () a:jx), bi(x), qlx) are real; b;(x)€ CUS), a;;{x)e CHS);
(ii) There exist a>1 and C>0 such that

la; (e S CA+x,)7, where a;{x)=6;;~a:;{z),
i =CA 4w, lg@)=sCA+2.)7;

(iii) There exists 6>0 such that

Z = oA ~ k.
" a6 E;20-82 for every x€S and f€R™.
£, 1

Under condition (C.1) h, is a closed Hermitian form bounded from below. We
denote by H. the selfadjoint operator associated with hs, by H,... the absolutely
continuous part of H,, and by ... the subspace of absolute continuity with respect
to H,. We denote by 4 the set of all real numbers 4>v; which are not equal to
Vmy M=2,3, ---. ‘

Now we state the theorems of this section.

THEOREM 1. Under condition (C.1)V, H,.. is unitarily equivalent to H,,
namely there exists an isometric operator W with final set ;.. such that
WH,c H,W.

REMARK. In the proof of Theorem 1 the operators W. having the properties
of W described in Theorem 1 will be constructed by applying a general way of
constructing such operators given by Kato and Kuroda (Cf. references given in §1).
In particular, it is known that these operators Wi coincide with the time dependent
wave operators. Namely in the situation of Theorem 1 we have

Waz=g-lim ¢i/ee 4y

400

the limit being shown to exist. More generally, the invariance principle for wave
operators hold.

THEOREM 2. Under condition (C.1), there exists a closed null set 'y A
such that the following assertions hold.
1) For every Z, m with &+v, e, there exist wi(z, &) having the following
properties (m=1,2, ---)

a) wilz, &)L+, " € D AS)N & l2uoa(S) for any e>0

1 For this theorem the regularity assumption on a;i(z) and bjx) can be weakened.
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by - }3 D 230 wE(e, )+~ 3 8 (m)+qlehwilz, 5= (v )wnla, §)
Lok 2

m=1,2,---.
2) For each u(z)€,..., we set

L S
Touw~{Tyw)n($)}== Lim. J:X S ulz)wilz, S)d:v}
e A Je Ji

L

where 1.i.m. signifies that the limit is to be taken in the semse of the Hilbert
space SF'. Then Ty is a unitary transformation from ... onto 5277, and

(T, W:tu)m(f)::(Tu)m(s) .
3) For each u(z)€ 9N, .00 & (H,)
(T:i:HZu)m(E)'(éz: v”l)(Tﬂ;u)ﬂl(f) «

To prove Theorems 1 and 2 we use the factorization method, namely, we use
the fact that formally H, can be written as H,~H,+ E A*C,B,, where A4,, B,
are closed operators in L3S) and C, is bounded operators’ in L¥S). More precisely
we introduce operators in L3*(S) determined by

Agu(z) = Boulw) = (1-+x,) " *2ulz) ,
Aju(x)-=Ajule)— Bulx) = Boyulx) =1 +z,) *20ulx), 127, k2n,
Aj=B=A,,
Coula)=q(z)-(1-+a,) ulz),
Ciulz)=Clu(w)=b;(x)-(1+z.)"ulz) ,
Ciul)=ax) 1-4+z,)ulx) .
A,, A}, By, By, C;, C}, C;y are bounded in L3(S), and the domains of A;, B}, A, Bj,
are &714(S). Then it can be shown that for u, v€ < 1:(S)
i, vl=hlu, o4+ 3 (CoBaw, Apals+ 3 (CiByu, Ajols
+ 2 (G5B, A +(CoBot, Arv)s -

Here and in what follows we denote the closure of an operator T by 7°, the
adjoint of T by T, the resolvent of H; by R,(z)=(H,~—z)"!, and spectral resolu-
tion of the selfadjoint operator H, by E\(4). To prove Theorem 1, it suffices to
prove the following assertions (see [4] Lemma 7.2).

Assertion. There exist bounded operators M;(2) in L¥S) for i€ 4 such that:
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1) M. is locally Hélder continuous in .1 with respect to the operator norm
0=, ksn:

.
ii) For any j, k and any N>, \ M (i<

A
iii) For any compact interval I.=.1

(A, B A% S Mundi
1

where A;=(1+z,)" "%, 6,==1I; and
iv) For any 2€.4, M;.(%) is a compact operator.

In order to prove the assertions we shall construct M;.(4) in the form M, {4)-=
T{(* T2 with suitably defined operators T;(1) from L*S) to I>. Let us begin
with introducing some more notations.

For each y€ Y={{y,, ¥., 1€ %, 4, €Clv,, )} and i€d we set V(hy--
{yi(), -, yx(5,0,0, - -}, where N==N() is determined by the relation vy <A<vy,,.
Then V() is an operator from Y into [2. For each u(z)€C7(S), we set T (Au=

VW EFA*u). Furthermore, we write

mize
s:ung,:U ez |
S
for each u(z)e€ LYS), and !{a{%lz:(i la;1$)1/2 for each a€®. In the following we
i1
suppose that condition (C.1) is satisfied.
LEMMA 1. There exists Cy>0, which may depend on N but not on

A€ vy, vui) Such that

ITules =S ully for 1€ (s, 0Sisn.
N

Proor. For any € C7(S) we have

I Tl 3 [(FARL DI,

N p Ry p—

2
B 2(}_:::7‘7; Swm(fv, (l—wm)”z)'A?‘u(x)d:ol .

First, let 1<¢<n. Then by means of integration by parts we obtain

HF AT ()=

1 2 \2 :
m[ S (7) 8in (A—v,) V22, 07, (&Y (1 +2,) " ulz)dx
for 1=isn—1
1

w

2 \1/2 ) i2
g (-) (m) 2 €08 (23,22, 7@ (L -20) )|

22— v

for i=mn.
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Noting that a>1 and using Sechwarz's inequality, we obtain

T (Ajules (/:_Ci;)u g -

For Ty(7) we can show this incquality similarly without partial integration. Thus
we get the lemma.

From the above lemma it follows that for each i€/, T.(4) can be extended to
a bounded linear transformation from L%S) into [%, which we will denote by the
same notation 7(4).

LEMMA 2. For each 7€ 4, T4 1s compact.

Proor. 7T.{z) transforms L*S) into a finite dimensional subspace of [7.

We shall use the following lemma whose proof we omit.

LEMMA 8. Ior each flx) such that (11-3)f f(xye LHRY), >1/2, we set

fer-{"sin e saide,

ot

then there exists C>0 and 6>0 such that
» ” (oo 1/2
x.z"<s+h>af’(5>sgcwU s.f‘<a:>r~’(1—f~:c>ﬂﬁdx] :

4

An immediate application of Lemma 2 yields the following lemma.
LEMMA 4. For each compact interval Iy contained in (vy, vy.1) there exist
C>0 and 0>0 such that

BT — T =Cli-~m?  for each 4, p€ly.

Since T.(4) is continuous in 1 (Lemma 4) and 1 7:(2)| is locally square integrable
in (v, o) {Lemma 1) we see that | T{A)*T(#}]| is integrable on any compact inter-
val. Now we have the following lemma.

LEMMA 5. For any compact interval 1
4B DAY= | T Tundi
1

The proof of this lemma can be done in essentially the same way as in the
proof of Theorem 3.1 of Kureda [6] and will be omitted.

We now put M (D=T{*T (2. Then M;(?) satisfies the properties of the
assertion. Thus we get Theorem 1.

To prove Theorem 2 we begin with some definitions. If the following condition
is satisfied, we say that we have generalized eigenfunction expansions with respect
to a selfadjoint operator H (see [4]).
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(C.2) (i) There are a o-finite measure space (2, ¥, o), a partial isometry @ of ©
onto L*o) with initial set D,. (9,. denotes the subspace of absolufc continuity with
respect to H) and a measurable function @; 2 -> K such that

(PE(Duj(s) =71 Ao(E)HDu)?) v-ae. €2 for each €D and Jo R,

(i) There are a subspace 727 of 9, which is dense in © and has its own norm
(but is not necessarily complete), and a mapping ¢: 2 - 2% such that

(D) (2=, ¢(2)> p-a.e. €L for each z€ X .

In order to show that the eigenfunction expansions in terms of w,(x, Z) mentioned
in the beginning of this section can be considered as a generalized eigenfunction
expansions in the above sense, we define 5272 L*(S) as follows. Let %7 be the Hilbert
space %Y== L”(S) ”‘LE(S) and define the operator .8 from LXS) to 9 as
follows; {n L1)

DS )= D (9)
L%OM:{AQ'M, Alu, Ty, Anu, A{uy Y A{Lu) ‘41\’“; Alzuy Ty Annu} .

We denote by . the closure of .%. We take .7° to be the range of &%, ije.
= F(.7¥), equipped with the norm [zl = i_nf luls'. In order to characterize
2%, we use the following lemma. We denote ;)yx A7(T) the null space of an
operator T, by ZZ(T) the domain of 7, and by 5% the completion of a normed
space 2. 2,7 2 means that 37 can be identified with 2% isometrically.

LEMMA 6. Suppose that 9, and 9, are Hilbert spaces and that A is a
densely defined closed operators from O, to .. We set 77 = B (A*) equipped
with the norm |zl .= h/i:}tfr{[u,il&,? and F =D(A) . A4 (A) equipped with the
norm bl »=1Ablly,.

Then

where the identification s given by the relation <b, x> =—=(Ab u)@z with b==[b']e
DAY A (A), V€ Z(A), and =A%y,

ProorF. We denote by 9?(/1) the closure of the range of A in H,. Then it
is easily shown that %Z) is identified with 57 isometrically by means of A, i.e.
%(A ~&Z. On the other hand we have .22~ (A*). /V”(A*)]‘ Since F(A*)
is dense in 9., we have [ Z(4*) /V(A*)]‘:@ /(/V(A*)NQ(A) Thus we get
fé".’:@, so that we get %*2.&? by identifying the Hilbert space 277 with its
dual Z7*.
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In our case we take LXS) as 9,, 9 as 9, and .7 as A. Then obviously
the condition of Lemma 6 is satisfied. In this case _#7(.57)={0} and we get

e (A= {f(@); (L5071 flz) € F12(S) for any >0} .

Thus we sec w,(x, &Y€ Z7*, so that we obtain the generalized eigenfunction ex-
pansions with respect to H,.

Then, following a general method due to Kuroda, eigenfunction expansions with
respeet to H, can be obtained as follows. Using the operator W, appearing in
Remark after Theorem 1 we define T,-=TW%. Then T. are partially isometric
operators from L*S) onto 7’ with initial set ©,.,. and satisfy the relation

(1’:!:E2(A)u)m(f):'V‘:ZJ(SQ'Ji’ym)(Tiu)m(E)
for each u€ L*S) and 44, where ¥, is a characteristic funetion of 4.
On the other hand it was shown that there is a closed null set /', of 4 such
that the limit¥
G240y =1 lim ClBRy(£1:1e) A%)®

exist for 2¢ [, 2€ 4, in the operator norm in ©’. Then it is not difficult to infer
that G,(1:1i0) induces naturally a bounded operator G.(i+1i0) acting in Z2°.
General results now tell us that if we define wi(z, &) =Gy(&2+v, +10)*w,.(z, &), then
we have

(Tou)n(2)= 3 wl@)wile, Hde .
8

Thus we have proved Theorem 2 except b) of 1).
The proof of b) of 1) of Theorem 2 will proceed as follows. For any y€ CP(2)

we have
(Hsy, wiz, 8)s=(8%v,) - (¥, wilz, £)s .

For such ¥ we know that H. is a differential operator of the form

Hyy=— flkt?.:a.-k(fc)ﬁky(:c)%ﬂ(»* L} ;b (e)-+q(x)) - ylx) .

Then w% is a weak solution of H,, so that we have b) of 1) of Theorem 2 in virtue
of ellipticity of H..

@ B and C are defined as follows:
Buw=(Bou, By, -+, Buwt, Bu, -+, Bhu, Buu, Bu, -+, Banw) for we Z1x(8).
CNV - (Cc)l(o, C[?lrg. ey C;,?(‘", C;?( nEls Ty C:JL:M Cuu»gnﬂ. Cmuen+2, vy C,mu,,z_x)
for w=(aug, 1, ***, Uny Unt1, =y Utn, Wiy o1, ** 4 Up2_3)E D,
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§3. Negative Laplacian in L),

We consider a perturbed cylindrical domain 2 with smooth boundaries. In order
to characterize @ as a perturbed cylinder which is asymptotically equal to S, we
introduce several assumptions on @ successively. We denote a generic point of &
by z and that of S by X. First of all we suppose that there exists a C3¥diffeo-
morphism ¢ from 2 onto S. For each f(x)€ L¥Q), we set

| a(fcly Tty mn) i”g [ 7
U)Xy -+, Xo)= | -8 220 B (7 ey xy)
( f)( ) l U(le Tty Xﬂ) 5 f(( ( ))

oz, -, Ta) , . \ . .
. the Jacobian. Then U is a unitary trans-
a(le ) X‘n) ! 7 } "r ns

formation from L*2) onto L*(S). Furthermore, we suppose that ¢ can be chosen
in such a way that U transforms <7):() onto £7}2(S) homeomorphically.

To consider negative Laplacian in LX), we define a Hermitian closed form h
as follows:

where we denote by

k3

Alu, v]= 3 @u, 0,v)g for wu, v€ (D),

e=1

where
(f, o= Snﬂx)@(‘x‘)dx .

We denote by H the selfadjoint operator associated with /. Now we state the
theorem in this section.

THEOREM 3. Let 2 be such a domain that there exists a coordinate trans-
formation ¢ which satisfies the conditions stated above and the following
conditions® :

Condition. There exist C>0, a>1 such that

i (pvxy—pile——C .
l a5, O IN 0 Eee 1Sk i
94 } c .
2%, Y XnNi=s AT %) 1sisn
where
d(X)=———aa‘X" e Xa) (g xy)
(wh Ty xn)

Then the following assertions hold.

& Examples of 2 having such a ¢ will be given later.
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1) H,. is unitary equivalent to H,.
2) There exists a closed null set ', A such that the following statements hold.
iy For every &, m with 24, ¢ [, there exist wilx, ) having the following
properties (m=-1,2, ---).
a) wix, £ -1+, )’l'fe@”z(.@)f‘ & L2002} for any <>0.
by --dwilz, £)=(E v, wilz, £).
i) For each u(z)e'ﬂbw (9,. denotes the absolutely continuous subspace of
LAy with respect to ), we set

Py (T ) ()} ‘S wlaywilz, 9 do}
L—oo { 2y, 5’

where Lim. signifies that the limit is to be taken in the sense of the Hilbert
space 57, and U, represent that part of 2 in which z,<L. Then T* are
unitary transformations from .. onto F.

i For each w(z)€D,.n Z(H)

(7% (1) (3 = (€ 4w, T*u) (£) .

Proor. In order to transform H unitarily to some selfadjoint operator in L(S),
we define a closed Hermitian form h, by using the coordinate transformation ¢ as
follows

holu, v]rfl?[U"u, U“‘v]

B 2 X ,’XJ ou__9v_
-2 (acer § ey Zremx S )
1

e 90 _ ¢ oy~ ﬁ)gi_ - 9u .,
=y {(d(X) o d(gm1(X)) ) am,.'““)g

(@ '<X>>3X’ 022 |

b i /st

(a0 s .

2 i_( > (;i) (¢~YX))-u, q;)s for u, ve Z,«S).

We denote by H, the selfadjoint operator associated with k.. Then it can be shown
that Hy=UHU.

We now apply Theorems 1 and 2 to the pair H; and H;. Then, since H: and
H are unitarily equivalent, we get 1) of Theorem 3. Next, we construct eigenfunc-
tion expansions for H, by means of Theorem 2 and then transform it by ¢~ to the
domain 2. Then, it is easy to see that the transformed functions satisfy the re-
quirement of 2) of Theorem 3.

Example. We will consider the problem in R’ In terms of the ecylindrical
coordinates we suppose that S and £ have the following form:
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S={(R, 0, X5); R<f1(0), X3>0},
Q:‘:{(T! ”P ('US); ’r<‘f2((}y il.S)f ':US>0} s

where f,(0) and f:(0; x;) are sufficiently smooth positive functions.
PROPOSITION. If the above fi(8) and f:(8; x3) satisfy the following condition,
the conclusions of Theorem 3 holds:
Condition. 1. f:(0; za)=F{0) for 0<a;=1;
2. There exist C>0 and a>1 such that

C
—— 0- : L s,
]fl(g) f?( s ES)] = (1 '%“(E;;)"

A0 3fe ol C

a0 o0 R T

’

{We assumed Condition 1 to avoid problems of transforming the smooth domain
onto the domain having corners. Further analysis may make Condition 1 unneces-
sary.)

Proor. We set the coordinate transformation ¢ from 2 onto S as follows.

( Xi=2,,
| O==0 ,
R R

VT A0y T

where z(r)€ & such that x(r)=0 if r<e¢/2 and x{r)=1 if r=<e, with ¢, a suf-
ficiently small positive number. By easy calculations we can show that the above
¢ satisfies the condition of Theorem 3, so that the conclutions of Theorem 3 hold.
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