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Introduction. In this paper we present an operator theoretical proof of the
Hardy-Littlewood-Sobolev inequality (cf. [8], [21], [26]). More precisely, we for-
mulate the problem in an abstract way and employ abstract interpolation methods,
real and complex, to obtain a result including the desired proof of the above
mentioned inequality.

We here sketch briefly our method. Let E and F be two Banach spaces con-
tained in a Hausdorff topological linear space X. We are given a linear operator
A acting in X, whose maximal restrictions Az and A, in E and in F, respectively,
are non-negative in K and in F. That is, we have all positive reals in the re-
solvent sets of —A; and —A; and [2(r-+Ap) Wpe=SM, lre+A) e rSM,
r>0, M being a positive constant. We introduce an assumption on 4, A€ (s, m,
E,F), 6>0, m a positive integer, that for each >0, (r--A4)"™ is a well-defined
bounded operator on E into F with lle™(r+A) ™|.rSLr. Requiring A€ (0, m,
E, F), we already showed that (E, D(A})ssosu.» ©(F, D(AE))y. 5, 1=2p=<co, k a posi-
tive integer >0, and 0<0<0+0/k<1 ([29]. cf. [2], [22], [26], [28]). Here (Y, Z)y.»
denotes the mean space of Y and Z ([20], [5), 6], [19], [24])). We also presented
an approach to treat the case 4™ is a bounded operator on E into I, assuming
that A be of bounded inverse ([31]). As we remarked in [32], the just mentioned
approach turned out to be quite close to contain the Hardy-Littlewood-Sobolev
inequality. However, there was a gap.

In fact, in order to give a complete treatment, we must cover the case when
A~ is not bounded but merely densely defined. For that purpose we are led to
study the inclusion relation of the mean spaces associated with the range of A.
This is done in this paper (Theorem 5.2). We then combine this and our previcus
results with the theory of fractional powers of operators (Komatsu [18]-[17]. ef.
{11, [103, [11], [33]). In order to achieve the proof of a generalized Hardy-Little-
wood-Sobolev inequality, we need the inclusion relation between the domains of
fractional powers of an operator and the real interpolation spaces associated with
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336 Atsushi YOSHIKAWA

the same operator. For operators in a certain class which contains the negative
of the Laplacian in a finite dimensional Euclid space, we obtain the desired inclu-
sion relation, employing Stein’s result ([27]), and the complex interpolation method
(3], 18], [19]. cf. [4D. In this way, the Hardy-Littlewood-Sobolev inequality is
completely covered by our method.

The contents of the paper are as follows: In §1 we review the abstract
interpolation methods. $§2 concerns the theory of fractional powers of opera-
tors. The statements in the first half can be found in Komatsu [18]-[17] with
detailed discussions. In the second half of this section we discuss the domains
of fractional powers and the complex interpolation method. In §3, we study the
relation of the dual spaces of the mean spaces associated with a non-negative
operator and the domains of (fractional powers of) the dual operator. In §4 we
introduce the definition of (¢, m, I¥, F') and note some properties of the ranges of
operators in (s, m, E, F), thus refining our previous results ([29], [31]).

We give in §5 our imbedding theorems about the ranges of operators of
(¢, m, E, F) with necessary remarks. In the final section, §6, we apply our
results to prove a generalized Hardy-Littlewood-Sobolev inequality (ef. [27], [30]).

1. Interpolation theory. We review briefly two definitions of interpolation
methods, the real and complex ones, and their fundamental properties that we
shall need in this paper. For detailed discussions, see the cited articles.

Let E and ¥ be two Banach spaces continuously imbedded in a common Haus-
dorff linear topological space X. Such a triplet E, F, X will be called an inter-
polation triplet. We can thus define two Banach spaces ENF and E+F in the
following way. ENF is the space of all a€ F€ F furnished with the norm
el prp=max (lal,, laly). E-+F is the space of all a=a’-+a” (in X), a’€E,
a”’ € F, furnished with the norm la| g p=inf (o'l -+ e |r; a=a’+a’).

DEFINITION 1.1 (Mean spaces, Lions-Peetre [20]. cf. [30]). Let 1=Zp<co,
0<0<1. We denote by (E, F');., the space of means a= g:u(t)dt/t with tfu(t) €

MNE)Y, tw(t)e LI(F). Here LZ(E) denotes the space of all F-valued strongly
measurable functions u(t) defined on the positive real axis such that

:qml!u(t)llf;dt/t)‘/’%oo if p<oo,
fullrram f

= ess. supsolult)zp<eo  if pm=oo .

L¥(F') is defined similarly. The mean space (E, F'),.» is a Banach space with the
norm
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tellis rry ,=1nf max (Beu(t)y e, 1H () e ge)

where the infimum is taken over all w(t) such that a= ru(t) dt’t.
L]

DEFINITION 1.2 (Calderén (3], Lions (18], ef. {19], [20])). Let 0<0<1. We
denote by [E, F'], the space of all a=:f(0) with f€ SZ(E, F). Here S (E, F)
denotes the space of all E-+F-valued functions f(z), continuous on 0=Rezx1,
holomorphic in 0<Rez<1, such that f are FE-valued bounded" continuous on
Rez==0 and that f are F-valued bounded” continuous on Rez=1. [E,F], is a
Banach space with the norm

falice rpy=1inf max (sup §SEWi g, sup LFQA4+-imie)

where the infimum is taken over all f such that fl¥0)=a.

ProprosiTION 1.1. Let two interpolation triplets K, F, X and E,, F,, X, be
given. Let 0<6<1 and 1<p=co. If L is a linear operator from X to X, such
that L continuously maps E into E, (with norm N, and F into F, (with
norm N»), then L maps continuously (E,F),., into (E, Fi)., (with norm N)
and [E, F, into [E,, F,)y (with norm N'). Furthermore, N, N'<const. N{"N{.

The real method is easier to handle. We give some of the properties of the
mean spaces below (Lions-Peetre [20]).

PROPOSITION 1.2. ENF 45 dense in (E, Fy.,, 1=p<ce, 001,

PROPOSITION 1.3. If 1sp<qsce, then (E,F)y.,<(E, F)s. with the con-
tinuous tmbedding.

PROPOSITION 1.4. Let E,, E., be two Banach spaces such that® (K, F)s . C
E.c(E, F)y, .=, (E, F)o,nCE (K, F)g, e, 0<0,<0,<1 and all the tmbeddings be-
ing continuous. Then we have:

() if FcE continuously, then E.CE, continuously:

(i) (Ey, F1)o.,=(E, F)., if A=(01—0)0,+00,.

PROPOSITION 1.5. If ENF is dense in both of E and I, then E*, I'*,
(EnFY* is an interpolation triplet. We have

(E) F)?}l:(E*’ F*)/]-p'y p,:p/(?“’l)y 1§p<ool 0<0<1 r
with equivalent norms. Here Y* denotes the strong dual space of a Banach

space Y.
If E and F are reflexive, we also have

[E, FIi=[E*, F*),

n  Instead of “bounded”, we may assume “of order exp (const.Im z)” ({8}, [19]).
2 E; is said to be of class #4,(E, F), i=1,2.
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with equivalent norms ([3]).
For the sake of later convenience, we also note the following.
PROPOSITION 1.6. If ENF is dense in both of E and F, then we have

(ENFy*=E*+F* (E+F)*=E*NF*,

each with equivalent norms.

Proor. Let H be the closed subspace {z@&(—zx); € ENF} of the direct sum
EDF. Since ENF and E-F are canonically isomorphic to H and E@F/H respec-
tively, we have (ENF)*=E*@F*/ H® and (E+F)*=H", where H'={e*® f*e E*®
F*; Lz, e%—z, f¥5=0,2€ ENF}. By the assumption E* and F'* may be imbed-
ded in (ENF)*. Then H° coincides with E*NF* (cf. Kothe [12], §§19, 22).

2. Fractional powers of operators. We briefly recall fundamental properties
of fractional powers of non-negative operators. For detailed discussions, see
Komatsu's series of works on fractional powers [13}-[17].

DeEFINITION 2.1. Let E be a Banach space and B a closed linear operator de-
fined in E. B is said to be non-negative (in E) if all positive reals are in the
resolvent set #(-—B) of —B with the estimate

lrtr+ By p-psM for all »>0,

M being a positive constant independent of ».
The maximal restrictions of B to D(B), E(B), D(B)NR(B) are denoted by
B., B_, B, respectively®. Namely, we have

B,a=Ba for a€D(B,)={a€D(B); Ba€ D(B)},
B.a=Ba for a€D(By=D(B)NR(B),
Bya=Ba for a€ D(B))=lae D(B)NE(B); BacD(B)}.

B., B- and B, are non-negative in D(B), in R(B) and in D(B)n RE(B), respec-
tively. We shall mostly consider the cases when B=B,=B,, B=B_ =B, or
B=PB=B,=B.. In fact, our main situation in this paper is that B is densely
defined and densely ranged. Thus, B=B,=B,=B_ 30 that B! is a well-defined
non-negative operator in E.

A particular class of non-negative operators consists of the negatives of the
infinitesimal generators of bounded continuons semi-groups of linear operators.
— B generates a bounded continuous semi-group exp (—¢tB), t=0, if B is densely

#  For an operator B in E, D(B) stands for its definition domain, R(B) for its range
and N(B) for its null-space.
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defined and if, for any >0 and for any integer m>0,
W’"(’r«%—B)"”‘]‘E,bé]VI

In particular, if exp(—tB) can be analytically and boundedly continued into the
sector S,={t; larg ti<w, 0<w<7/2}, exp(~tB) is called a bounded holomorphic
semi-group. If {z; larg z| <z—w} is contained in o(—B) with {z(z+ B) Yz < M(6)
for all 2, largz| =0, 6<z—w being arbitrarily fixed, then — B generates a bounded
holomorphic semi-group.

ProrosiTioN 2.1 ([14]). Let a>0, 1=p<co and m an integer >a. The
mean space (E, D(B™)u/n., coincides with the space of all x€E such that
ro(Br+B)yW"ze LUE). (E, D(B™)a/n.» does not depend on m>a. If a>3>0,
then (E, D(B™)a/m.»C(E, D(B™)s/m.q, 159, gSco. Furthermore,

(Er -D(Bm))a/1n.P:(D(B), D(B'-?))a/m.p .

In particular, if —B generates a bounded continuous semi-group exp(—tB),
then (E, D(B™)a/m.» coincides with the space of all z€ E such that

t~*(1—exp (—tB))"z€ LIE) .

If exp (—tB) is holomorphic, then (E, D(B™)a/m., coincides with the space of
all z€ E such that t"“B™exp (—tB)x € Li(E).

DEFINITION 2.2. Let Rea>0. B¢ is defined to be the smallest closed exten-
sion of B:. Here B2 is defined as follows:

Biz=cn..| T B+ BN wdr, o=l (=)

a
for
1€ D(B2)=(E, D(B")a/m.1, 0<Rea<o .

If — B generates a bounded continuous semi-group exp (—tB), then

Bex=K-', S”t-"-la—exp (—tB)"wdt, zeD(B),

0

where K, .= Smt"’—’(l—e“‘)mdt. If exp (—tB) is holomorphic, then

0

Bog=T"(m—a)"* S”zm-MBm exp(—tB)z dt, z€D(BS) .

0

This definition is well-defined and independent of s, m or the expressions of B#
(Komatsu [13], [14]).
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ProrosiTION 2.2 ([14])). If m>Rea>0, then we have
(Ey D(Bm))l(t: a/m.lCD(Bi)i: (Ey D(Bm))nt alm.ooo s

all the imbeddings being continuous.

ProposITION 2.3 ([14]). If D(B3) is contained in (contains) (E, D(B™\rea/m.»
Jor some Rea>0, then D(BI) is contained in {(contains) (K, D(B™)ucarm.» fOr
any Rea>0.

ProrosITION 2.4 ([18)). Let a>0, 1=<p<co, and m an integer >a. The
mean space (E, R(IB™u/n., cotnecides with the space of aoll x€ E such that
r{rlr-+By)"ee LUE). (E, R(B™)an.,» does not depend on m>a. 1f a>>0,
then (B, RIB™Yajm.o ©(E, RIB™))s/m.q, 1ED, ¢S 0. Furthermore, (E, B(B™))a/m.»=
(R(B), ROB™)ajm.p». In particular, if —B generates a bounded continuous semi-
group exp (—iB), then (IV, R(B™)a/n., cotncides with the space of all z€ E such
that ¢ (t“"ilexp(-~sB)ds>mweLZ(E). If exp(—tB) is holomorphic, then (E,
R(B™)utm.p c‘;incides with the space of all x€ E such that t* exp (—tB)x e LUE).

DEFINITION 2.8. Let Rea>0. B¢ is defined to be the smallest closed ex-
tension of B:?. Here B:? is defined as follows:

Bi3x=ﬁcm,u5m7‘“““‘(r(r+B)“’)’"m dr

4]
for x€ I(BI3)=(E, R(B™))a/m.1, 0<Rea<s. If —B generates a bounded continu-
ous semi-group exp (—tB), then

w0 t m
BT?'JE::K,I!H."IS t""(t“‘S exp(m-sB)ds) xdt, x€ D(Bx%),
]

0

where K,.qm== S tr i l--em™dt.  If exp(—tB) is holomorphic, then

o

By I{a)t Smt"“’ exp (—tB)x dt, ze€ D(BI3).
O

This definition is well-defined and independent of ¢, m, or the expressions of
Bzs (Komatsu [13], [15)).
ProrosiTion 2.5 ([15]). Let m>Rea>0. Then

(E’ R(Bm))ﬁe a/m.lCD(B:a)C(Ey R(Bm))n(‘ al/m.oo 3

all the imbeddings being continuous.
PROPOSITION 2.6 ([15)). If D(B:")is contained in (contains) (E, R(B Do atm. p

Jor some Rea>0, then D(Bz%) is contained in (contains) (E, R(B "Vre atm.» JOT
any Rea>0.
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PrOPOSITION 2.7 ([13]). If Rea-Re >0, then we have B:Bi=B:i'? in the
sense of the product of operators.

DEFINITION 2.4, Let a« be any complex number. BjJ is defined to be the
smallest closed extension of B2 .., —~<Rea<¢. Here B2 _. is defined as follows:
Tor € D(BS._.)=D{(B1)n D(B=7),

‘. if a=0,

N
— (sin =a/7) {(~1)’" S T+ BBy dr+
BS. .=~ 0

a—k
‘%"224—1)1(““1)k+1 N Biax+ (-1 S

a—k

%q.nnan(?.,;,,B)“lB”x d'f}

N

if a70.

Here N is an arbitrary fixed positive integer, and ¢>n, >m. Bj is well-defined
and independent of ¢, 7, N, n, m (Komatsu [13]).

ProposITION 2.8 ([13]). Bi=(By:. If Rea>0(Rea<{), Bf is the restric-
tion of Bz (B2) with the domain D(B§)=D(B$)NR(B) (D(B2)ND(B)).

PRrOPOSITION 2.9 ({13]). If =€ D(BHND(B§*?), then BfxeD(B§) and
B¢Bix=Bg*fx. In particular, B§ is one-to-one for any a and the inverse 1s

¢

ProrosiTION 2.10 {{183)). Let E, F be two Banach spaces such that FC K
continuously. Let B be a non-negative operator in E and By be its mawimal
restriction to F, that is, Byx=DBz for x€ D(Bp)={ze FND(B); BzeF). If By
i8 non-negative and D(By) is dense in F, then (B3)p=(B%;) for any Rea>0.

In view of Proposition 2.8, we shall often omit suffices 0, -+, or - and
simply write B* if we consider such B that E=D(B)=R(B).

We have discussed in the above the relation between the domains D(Bj) and
real interpolation spaces. As for the complex method, we have the following prop-
ositions.

We begin by the following

ProposiTION 2.11 ([13]). Let Rea>0. If B s densely defined, then we
have for any v>0, p>0,

D((v+B)$)=D(B%)=R((z+B)=") .
Furthermore, for any € E, (z+ B)=°x 18 analytic in «, Rea>0.
PROPOSITION 2.12 (cf. [18] and [4]). Let E be reflexive and B be densely

defined and densely ranged. If for any r€ R, Bi'€ LK, k) and is strongly
continuous in r, then
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{E, D(B™)],=D(B%}%), 0<0<1,

with equivalent norms.

Proor. We first show that, for any fixed v>0, (v+B)'"€ $A(E, E), r€R,
and |{{(v+B)Y*llp..Sconste’, K a constant. In fact, from the assumption,
D(B")y==D(B) for any r€ R. Hence, by Proposition 2.11,

(2.1) D{(»-+ By**")=D(v+ B)=D(B) .
On the other hand, we have two continuous bijections:
(p+BYH i DBy — E,

(»+B) :D+B)— FE.

It follows from (2.1) that
4+ B) =+ BT v+ B) e (B E) .

In the same way, using Propositions 2.7, 2.9 and 2.11, we see that ((v+ B)i")"=
(1 B)Y". We have

sup {4 B) g p= M<oo

Hence,
(2.2) e+ B)Y g e = MU Me'"'®, K=max (log M, 0) .

Here [|7]] denotes the greatest integer <|v|.

Now let x€ E. Then f(2)=(v+B)y™ze G (B, D(B™) %, and f(0)e D(B7Y),
0<o<1.

Hence, (B3 C[E, D(B™)],.

Conversely, let g(z)€ 22°(E, D(B™)). Take any y€ D{(B*™), and consider the
expression:

G(Z)?Z’E<g(z), (v+ Byt > e,

Then by (2.2) and the assumption on ¢, we have

(2.3) IG(2)] = const |yl z+e® Im 2]

on Rez==0 and on Rez=1. Since E is reflexive, D(B*") is dense in E*. There-
fore, from (2.3) it follows that h(z)=(v+ B)™g(z) is weakly and hence strongly

4 Let Y, Z, X be an interpolation triplet. Zexp(Y, Z) denotes the space of Y+ Z-valued
functions f(2), continuous on 0<Rez=1, holomorphic in 0<Rez<1, such that f are Y-
valued continuous of order exp(K|Imz!) on Rez=0 and that f are Z-valued continuous
of order exp(K|Imz{) on Rez=1 (Definition 1.2).
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holomorphic in 2. So h€ 57 (E, E). In particular, h(6)€ E and ¢()€ D(B79),
This proves [E, D(B™),c D(B79Y). Q.E.D.

PROPOSITION 2.13. Let E, F, X be an interpolation triplet such that E,
F are reflexive and that ENF is dense in both of E and F. Suppose further-
more E*NF* 43 dense in both of E* and F*. Let B be ¢ non-negative opera-
tor in E+F such that its maximal restrictions B and Br to E and F are
densely ranged non-negative operators.

If, for any r€R, Bi € $P(E, E) and By € $P(F, F) with Byl .» and
| B lpr locally bounded in v, then we have for any a=0, =0,

[D(B3), D(BF #)],=D(Bg*7%), 0<0<1,
with equivalent morms. Here B, denotes the maximal restriction of B to
{E, Fl,.

Proor. It follows from the assumtions that B, is a densely defined and den-
sely ranged non-negative operator (See Corollary 4.1). Hence, we can apply Prop-
osition 2.10. On the other hand, as in the previous proposition, we see (v Bp)i"
€ ¢P(E, E) and v+ Bp)ite ¢P(F, F) for any r€R. In particular, (v-+B)'"€
L E+F,E+F). Let n€ D(By?). Then a=(+B) ™y, ye€[E, Fl;. There is
an hiz)e 57 (FE, F) such that y=—h(0) and that

F(2)=(v- B)*~#h(2) € S oxp (D(B}*F)) .
Furthermore, F(f)=z. Hence, D(B} %) c{D(Bg), D(B%H],.

Now we are going to prove the converse inclusion. Since E+F is reflexive
with (E+Fy*=E*NF*, D(B*™) is dense in E*NF*. Hence, we can argue as in
the previous proposition. In fact, let g(z)€ &7 (D(Bg), D(B%*#)) and consider the
expression:

G@)=pyr<g(z), (v--B¥¥35y> o oo for any y€D(B* 7).

By the assumption on g, we have

1G{z)} Zconst |yli~e¥'"™* on Rez=0,

1G(z)] Zconst lylls+eX'™* on Rez=1.
Therefore, by the remark on B* in the above, we see that h(z)=(v+ B)*"f*g(z)
is weakly and hence strongly holomorphic in E+F. Hence, h€ ZZ o (I, F).
Now, using Proposition 2.10, we see that g(0)€ D(B3*??). This proves [D(B3),
D(B§#))y,c D(B*#°%), Q.ED.

3. Duality of mean spaces associated with non-negative operators. For a

densely defined non-negative operator B in a Banach space E, we have noticed
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that (E, (B u/ma < DIBOYCE, D(B™))asm, for any a>0, all the imbeddings
being continuous. Later we shall discuss, in particular, such cases that (E,
D(B™)utm., < D(B2) or D(B3)<AE, D(B™)aim.o» 1<p,q<0c (cf. Propositions 2.2
and 2.3). Thus it will be interesting to discuss their duality relations. Namely,

we here prove the following propositions.
THEOREM 3.1. Let B be a densely defined non-negative operator in a

Banach space K. 1f we have, for some p, 15p<cs,
(3.1) I)(B:)C(E, D(Bm))a/m,m a>0 4
with the continuous imbedding, then for any positive integer k,
(3.2 (E*, DIB*™)jm. o D(B*), p’=p/(p—1), m>k,
with the continuous imbedding. Here B* denotes the adjoint operator of B
and E* the dual space of E.
CorROLLARY 3.1, Let E be reflexive. If (3.1) holds, then for any £>0,
8.2) (E*, D(B*¥))g/m.»’ < D(B*E), p’=p/(p—1), m>§,
with the continuous imbedding.
In fact, this is clear from (3.2) and from the fact that B*=B¥ since F is
reflexive.
TuroreM 3.2. Let B, E, B*, E* be as in Theorem 3.1. If we have, for
some q, 1=5q=oo,
(3.3) (K, D(B™)utm., < D(BS), a>0,
with the continuous imbedding, then, for any positive integer k,
(3.4) DBy (B*, D(B*™ ) i/m.ot, 4" =q/g—1), m>k,
with the continuous imbedding. In particular, for any 8>0,
(3.4%) D(B*)c(E*, D(B*™))s/m.q', m>8,

with the continuous imbedding.

Proor or THEOREM 3.1. Firstly we prove (3.2) for k=1. For any +>0,
(r--B)™ continuously maps E into E and E onto D(B™), both in a one-to-one
way. Hence, taking the adjoint, we see that (r4-B*)~™ maps E* into E* con-
tinuously and Jii(r), the adjoint of (r+B)™ from E onto D(B™), maps D(B™*
onto E* continuously. Furthermore, both adjoint operators are one-to-one. Since
D(B) is dense in E, D(B™) is dense in E. Thus we may take E*CD(B™*,
the imbedding being continuous. In particular, J%(r) is the weak* closure of
(- B*y™,
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On the other hand, B may be considered as non-negative operator in D(B).
Taking the adjoint, we have a non-negative operator C in D(B)*. We have
D(Cy=E*, For, (r+B)™* maps D(B) into I(B), and E onto D(B) for every
#>0. Both are one-to-one. By the duality, E* is imbedded in D(B)* and by
this imbedding we see that the image of (»<-C)™' coincides with E*.

Now we show that (r+C) Y pe=(r-+B*)!, In fact, let x€ E*. Then x==I*z€
D(B)*. Here I is the imbedding operator of D(B) into E. Take any y€ D{(B).
Noting that y=Iy€ E, we have

g+ C) M2, Yr==pup<la, (r+B) y>rp
= pup+{L*x, (r+ By Y50
=gz, Hr+ By 'Yy
=, (r-+B) ' y>,
= pel(r+B*) 8,y
On the other hand, D(B? is dense in D(B), and by the duality D(B)* is im-
bedded in D(B¥H*. By this imbedding, we see that Ji(r) is an extension of

(r+B¥ Yr+C)! in a similar way as in the above. Hence, we have three com-
patible continuous bijections:

Ji(r) : D(BYH*

o B
(r+ B®™2: E*— D(B*},

3.5) (r+B*Hr+C)t: D(By*—— D(B*) .

By the interpolation, we see that

(8.8) JE(r) maps (E*, D{(B%)2.p» onto (D{B*), E*)2,, in a one-to-one manner.

Now, since p<oco, we see from (8.1) that D(B) is dense in (E, D(B*)y5.5. Thus
taking the duals, we have

(3.7 (E*, D(B)*)y2.0' < D(B)*

with the continuous imbedding. Since J#(r) is an extension of (r++ B¥y-Yr+C)1,
3.7) implies JX)E*, D(B)*)0.p CJEr)D(B)*.  Thus from (3.5) and (3.6), we

have
(3.8) (E*, D(B*2)) /5.0 =(D(B*?), E*) 12,5 < D(B*)

with the continuous imbedding. This proves (3.2) for k==1. For the proof of
general k, we use the bijections:
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(r+B#)7+1: D(B*) ~—— D(B*),
E}éz — D(B*i;-ﬂl) s
D(B#*) —> D(B*:*1) |

By interpolation and from (3.8), we have
(E}.‘:, I) (B*m))k/m‘,,':(D(B*kml), D(B*k«:«l))llw, CD(B*’)

with the continuous imbedding. Q.E.D.
Proor oF THEOREM 83.2. (3.4) is proved exactly in the same way as (3.2).

For the proof of (3.4), we only note that (E*, D(B*™), ,=(D(B%), D(B*™);,

(Proposition 2.1) and D(B%*) is a closed subspace of D(B*). In fact, then we have

(3.9) D(B¥yc D(B¥C(E*, D(B¥)2.00=(D(B¥), D(B¥*))2.4" ,

with the continuous imbeddings. (8.4') follows immediately from (3.9) (Proposi-
tion 2.3). Q.E.D.

REMARK 3.1. A systematic discussion on dual fractional powers of non-nega-
tive operators is given in Komatsu [17]. He studies in [17] the relation between
{B)* and B#%*". On the other hand, the space (D(B™)*, E*), , was essentially
considered in Grisvard [6].

Furthermore, using Proposition 2.7, we have the following corollaries by the
same argument as in the proofs of Theorems 3.1 and 3.2.

COROLLARY 3.2. If (3.1) holds, then, for any 5>0,

(E*, D(B*™)g/m.»» < D(B)*), '=p/(p—1),

with the continuwous imbedding.
CoroLLARY 3.3. If (3.3) holds, then, for any >0,

DUBYH¥(E*, D(BM)i/m.o's ¢'=q/lg—1),

with the continuous imbedding.

4. The class (¢, m, E, F'). Let E, F, X be an interpolation triplet. Thus
we can define E-+F and ENF in the usual manner. We consider a non-negative
operator 4 in E4+F. We denote by Ay the maximal restriction of A in E, that
is

Ape=Ax for x€ D(Ay)={xeEND(A); Aze E}.

A is defined in a similar manner. A, and A, are clearly closed operators in E
and in F, respectively. In this paper we consider only the case where Ay and Ar
are non-negative operators in E and in F, respectively. As for this, we noted in
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{31] the following

PROPOSITION 4.1. Let A, and A. be non-negative operators densely defined
in E and in F, respectively. 1f (r+A) lu=(r-+A,) g Jor s€ ENF, for all
r>0, then the operator A in E-+F defined by

(41) Ax:Almx‘*:‘Agﬂfz fO?‘ CL":—Q:]“X"C;GD(44)«»‘D(A()’LI)(A_\)

is well-defined. A is a densely defined non-negative operator in E+F, and
A=A, Ar=A,.

Since it is straightforward, we do not reproduce the proof.

We note however that from this proposition we have D(AP) = DA -+ DA™
for any integer m>0.

In fact, x€ D(A™) if and only if (++A)"y=x for some YEE+F, r>0. De-

composing Y=y, +¥., 1, €E, y.€F, we have

0= (- A) "y e Ay

Since Ay~ A, and A;=A4,, we see that € D(AF)4-D(A). That DA™+ DJAAD) ¢~
D(A™) can be shown similarly.

In this paper we pay much attention to the ranges of operators. First, we
note

PROPOSITION 4.2%. If R(Ag)=E and if R(A;)==F, then R(A)-~E-F.

Proor. It is enough to show that R(A;)+R(4,)c R(4). In fact, let s=1x"+
1" € R(Ap)+R(Ay), 2’€ R(4,), 2"’€ R(A;). Then we can find 2,€ R(A,) and
27 € R{AF) such that &’ —z,l =0 and &’ —2%]lr >0 as n->c>. Then z’. -z’ €
R(4) and || +af =zl por S =2l et- la? — 2] —> 0 as n - co. Q.E.D.

REMARK 4.1. R(Ap)=E, say, is realized if N(A.):==0 and F is reflexive
(Abelian ergodic theorem of Hille's type).

COROLLARY 4.1. Assume that E, F are reflexive and ENF is dense in E
and in F. If Ap and Ap are densely defined and densely ranged, then A,
lor Ay.5), 0<O<], 1<p<eoe, 18 a densely defined and densely ranged non-nega-
tive operator. Here A, (or A,..) denotes the mazimal restriction of A to
(E, F1, (or to (E, F),.»).

PrOOF. A is densely ranged in E--F, in particular, N(4)=0. Hence, N{A;):=0.
The non-negativity of A4, follows from the interpolation. Since [E, F']; is reflexive,
Ay is densely ranged by the Abelian ergodic theorem. A similar argument applied
to A™! shows that A, is densely defined. Similarly, we see that A4, , is densely

8 R(Ap) is the closure of R(Ax) in E. ER(4) is the closure of R(4,) in F. R(4) is
the closure of R(A) in E+F. Similarly for D{Ap), D(As), D(A).
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defined and densely ranged. Q.E.D.
Now we introduce the class of operators which plays the prineipal role in this

paper. As we have shown previously ([29], [31]), many interesting operators in
analysis fall in this class.

DEFINITION 4.1. A is said to be of class (s, m, K, F') for some ¢>0 and for
some positive integer m if the following two conditions are satisfied:

iy Ay and Ar are non-negative in E and in F', respectively.

(ii} For each r>0, (r+A)y ™€ $A(E, F) with the norm

Kr+ Ay ™|g-prSLar®™, r>0,

L., being a positive constant independent of 7.

We write A€ (o, m, E, F) if A is of class (o, m, E, F).

PROPOSITION 4.3. A€ (o, m, E, F) implies A€(o,m+1, E, F). Conversely,
A€o, m+1, E, F) implies A€ (o, m, E, F) if m>o.

The proof is easy [31].

ProrosiTioN 4.4. If A€o, m, E, F), 6>0, then N(4;)=0.

Proor. Let x€N(A,). Since A€(o, m, K, F'), we have

rt- Ay "allp S Lare "|zllz for any »>0.

Hence, ¥ (r-+A)"™"x->0 in F as r—0. On the other hand, »™{(r+A4) "z=z in E.
Thus, 2=0 in E+F, and so N(4;)=0.

PROPOSITION 4.5. If A€(e, m, E, F), then the image of R(Ar) by the map-
ping (r+A)y"™ for any r>0 is contained in R(A7).

ProoF. Let x€R(A;). Then A(s+A)™, .y in E as s—0, s>0. Since A€
{0, m, E, ), we have, for any >0 and >0,

ford A)y -~ Apls-+ ARy Hr-+ A"z
=k Ay ™ — Al A) ) SN r+ &)™ plle—Ap(s+ ARl .

Hence, Ap(s-+-Ap) M r+A)y™s > (r+A) ™z in F as s 0. Thus, z€ B(4,).

In a similar way, we can show (cf. Proposition 2.1 in [29]).

PROPOSITION 4.6. If A€(o,m, E, F), then the image of D(Ap) by the map-
ping (r--A)Y™ for any r>0 i3 contained in D(A).

In view of these propositions, we may consistently assume, if necessary, that

F=R(A)ND(AF). If E is reflexive, then E=R{A;) is automatically realized in
view of Proposition 4.4 and the Abelian ergodic theorem.

Let G(¢)=exp(—tA), t=0, be a bounded continuous semi-group of operators
in E+F. Denote by Gu(t) and by Gu(t) the maximal restrictions of G(t) in E and
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in F, respectively. We only consider the case when G.(¢) and G() are bounded
continuous semi-groups in E and in F', respectively.

PrOPOSITION 4.7. Let A, and A, be non-negative operators in E and in F,
respectively, with the relation (r+ A, 'e=(r-+ A) ‘& for € En F,r>0. If -4,
and —A; generate bounded continuous semi-groups G,(t) and G.(t) in E and
in F, respectively, then —A defined as in Proposition 4.1 generates a bounded
continuous semi-group G(t) in E+F, and Go(t)=G(t), Ge(t)=Gu(t). If, in par-
ticular, Gi(t) and Gut) are bounded holomorphic, then so is G(t).

The proof is easy ([31)).

If we speak of exp(—tA) in the sequel, we consider only those cases that
—Ag and —Ar generate bounded continuous (or holomorphic) semi-groups, and we
simply say that —A generates a bounded continuous (or holomorphic) semi-group
instead of saying that —A, —~Ap and —A, generate bounded continuous (or holo-
morphic) semi-groups, respectively.

DEFINITION 4.2. G(t) is said to be of class S(o, E, F') for some ¢>0 if the fol-
lowing conditions are satisfied:

(i) Gg(t) and Gr(t) are bounded continuous semi-groups in E and in F, re-
spectively;

(ii) For every t>0, G(t)e $2(E, F') with the norm

TG p—r =Kt~ t>0,
K being a positive constant independent of t.

We write G(t)€S(o, E, F') if G(¢) is of class S(o, E, F).

The resolvent formula yields immediately the following ([29], [31]).

PrOPOSITION 4.8. If exp(—~tA)eS(o, E, F), then A€(o, m, E, F) for m>a.

We have shown previously ([81]):

PROPOSITION 4.9. Suppose that —A, —A,. and — Ay generate bounded holo-
morphic semi-groups. Then exp(—tA)eS(e, E, F') if A€ (o, m, E, F).

We have noted that this fails if exp(—tA4) is not holomorphie, using the
translation semi-groups in L?(R) or in L*(R.) ([31]). In this respect, we make a
supplementary remark. Namely,

ProrosiTIiON 4.10. There is no bounded continuous group in S(s, K, F').

Proor. Assume that exp(—tA), exp(—tAg), exp{—tA,;) are bounded con-
tinuous groups of operators. If exp(—tA)€S{(s, E, F), then we have, for any
t>0 and for any € F,

lexp (—tA)zll- =Kt lizlly, 0>0.

Now, exp(—sA)z€ F for any real s and for any z€ E. In fact, take any real
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t,<s. Then
exp (-~ t,A)p=rexp (—tA)e € E
and
exp (—sA)z=exp {—(s—t,)A) exp (—i,A)x € F .
Hence,
lexp (—sA)zll, = Kls—ty) llexp (—t,A)| s S KM(s—to) |zl .

Letting t,-> —co, we see exp (—sA)z=-0 in F. Since K, FCE+F continuously,
exp (—s8d)z=0 in E. This shows that exp (-sA;)x=0 for real s, and this contra-
dicts the assumption that exp(--sA,) is a bounded continuous group.

Yor later convenience, we state some of easy consequences of Definitions 4.1
and 4.2,

ProrosiTION 4.11. Let A€(o, m, K, F). Then

(4.1) A€o, m, X,, F), a,=0(1—0), 0<0,<1;

4.2) A€ (g5, m, E, Xo), 0=00,, 0<0,<1;

4.3) A€ oy, m, X,, Xs), oy=26(0,--0)), 0<8,<0,<1 .
Here

)(‘1:(]_’::, I")(}l,;;, 1§p§®3, XZ"T(E, .I’w)(‘;z_q, 1:<;q§00 .

Proor. (4.1) and (4.2) follow from the non-negativeness of A, and Ar and
the interpolation theorem. (4.3) is a consequence of reiteration and (4.1), (4.2).
In an exactly same way, we see

Provosition 4.12. Let exp(—tAYES(s, K, F). Then

4.1 exp (—~tA)e S(oy, &y, E), o,=6(1—0,), 0<0,<1;

(4.2%) exp (—tA)E S(u,, E, X)), 6,200, 0<0,<1;

4.3 exp (—tA) € S(o,, X, Xb), os=a(0,—0)), 0<0,<0,<1 .
Here

Xx: Z(E, Ip)()l,p, 152);{_:&; XE::(E) F)fl;}.‘)y 1‘§q§00 .
As other trivial consequences of Definitions 4.1 and 4.2, we note three pro-
positions.

ProrosiTioN 4.13. Let E, F, G be three Banach spaces continuously imbedded
in @ Housdorff linear topological space X. Assume that a non-negative opera-
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tor in E+F+G be given. Then Ac(o,m, E, F) and A€, m', F,G) imply
A€(g+d, m+m/, E,G).

PROPOSITION 4.14. Assume that ENF is dense in E and in F. Then
A€o, m, E, F) implies A*€ (s, m, B, F'¥),

PropOSITION 4.15. If A€(o,m, E, F), 0<o<m, then 1-+A€ (o, m, E, F').

Finally we give a typical example.

PRroPOSITION 4.16. Consider an operator A, in LP(R), 1=p<<w, given by

Apu=—dul/dr for uw€D(A,)=W?"YR).
Ae in Cu(R)=B%R) is given by

We can construct A in LP(R)+LYR) or LP(R)+4 BY%R), 1=p<q<cc, as in Prop-
osition 4.1. Then

Ae(l/p—1/q,1, L"(R), L'(R)), 1=p<q<ce,
Ae(l/p, 1, L*(R), BXR)), 1=p<co.

Proor. This follows from the resolvent formula and the Hausdorff-Young
inequality (see [29]).

Another example will be given in §6 (Corollary 6.1). We also note that many
elliptic operators fall in this class as we have shown in [31].

5. Imbedding theorems. In this section we continue to investigate two
Banach spaces E, F and a non-negative operator A, considered in the previous
seetion. Our purpose here is to prove some imbedding results associated with
operators of class {s, m, E, F).

We have shown previously ([29], {31]):

THEOREM 5.1. Let A€(o,m, E, F). Then

(E, D(AENsvotr v AF, D(AE)0.»

with the continuous imbedding. Here 0<0<0+a/k<l, 1Sp=cs, and &k is any
positive integer >o/(1—0).

This theorem corresponds to an imbedding theorem of Besov-Nikol'skii type
(see our discussions in §4 of [29]).

As to the imbedding relations associated with ranges of operators, we have the
following theorem. As we shall see later, this theorem is important in our treat-
ment of the Hardy-Littlewood-Sobelev inequality.

THEOREM 5.2. Let A€(o, m, E, F). Then
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(B, RLAR) s »C(E+F, R(A))oroti.p

with the continuous imbedding. Here 0<0<0+0/k<1, 1=p<oco, and k is any
positive integer >o/(1-0).

PrOOF. @€(E, R(A%),., if and only if a€E and r*(r(r+A)"*a€ LLE)
(Proposition 2.4). In particular, a€ E+F. Now take k>m. We see

== tr(r + A7) el
Lkt ml (e Ay e A) el
Zconst. 7 (r(r+A)Hal, .

Since FC E+F, we have
l7=ko=o(plr+ Ay e ™l o Seonst. ¥ (r(r+A)"Valz .

It follows that a€ E--F and %9~ (r(r-+ Ay )" ™a € LY E+F). Hence,
a € (E+F, RIA"™Nworo/term,o=(E+F, R(A))ssro/k.v -

The continuity of the imbedding follows from the closed graph theorem.
Q.E.D.
As easy consequences of Theorems 5.1 and 5.2, we have
COROLLARY 5.1. Let A€(o, m, E, F). Then

DAL ) DA%, Rea>Re f4o0>0

with the continuous imbedding.
COROLLARY 5.2. Let A€(a,m, B, F). Then

D{A;) e D(AZH), 0<Re f<Rea+o,

with the continuous imbedding.
In fact, these follow from the facts that

(B, DA ke w/m 1 © D(AG) C(E, DIAR) e a/m.o »

(B, R(AP)re atm.a C DAY C(E, RIAE) vea/m.= »

(E, D(AD))o.»<(E, DAy .o, 0K’ <0<, 1£p, gS oo,
(E, R(A7))o.» T (B, R(AE))y' o

and similar relations for 4, and A.

Now we are to refine these results. Two directions are possible: Refinement
with respect to the definition domains and that with respect to the ranges. As
for the former, we introduced in our previous paper [31] a subclass X(o, K, F) of
(¢, m, E, F). We reproduce its definition and its fundamental properties. As for
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the refinement with respect to the ranges, we can give a statement similar to the
one about the domains.

DEFINITION 5.1. A is said to be of class J(o, E, F') for some ¢>0 if the fol-
lowing conditions hold:

(i) Agr and Ay are densely defined non-negative operators with bounded in-
verses;

(iiy A7=A;°=AZ°€ P(E, F).

ProrosITION 5.1. If A€2(s, E, F), then A€o, m, E, F), m=zo.

THEOREM 5.3. Assume that D(Ag)=FE, D(Ap)=F, Az', A} bounded. Then
the following three conditions are mutually equivalent:

(5.2) A€l E,F):
(5.3 DAz CF,
(5.4 D(Ag)C D(A%L) for any a, Rea>0.

These two propositions are proved in [31].

We also note

PROPOSITION 5.2. D(AZ.)CF if and only if D(A)CF.

PROOF. The if part is clear since D(Ag,)CD(A?). For the proof of the only
if part, it is enough to prove D(A™)CD(A%3°) for some m>a. Since D(A™)==
D(AT)+D(AR) (Proposition 4.1), any x€ D(A™) is decomposed to z=u,+%2 2.€
D(AD), z.€D(AR). Now x,€ D(A%:°) and =z:€ D(AR)C D(AF:). Hence z€
D(A%3%). Q.E.D.

The boundedness assumption on A7', A7 is actually too strong, though it is
enough for many applications. In order to remove this boundedness assumption,
we are led to study the inclusion relations between the ranges.

THEOREM 5.4. Assume that E=R(Ap)=D(Ag), F=R(A)=D(Ap). Then the
following three conditions are mutually equivalent:

(5.5) Ec R(A2)=R(A3) for some o¢>0;
(5.6) R(Ag)C R(As*7)=R(ALY") .
6.7 RALY=R(G I RAF*)=R(A") for any a>0.
PrOOF. From the assumption, we may omit the suffices -+, —, 0. First we

show (5.5) implies (5.7). Let z€ R(A2)=D(A;°). Then y=A""ze€ ECR(A"). Thus
there is a z€ D(A°) such that y=A"z=A"2. Since A is densely defined and den-
sely ranged, and since AZ"AZ°=AZ°"" in the sense of the product of operators,
it follows that y€ R(A°) and z=A"°A "z==A"""°z. In particular, z€ D(A*")
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and A“*"z--x. That is, € R(A*""). Next, (5.7) implies (5.6) as a special case.
Finally, we show that (5.6) implies (5.5). Set B=A"'. Then B is a densely
defined as well as By, and Bp. We are to prove that D(Bgy- D(B**°) implies
E- D(B2). Sinece D(Byp)—D(1+Ag"), D(B")=D(1+A"")'"’), we may assume
that B! and B;' are bounded. Let x€ E. Then z==B™'x=Bp'z€ D(Bg)< D(B'*°).
Thus there exists a y € E--F such that z=: B'z==B"'"y. In particular, z€ D(B)"
D(B'*"). Thus Bze D(B?). This proves that x€ D(B°) (see Proposition 2.9).
Q.E.D.

In view of studying whether A=° € &2(E, F), we prepare several propositions.

THEOREM 5.5. Assume that E-R(Ap=D(Ap), F=R(An=D(4y. If Ec
R(A"Y and DIA®)CF, then A’ € L(E, F').

PrOOF. From the assumption, R(A)==D(A)=E+F. Thus, A7°=A4;°=4"° is
well-defined and A7 € ZF(R(A7), D(4A°)). Q.E.D.

The converse statement of Theorem 5.5 also holds good.

P E, F) for 60, then EC R(A°) and D(A°)CF. In particular, for any r>0,
r+Ae X, B F), and A€o, m, E, F), 6Em.

Proor. E< R(A°) is clear since A~z is well-defined and belongs to F' for
any s€FE. Next, we note that (r-+A)"c L(E+F, E+F)N (F, F) and that
(r+A)"¢ is an extension of the operator A°(r-+A)j"°A~°. On the other hand, it
is clear that (r-FA)"* is closed as an operator from E into F', since E and F are
both continuously imbedded in E+F, and since (r+A)y '€ ¢L(E+F, E+F). Let
x€E. Then A"z is well-defined as an element in FCE-+F, and we have

(r4+ Ay la=A(rt+t Ay A x=A%(r+ Ay "A 'ze F .

Thus by the closed graph theorem, (r-+A4)°€ (K, F). Hence, by Theorem 5.3,
we have DAL =D{(r+Az)°)F. It follows from Proposition 5.2 that D(A°)CF.
Similarly we see that (r+A)™, m=0¢, maps E continuously into F, and for any
ze Kk,

fr+A) "zl p= A% (r+ A) A al = const. A7 i p-rilwlle -

This shows that A€ (o, m, E, F'), m=¢. The theorem is proved. Q.E.D.
REMARK 5.1. Assume that E=RE(Ap)=D(4y), F=R(Ap)=D{Az). If A€o,
m, E, F), then D(A°*)CF and ECR(A°™), 0>:>0.
Proor. Corollary 5.1 shows D(AZ ¥y D(A%) for any a>0, ¢>0. Thus, by
Theorem 5.3, we have D(AZ*)=D((L+Ap)"*)CF. By Proposition 5.2, it follows
that D(A°*)CF.
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On the other hand, Corollary 5.2 and Theorem 5.4 show E< R(A°~°).

Q.E.D.

Thus we see that the case when we may take :-=0 is of a particular im-
portance.

We shall discuss such a case in the next section.

REMARK 5.2. Assume that E=R(A;) and F=R(A,) so that R(4):-E-+F, and
Ap', A7, A7! are non-negative.

If the completion F,, of R(A}) under the norm {ljz}==}A3"x|» is continuously
imbedded in X, then we can argue as in the proof of Theorem 5.1, using that
R(AL)==D(Ag*), ete., and we see that (E, R(AL)).» is imbedded in (F, Fi)er,n. If
Ap is of bounded inverse, then F',, coincides with the space of type W ™% con-
sidered by Grisvard [6]. In particular, if F is reflexive, then F',,=D(A%")*,

THEOREM 5.2. Let A€(0,1,E, F), 0<o<1. Assume that E=RK(A;), F=

R(Ay) and F, <X continuously. Then we have
(E, RIAE 6.0 (Fy Fi)ogati.r

with the continuous imbedding. Here 0<80<0+a/k<1, 15p=Soo, and k 18 any
positive integer >o/(1—0).

ProoF. Noting that (E, R(AL)s. »==(E, D(A5*))s.», we see that a € (E, R(AL)a.»
implies that a€ E,

(5.8) tunlt)€ LUE), tT™"A;"u.(t)€ LUE) ,
(5.87) a= rum(t)dt/t .
4]

Here t==k#, m any integer >kf-o, and

(5.8'") Un(t)=Cut™(A5")"(t+ AF") e
=Cnt"AREAL 1), ca=1"@2m)/["(m) .

In fact, (5.8’) follows from the integration by parts. (5.8) holds since
(E; R(Aé))r/k.P:(Ev R(Az)):/m.i?

(Proposition 2.4). Letting s=1/t, we have, by (5.8),

%.9) Un(8)=Un(l/8)=cns" AR+ Ar) "0 ,
(5.10) 5 0n(8) € LLUE), s~ A5 va(s)€ LUE) ,
(5.11) o= gmvm(s)ds/s.

Now, since A€ (0,1, E, F),
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“smﬂAm-c—1(8+A)m2mu2aﬂp
S |sA(s+A) s -rlls"A™(s+A) " alp .
< MLs*"[|A™(s+ Ay *"ale -

Similarly,
s+t A(s+ A)*"%allp= MLs°**" | (s+ A)"*"allg .
In other words, letting m=Fk, we see
8=~ g1 (8) | p S const. s~ vi(8)l g
0w (SIS const. s AR vi(e) g
By (5.10), it follows that
§ 0 01(8) € LL(F), s777 7 0,44(8) € LA(FY) .

Hence,
- S es1(8)ds/s € (Fy F)icsorsin=(Fy F)owoticn -
]

Sinee a==b in X, a€(F, Fi)osen.». The continuity of the imbedding follows from
the closed graph theorem.

6. An application. An operator theoretical proof of the Hardy-Littlewood-
Sobolev inequality. As an application of the results in the previous sections, we
are going to prove the Hardy-Littlewood-Sobolev inequality. Namely, we prove

THEOREM 6.1. Let (M, dm) be a sigma finile positive measure space. Let
{T\}, 20, be a family of linear operators mapping functions on M (< LM, dm)+
LM, dm)) into functions on M. Assume that {T,} forms a semi-group in the
sense that T.T,==T., for ¢, 8>0, Ty=identity and that the restriction of {T,}
in LM, dm) is a bounded continuous semi-group. Suppose furthermore the
Sfollowing five conditions hold:®

@ T flosifls of fe LP(M, dm), 1Sp<oo.

(i) Each T, t>0, 1s self-adjoint in LM, dm).

(i) T.f =0 of f20.

(iv) t,1=1.

(v) For each t>0, T, fe L™(M,dm) if fe LXM, dm), and ||T.fl.sKt=°|fll
Jor some ¢>0.

Then we have, for 1<p<qg<oo,

R “fﬁp“ i?filu?w‘dm-
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(6.1) A~ e A(LPM, dm), LY (M, dm)), r=a(l/p—1/q) .
Here

A~ =T S&t““’ T.fdt .

[4

COROLLARY 6.1 (The Hardy-Littlewood-Sobolev inequality). Let f€ LP(R™,
g€ LY(R™), 1<p, q<oo, 1/p+1/¢g>1. Then

(6.2 [§ g =127 01000 dvdy| <0, 22211100

PrOOF OF COROLLARY 6.1. Let (M, dm) be (R", dx). Define T, by

flxy if t=0,
(T =)=
: (4zt)-"re Lnf(y) oxp (—lo—ylP/at)dy if £>0.
Then it is clear that {7} satisfies the conditions (i)-(iv) and (v) with o=#/2. Thus
by Theorem 6.1, we have

A~Te L2(LP(RY), LY (R™), ¢'=q/g—-1).
Note that ¢’>p since 1/p+1/¢g>1. Here r=an(1/p—1/¢")/2, and

A" f==const. SR" { Swt’““"/” exp (—|x—y|*/4t)dt }f(?/)d?/

[

CS f(?/)lx-—y{“"“ﬂ/pﬂ/q', dy
R®

Cg F)la—yl =10 dy
R

with C=2"2¢""8](5/2—<)/((47)*/%"(z)). This implies (6.2).

In the rest of the section, we prove Theorem 6.1. This proceeds in the line
of our previous paper [32]. Since it appears that we only consider densely defined
and densely ranged non-negative operators A below, we omit the suffices -, —,
or 0 for fractional powers and we simply write A®, ete.

First we summarize Stein’s results [27].

ProPOSITION 6.1 (Stein [27)). The conditions (1) and (i) imply that {T) in
each LP(M,dm), 1<p<wo, 18 a bounded holomorphic semi-group, that is, the
mapping t — T.f, f€ LM, dm), is analytically continued to the sector:

Sp={z€ C; larg 2] <(1—|2/p~—1))7/2} .

For the proof see Stein [27], also the footnote in [32].
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PROPOSITION 6.2. Let —A, be the infinitesimal generator of {T} in LM,
dm), 1<p<oo. Then N(A)=0. In particular, R(A,)=L7(M, dm), 1<p<oo.
Proor. This follows from the condition (v) combined with the interpolation
and Proposition 4.4. The second assertion is a result of the Abelian ergodic
theorem since LP(M, dm), 1<p<co, is reflexive. Q.E.D.
Now define the Littlewood-Paley funetion (Stein [27]):

, (oo o 1/2
6.3) gm(-):—:(g zsa'zgf(-),sawdt) .
0
PRrOPOSITION 6.3 (Stein [27]). Let {7} be the semi-group in Theorem 6.1.
If fe L’ (M, dm), then ¢,(fye L°(M, dm), 1<p<oo, and

MM Oe SIS Mg ()l 1<p<oo .

Here M, is o constant depending only on p.

ProoF. The result is due to Stein. In fact, he proved the first inequality
and the second one in the form

= Mu(lg (Ollo -+ E( ) -

Ey(f)=0. Q.E.D.
PROPOSITION 6.4 (Stein [27]). Write Tg:fgwe“"dE(f) in LXM, dm), using

4]
the spectral decomposition. Define the operator:

m(A)f= S:m(r)dE(r)f, fe LXM, dm) ,

where m(r) is a bounded measurable function on R,.=(0, ). If, for a bounded

measurable function M(t) on R, m(T):a'rS e "' Mt)dt, r>0, then m(4) is a
[

bounded linear operator on all L*(M,dm), 1<p<ce, and

lm(A) fllo =MLY fY5, fE LP(M, dm) .

Here M, is constant depending only on p, and L=sup [M#)]. In particular,
Ay is a bounded linear operator on all LP(M, dm), 1<p<oo, for each real r.
Furthermore, for fe L*(M, dm),

1AL fllo= My exp (=l D) F1» -

For the proof, see Stein [27]. Note that Air=A%L;. Using Propositions 6.1,
6.3 and 6.4, we prove

PROPOSITION 6.5. Let 1<p<2. Then, Jor any a>0,
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R(A;):(Lﬁ(ﬂ[, d”?/)y R(A;)L))rz/'v‘z
with the continuous imbedding.

Proor. It is enough to prove the proposition for a==1. (Proposition 2.6). Let

~

= (o) tor se R,

R A

Then
2 /2 (oo ) 1/2
|fl= (g tlara-siar) (| ?!tc?T,A“’j‘!GtEif,dt) .
o / \ o
By Minkowski’s inequality,

NE \{SV(V CIOThm)otd ) p'2 d»m,\i,w
=g (A" )l Sconst. [AfH,, he=Agt.
Hence,
Lf1-+ 1l <const. (| fil,+ 1A fl)=const. | flzuy - QED.
COROLLARY 6.2. Let 1<ps2. Then for any «>0,
R(Ac, (LM, dm) N LA(M, dm), B(A}2))arn.2

with the continwous imbedding. Here Apny is the maximal restriction of A in
L*(M, dm) 0 LA M, dm).
PrROOF. It is clear that —Apyn; generates {7} in L°(M, dm)" L¥(M, dm), and
N(A,..)=0. We give an equivalent norm
Wl pae= L F L+ Fle for fe LP(M, dm) " Lo(M, dm).
It is enough to prove the corollary for a=:1. Now,

N 172

fl= (S“ [T fl e dtit)
4]

“ . \1/2 - e
g(g TSI dt,f't) (S i%t’l’,féizdz;t>

< (g (A o+ lg (A )2
< const. (A fl»+ 1A fli2)
=const. | A" flsnz .

Hence,

I Fllone+1f1=const. (1flpnad- 1A flon2)
=const. | fllrryne Q.E.D.
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Applying the duality theorem (Theorem 3.1) for 4 and A™?, and noting that
L, L?N0 L2, 1<p=2, are reflexive, we have
PROPOSITION 6.6. Let 2<p<co. Then for any a>0

(L™(M, dm), R(A}))utn.2C R(AS)

with the continuous imbedding.
COROLLARY 6.3. Let 25p<wo. Then for any a>0

(LAM, dm)-+ L7 (M, dm), R(AZ2)arn.2 < B(ASvs)

with the continuous imbedding. Here Ap.. 18 the operator in L*M,dm)+
LM, dm) constructed as in Proposition 4.1.

Proor Or THEOREM 6.1. We prove the theorem for 2=p<g<oo. Then by
the symmetry of the operator, the theorem holds also for 1<p<qg=2. Composing
these two cases, the theorem is seen to hold for general 1<p<g<,

We first show, for 2<g<eo,

(6.4) D(AZ Yy D(AS) for any a>0,
and
(6.5) RANHCR(A:YYY for any a>0.

Here o'=0(1/2--1/q). In fact, from the condition (v), T,€S(z’, L2, L") as a result
of the interpolation. Hence, from Theorem 5.2, we have

(LE(M’ dm)) R(A;?)),,/,,,gC(Lg(M, dm)+Lq(M, dm)! R(Aqu))(a+:')/n.2 .

Using Propositions 6.5, 6.6 and Corollary 6.3, we see (6.5).
On the other hand, we have shown in [32]

6.4') D(AYYC D(AS) .

Now (6.4) follows from (6.4') by Proposition 5.2.

Let X,==[L"(M, dm), LXM, dm)+L"(M, dm)ls, and denote by A, the maximal
restriction of A in X,. Then it is clear that A, is densely defined, densely ranged
and non-negative with bounded pure imaginary powers. In fact, all these follow
from the corresponding properties of A in LM, dm)+ LM, dm) and in LYM, dm)
(Corollary 4.1). Hence, interpolating (6.4) and D(AZ)==D(A%), we have, by Prop-
osition 2.3,

(6.6) D(AG* ) =[D(A]), DA< D(AS) .

Similarly, interpolating (6.5) and R(A§)=R(A43), we have
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(6.7) R(AS)C R(A™* " 0)=[R(A}), R(A35)],

Here 1/p=0/2+(1—0)/q, 0<<L1.
An argument similar to the proof of Theorem 5.4 yields from (6.6) and {(6.7)
that

DA< LM, dm) and L*(M, dm)< R(45°) .

Since X,>L*M,dm), X,>L"(M,dm) and <'0=¢(1/p—1/q)==z, it follows from
Theorem 5.5 that A~7€ SP(LP(M, dm), L'(M, dm)). The theorem is proved.
Q.E.D.

REMARK 6.1. There are many proofs of the Hardy-Littlewood-Sobolev in-
equality, using the rearrangement, or decomposition of given functions (i8], [9],
[26]), or a group theoretical proof ([23]), or based on an elementary inequality
[21]. The proof given here starts from a more general standpoint, but it relies
on the Littlewood-Paley function. Stein [27] used the theory of martingales for
the proof of Proposition 6.3. That is, the proof given here also depends on de-
compositions of funections.
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