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0. Introduction

In this note we shall define a G-CW complex for a general topological group
G and establish the elementary properties of it following those of a CW complex
[4]. In these the G-homotopy extension property and the G-cellular approximation
theorem are important and the generalized theorem of J.H.C. Whitehead seems
to be most interesting.

When G is a finite group, a G-CW complex is the same concept as a G-com-
plex of G.Bredon [1]. When G is a compact Lie group any differentiable G-
manifold has a G-CW complex structure [2, Prop. (4.4)], which is used to make a
representation of the equivariant K-theory by using the space of Fredholm operators.

In this note G denotes a fixed topological group. By a G-space we mean a
topological space X which has a fixed topological left G-action ¢:Gx X — X. We
usually write gz for p(g, x) and X/G for the orbit space which is topologized by
the natural projection =: X — X/G.

The alphabet H always denotes a closed subgroup of G, and Ha={geG; Gx
=g} is an isotropy subgroup at z of X. On the contrary Gx={gx; g€ G} is the
G-orbit of z€ X. This convention is due to Professor M. Sato.

1. Definition of a G-CW complex

A G-CW complex shall be defined to be a type of cell complex with a fixed
topological G-action. We first recall the definition of a cell complex.

DEFINITION (1.1) A pair (X, K) of a Hausdorfl space X and a family of
(open) cells in X, K={e;CX; 1€ 4}, is called to be a cell complex if:

(a) X=Ue,; (A€ 4, a disjoint union),

{b) each n-cell ¢” has its characteristic continuous map of a closed n-simplex
onto its closure, ¢: 4" —é¢*c X, satisfying

(b1) o|(4*—34™) is a homeomorphism onto e,

(b2) e’ X™!, where de=é—e=0(d4) and X" is the (n—1) skeleton of X,
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the union of all cells whose dimensionalities do not exceed (n—1).

This definition of a cell complex is due to J.H.C. Whitehead [4]. When a
cell complex structure K is fixed, we write simply X for (X, K). The cell complex
closure of a subset S of X, denoted by X(S), is defined to be the smallest sub-
complex which contains S. Then the topological closure of a cell, ¢ does not ne-
cessarily coincide with Xle).

DEFINITION (1.2) Let G be a topological group and X be a G-space. A cell
complex (X, K) is called to be a G-cell complex if:

{¢) the orbit space X/G is a Hausdorff space,

(d) G acts cellularly, that is, e€ K implies ge€ K for every g€ G,

(e) every point = of a (open) cell ¢ has the same isotropy subgroup, which is
denoted by He, and in particular each boundary point is fixed by He,

(f) if ¢ is not contained in He, then ge is disjoint from e,

(g) the topology of the subspace Gé is the identification topology determined
by the induced G-characteristic map,

Go(=ps(tdg¥a)) :G> A" > G X .

REMARK. (e} is the key condition and is equivalent to each of the following:

e’y if gx==2 for some w€e, then gy=y for each y€¢,

(¢’’) for each g€ G the g-stationary subspace X={x€ X; ga=xzx} forms a
subcomplex.

Take a cell ¢, then we get the distinguished subfamily {ge; g€ G} of K whose
spanning domain is just the orbit of e. Moreover by the Hausdorfl property of
the orbit space, the orbit of the closure of ¢ is closed in X and we get:

(1.3) Ge~Gé as subsets of X. A

We account this subfamily Ge one G-cell and call it the G-cell represented by
¢. Iach G-cell has its G-characteristic map, Go:Gxd*->Gec X. This is continu-
aus G-equivariant map onto the closure of Ge. Then we get an induced continu-
ous G-map Go:G/He> d->Ge whose restriction to the interior, Gu|G/Hex(d—34)
is a homeomorphism onto Ge by (e), (f) and (g). Thus a G-cell complex is the
G-equivariant version of a cell complex. That is, a G-cell complex is a pair of a
G-space X and a family of G-cells GK which satisfies that X and X/G are Haus-
dorfl spaces and

(a) X=UGe (Gee GK, disjoint union),

(b) each G-n-cell has its G-characteristic identification map, Go:Gx 4" — Ge
< X with

{(bl) GolG/Hex(d—36d) is a homeomorphism onto Ge and
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(b2) Ge"c X,

The image of every G-cell of X by the natural projection =: X > X/G induces
one cell of the same dimension in the orbit space. The characteristic map is just
0/G{=xrsv): 4" - é,GC X, G. Collecting these cells we may induce a cell complex
structure on X/G canonically. When we take this structure, we get = (X G)")
=X" for any n.

DEFINITION (1.4) When a G-complex (X, K) has only finite G-cells, X is called
to be a G-finite complex. The words G-locally finite and G-countable are used in
the similar ways.

The G-cell complex closure of a subset S of X, denoted by GX(S) is defined
to be the G-orbit of X(S) which turns out to be the smallest G-invariant subcom-
plex which contains S. (Afterwards we call a G-invariant subcomplex to be a
G-subcomplex.) Now we can define a G-CW complex.

DEFINITION (1.5) A G-cell complex (X, K) is called to be a G-CW complex if
it satisfies the following two conditions (G-C) and (G-W):

(G-C) G-closure finiteness, that is, the G-cell complex closure of each cell,
GX(e) is a G-finite complex. This condition is equivalent to the condition that
the induced cell complex structure on the orbit space is closure finite. To say in
another way the cell complex closure X(e) of each cell has intersection with only
finite G-cells.

(G-W) G-weak topology, that is, X has the identification topology with re-
spect to the onto G-characteristic map of X, Goy :Ey=1Gx4d,(A€ A)— X, where
Ex is topologized as a topological disjoint union. This topology coincides with the
weak topology with respect to the closed covering {Ge, Gee GK} of X by (g).
When X has this topology, the orbit space X/G has the weak topology with re-
spect to the characteristic maps ¢/G’s.

Therefore we get

PRroPOSITION (1.6) If X is a G-CW complex, then the orbit space X/G has a
canonical CW complex structure.

The following lemma is easily deduced by the general argument about weak
topologies.

LEMMA (1.7) If we assume (G-C), (G-W) 15 equivalent to say that X has the
weak topology with respect to its G-finite subcomplexes X,'s.

When G is a compact, compact Lie or finite group, we may simplify the de-
finition of a G-CW complex as follows.

The case when G is a compact group.

By the lemma (1.8) we may omit (¢). When X is a 1st countable G-space,
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by the proposition (1.10) we only need to require that the induced cell complex
structure on the orbit space is a CW complex structure instead of (G-C) and
(G-W).

LEmMMA (1.8) Let G be a compact group. If a G-space X is a-Hausdorff
space, then so is the orbit space X/G.

PrROOF: Take a G G-space Xx X, then the orbit space is X/Gx XiG and the
image of the diagonal subspace of X< X by the natural projection is the diagonal
subspace of X/G> X/G. Since the natural projection is a closed map because of
the compactness of GG, the closedness of the latter is deduced from that of the
former, which shows that the lemma is valid. q.e.d.

When G is a compact group, by the Hausdorff property of X we get the
condition (g). Hence from the following lemma we deduce the proposition (1.10).

LEMMA (1.9) Let G be a compact group and X be a G-cell complex which
satisfies the 1st axiom of countability as a space. Then X has the weak topo-
logy with respect to the closed covering {Ge; Ge€ GK} of X if and only if the
orbit space X/G has the weak topology with respect to the induced cell complex
structure.

ProrosiTION (1.10) Let G be a compact group and X be a G-cell complex
which satisfies the 1st axiom of countability. Then X is a G-CW complex if
and only if the induced cell complex structure onm the orbit space is a CW
complex structure.

Proor or LEMMA (1.9): We have already proved only-if-part without any
assumption on G and X. We shall prove if-part by a contradiction. Let S be a
subset of X and SN Ge be closed in Ge for every G-cell. We assume that S is
not closed in X. Then there exists a convergent sequence sn%s in X, where s,
€S and s¢ S. The subset {s,, st=={s, : n (natural number)}U{s} is eclosed in X. Fix
any cell ¢ of X. Then {s., s}NGe is closed in Ge. Because SN Ge is closed in Ge,
Siiis,, siNGe=—{s,}NGe is closed in Ge. Put t,=x(s,) and t===(s), where = is the
natural projection: X -—» X/G. Since = is a closed map because of the compactness
of G, (£ =(Ge) is closed in ={Ge). Because the orbit space has the weak topology
with respect to these closed cells, =(Ge)’s, {t.} is closed in the orbit space. There-
fore t€{t,}. Let n, be one of the indexes. For the subsequence {s,; n=n,} the
above argument is also valid. Therefore the subsequence {s,}N="t) of {s,} is
cofinal to {s.}, and converges to 5. Let ¢ be a unigue cell which contains s, then
= (1) GewGe and {s,)N="1{t) converges to s in Ge. But because SN='(t)NGe is
closed in Ge,
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SnGenis,, s}N =1 t)={s,} N ="(£)

is closed in Ge. Since s is not contained in {s,}N="Y¢), this is a contradiction.
q.e.d.

The case when G is a compact Lie group.

By the lemma (1.11) we may omit (f).

LEMMA (1.11) When G is a compact Lie group, we may deduce () from
(d) and (e) for a cell complex which is also @ G-space.

ProoF: Fix a cell ¢ and put H'e={geG; ge=—e}. Then H’e¢ is a closed sub-
group of G and contains He as a normal subgroup. The group H’e/He operates
on e freely because of (e). Identifying the boundary of e into one point, we may
think the compact Lie group H’e/He operates on a sphere of dimension greater
than one with one fixed point and freely elsewhere. If the connected component
of H’e/He is not an identity group, it contains an 1-dimensional torus and hence
contains a periodic transformation of a prime order. This contradicts with the
theorem of P. A.Smith on a periodic transformation [3], which shows that
H’¢/He is a finite group. Thus if H’e/He is not an identity group, it contains an
element which is not an identity and of finite order and hence contains a periodic
transformation of a prime order. Then we may conclude that H’e/He is an identity
group and hence H’e=—He, using the theorem of P.A.Smith in the above way.
If geNe is not empty, then ge==¢ because of (d) and hence g€ H’e=He. This
shows (f) is deduced from (d) and (e). q.e.d.

The case when G is a finite group

REMARK (1.12) When G is a finite group, a G-CW complex itself must be a
CW complex. Thus the definition of a G-CW complex is reduced to a G-space
which has a CW complex structure satisfying (d) and (e’). The latter is the
definition of a G-complex of G. Bredon in {1] for a finite group G. Hence a G-CW
complex is a generalized concept of a G-complex of Bredon.

Last we shall show some examples of G-CW complexes.

ExaMpPLES (1.13)

(1) The natural SO(n)-action on SO(n+1). The orbit space is an »n-dimensional
sphere S*. Giving the natural riemannian metric on S”, we may lift every point
except the south pole into the rotation along the unique minimum geodesic span-
ning from the north pole to it. Then this lifting has a unique continuous exten-
sion over the closed n-disk D" into SO(n-+1), which represents a G-n-cell. A
point over the south pole represents another G-O-cell. This G-CW complex con-
sists of only two G-cells and is not a CW complex.
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(2) When G is a compact Lie group, any differentiable G-manifold has a
G-CW complex structure. This is proved in [2].

2. Elementary properties of a G-CW complex

In this section (X, K) or X denotes a fixed G-CW complex. We shall prove
some propertics of (X, K) following the corresponding properties of a CW complex
established in [4] by J. H.C. Whitehead.

(A) A G-map, [: XY into any G-space Y, is continuous provided flé
ss continuous for each cell e€ K.

Proor: Let f.~=flé be continuous, then the composition with the character-
istic map fico:d->Y is continuous. Moreover, the G-map foGo:Gxd—-7Y is
continuous because of the continuity of the G-action on X. Thus f|Ge is con-
tinuous with respect to the identification topology of Gé. Therefore, f: X — Y is
continuous with respect to the G-weak topology of X. qg.e.d.

1t is easy to generalize (A) to the case when X is a closed or open G-subspace
of a G-CW complex.

(B) A G-subcomplex, (Y, L) of (X, K), is a closed G-subspace of X and the
topology induced from X is the G-weak topology in (Y, L).

ProorF: Let ScY be a subspace such that SN Y, is closed in Y, for each
G-finite subcomplex Y, of Y. Since Y, is closed in X, SN Y, is a closed subspace
of X. Let X, be any G-finite subcomplex of (X,K). Then Y,=YNX, is a G-
finite subcomplex of (Y, L) and SN X,=SN YN X,=8N Y, Therefore, SNX, is
closed in X,, whence S is closed in X because of the lemma (1.7), and a fortiori
in Y. Therefore, (Y, L) has the G-weak topology. Also, taking S=Y, it follows
that Y is closed. : q.e.d.

By definition a G-space X is called to be G-connected, G-compact and G-pa-
racompact if and only if the orbit space X/G is connected, compact and para-
compact respectively. We get the following properties (C), (D), (E) and (G) from
the corresponding statements about a CW complex. Also (F) is deduced from the
lemma (1.7).

(€) If X 4s G-connected, then so is the skeleton X" for each n>0.

(DY If SCX is a compact subspace, then GX(S) is a G-finite subcomplez.

(Y If a G-cell complex (Y, L) and also Y*" for each n=0, all have the G-
weak topology, then Y is ¢ G-CW complex.

Let f: X~ Y be a G-map of X onto a G-closure finite complex Y, which has
the identification topology determined by f. Further let the G-subcomplex G Y(fé)
be G-finite for each cell e€ K.
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(F)  Subject to these conditions Y is a G-CW complex.

(G) X is G-paracompact.

Let (X, K) be a G’-cell complex and (Y, L) be a G'’-cell complex. The pro-
duct G=G" < G""-cell complex of (X, K) and (Y, L) is defined to be the pair of the
product G-space X Y and a family of the product cell Kx L=:{e=¢’ xe”; e €K,
¢’eL}. In fact because de==de’ xe'’ Ue' xde”, (g'xg")(e’ x<e')=g'e’ < g"¢! and
He=He' X He', this forms a G-cell complex. But even if (X, K) is a G'-CW
complex and (Y, L) is also a G'-CW complex, the product complex (Xx ¥, Kx L)
is not necessarily a G-CW complex. Some sufficient conditions are given in the
following (H).

(H) If one of the following conditions (i), (i) with (iia) or (ii) with (iib) s
satisfied, then the product complex Xx Y is a G-CW complex:

() Y is a G-finite G"-CW complex which is also a locally compact space.

(i) G is a compact group and X XY satisfies the 1st axiom of countability
and also

(iila) Y is a G"-locally finite complex, or

(iib) both X and Y are G'-(G'-resp.) locally countable G’-(G''-resp.) CW
complexes.

Proor: According to the proposition (1.10) the cases (ii) with (iia) and (ii)
with (iib) are reduced to the cases of ordinary CW complexes. So we shall prove
only the case (i) here. The weak topology of XX Y is the identification topology
determined by the G-characteristic map Goyuy : Exuy=4G x4 x4 > XxY. But
since Y is a G’/-finite complex which satisfies (G"’-W), the G-weak topology of
XxY is the identification topology determined by the produet map Goyxid: Ey
XY -> XxY by the lemma (1.7). Since G’ux:Ey— X is an identification map,
the product topology of XX Y coincides with the identification topology deter-
mined by the above map because of the locally compactness of Y. g.e.d.

(I} A G-homotopy, fi: X->Z into an arbitrary G-space Z is continuous
provided fi|é is continuous for each cell e€ K.

This follows from (H) (i) for Y=1I with a trivial G-action and (A).

(J) (G-homotopy extension property) Let fo: X —> Z be a given G-map of
X into an arbitrary G-space Z. Let g,: Y > Z be a G-homotopy of go==fi|Y,
where Y is a G-subcomplex of X. Then there is a G-homotopy f,: X — Z, such
that f.|Y=g,.

PrOOF: Put X,=YUX (rz—1,X.,=Y) and assume that g, has been ex-
tended to a G-homotopy, f7~': X,_, = Z such that f¢-'=fX,., and f7 | Y=g,
(nz0). Take an n-cell ¢*. The images of f?~'{de and f,]¢ are contained in Z4*
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because of (e), where Z#* stands for the pointwise fixed subspace of Z by He.
We may extend to the homotopy f.. on é such that the image of f;.lé is con-
tained in Z!°. For the points of Ge* we define f. ;. by fi clgx)=gf: (x)€ gZ¥*
= ZH% (ge G, x€¢). By the properties (d), (e} and (f), g is determined unique up
to He. That is, if ¢’2’=gx for 2/, 2€e then ©’==x and g’==gh for some h€ He
so that ¢'f,.(x")==gf, .(z) (since f. .(x)€ Z"°), which shows that this definition is
valid. In this way the G-homotopy f7': X,-; > Z may be extended throughout
X,...UGe" for each G-n-cell Geco X, .,— Y. The extension on X, is completed by
taking one representing n-cell from each G-n-cell and following the procedure
above, Starting with f;'=:g, it follows by an induction on » that there is a
sequence of G-homotopies, f7:X,—Z (n=0,1, ---), such that fy==f)1X, and
FiX,o=f"" It follows from (I) that G-homotopy f,: X — Z which satisfies the
requirements of (J) is given by fi|X,=f7. Even if X is not G-finite, each in-
ducting step has the only finite preceding steps because of the G-closure-finiteness,
q.e.d.

3. A sufficient condition for extending a G-map

By a similar argument as in the proof of (J) we get

ProOPOSITION (3.1) Let Z be a G-space and Y X be a G-CW complex pair
the dimensions of whose cells do not exceed NSco. If for each closed subgroup
H of G the pointwise fixed subspace of Z by H, Z" is not empty, arcwise con-
nected and =,(Z") vanishes for n<N--1=co, then any G-map of Y into Z can
be extended equivariantly on X.

The relative version of this proposition is stated as follows.

Let ¢p=Z_CZyCZ, -+ be a sequence of G-subspaces of a given (G-space, Z,
such that any G-map: (G/H»d* GIHX84" - (Z, Z,-;), is G-homotopic rel. G/H
x04® to a G-map, G/Hx 4" Z, (n=0,1,2, ---), where H is any closed subgroup
of G. Let Y X be a given G-subcomplex, which may be empty, and let f,: X
—>» Z be a G-map such that f,Y"<Z, for each n=0,1, ---.

(K) There is a G-homotopy fi: X — Z rel. Y, such that ,X*CZ, for each
n=0,1, -,

PROOF: When n=—1, the statement is trivial. Therefore, we may assume
there is a G-homotopy fi 7' : X* ' > Z rel. YN X" such that f7 '=f|X"! and
FiiX ¢ Z,., as an induction hypothesis. Let e¢” be an n-cell of X which is
not contained in Y and has the G-characteristic map Go:G/Hex4—GecX. De-
fine a G-map F,:(G/He)xXd"xX0U(G/He)xad"xI— Z by Flg,s, 0)=f(Golg, 8))
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(se 4™ and Fllg, s, t)=f7""(Galg, s)) (s€dd™). By the induction hypothesis we get
FNGiHexod"x1)y=f"Go(G{Hex 64" Z,.,. Then there is a G-extension of F7,
F,:GiHexd"xI— Z, such that F.(G/Hexd"xX1)ycZ,. F. induces a continuous
G-map of GexI into Z which is an extension of f;"', therefore we get a G-
homotopy fi:X"— Z rel. X"N Y such that f{X"'=f}"", f¢=f1X""and /1 X"
cZ,. By the induction on n we get f¢ for any n. Define f,: X Z by f]X"
=f7, which satisfies the requirements of (X). g.e.d.

LEMMA (3.2) Let ZoC be a G-space pair and H be a closed subgroup of
G. If C% is not empty, and =, (Z%, C¥) vanishes, then any G-map Gf:(G/H
x 4", G/H x 84" = (Z, C) is G-homotopic rel. GIHX34" to a G-map G/H X4" - C.

Proor: If we restrict Gf in H/Hxd", we get a (non G-equivariant) map f:
(4", 34™ - (Z#, CH). This map is homotopic rel. 64" to a map f,:4"—>C#. Let
f, 1 4% = ZH be this homotopy. Define Gf,:G/Hx4"— Z by Gflg, s)=gf(s) (g€ G,
s€4"). This is well defined since fi(s)€ Z¥. It is obvious Gfy=Gf and Gf, gives
a G-homotopy rel. G/IHXx 34" of Gf, to Gf :GIHX 4" C, g.e.d.

As a corollary of this lemma and (K) we get the following generalization of
Proposition (3.1).

ProposITION (3.3) Let Z5C be a G-space pair and Y<X be a G-CW com-
plex pair the dimensions of whose cells do not exceed NSoo. If for each closed
subgroup H of G (which appears as an isotropy subgroup of a G-CW complex
X)) CH is not empty and ¥=,(Z¥, C¥) vanishes for each n<¥-+1=co, then any
G-map: (X, Y)—>(Z,C) is homotopic rel. ¥ to a G-map: X C.

4, G-cellular approximation theorem

We shall prove the lemmas (4.1) and (4.2) by the simplicial approximation and
then get the G-cellular approximation theorem (4.4) by the compactness of disks
and (K).

LEMMA (4.1) Let f:(d¥, 04% — (4", 34™) be a continuous map between disks.
Then f is homotopic rel. f~434™ to a map of 4% into 34", provided k<n.

Proor: We may assume that the given map f is surjective. Fix a standard
piecewise linear structure on each of 4* and 4". We can find a compact neigh-

x [f X or Y is not arcwise connected, we mean by m (X, Y) the homotopy classes of
maps of (4% 84%) into (X, Y). Therefore z,(X) corresponds to a union of the =n-th
homotopy groups of all arcwise connected components of X, and in particular mg(X)
stands for the number of arcwise connected components of X. Moreover (X, Y)=0
implies that any continuous map f: (4% d4%)->(X, Y) is homotopic rel. 34% to a map
fledk—>Y.
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borhood N of f~4@4" which at the same time is a piecewise linear submanifold
with boundary and whose image is in the open subspace H4"=4"—(1/2)4" of 4",
Approximating f on the boundary 8N of the neighborhood to a simplicial map,

we get a continuous map
F:oNx[--1,1] - H4"
with
FIoN % (-+1)==fIN, F(z, —t)==F(z, t) and F|3N x0==a simplicial map.
This gives a continuous map
£ @y =@ NYUaN % [~1, JUN > 4"
with
SN %< [—1, 1]=-F, f’l(d”~ﬁ)=ffl(d"~~l\<>f) and f/|N=f|N.

Approximate f/ on (A"M-Z\CJ)U N [—1, 0] rel. IN X0 to a simplicial map, and we
obtain a third continuous map f/’: (4*Y — 4" which is not a surjection and then
is homotopic rel. f~1(G4") to a map of (4% into 4". Since there is a homotopy
rel. f~404") equivalence map : (d%, 34%) — ((4%), 3(4%)") which transforms f’ to a
map homotopic to f, this completes the proof. g.e.d.

LEMMA (4.2) Let Z=G/H' xX4" and C=G/H' xo4*. Then any continuous
map f: (4%, 04%) —(Z", C") is homotopic rel. f~(CH) to a map of 4" into C for
k<n and any closed subgroup H of G.

Proor: Composite f with the projection: Z7=(G/H’)¥x4"—4". Then we
obtain a continuous map [’ : (4%, d4%) > (4", 34" which is homotopic rel. (f")"'(0d")
to a map of 4% into d4" by the previous lemma. This gives a homotopy
rel. f~HCH") of f to a map of 4* into C". q.e.d.

PROPOSITION (4.83) Let X be a G-CW complex. Then ®=x (X¥,(X™N)=0,
provided kS,

Proor: Let f:(d%, 04%) - (X¥,(X™¥) be a continuous map. Since f(4*) is
compact, f(d%) intersects with only finite G-cells in X. Let Ge?, Ges, -- -, Ge} be
G-m-cells of the highest dimension which intersect with f(4%). Then we can con-
sider f to be a map of (4% 04% into (Z#,(X™) where Z=GeTUGel U --- UGe}
UX™t Put C=Gey --- UGeTUX™". Since the difference between Z and C
is only one G-eell Ge", by the technique of the previous lemma we obtain a homo-
topy rel. f~YC¥") of fto a map f’:4*—- CH, provided k<m. Repeating this pro-
cedure we finally get a homotopy rel. 4% of f to a map [/ :4"— (XM,

g.e.d.
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THEOREM (4.4) (G-cellular approximation theorem) Let f: X-— Y be a G-map
between G-CW complexes. Then f is G-homotopic to a G-map f/: X - Y such
that f/(X™MC Y™ for any n.

PrOOF: We only need to combine the proposition (4.3) with the proposition
(3.3) and (K). q.e.d.

5. Theorem of J.H.C. Whitehead

We shall prove the theorem (5.3) which is a generalization to the equivari-
ant case of the theorem of J.H.C. Whitehead.

LEMMA (5.1) Let ¢:C— Z be a G-map between two G-spaces, and X2V be
a G-CW complex pair the dimensions of whose cells do mot ewceed Nsco. If
for each closed subgroup H of G (which appears as an isotropy subgroup of a
G-CW complex X) CH and Z" are non-empty and the induced map ¢x: ¥, (C)
- %z, (ZH) is bijective for n<~ and surjective for n=x, then for any G-map
pair g: X2, f: Y C with g|Y=0of", there exists a G-map f: X — C such
that fiY=f" and ¢of 25 G-homotopic rel. C to g.

ProoF: Let M be a mapping eylinder of ¢: C— Z. Then M¥ coincides with
the mapping cylinder of ¢¥:CH# — Z# for each closed subgroup H of G. Thus
®z (M#, CH) vanishes for n<~-+1 (For n=:0, the assumption means that every
arcwise connected component of MY contains only one arcwise connected com-
ponent of C#, Hence for n=1, we can use the exact sequence in the Hurwicz
homotopy theory.). Therefore, we may deduce this lemma from the proposition
(3.3). g.e.d.

THEOREM (5.2) Let ©: X — Y be a G-map belween two G-spaces. Lf each of
XH and YH is not empty for each closed subgroup H of G, then the followings
are equivalent :

(1) for each closed subgroup H of G, the induced map

@x 2 B (X1 - P, (YH)
is bijective for 1Sn<~N and surjective for n=n.
(2) the induced map
oy 1K Xle—IK; Yl
is bijective for dim K<~ and surjective for dim K=~ for any G-CW complex
K, where [-; -1, stands for the set of G-homotopy classes of G-maps.

PrOOF: (1) implies (2) because of the lemma (5.1). If we take K=G/Hx
(47:64™, it is obvious that (2) implies (1). g.ed.
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As a corollary of this theorem we get
THEOREM (5.3) Let ¢:(X, A)— (Y, B) be a G-map between two G-CW com-
plex pairs. If XH, A%, Y and B" are non-empty and the induced maps

¢t 9Ty (X H) o B, (YH)
and
Gat D7, (AM) > P, (BY)

are bijective for 1=n=max (dim X, dim Y) and each closed subgroup H which
appears as an isotropy subgroup in X or Y, then
01 (X, A)— (Y, B) is a G-homotopy equivalence map.

Proor: Put K=:B. Then ¢|A has a G-homotopy left inverse ¢ because the
induced map ¢y :[B; Als->[B, Bl; is an isomorphism. By the G-homotopy ex-
tension property we get a G-map ¢’ : ¥ -> Y which is G-homotopic to identity and
satisfies | B==¢. Then by the lemma (5.1) we get a G-map ¢’/: ¥ — X such that
" B=x¢p and ¢e¢’’=¢’ is G-homotopic to identity of Y. That is, ¢ is a G-
homotopy left inverse of ¢. Also we get a G-homotopy left inverse of ¢’ and
hence by an algebraic argument we can show that (¢, ¢) is a G-homotopy in-
verse of (¢, ¢|B). g.e.d.
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