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Let X be a2 noetherian scheme, and let 7y be its strucure sheaf. An in-
vertible sheaf & on X is said to be ample, if for each coherent £ y-module
& there exists an integer n, such that for any n=n, the ¢ y-module F ®
Z&" is generated by its global sections, Replacing &£ %" in the definition
by the =n-th symmetric product S"(%) of a locally free sheaf of finite
rank %, R. Hartshorne [2] defined ample locally free sheaves of arbitrary
rank. Then he tried to transport the theory of ample invertible sheaves to his
case. In this paper we extend the theory to coherent sheaves of graded algebras.
Let .,Q/:é’x@(g)l S7,) be a coherent graded 7y -algebra which is generated
by &7, & will be said to be ample, if for each eoherent £ y-module F#
there exists an integer m, such that for any m=mn, the #7x-module F X.V.
is generated by its global sections. This definition seems quite natural. In
section 1, we show some conditions equivalent to the above condition (Theorem
1 and Theorem 2). They generalize the eguivalent conditions for .o :”(;DO P
or sz(g)zngo ML), In section 2, we next show some elementary pro-
perties of ample graded 77 x-algebras.

We make extensive use of notations, conventions, and results in [1]. If we
read, say 11.4.6.8, it refers to the paragraph 4.6.8 in chapter II of {1]. We
recall in section 0 some fundamental results in [1].

0. Preliminaries.

1) Let X and S be preschemes, and let f: X-»S be a morphism. The direct
image of an ¢x-module & is denoted by f«( % ), and f*( ") denotes the in-
verse image of an Fs-module & fi is a left exact covariant functor, and f*
is a right exact covariant functor. We have a canonical bijection between
Hom.  (fX(%), &) and Homo (&, f+(% ). Hence, there are canonical homo-
morphisms f*fu(F )= F and T fo f¥(%E ) which are corresponding to identi-
cal homomorphisms of fu( %) and f*(%") respectively. (See 0.3 and 0.4.)

2) Let X, kS,’and S be as above. Let .5 be a guasi-coherent 7 x-algebra,
and let <7 bea quasi-coherent #Fs-algebra. Then Spec{f*(.#))=S8pec(. 2 ) XX,
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and we have canonical bijections among Hom ., (f*(.%2), .%7"), Homy (Spec (%),
Spec ( f*(.#))), and Homg(Spee(.%7), Spec{S#)). A morphism Spec (¥ )—
Spec (&%) which corresponds to a homomorphism f*(.&8)-> .57, is the composi-
tion of Spec(.57)->Spee (f*(.S#)) and the projection Spec (f*(. 7)) ->Spec (FZ).
(See I1.1.)

= Py@® (@ ) is a quasi-coherent graded Fy-algebra on a pre-
scheme X, we have "; 1closed immersion X Spec (.&") which corresponds to the
augmentation i.e. the natural surjection .&7-»>#”x. This closed immersion is
called the zero-section of Spec (.87).

3) Let X, S, and f be as above. Let &/ﬂng)o 57, and %“J—E)ﬂ ., be a
quasi-coherent graded (¢7x-algebra and a quasi-coherent graded (Ps-algebra re-
spectively. With a homomorphism (of degree zero) of graded (7 x-algebras
¢ fYH)-»>.7, we can associate, in a canonical way, an open subset G of
Proj{(.57) and a morphism G — Proj(f*(<#)). Since Proj(f*(.#))=Proj(F#)XsX,
we have another morphism G-—>Proj(<#) which is the composition of G—
Proj(f*¥(.22)) and the projection Proj (f*(#)) —» Proj{.<2). These two morphisms
are called morphisms associated with ¢.

4) Let X be a prescheme, and let & =2x@® ( @ 57.) be a quasi-coherent
graded (7 x-algebra. Put = = 7 [u], where u is an indeterminate. We con-
s1der 7 as a graded (7 y-algebra whose homogeneous part of degree n is
k@ 7% -wt. Put Ye==Proj (), V=Spec(.57), and V=Proj(.%”). Then, we
have a closed immersion X-»V which corresponds to the augmentation % —» Py
(the zero-section of V), and an open immersion V-V by which V is identi-
fied with an open subset D,(u) of V. The composition of these two morphisms
is a closed immersion XV which is associated with a natural surjection of
graded 7 x-algebras S Zxlu]. The canonical morphism associated with the
injection 7 - n,‘a;, is V- X->Y which is surjective and affine, Let Vi=V--X

XV —>7V 14
U U U
Vo Vo vq-'—’Y

Now, assume that X is an affine scheme, and put A=0(X, &)= @oF(X, 7).
e

If E is a subset of homogeneous elements of A such that the radical of the

ideal generated by E is A,= @ Au, then Vo= U D(f) and Vozng D.(f). In

the latter case, we consider a section f as an element of I'(X, .522 ). {(See 11.8.3)
5) Besides the above notation, let X’ be a prescheme, and let /= @ Y44
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be a quasi-coherent graded ¢7,--algebra such that .= ¢"y-. Put .qu‘/'\’:a::/’[u],
Y’=Proj(.57"), V’'=8pec(.5”’), and ?’ﬁProj(.,Q{A’). Let f: X—> X’ be a mor-
phism, and let ¢: f*(.% ") S be a homomorphism (of degree zero) of graded
7 x-algebras. We can extend ¢, naturally, to a homomorphism ¢ :f*(.,%A”)':*.,Q?.
If the morphism associated with ¢ is everywhere defined; Y-»Y?, then the mor-
phism associated with ¢ is also everywhere defined; V->1”. Denote this mor-
phism by (f), and denote the morphism V->V” which corresponds to ¢ by ©.
Then, Vo= V—X=d-4(V5="V;Xy'Y (where Vj==V'—X"), and V= V—X=0"1(V})
(where Vi=V’—X"). Hence, if YY"’ is an isomorphism (an open immersion
resp.), (5];.0:17'0—) V7 and ‘Dh-oZVo—* Vi are isomorphisms (open immersions resp.).
(See 11.8.5.)

6) Let X be a noetherian scheme, and let M:né)o ¥, be a quasi-coherent
graded ”y-algebra of finite type. Let p: Y=Proj(.)—>X be the canonical
projective morphism. Then, for any coherent ¢#”y-module ., a canonical homo-
morphism f*f{ F QFvin))— F RQ7v(n) is surjective if n is large enough
(I1I1. 2. 2. 1). If a coherent y-module &F is associated with a quasi-coherent
graded & -module %:’@Zﬁn such that "(;)k_,//n is an .97 -module of finite
type for k large enough, a canonical homomorphism _ &, p:(F R v(n) is
isomorphic for n large enough (III.2.3.1).

1. Definition of ample sheaves.

First we recall the following theorem without proof.

THEOREM-DEFINITION. Let X and S be noetherian schemes, and let f: XS
be a separated morphism of finite type. For an invertible sheaf &2 on X, the
following three conditions are equivalent. We say &2 is f-ample or S-ample,
if it satisfies them.

1) For each coherent #Z7x-module &, there exists an integer 7, such that
[Ef(F R.7P8 > F RO is surjective for n==n, (11.4.6.8).

2) Put %Zﬁs@(@f*(.?@”)), then the morphism associated with a
canonical homomorphism ?*(%)—),9’ P ® is everywhere defined and a domi-
nating open immersion X%Proj(“c-;)0 P T=Proj(#) (1I.4.86.3).

3) There exist an S-scheme C, an S-section S— C (which is necessarily a
closed immersion), and an S-morphism v:V:Spec(”% 8y C such that a
diagram
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X —V

N

S — C

is commutative, and that the restriction of v to VX is an open immersion
into C--S. Where X >V is the zero-section of V, and we identify S and X
with their images in C and V respectively. (11.8.9.1).

Now let &7~ ® .9, be a coherent graded Zx-algebra. We say _# =
n@f///n isa TF gr:ioed 57 -module, if it satisfies the condition (TF) in (II. 3.
4. é), i.e. a graded .97 -module n\’g)k A » is finite type for k large enough.

We generalize the above theorem as follows.

THEOREM 1. Let f: XS be a separated morphism of finite type between
noetherian schemes X and S, and let &7 = 0@ (,‘C:;)1 ) be a coherent graded
& x-algebra generated by 1. Let p:Y=Proj(.)->X be the canonical pro-
jective morphism, and put g=f-p: Y-8, Then the following five conditions
Jor o are equivalent.

0) The tautological invertible sheaf (1) on Y is g-ample.

1) For each TF graded .57 -module _#7 ::"C;r)z A n, @ canonical homomor-
phism fXf_ ) # 1is TN-surjective, i.e. f*fal A n)— 7w 15 surjective
Jor all n large enough.

1y For each coherent ¢Zx-module F , a canonical homomorphism
A F RV ) > F K7 is TN-surjective.

2) Put F- ﬁs@(@lf*(yn)), then the morphism associated with a
canonical Izomomorpibismﬂ?*(%)*«>y 18 everywhere defined and a domina-
ting open tmmersion Y > TProj( <#).

3) There exist an S-scheme C, an S-section S->C (which is necessarily a
closed immersion), and an S-morphism v :V=Spec(.5”)—>C such that o dia-
gram

X -V
l'v
S —oC
ts commutative, and that the restriction of v to V—X is an open immersion

wnto C--S.  Where XV is the zero-section of V, and we identify S and X
with their images in C and V respectively.

Proor. 1)&=>1’). Let _# = EZM,; be a TF graded . -module. We
know that, for k large enough, _#% is a coherent Py-module, and that a
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canonical homomorphism _#Z«R.97 — & (k)= @lw%m,k is T N-surjective (II. 2.
neE 2z
1.6). Hence, if f*fil( 7R ) _# R is TN-surjective, a commutative

diagram of homomorphisms

Tl il R.57)

x4 V'// k@J}/

F*F o2 (K)) r k)

shows that f*ful(_ 2 (k))->_»7 (k) is also T N-surjective, which tells us that 19
implies 1). The converse is obvious.

1)=>0). Assume 1), and let % be a coherent ¢7y-module. A canonical
homomorphism p*p«( F QPv(n)) = F K7 v(n) is surjective for n large enough.
On the other hand, since p*(g)o(ﬁ“@é”y(n)) is a TF graded .o -module,
T feps F QR y(n) > 2 F QPy(n)) is surjective for n large enough by 1).
Hence the surjection for large n of ¢%g(F R7Py(n) > F K7 v(n) which is
decomposed to P*f*fip(F RPr(n) > pF*plF QPv(n) > F BPv(n) s
proved. '

0)==1). Let #7r(1) be g-ample, and let k£ be a positive integer such that
O v(k) is g-very-ample. We have a projective morphism P-»>S and a dominating
open immersion j: Y -— P such that j*(¢7p(1)=y(k). Let _#& :,.Q’z A be a
TF graded . -module, and let % be the associated coherent ¢y-module
(See I1.3.2). Then there exists a coherent Z”p-module 5% such that 7*(57 )=
F(1.9.4.2). Let 57 be associated with a TF graded module ./I/":;@Z./l/",.
on S (See I1.3.3). Since 1=(J,p): Y > PXsX is an immersion (L.5.3. 1?3) and
a proper morphism (II.5.4.4), it is a closed immersion. Hence, a canonical
homomorphism A*(F77) > tat*h*(SF7 ) =1x(F ) is surjective. Where A is the
projection PXsX->P. On the other hand, A*(S#°) and .57 ) are associated
with TF graded modules f*(_¢#") and /Z”"ifng)z 7w respectively. If we de-
compose [N AW e to AW S* ol A i) -> A ne, We can see that
¥l A wi)— _# nr 15 surjective for » large enough. Taking _/7 (7)== “@z/gn,,;
1=1,2, -+, k—1 in place of the above _#, we know that a canonical homomor-
phism f*fu(_#)— 77 is TN-surjective.

2)&==0). The morphism Y -7 in 2) is also considered to be associated
with a canonical homomorphism g*(%)~>u§2 yv(n). @-v:&’s@)(ﬂ@f*h%"))
is T N-isomorphic to &’569("% g+ 7yv(m))), since & is TN-isomorphic to
pl & Zy(n)). Thus, we have the equivalence of 2) and 0).

ﬂg;:%)). We have a morphism W=8pec( ® y(n))->V which is correspond-

nao
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ing to a canonical homomorphism p*(%}ﬂﬂ@z}o vin). Its restriction to W—Y
is an isomorphism to V-X, since Pro_]'(ﬂ(;»}0 rin))=Y=Proj(). (See 5} in
seetion 0.) Hence 3) implies 0).

2)==3). We have a morphism V-»C=S8pec (<% ) corresponding to a canonical
homomorphism f*( <2 )->.% . If we assume 2), its restriction to V—X is an
open immersion into C-—-S8, which proves 3). (See again 5) in section 0.)

Q.E.D.

DEFINITION. Let f: X-»S be a separated morphism of finite type between
noetherian schemes, and let o7 = Z2,® ( @1.}/70 be a coherent graded (7 x-
algebra generated by .91, We call o insgf-ample or S-ample, if it satisfies
the equivalent conditions in Theorem 1. A coherent £”y-module . is called
J-ample, if its symmetric algebra y(y‘):n@, M F ) is f-ample.

Let X be a closed subscheme of a noethgrian scheme Z which is of finite
type over a noetherian scheme S, and let _# be the £”;-ideal which defines X.
Put o7 = gﬂf"/f"”, then V=Spec(.57) is the normal bundle of X in Z.
Theorem 1 says that X is contractible to S in its normal bundle if and only if
S is S-ample.

We have another theorem as follows.

THEOREM 2. Let f: X->S and . be as in Theorem 1, and moreover let
f be proper. Then, .7 is f-ample if and only if:

4) For each TF graded S -module _7/ :”(EDZ A u, there exists an integer
o such that R fo( _#)=0 for all n=n, and oll ¢>0.

If &7 is, further, x-flat for all n large enough, the above condition is
equivalent to:

4') For each coherent 7 y-module 5% , there exists an integer m, such
that B fo(F R.97,)=:0 for all n=2ny and all ¢>0.

Proor. Let a coherent #Py-module 5  be associated with a TF graded
<& -module # # @ A, Then, a canonical homomorphism _#’ ~>n(é92 P F R
¢ v(n)) is TN-isomorphism. On the other hand, there exists a spectral sequence

EP =R fo(RPp F QPy(n) > E"=R g F QPy(n)) .
Since RE'py( F QP y(n))=<0 for n large enough and p>0 (I11.2.2.1: Serre’s
Theorem), we have an isomorphism R’ fy(_# )3 Rg«(F @7 v(n)) for n large
enough and ¢=0. £7y(1) is g-ample if and only if there exists an integer %,

such that Rigu(F QPy(n))=0 for all n=n, and all ¢>0 (II1.2.6.1). Hence,
we have the equivalence of 4) and 0) in Theorem 1.

Now, assume 4’) where &, is ¢”y-flat for n large enough. Let x be a
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closed point of X, and let _# be the #”y-ideal which induces the reduced struc-
ture on the closed subset {z} of X. Let 5 be a coherent ¢’ y-module, and let
n be an integer such that .97, is ”x-flat and that R 75 .07 =0.
Then, an exact sequence
0> FF K> F Q> F RVaRr(x)->0
gives a surjection [l F X070 [ F Q7 2u(x)). Hence, we have a
surjection
(¥l F QL)) = (¥ Fid F R @Bn(@))e 7 RS W) .

(¥l F R ))e = (F K. )x is, therefore, surjective by Nakayama’'s Lemma.
Since (f*fu(F @) )z»~(f:g(f@.){n))fm@mm(}’z, and since (% R )
is finitely generated ¢£7.-module, there exists an open neighbourhood U of f(z)
such that (% ®.)s is generated by a finite number of sections of f* 7R
) over U, say ti€ (U, ful F Q)= (), F RV 11,

Hence, there exists a neighbourhood U, of =z (U,< f"%U)) such that tzl(;’o e
1,2, .-+, v generate ((F Q.. at any point z’ of U, (0.5.2.2). This means
that f*fu( F QY — F R, is surjective in a neighbourhood U, of =z.
Hence we know that f*f (& ®R.9%) > F &®.9. is surjective, since X is
quasi-compact. This proves 1’} in Theorem 1. Obviously 4) implies 4).

Q.E.D.

2. Properties of ample sheaves.

In this section, we always assume that f: X—S is a separated morphism
of finite type between noetherian schemes.

ProPOSITION 1. Let M:&’X@(g)l &) and .@:ﬁx@("@‘ A a) be co-
herent graded 7 x-algebras gemerated by S and <&, respectively. If S is
Sample, and if <F 1is a graded .o7 -algebra which satisfies the condition (TF)
as a graded 7 -module, then <7 is also f-ample. In particular, if &7 is f-
ample, and if there exists a TN-surjection 7 — &, & is f-ample (cf. [2],
Prop. 2. 2).

Proor. If Mm”@ A is a TF graded <#Z -module, it satisfies the condi-
tion (T'F'), too, as a graded .97 -module. Hence, Proposition 1 is easily verified.

PROPOSITION 2 {cf. I1.4.5.6 and [2], Prop. 2. 4).

Let &7 =2x® (n@; ) be a coherent graded 7 x-algebra generated by .57 ,.
Then we have the followings.

1) For each positive integer d, S '9= @ & na 18 frample, 1f and only if
&7 1is f-ample.
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ity If 574 or the symmetric algebra .S7(.574) 1s fample for some integer
d, .7 18 f-ample.

Proor. There exists a canonical isomorphism Y=Proj (%) 3 V' =Proj (.7 %)
by which #7¢(d) and Py (1) are identified. Hence, we have i) by (II.4.5.6)
which says that #7y(d) is f~ample if and only if Z£°,(1) is f-ample. Since there
exists a surjection 57 (.57,) > ¥, i) and Proposition 1 prove ii).

PROPOSITION 8. Let & = &’x@(”(jg ) and G == é’X@(g 7)) be co-
herent graded &7 x-algebras generated %y &7 and <7, respectively.

) 7 ®#F is fample, if and only if &7 and <# are both f-ample.

iy 7 @.F 18 fample, if and only if 7 and <F are both fample
(¢f. 121, Prop. 2. 2).

ity Let a graded 7 x-algebra n%)g (SR &F ) be denoted by H o7 7).
Then .7 Q%) 1s f-ample, 1f 7 and <# are both f-ample (cf. 11.4.5.7
and {2], Cor. 2. 8).

Proor. To have i), it is sufficient to see the tf part, by Proposition 1. Let
./;*7“—“;(;71///75 be a TF graded (5% ®<# )-module. For k large enough, _# is
a coherent <7 y-module, and a canonical homomorphism _# . @ F ) — 42 (k)
is T'N-surjective. Hence, a commutative dié.gram

SEIA Al QS )D Xl AR EB ) — %{é’k@(&f ®Z)

i
J* el (R)) > A (k)

shows that &/ ®.F is fample, if Y and £F are both frample.

Let 47 be a coherent ¢”y-module, and put

) Op.u f*f*(f@\yp\?ﬁ)ﬁ@c)“’y@yp@gq .

If . and <% are both fample, we have; a) there exists an integer n, for
each ¢::0, such that oy, is surjective if pizn, (since &7 is f-ample). b) there
exists an integer m, for each p=0, such that o, is surjective if ¢=m, (since
& is f-ample). c) there exists an integer k such that f*fu (7 RV, - F &
K, SFLlGF o) > &4, and hence o,, are surjective if p2k and ¢k (since
& and &% are both fample). By a), b), and ¢) ¢, is surjective if
pq= lg%)\ck(s b, ne-t).  This proves the if part of ii). The only if part is
an immediate consequence of Proposition 1. The assertion ¢) proves iii).

PROPOSITION 4. Let & and <7 be as above. If . is fample, and if a
canonical homomorphism f*fx(<F)—> &5 is TN-surjective, IS R#) is f-
ample (cf. I11.4.5.6 and [2], Cor. 2. 3).
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ProoF. The assertion c) in the above proof, also holds in this case. Hence
we have the proposition.

PROPOSITION 5 (cf. 11.4.5.8). Let S and <& be as above. If &7 s f-
ample, we have the followings.

1) There exists a positive integer dq such that a canonical homomorphism
FH A DREF ) - A QB) is surjective if d2d,.

i1) There exists a positive integer d, such that H 7 'PRF) is frample
if d=do.

PROOF. Since .7 is frample, f* fu{ W@ EF 1) Q1 is surjective for
d large enough. Hence f*f (¥R F1)9%) > (VR F1)®" is surjective for d
large enough. On the other hand, we have the following commutative diagram:

f*f*((&/¢®,§?1)®”) — (a%d@(fﬁjl)@"

f'*f*(t/@/ﬂd®c@n) — M’!d@n@n .
Since (4R F 18" = W8 Q.7 & and "R LB ®" > i@ F « is surjec-

tive, we have i). i) is given by i) and Proposition 4.

PROPOSITION 6. Let g: Y — S be a separated morphism of finite type, and
let 7:Y->X be an immersive S-morphism. If %7 48 an fample coherent
graded 7y-algebra on X, & =i 7) is g-ample (¢f. 2], Prop.4.1).

ProoF. Let /V:ﬂ(é?)z./V",L be a TF graded <# -module on Y. If 7 is an
open immersion, there exists a TF graded & -module ./;é’:”(;r)z///n such that
JH A )=_A4". If 7 is a closed immersion, _Z =J(_¥") is a TF graded ¥ -
module and j*(_# )=_+#". Hence, for any immersion 7, we can find a TF
graded . -module _# = O A« such that 3¥(_ 7 )=_1". If 7 is fample,
T*¥fl LY 7 s I’N-surJeche and therefore g*g.{_¥")->_4" is also TN-
surjective. This proves the proposition.

A A )= N A)

g*gs( A7) —— AT

PROPOSITION 7. Let S = 1@ ( O ) be a coherent graded (7 x-algebra
generated by 7. Let Y be a closed subscheme of X defined by a mnilpotent
P x-ideal. Then 7 is f-ample, if and only if X Ry is fly-ample.

Proor. Passing to Proj () and Proj( &~2”y), we reduce to the case
of an invertible sheaf (II. 4. 5. 13).

ProrosiTION 8. Let f:X->S be a proper morphism, and let 7 = Fx®
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(%C::)l S7.) be a coherent graded 7 x-algebra generated by 271. If. for a point
s of S, the restriction S Qx, of S to the fibre X, is x(s)-ample, there
exists an open mneighbourhood U of s such that the restriction S R 71w,
of &7 is U-ample.

ProOF. By passing to Proj(.5¥") again, we reduce to the case of an inver-
tible sheaf, which is (I11.4.7.1).

PROPOSITION 9. Let g:Y->8S be a separated morphism of finite type, and
let h:X->Y be a finite {i.e. proper and affine) S-morphism. Let & = x®
( n(;t)l 7. be a coherent graded 7 x-algebra generated by 7. Then, B =2y®
(ﬂ@i ha(S7,)) 18 a coherent graded 7 -algebra generated by <Fi. If <& 18 g-
a*erle, &7 is frample.

PRrROOF. Since h is proper, &7 is coherent. And since h is affine, <& is
generated by <#1. Let %::ng% A be a TF graded .& -module, and put
A =hael ). If a canonical homomorphism g¥*g«(.A")—> 4" is TN-surjective,
FEfl A) yh*hyl_#7) is TN-surjective. On the other hand, A*h(_#)— _#
is surjective, since h is affine. Hence, if &Z is g-ample f*ful( #Z)—> _# is
T'N-surjective, which proves the assertion.
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