The intermediate logics on the second slice

By Tsutomu Hosol and Hiroakira ONo

In [1], Hosoi defined the notion slice and proved that for any intermediate
logic M there exists a unique slice &7, (n=w) such that M€ S”,. In this paper,
we will give a complete deseription of the intermediate logics on $“, and those
logics on .$7; that contain the axiom —pV ——p. We assume a knowledge of
the results and the notations in [1] and [2].

For a model M, M means not only a logic as a set of formulas but a pseudo-
Boolean algebra®. In [3], McKay proved that any intermediate logic ean be rep-
resented as an intersection of some intermediate logics of the form Sit M or S,.
Using this result, we prove, in §1, that if M€ . %%, then M>cS;1S? for some
n (1=n=w). Moreover we will give an axiomatization of each logic in S%.
The results in §2 resemble those in §1.

§1.

We first cite a theorem due to McKay [3] without proof.

THEOREM 1.1 (McKay). If M is an intermediate logic, then there are models
N; (Ae 4) such that M:JC)Q‘ (S, T N).

Remark that, if M is a finite model, then /A and all N,’s are finite. In
general, the cardinal of N, is equal or less than that of M.

Now, using the above theorem we investigate the intermediate logies on
the second slice .&%,. By 1.1, if M€ &%, then M:C}Q‘ (S; T N;) for some N;’s.
Since McS, T N; for any 1ed, St Ne &, for some m=<2 and therefore
S, 1N, %, and N,e. 5% by Theorem 6.2 in [1]. This means that each
model N, is a Boolean algebra. Notice that each 87 is isomorphic to the field
of all subsets of {#|x<o}, where ¢ is any cardinal number. S;71 87 is an example
of a model in &,. We write M, for §,787 for a cardinal number o, It is
easy to see that if m<e then the cardinal of M, is 2™-+1.

Now, we have

LeMMA 1.2. Let M be a Boolean algebra whose cardinal is o. Then there
exists a subalgebra N of M such that N is isomorphic to S} (n<w), if 2"<o.

COROLLARY 1.3. If m<w and m<n, then M,SM,. (n may be infinite.)

U That is, A€ M means that a formula A is valid in M. But c€ M means that a is
an element of a pseudo-Boolean algebra M. As for pseudo-Boolean algebras, see e.g. [5].
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Proor. By 1.2, there is a subalgebra N of S? such that N is isomorphic to
S§7. So M, is isomorphic to a subalgebra of M,. Thus M,cM,. Now let X,
be the formula v {g:==q,)?. Then by Corollary 6.10 in {1}, Xo=., € M, but
Xy € M, For r(M.)=r(M,,)=2%1+15>271. Thus M2 M,.

Lemma 1.4, If o is an infinite cardinal number, theanmech.

Proor. Suppose that a formula A is not in M,. Then, there is an assign-
ment f of M, such that f(4)#1x,*. Let {p;, ---, p.} be the set of all proposi-
tional variables appearing in A. We write @ for the set { f{p;))l flp)#1x, 1215 m}.
Let Q* be the subalgebra of S7 generated by . Since @ is finite, @* is also
finite. So * is isomorphic to S} for some m<w. Thus f can be considered as
an assignment of 8,187, or M,,. But f(A)+#1, =1, So, A is not in M,, for
some m< .

COROLLARY 1.5. Let M be a countably imfinite Boolean algebra. Then
S\t MocM.,.

Proor. We can show that M, oc y M, by 1.2and 1.4. SoM,nc N M,>
S:TM by 1.2. By the Stone represer?t?tion theorem of Boolean algeb?gr’ M is
isomorphic to a subalgebra of S7 for some infinite cardinal number o, since
M is countably infinite. So S,TM>S,1S8{=M,> N M,o5cM, Therefore
SiTM>cM,. e

THEOREM 1.6. If Me &%, then Mo M, for some n 1=n<w). Hence %
18 linearly ordered by .

ProOF. Let M be in 7. We can take a countable model M, such that
M>cM, By l.l and its remark, M":":Qd (S, 1 Ny for some N;'s in .&%, such
that each N, is countable. If N; is finite, then S,% N;=M, for some m<w.
Otherwise, S; T N;oecM, by 1.5. So, M>cC N M,, where 1=m;Sw. Let n be
sup{miii€ ). Then 12w andn!Mm):cl‘l;:. Hence MocM,.

Next we will give an axiomaéieiation of each logic in .&%. Let T, 1<k<w)
be an intermediate logic obtained by adding two axiom schemata P; and X, to
the intuitionistic propositional logic L. (We write Ty=L-+ P,+X,, following the
notation in [1].) Let f be a function on natural numbers such that Slk)=2F4-1.

THEOREM 1.7. M, >c T,y if 1=k<w, and M,ocLP,.

Proor. By Corollary 4.7 in {1], LP, is the minimal element in . So,
M,o>cLP, by 1.6 and 1.3. By the proof of 1.3, Xrw€ M, Since M.e &,
P.e M, and hence T;,cM,. By 1.6, T;,,DC M, for some m (k<m<w). But
2 See [1].

1y denotes the designated element of a regular model M.
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if m>k, then »(M,)=f(m)>f(k) hence XreM,. Thus m=Fk. That is,
T/ M, We remark that if fiEysm< fk+1) then T, M,.

We next show that each logic .57 is normalizable (that is, X can be inter-
deducibly expressed by a formula only containing the logical operator--» . De-
fine Q,; by Qi;=(g:—q) g~ ¢:) >qo), and Y, by ¥Y,=Qu—>@Qu—> - > @uau
(Qas > (Qui— -+ = (Qu.ns1—¢o) -~ M) --+). Then it is easy to see that X, and Y,
are interdeducible in L. Hence M,oc L+ P+ X2 C L+ P+ Y. Since both
P, and Y, contain only the connective->, we have the following

COROLLARY 1.8. FEach intermediate logic in 5 is normalizable.

§2.

Logics with the axiom — pV — —p have been partially studied in [2]. Here
we will show models for those logics on .5%. {It has been known that only §;
and S; are those in S U that contain —pV = == p).

We remark first that S, 7871 8,€.5% and —pV ——peS;18S'TS, for any
cardinal number m (see 4.8 in [2]).

LEMMA 2.1. If —pV ——p€S8, TN then for any a, beS TN anb<e if
a<w and b<w.

PrROOF. Suppose that a<w, b<w and aAb=w for some a, bESiTN. Let f
be an assignment of 8,7 N such that f(p)=—a. By the above assumption, 1<
Ff(p)Sb<w. So 1y<f(m—p) and 15 4#1y= f(pVv —p). This contradiets
—pVvV 1 peS; T N.

We can prove the following lemma similarly as 1.3.

LEMMA 2.2. If m<nso then ST S 828,181 8.

LEMMA 2.3. Let N be o model in 5% such that —pV ——1peS, T N. Then
me(SlT »+ 8)c 81 N. Furthermore, if N is infinite then ”Dm(Sl 18rtT S)»c
ST N.

PrRoOF. In this proof we write 2 for the minimal element 1y of N. At first,
we show that the relation

Va, b (o>b>a>2-aV(eDh)=—2)
holds in N. Assume that there exist ¢ and b such that w>b>a>2 and aVia>
b)>2. We write ¢ for aVV(a>b). Define an assignment g by g(p)=w, g(p,)=b
and g(p:)=¢. Then f(P;)=c>2 where P,=((p:— (D1~ Po)—Ps)—>P1)) > Do) P2
This contradicts that Ne.5%. Now, for any fixed b such that «>b0>2, we can
show that the sublattice {a|b=a=2} of N is a Boolean algebra. Suppose that a
4 See [4].
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formula A€ S, 1 N. Then there is an assignment f such that f(4)#1. Let Q be
the finite set { f(p,)l1=3<m) N (N—{w}), where p;’s are all the propositional variables
appearing in A. Let b= e Since pV — 1 p€S; T N and each a € Q is smaller
than w, we can show that b<w by 2.1. Suppose that b>2. We write M for the
Boolean algebra {a|b>a:=2} and M* for the subalgebra of M generated by Q.
Since Q is finite, so is M*. Therefore M* is of the form ST (m<w). Then it
is easy to see that f is also an assignment of S§; T M*18;. 8o, 4¢SS, T M*T S,
and Ae N (S;18*1S). If b=:2 then we can show that f can also be regarded

m<w

as an assignment of S3 and hence A¢S; and A€ mﬂu(Sl 1 S7t1S,). Suppose N
is infinite. Then we prove that S,1 St S, is a subalgebra of S, N for any
m<w. If N is atomie, then there is only one atom by 2.1.% So N is of the form
N,1 8, where N, is an infinite Boolean algebra. By 1.2, 8,781 S, is a sub-
algebra of 8;7N,1S:. On the other hand, suppose N is not atomic. Now we
can take @ (<) in N such that there exists an ascending sequence of elements a;
in N. That is, a<a,<a;--- <w. So, for any m<e, there is a subalgebra of
N isomorphic to S*1 8: since {blai=b=2}'s are Boolean algebras. Therefore
S, T NS, 18Pt S, for any m<w. This implies SITNC ﬂm (S;18T7 8.

COROLLARY 2.4. n ($,78*18)>2cS:18¢% "

THEOREM 2.5. Let M be ¢ model in &7 such that M3 —pV ——p. Then
there exists m (=w) such that MocS; 181 S..

Proor. By 1.1, MDCQA(SxTNz)- Suppose first that all N,;'s are finite.
Then all N;'s are atomic. As the proof of 2.3, each 8,7 XN; is of the form
S, TM;*8S,. Since M;e &, and M, is finite, M, is of the form STi(m:<w).
Let m-==sup{m;lA€ A}, Then by 2.2, Moc 8,751 S,. Suppose next that there
is an infinite N,. Then by 2.3, Q (81871 S)>cS,TN,oM. If AecM then
there is an N; such that A€§ITWN2. Then there is m<w such that Ag
S:78t1 S, whether N, is finite or not. So M2 N} (S,718"1 S)).

We know that the class (M| —pV — '“1p€$l<,wM€ s} of logies on &7 is
linearly ordered by =, by 2.2 and 2.5,

In {2], LQ; is defined as L+Q+P; where Q is a formula interdeducible with
=1pV 1 p, Now it is easy to verify

THEOREM 2.6. LQ;0c S, 18v1S, and LQy+Xpw2cS, 181 S, if k<o,
where glk)=2F+2,

5 Remark that if a<w then —a=w by 2.1.
8 We say an element ¢ in N is an atom, if b2a implies either b=a or b=w. If for
any b<o there is an atom a such that b<a, we say N is atomic.
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