The intermediate logics on the second slice

By Tsutomu Hosoi and Hiroakira Ono

In [1], Hosoi defined the notion slice and proved that for any intermediate logic M there exists a unique slice \mathcal{S}_n $(n \le \omega)$ such that $M \in \mathcal{S}_n$. In this paper, we will give a complete description of the intermediate logics on \mathcal{S}_2 and those logics on \mathcal{S}_3 that contain the axiom $\neg p \lor \neg \neg p$. We assume a knowledge of the results and the notations in [1] and [2].

For a model M, M means not only a logic as a set of formulas but a pseudo-Boolean algebra¹⁾. In [3], McKay proved that any intermediate logic can be represented as an intersection of some intermediate logics of the form $S_1
cap M$ or S_1 . Using this result, we prove, in § 1, that if $M
otin \mathcal{S}_2$ then M
otin C
otin

§ 1.

We first cite a theorem due to McKay [3] without proof.

THEOREM 1.1 (McKay). If M is an intermediate logic, then there are models N_{λ} ($\lambda \in A$) such that $M \supset \subset \bigcap_{j \in I} (S_1 \uparrow N_{\lambda})$.

Remark that, if M is a finite model, then Λ and all N_{λ} 's are finite. In general, the cardinal of N_{λ} is equal or less than that of M.

Now, using the above theorem we investigate the intermediate logics on the second slice \mathscr{S}_2 . By 1.1, if $M \in \mathscr{S}_2$, then $M \supset \subset \bigcap_{I \in A} (S_1 \uparrow N_i)$ for some N_i 's. Since $M \subset S_1 \uparrow N_i$ for any $i \in A$, $S_1 \uparrow N_i \in \mathscr{S}_m$ for some $m \leq 2$ and therefore $S_1 \uparrow N_i \in \mathscr{S}_2$ and $N_i \in \mathscr{S}_1$ by Theorem 6.2 in [1]. This means that each model N_i is a Boolean algebra. Notice that each S_1^{σ} is isomorphic to the field of all subsets of $\{\mu \mid \mu < \sigma\}$, where σ is any cardinal number. $S_1 \uparrow S_1^{\sigma}$ is an example of a model in \mathscr{S}_2 . We write M_{σ} for $S_1 \uparrow S_1^{\sigma}$ for a cardinal number σ . It is easy to see that if $m < \omega$ then the cardinal of M_m is $2^m + 1$.

Now, we have

LEMMA 1.2. Let M be a Boolean algebra whose cardinal is σ . Then there exists a subalgebra N of M such that N is isomorphic to S_1^n $(n < \omega)$, if $2^n \le \sigma$.

Corollary 1.3. If $m < \omega$ and m < n, then $M_n \subseteq M_m$. (n may be infinite.)

That is, $A \in M$ means that a formula A is valid in M. But $a \in M$ means that a is an element of a pseudo-Boolean algebra M. As for pseudo-Boolean algebras, see e.g. [5].

PROOF. By 1.2, there is a subalgebra N of S_1^n such that N is isomorphic to S_1^m . So M_m is isomorphic to a subalgebra of M_n . Thus $M_n \subset M_m$. Now let X_n be the formula $\bigvee_{1 \le i < j \le n+1} (q_i = q_j)^{2i}$. Then by Corollary 6.10 in [1], $X_2^{m+1} \in M_m$ but $X_2^{m+1} \in M_n$. For $r(M_n) \ge r(M_{m+1}) = 2^{m+1} + 1 > 2^m + 1$. Thus $M_m \supseteq M_n$.

LEMMA 1.4. If σ is an infinite cardinal number, then $\bigcap_{\alpha} M_{\alpha} \subset M_{\sigma}$.

PROOF. Suppose that a formula A is not in M_{σ} . Then, there is an assignment f of M_{σ} such that $f(A) \neq 1_{M_{\sigma}}{}^{3)}$. Let $\{p_{1}, \cdots, p_{n}\}$ be the set of all propositional variables appearing in A. We write Q for the set $\{f(p_{i})|f(p_{i})\neq 1_{M_{\sigma}}1\leq i\leq n\}$. Let Q^{*} be the subalgebra of S_{1}^{σ} generated by Q. Since Q is finite, Q^{*} is also finite. So Q^{*} is isomorphic to S_{1}^{m} for some $m<\omega$. Thus f can be considered as an assignment of $S_{1} \uparrow S_{1}^{m}$, or M_{m} . But $f(A) \neq 1_{M_{\sigma}} = 1_{M_{m}}$. So, A is not in M_{m} for some $m<\omega$.

COROLLARY 1.5. Let M be a countably infinite Boolean algebra. Then $S_1 \uparrow M \supset \subset M_{\omega}$.

PROOF. We can show that $M_{\omega} \supset \subset \bigcap_{m < \omega} M_m$ by 1.2 and 1.4. So $M_{\omega} \supset \subset \bigcap_{m < \omega} M_m \supset S_1 \uparrow M$ by 1.2. By the Stone representation theorem of Boolean algebra, M is isomorphic to a subalgebra of S_1^{σ} for some infinite cardinal number σ , since M is countably infinite. So $S_1 \uparrow M \supset S_1 \uparrow S_1^{\sigma} = M_{\sigma} \supset \bigcap_{m < \omega} M_m \supset \subset M_{\omega}$. Therefore $S_1 \uparrow M \supset \subset M_{\omega}$.

THEOREM 1.6. If $M \in \mathcal{S}_2$, then $M \supset \subset M_n$ for some $n \ (1 \le n \le \omega)$. Hence \mathcal{S}_2 is linearly ordered by \subset .

PROOF. Let M be in \mathscr{S}_2 . We can take a countable model M_0 such that $M\supset\subset M_0$. By 1.1 and its remark, $M_0\supset\subset\bigcap_{\lambda\in A}(S_1\uparrow N_\lambda)$ for some N_λ 's in \mathscr{S}_1 such that each N_λ is countable. If N_λ is finite, then $S_1\uparrow N_\lambda=M_m$ for some $m<\omega$. Otherwise, $S_1\uparrow N_\lambda\supset\subset M_\omega$ by 1.5. So, $M\supset\subset\bigcap_{\lambda\in A}M_{m_\lambda}$, where $1\leq m_\lambda\leq\omega$. Let n be $\sup\{m_\lambda|\lambda\in A\}$. Then $1\leq n\leq\omega$ and $\bigcap_{\lambda\in A}M_{m_\lambda}\supset\subset M_n$. Hence $M\supset\subset M_n$.

Next we will give an axiomatization of each logic in \mathcal{S}_2 . Let T_k $(1 \le k \le \omega)$ be an intermediate logic obtained by adding two axiom schemata P_2 and X_k to the intuitionistic propositional logic L. (We write $T_k = L + P_2 + X_k$, following the notation in [1].) Let f be a function on natural numbers such that $f(k) = 2^k + 1$.

THEOREM 1.7. $M_k \supset \subset T_{f(k)}$ if $1 \leq k < \omega$, and $M_{\omega} \supset \subset LP_2$.

PROOF. By Corollary 4.7 in [1], LP_2 is the minimal element in \mathcal{S}_2 . So, $M_{\omega} \supset \subset LP_2$ by 1.6 and 1.3. By the proof of 1.3, $X_{f(k)} \in M_k$. Since $M_k \in \mathcal{S}_2$, $P_2 \in M_k$ and hence $T_{f(k)} \subset M_k$. By 1.6, $T_{f(k)} \supset \subset M_m$ for some m $(k \leq m \leq \omega)$. But

See [1].

^{3) 1&}lt;sub>M</sub> denotes the designated element of a regular model M.

if m>k, then $r(M_m)=f(m)>f(k)$ hence $X_{f(k)}\in M_m$. Thus m=k. That is, $T_{f(k)}\supset\subset M_k$. We remark that if $f(k)\leq m< f(k+1)$ then $T_m\supset\subset M_k$.

We next show that each logic \mathcal{S}_2 is normalizable (that is, X_k can be interdeducibly expressed by a formula only containing the logical operator \to)⁴⁾. Define Q_{ij} by $Q_{ij} = (q_i \to q_j) \to ((q_j \to q_i) \to q_0)$, and Y_n by $Y_n = Q_{12} \to (Q_{13} \to \cdots \to (Q_{1\cdot n+1} \to Q_1) \to Q_1) \to Q_1$. Then it is easy to see that X_n and Y_n are interdeducible in L. Hence $M_k \supset \subset L + P_2 + X_{f(k)} \supset \subset L + P_2 + Y_{f(k)}$. Since both P_2 and Y_n contain only the connective \to , we have the following

COROLLARY 1.8. Each intermediate logic in \mathcal{S}_2 is normalizable.

§ 2.

Logics with the axiom $\neg p \lor \neg \neg p$ have been partially studied in [2]. Here we will show models for those logics on \mathcal{S}_3 . (It has been known that only S_1 and S_2 are those in $\mathcal{S}_1 \cup \mathcal{S}_2$ that contain $\neg p \lor \neg \neg p$).

We remark first that $S_1 \uparrow S_1^m \uparrow S_1 \in \mathcal{S}_3$ and $\neg p \lor \neg \neg p \in S_1 \uparrow S_1^m \uparrow S_1$ for any cardinal number m (see 4.8 in [2]).

LEMMA 2.1. If $\neg p \lor \neg \neg p \in S_1 \uparrow N$ then for any $a, b \in S_1 \uparrow N$ $a \land b < \omega$ if $a < \omega$ and $b < \omega$.

PROOF. Suppose that $a < \omega$, $b < \omega$ and $a \land b = \omega$ for some a, $b \in S_1 \uparrow N$. Let f be an assignment of $S_1 \uparrow N$ such that f(p) = a. By the above assumption, $1_N < f(\neg p) \le b < \omega$. So $1_N < f(\neg \neg p)$ and $1_{S_1 \uparrow N} \ne 1_N \le f(\neg p \lor \neg \neg p)$. This contradicts $\neg p \lor \neg \neg p \in S_1 \uparrow N$.

We can prove the following lemma similarly as 1.3.

LEMMA 2.2. If $m < n \leq \omega$ then $S_1 \uparrow S_1^m \uparrow S_1 \supsetneq S_1 \uparrow S_1^n \uparrow S_1$.

LEMMA 2.3. Let N be a model in S_2 such that $\neg p \lor \neg \neg p \in S_1 \uparrow N$. Then $\bigcap_{m < \omega} (S_1 \uparrow S_1^m \uparrow S_1) \subset S_1 \uparrow N$. Furthermore, if N is infinite then $\bigcap_{m < \omega} (S_1 \uparrow S_1^m \uparrow S_1) \supset \subset S_1 \uparrow N$.

PROOF. In this proof we write 2 for the minimal element $\mathbf{1}_N$ of N. At first, we show that the relation

$$\forall a, b \ (\omega > b > a > 2 \rightarrow a \lor (a \supset b) = 2)$$

holds in N. Assume that there exist a and b such that w>b>a>2 and $a\vee(a\supset b)>2$. We write c for $a\vee(a\supset b)$. Define an assignment g by $g(p_0)=\omega$, $g(p_1)=b$ and $g(p_2)=c$. Then $f(P_2)=c>2$ where $P_2=((p_2\to(((p_1\to p_0)\to p_1)\to p_1))\to p_2)\to p_2$. This contradicts that $N\in\mathscr{S}_2$. Now, for any fixed b such that w>b>2, we can show that the sublattice $\{a|b\geq a\geq 2\}$ of N is a Boolean algebra. Suppose that a

⁴⁾ See [4].

formula $A \in S_1 \uparrow N$. Then there is an assignment f such that $f(A) \neq 1$. Let Q be the finite set $\{f(p_i)|1 \le i \le m\} \cap (N-\{\omega\})$, where p_i 's are all the propositional variables appearing in A. Let $b = \bigwedge_{a \in Q} a$. Since $\neg p \lor \neg \neg p \in S_1 \cap N$ and each $a \in Q$ is smaller than ω , we can show that $b<\omega$ by 2.1. Suppose that b>2. We write M for the Boolean algebra $\{a|b\geq a\geq 2\}$ and M^* for the subalgebra of M generated by Q^{5} . Since Q is finite, so is M^* . Therefore M^* is of the form S_1^m $(m<\omega)$. Then it is easy to see that f is also an assignment of $S_1 \cap M^* \cap S_1$. So, $A \in S_1 \cap M^* \cap S_1$ and $A \in \bigcap (S_1 \uparrow S_1^m \uparrow S_1)$. If b=2 then we can show that f can also be regarded as an assignment of S_3 and hence $A \notin S_3$ and $A \notin \bigcap_i (S_i \uparrow S_i^m \uparrow S_i)$. Suppose Nis infinite. Then we prove that $S_1 \cap S_1^m \cap S_1$ is a subalgebra of $S_1 \cap N$ for any $m<\omega$. If N is atomic, then there is only one atom by 2.1.6 So N is of the form $N_0 \uparrow S_1$ where N_0 is an infinite Boolean algebra. By 1.2, $S_1 \uparrow S_1^m \uparrow S_1$ is a subalgebra of $S_1 \uparrow N_0 \uparrow S_1$. On the other hand, suppose N is not atomic. Now we can take a ($<\omega$) in N such that there exists an ascending sequence of elements a_i in N. That is, $a < a_1 < a_2 \cdots < \omega$. So, for any $m < \omega$, there is a subalgebra of N isomorphic to $S_1^m \uparrow S_1$ since $\{b \mid a_i \ge b \ge 2\}$'s are Boolean algebras. Therefore $S_1 \uparrow N \subset S_1 \uparrow S_1^m \uparrow S_1$ for any $m < \omega$. This implies $S_1 \uparrow N \subset \bigcap_{m < \omega} (S_1 \uparrow S_1^m \uparrow S_1)$.

COROLLARY 2.4. $\bigcap_{i} (S_1 \uparrow S_1^m \uparrow S_1) \supset \subset S_1 \uparrow S_1^w \uparrow S_1.$

THEOREM 2.5. Let M be a model in \mathscr{S}_3 such that $M\ni \neg p\vee \neg \neg p$. Then there exists $m\ (\leqq\omega)$ such that $M\supset \subset S_1\uparrow S_1^m\uparrow S_1$.

PROOF. By 1.1, $M\supset \subset \bigcap_{\lambda\in A}(S_1\uparrow N_\lambda)$. Suppose first that all N_λ 's are finite. Then all N_λ 's are atomic. As the proof of 2.3, each $S_1\uparrow N_\lambda$ is of the form $S_1\uparrow M_\lambda\uparrow S_1$. Since $M_\lambda\in \mathscr{S}_1$ and M_λ is finite, M_λ is of the form $S_1^{m_\lambda}(m_\lambda<\omega)$. Let $m=\sup\{m_\lambda|\lambda\in A\}$. Then by 2.2, $M\supset \subset S_1\uparrow S_1^m\uparrow S_1$. Suppose next that there is an infinite N_μ . Then by 2.3, $\bigcap_{m<\omega}(S_1\uparrow S_1^m\uparrow S_1)\supset \subset S_1\uparrow N_\mu\supset M$. If $A\in M$ then there is an N_λ such that $A\in S_1\uparrow N_\lambda$. Then there is $m<\omega$ such that $A\in S_1\uparrow S_1^m\uparrow S_1$ whether N_λ is finite or not. So $M\supset \bigcap_{m}(S_1\uparrow S_1^m\uparrow S_1)$.

We know that the class $\{M \mid \neg p \lor \neg \neg p \in M, M \in \mathcal{S}_3\}$ of logics on \mathcal{S}_3 is linearly ordered by \supset , by 2.2 and 2.5.

In [2], LQ_3 is defined as $L+Q+P_3$ where Q is a formula interdeducible with $\neg p \lor \neg \neg p$. Now it is easy to verify

THEOREM 2.6. $LQ_3 \supset \subset S_1 \uparrow S_1^{\omega} \uparrow S_1$ and $LQ_3 + X_{g(k)} \supset \subset S_1 \uparrow S_1^k \uparrow S_1$ if $k < \omega$, where $g(k) = 2^k + 2$.

So Remark that if $a < \omega$ then $\neg a = \omega$ by 2.1.

We say an element a in N is an atom, if $b \ge a$ implies either b=a or $b=\omega$. If for any $b < \omega$ there is an atom a such that b < a, we say N is atomic.

References

- [1] Hosoi, T., On intermediate logics I, J. Fac. Sci. Univ. Tokyo Sect. I 14 (1967), 293-312.
- [2] Hosoi, T., On intermediate logics II, J. Fac. Sci. Univ. Tokyo Sect. I 16 (1969), 1-12.
- [3] McKay, C.G., On finite logics, Indag. Math. 29 (1967), 363-365.
- [4] McKay, C.G., The non-separability of a certain finite extension of Heyting's propositional logic, Indag. Math. 30 (1968), 312-315.
- [5] Rasiowa, H. and R. Sikorski, The mathematics of meta-mathematics, Monografie Matematyczne tom 41, Warszawa, 1963.

(Received April 24, 1970)

Department of Mathematics Faculty of Science University of Tokyo Hongo, Tokyo 113 Japan

and

Research Institute for Mathematical Sciences Kyoto University Kitashirakawa, Kyoto 606 Japan