Ideal boundaries of Neumann type associated with
elliptic differential operators of second order—II

— Imbedding of the smooth boundary into the ideal boundary —

By Seizd 116

Introduction. In the previous paper: “Ideal boundaries of Neumann type
associated with elliptic differential operators of second order” in this Volume,
pp. 167—186, the author constructed a theory of ideal boundaries of Neumann
type associated with the adjoint operator A*: A*u=div(Yu—bu), of the elliptic
differential operator A of the form:

Au(z)=div [Vu(z)]-+ (b(z) - Vu(z))
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in a non-compact orientable C”-manifold B. In the present paper, as a continua-
tion of the previous paper, we shall establish a theorem for imbedding of the
smooth boundary of R into the ideal boundary.

The previous paper mentioned above will be quoted as [IB]. Throughout the
present paper, numbers in brackets [ ] refer to those in References at the end

of [IB], and sections and theorems will be numbered as continuations of those
in [IBL.Y

§7. Statement of the imbedding theorem. Let R be a subdomain of an
orientable C*-manifold M of dimension m=2, and assume that a part S of the
boundary 4R of the domain considered in M is an (m—1)-dimensional simple
hypersurface of class C* and that each point z€S has its neighborhood U. such
that U.NdR=U.NS. Assume further that [la®/| and [b‘] are of class C? on
R4S and that Assumption (A) in [IB] is satisfied for b=:||bi]] restricted to R.
Under these conditions, we shall prove the following two theorems.

THEOREM 7.1. The hypersurface S is homeomorphically imbedded into the
essential part Si of the ideal boundary S ; more precisely, for any point z€ S,
there corresponds a point £,€ S, in one-to-one way, and the mapping @ defined
by
(7.1) Yz)y=x for z€R and D2)=¢ for zeS

L Notations also refer to [IB] unless otherwise mentioned.
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gtves a homeomorphism of R+S as a subspace of the original manifold M onto
R i {::;2€8) as a subspace of the compact metric space R.
THEOREM 7.2. The kernel function N(x,y) is extended to a continuous func-
tion on (R+8S)>x(R-+8)—{(z,2);z€ R+S}, and
1) Ni(z,y) 18 an extremal FH, function of y for any 2€S;

1) @gﬂ%ﬁl =0 for any y€ R-+S and z€ S whenever y+z;
on(2z)

11%) mafﬁx(g)wl\f(x, 2)Br(2)=0 for any z€R +S and z€ S whenever z+z.
ony

We shall extend the function N(z, y) continuously up to the boundary points
on S in §8, and prove the above theorems in §9.

§8. Extension of N(x, %) up to the boundary points on S. For any regular
domain £ containing the compact set K, and relatively compact in M, we set
'=0-K, as in [IB], and denote by N%z, y) the kernel function of the boundary
value problem :

Ju

002

8.1) Au=—~Ff in &, u

=@,
K, dng

Ly

which is also the the kernel function of the adjoint problem

=%, av
K ang

We denote by G%z,y), as in [7], the Green function of the elliptic boundary
value problem :

(8.1%) A*y=—f in &, w» =, .

92

(8‘2) Au ”_f in ’ ul(?Kg:§90 ’ ul&!)::(rol ’
which is also the kernel function of the adjoint problem :
(8.2%) A*v=—f in 2, vlg=90, vle=¢i .

As is shown in [7; Theorem 5.1], there exists a sequence {D.} of relatively
compact regular subdomains of K such that

(8.3) Ky,c Dy Dy CDuCoo-, U Du=R
and that
(8.4) lim N*"(z, y)=N(z, y)

uniformly on every compact subset of
(8.5) (R'+0K) X (R'+3Ky)—{(2, 2) ; 2€ R' + 3 K,} (R'==R—Ky) .

Hereafter we fix such a sequence {D,}.
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We define N(z, y)=0 if z=y and at least one of x and y belongs to K.
Then Nz, y) is continuous on

(8.6) RxR—{(z,2);2€ R} .

Let S, be a relatively open subset of S such that S, is compact,” and 2 be
a regular domain in M satisfying that i

DycQcR, 2 is compact and
(8.7)
392N S contains S, as its relatively compact subset.

Define a function a(x) on 99" as follows:

(1 on (0Q2—-8)4-0K,
(8.8) alx) ==
{0 on 40—-(F0=S).
We first construct a funection 5(:1:, y¥) which is a Green function of elliptie
boundary value problem :
Au=—f in &
(8.9)

4

Ju

{au+ (1-a)~—=¢ on 82",
ongy

and also that of the adjoint problem :
JA*vz»f in &

(8.9%) A
(av+(1»—a)(»i”——ﬁgv):¢ on 0.
.311.0

Since «a{®) is not continuous on 32, the existence of such function f;'(x, ) is not
contained in the result of [4], but G(z, ¥) is constructed as follows.

Let @,(z) be a function of class C? on 3%’ satisfying that
1 on (2N D,)+0K,
(8.10) an(z)::{
0 on 092-D,,,,

and G.(z, y) be the Green function of the boundary value problem :

Au=—f in 2

(8.11)
av;qu(lman)?u =¢ on 0.
ong

Then G.(z, ) is also the Green function of the adjoint problem :

2 The upper bar ~ denotes the closure operation in M.
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A*vp=—~f in &

8.11%)
( a, v (l—ﬂn)(,,ﬁ2 —",‘99?)>”‘: ¢ on o
oy

as is shown in [4]. Since {@.(2);n=1,2, ---} is monotone increasing on 72’ and
lim . (z)==1 on 982’85, we may show that

nsco

J{Gn(ﬂc, #)} converges to a function C’(:v, 4) monotone
(8.12)

ldecreasingly on %2 whenever Tty ,
and

(8.13) Gz, y)=0 if z+y and at least one of x and y€(02—S)+0K, .

By means of Green’'s formula, we may show that

, e .
(8.14) C.(@, 3)-Gx, ?/)'%*S G. (@, z){—'f (z g’~>}azs<z) (@, ye TTD.: zy)
-, ong(z)

and that

8.15) G, y):N"(:c,y)—S {G,.(a:,z)ﬁg(z)wm’“?l}N”(z, 2dS()

30D, dng(z)

(z,ye 2 ND.;x+Y) .
Letting n--»co in (8.14), we get

8.16) Gz, y)=G(a, y>+§

N8

£ _6G‘g(zr y) _I__ . e
Gz, z){ ~—-————~an9(z) }dS(z) (x,ye '—8S; x#y)

by virtue of (8.12), and accordingly we may show that

(8.17) lim 2@ 9) 6@ o o yeor and yedo—S
nseo Ono(Yy) ong(y)

and the convergence holds monotone increasingly. Hence, letting n—oo in (8.15),
we obtain
E}C’(az, 2)

s0-g Ono(z)

(8.18) Glx, y)==N*(z, y)»%*X N2z, )dS(z) (z,ye?—S;z+y)

by virtue of (8.12), (8.13) and (8.17). We may see by means of the continuity
of Gz, 1), N%z, y) and é(x, y) that (8.16) and (8.18) hold for any z and ye€ 2
whenever x+y. Similarly we may show that

(8.19) c“;(x,y)==(;a(x,y>+§ {—W}@z, 9dS@) (@, yeD;z%y)
3INS ong(z)

and that

(8.20) Gz, y)=N2z, y)+ S N9z, Z)M dS(z) (x,yel;x+y).
20--8 ong(z)
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By virtue of the properties of G%(z, ¥) and N*(x, y), it follows from (8.16), (8.18),
(8.19) and (8.20) that G(z, y) is a Green function of the boundary value problem
(8.9) and also that of the adjoint problem (8.9%). In particular we nofe that

8.21) BGE@Y) o tor res0—@0=S) and ye
anp(x)
and that
@2ty 2C@Y _aens0)=0 for zed and yeoo—(@0=5).

ong(y)

LEMMA 8.1. N(z,y) s extended to a continuous function on (R-+-S)xR
—{(z, 2) ; z€ R}, and we have

A ‘ oGz, 2)
(8.22) Nz, »)=C(, 9)+ SM_S{ S }N(z, 1dS(z)

whenever e+ S,--0K,, y€ 2’4+ 3K, and x+£Yy.
ProoF. Let F be an arbitrary compact subset of 2/+9K,, 2 be a subdomain
of @ such that K,UFC2c2,cQ and n, be the smallest integer such that

Dnojﬁo. Then, by means of Green’s formula, we may show that

a@(x, z)

{ — G, Dfon @ [N (2, 9)dS@)
stenn, ( Ongnp,(2)

(8.23) NPz, y)=G(x, y)«-S

for z,y€L2ND,, and

(8.24) NDw(z, )= — S Non(z, ) 2822 Y) g5z
a0, ong,(2)

for z€ D,—2, and y€ 2,—(K,)° whenever n=n,. We have also that (see Lemma
A in [7; Appendix}])

(8.25) sup{ s»_upﬁg Nn(g, z)dS(z)}<co.
nzng Lz€D,—-uyJagy
Combining (8.24) with (8.25), we get
(8.26) sup{ _sup  Nn(g, y)}<oo .
nzng \2€D, 2y, yEF
On the other hand, it follows from (8.21%) that
(8.27) tim | 5HER G, 9800 dSE@ =0
now Jop a0  ORp, (2)

for any 2=8'+0K,. Letting n-scc in (8.23) and using (8.13), (8.26) and (8.27),
we obtain (8.22) for any z,y€2'+0K, (z+y) since F in (8.26) is an arbitrary
compact subset of 2’+9K,. Since 2 is an arbitrary regular domain satisfying
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(8.7), N(z, y) is continuously extended onto (R-+S)xX R—{(z,2);2¢€ R).

Similarly we may prove that

LEMMA 8.1%. N(z,y) is extended to a continuous function on R x (R+S))
—{(z, 2),2€ R}, and we have

(8.22%) Nz, 3)= Gz, y>~e—§ Niz, 2) { ——(M}d&z)

ony(2)

28

whenever x€ 2 10K, ye2'4-S,+0K, and x+

Now we fix two domains 2 and 2, such that 2,n Rc®, that 92N S contains
80,nS as its relatively compact subset and that each of 2 and £: satisfies (8.7).
Let G(z, y) be a Green function of boundary value problems (8.9) and (8.9%) in
2 as mentioned above, and él(x, ) be a Green function of boundary value prob-
lems of the same type in £,. Then, by means of Green’s formula and by
(8.21), we may show that

(8.28) Nez, )= —S Nz, 29 080D 4z,

20,8 ong,(z1)
whenever z€ R, and ye€2/+S5,+6K,. Substituting for N(z, y) from (8.28) in
(8.22), we get

(829)  N(v, y)=G, y)+g § 06, 2) Ny 290120 Y) g5 )3S(2)
a5 Jan,—s Ong(z) ong,(z;)

whenever z, y€2{+S,+0K, and x%y. Hence N(x,y) is extended to a con-
tinuous function on (2/+8,) }{2{4+S)—{(z, 2);: z€ 2{-+8,}.

Combining this result with Lemmas 8.1 and 8.1*, we have

LeMMA 8.2. N{x, v) s extended to a continuous function on (B+4-S) <(R-+8))
—{(z, 2);z€ R+ S}

From the regularity of N(z, ) which follows from (8.29), we may show that

(8.30) sup_ g N(z, 2)dS(z)< o0
aa--8

zER-N

(this can be proved, for instance, by the same argument as the proof of Lemma
A in [7; Appendix)). Replacing 2, in (8.28) by 2, we have

8.31) Nz, y)= S Nz, 2) { -~ i3-9;-(3'—3’1}(13@)
~8

ongz)

Bl

for any z€ R—2 and y€’+8,4+6K,. Combining (8.31) with (8.30), we obtain
the following Lemma 8.3 since the domain £ can be so chosen that 2 contains
any pre-assigned compact subset F of B+S,.
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LEMMA 8.8. If F is a compact subset of RS, and E is a subset of R—F
relatively closed in R, then N(z,y) is bounded on ExF.

§9. Proof of imbedding theorem. Under the assumption stated in §7, we
denote by dis(z, ) the Riemannian distance between the points 2 and ¥ in RS
defined by Jla:j(z)]. Let S; be a relatively open subset of S such as mentioned
in the preceding §.

LEMMA 9.1. For any z€8S,, there corresponds one and only onc point z.eS
such that lirf oz, £,)=0 holds for any sequence {2,}CR satisfying h_rg dis{z,, 2)
=0, and we have N(,,9)=N(z,y) for any y€R. L

ProOF. For any given z€S, we may take a sequence {z.}JCR such that
lim dis (2, , 2)=0. The sequence {z,} has no accumulating point in R with respect

7 -v00

to the metric p, while R is compact with respect to p. Hence there exists a
subsequence {z,,} of the sequence {z,} and a point E€§ such that lim p(2,,, §)=0.
Let {z.} be an arbitrary sequence in R satisfying limdis (x,,z)—:b&f Then, by
Lemma 8.2, we have o

lim |N(z,, ¥)—N(z,,, ¥)|=0 for any y€Do.

v—o0

Hence we obtain lim p(x., 2,,)==0 by means of the definition of the metric o (see

yesco

(3.4) in [IB]), and accordingly we get limp(z,, §)=0. This result implies also
that the point -EeS is uniquely determinue—;iw by z€S; so we may write £=§, and
accordingly N(Z;, ¥)=Nlz, y) for any y€ R by virtue of Lemma 38.2.

LEMMA 9.2. If {y.)CR and limdis(z, ¥.)=0, then lim N(§,, y,)=oo.

PROOF. It follows from (8.20) and (8.22) that lim dis (2, ¥.)==0 implies lim N(z, v.)
=co, Hence this lemma follows immediately E;Z:m the preceding lemur;:.

LEMMA 9.8. If {x.J<R, ze S, and limp(z,, £,)=0, then lim dis(z,, 2)=0.

700 b aad-t

PrRoOF. Suppose that lim dis(z,,2)=0 does not hold. Then there exists a

neighborhood U(z) of z and a subsequence {z,,} of the sequence {z,} such that
., € U(2) for any v. Let {y,} be a sequence in Uz} N R such that lim dis(y., 2)=0.

Then, by virtue of Lemma 8.3, there exists a constant C such that
9.1) N(,,, y)=C for any » and =.

Since lim o(2,,, £&)=0 and N(z, ) is continuous in € R with respect to the metric

y—ro0

o for any fixed y, it follows from (9.1) that
N, ,y.)sC for any =n,

which contradiets Lemma 9.2.
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LEMMA 9.4. For any point z€ 8, there corresponds a point £,eS in one-
to-one way, and the mapping ¢, defined by
0.2 jﬁfi),(x)rwx for zeR

D)=, for ze$;
gives a homeomorphism of R4S, as a subspace of M into R.

Proor. For any z€S,, there corresponds one and only one point ;»:eS’ with
the property stated in Lemma 9.1. By virtue of Lemma 9.3, 2172 (21,2:€85)
implies &,,:#%,,. Hence (9.2) defines a one-to-one mapping of E--S; into )2 (:::R+§).
The bi-continuity of the mapping @ at any point 2€ R is obvious. We shall
prove the bi-continuity at any point z€S.

For any sequence {x,)C R and any z€ S, limdis(z,, 2)=0 implies, and is im-
plied by, ]Lrg o(D(x,), P(2))==lim o(zx,, , £,)=0 b;_m;neans of Lemmas 9.1 and 9.3.
Therefore ﬂit is sufficient towpiove, under the condition: {2, 2,2 ,---}CS, that
i&r&p(f,?,,fz)"'~'0 if and only if limdis(z,,2)=0. For each z,€S, we may take
2, € K such that both dis(o:ﬂ,z:)qzl,’n and ple,,£:,)<1/n hold (by Lemma 9.1),
and consequently

- R SPS ; e
dis(z,, 2) - < dis(z,, z) =dis(x,, 2) 1 "
and

- - 1
ép(szn s §z)§.0(mn ] §z)+';; .

R |

p(xn ’ 52)"'

Since lim dis (2, , 2)+:0 implies and is implied by lim o(z,, £.)=0 (by Lemmas 9.1

Rr00

and 9.3), we may see from the above inequalities that lim dis(z,, 2)=0 is equiv-

alent to lirgp(é;,”, §)=0. o
LEMMﬂ; 9.5. For any z€8S,, N(&., ) 18 an extremal FHy, function of y.
Proor. In view point of the preceding lemma, we may consider S, as a
subset of S. Since N, ,y) is an FHo function of ¥ (by Theorem 5.1 in [IB]),
it is represented by

©.9) NG, 9= S NG, pdp(@)
Sy
where /¢ is a measure on .§1 such that
9.4) ;e(ﬁo—:-g IV W) g5y <co
oK, (7?31(0(@)

Let ¢ be a function of class C? on S such that
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j?(y)$0 on (S—S)uU{z} and
(9.5) .
(9(y)>0 on Sx‘“'{z} s
and let £ be a domain satisfying (8.7). Then we may construct a function w
of class C? on RS satisfying that

.

(9.6) w| =e, -0
$ng Uy {sng

and

9.7) w=0 in R-£.

Since N(z, y¥) has the expressions (8.28) and (8.29), we may show that
9.8) wiz) = —S N(z, ) Aw(y)dy
Q

for any ze Q. Putting z=2z(=£, in view point of the preceding lemma) and
using (9.3), (9.5) and (9.6), we obtain that

09  0=p()= ~S NG, 9)- Aw(y)dy = — H NG, 1) Aw()d()dy
2 83

= '—S . g Nz, y)-Aw(y)dyd/z(a:)zg , w(xdp(x) .
(§;~1:hn§y Jo

($;~1zhns
Since w(x)=¢(x)>0 on Si—{2}, we get

#((S,—{zh N 8)=0
and accordingly

(9.10) (1-oNG. , y)= S N, 9)d ()

A

815

where ¢ is the g-measure of the point £, and 0=<¢=<1. Let y in the cqualitly
{(9.10) tend to z. Then N(&,, %) tends to oo by Lemma 9.2 while the right-hand
side remains bounded by means of (9.4) and Lemma 8.3. Hence ¢ must be equal
to one and aecordingly ,u(§1-S,):O. Thus we may see that N(£,,y) is an ex-
tremal FH, function of .

Proor oF THEOREMS 7.1 AND 7.2. By Lemma 9.4, there corresponds z,e$
for any z€S; in one-to-one way, and the mapping @, defined by (9.2) gives a
homeomorphism of R-+S, as a subspace of M into R=R+S. Furthermore, for
any z€S8;, N(&,, ) is an extremal FH, function of ¥ by Lemma 9.5, and hence
§,e§1 by Theorem 6.4 in [IB]. Since S, can be chosen “arbitrarily large” in S,
the mapping &, is uniquely extended to the mapping ? defined by (7.1) which
gives a homeomorphism of R+S onto R--{¢,;z€S}cR. Theorem 7.1 is thus
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proved. Combining this result with Lemmas 8.1, 8.1% and 8.2, we may obtain
Theorem 7.2.
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