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Introduction. As a supplementary remark to our previous papers ([8], [9]),
we discuss here the following well-known Hardy-Littlewood-Sobolev inequality :
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for fe LP(R™, ge LY(R"), 1<p, q<co, 1/p+1/g>1, 0=n(2--1/p—1/¢)/2>0. As to
this inequality, a very close result is given by the following

THEOREM. Let (M,dm) be a sigma finite positive measure space. Let
{T)ez0 be a family of linear operators mapping functions on M into functions
on M. Assume that {T.} forms a semi-group in the sense that T, T.=T., for t,
>0, To=identity, and that the restriction of {T.} in LM, dm) is a bounded
strongly continuous semi-group. Suppose furthermore that the Sollowing five
conditions hold:

(i) ITAeslfils of feLP(M,dm), 1spsco.

(ii) FEach T, is self-adjoint in L¥M, dm).

(iii) Tf=0 if f=0.

(iv) T.d=1.

(v) For each t>0, T.fe L~(M,dm) if fe L'M,dm), and |T fl.2Kt|fl
Jor some a>0.
Then we have, with the continuous imbedding,

0.2 D(A3*)CD(AY, 1<p<g<o, Reaz0, r=0(l/p—1/g) .
Here A, 13 the negative of the infinitesimal generator of T, in L"(M,dm):
T.=exp(—td,) in L*(M, dm).

1t is then quite clear in view of our Theorem 1.2 in [9] that (0.1) is close
to this Theorem, for we only need to consider the Gauss-Weierstrass transform

as T, in Theorem. In this case, a:—“% and (0.1) implies (0.2). The proof of

* Partly supported by the Sakkokai Foundation.

1 For a closed linear operator 7 in a Banach space, the definition domain IXT) of T is
& Banach space furnished with the graph norm. A fractional power A7 of A, is closed.
Details about fractional powers can be found in Komatsu {3}, [4], and Yosida {10].
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Theorem is, however, not elementary at all. Yet it has, we believe, a certain
interest, being entirely in the context of the operator theory. The proof is
based on two facts. Firstly, the conditions (i)-(iv) imply a generalized Littlewood-
Paley inequality as Stein showed ({6]). It should be noted that this part, though
hidden in Stein’s monograph, is the core of our proof and the rest is rather
straightforward. These conditions thus give a useful information about the
inclusion relations between the definition domains of fractional powers of A4,
and the real interpolation spaces associated with A,. Secondly, the condition
(v) gives, as we noted previously ([8)), the inclusion relations of real interpola-
tion spaces associated with A, and with A,.

Among the conditions in Theorem, (i)-(iv) are rather easily obtained and
closely related with second order elliptic differential operators in general. The
condition (v) is essentially the Hausdorff-Young inequality.

Proof of Theorem. We first analyze the conditions (i)-(iv) and summarize
Stein’s results ([6]).

ProrosiTiON 1. (i) and (i) tmply that {T.} in each L™(M,dm), 1<p<co, is
o bounded holomorphic semi-group, that is, the mapping t—T.f, fe L*(M, dm),
18 analytically continued in the sector

S,={z€ C; larg 2| <= (1—12/p—1])/2} .

For the proof, see Stein ([6]), pp. 67-71. Roughly speaking, the essential of
Stein’s proof is as follows. First, (ii) implies that T:. in LM, dm) are self-
adjoint non-negative. Thus as functions of ¢, they are analytically continued in
the half-plane Ret>0. Second, using the interpolation theorem, a variant of
the Riesz-Thorin-Stein theorem, we obtain the result.?

Now define the Littlewood-Paley function:

) ES 172
(L.1) gl<f><.):-(§ tEIGth(.)/atlzdt) .
1]
PROPOSITION 2. Let T, be the semi-group in Theorem. If fe L*(M, dm),
then g,(f)€ L"(M, dm), 1<p<co, and

gDl =Ml flln, 1<p<eco.
Conversely,

1= MuUlg Db+ E(N), 1<p<co,
Here Fo is defined on L¥M, dm) as the orthogonal projection onto the space of

% Stein’s proof only shows that 7.f in L?, 1<p<co, is weakly right continuous at £=0.
But this is equivalent to saying that 7. f is strongly continuous (Yosida [10]).
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all functions h such that T:h=h for t>0 (E, turns out to be a bounded operator
on each L?, 1<p<co, and E’o(f):s-}irg T.f in L?)).

For the proof, see Stein ([6]), C;xapter IV. Very roughly speaking, he used
the martingale theory, and proved a “martingale maximal theorem”, a generalized
Paley’s theorem, and connecting these in a remarkable theorem (Theorem 8 in
[6D. Then, using Rota’s “Alternieven de Verfahren”, he proved the above.

We shall also need the following generalization of Marcinkiewicz-Mihlin
multiplier theorem and its corollary.

PROPOSITION 3. Write T,:re~”dE(r) in LAM, dm), using the spectral de-

[}
composition. Define an operator:

m(A)fffrm(r)dE(r)f. fe LAM, dm) ,
0

where m(r) is a bounded function on R.=(0, ). m(4) is a bounded linear
operator on all L*(M, dm), 1<p<eco, provided that

m(r)::'rre””M(t)dr, >0,

]
for a bounded measurable function M) on R.. Furthermore,
Im(A)fllo=MuLiifll,, feL™(M, dm),

M, being a constant depending only on p and L=sup|M(t)|.

PrOPOSITION 4. Let —A be the infinitesimal generator of T. in Theorem :
T,—=exp(—~tA). Then A% is a bounded linear operator on all L”(M,dm), 1<
p<co, for each real k. Furthermore, for f€ L*(M, dm),

1.2) ”A‘,f‘f”,,éM,, exp(z|EDISf» .
For the proofs of the above two propositions, see Stein ([6]). (1.2) is a con-
sequence of r"“':rre””Mk(t)dt, M. (8)y==1'A—ik)"*t*. Now we are going to study

0
the relations between the definition domains of fractional powers of A4, and the
real interpolation spaces associated with 4,.
PRrOPOSITION 5. Let 1<p=2. Then, for any a>0,

D(As) [on (LP(M, dm), D(Ag))a/n,z

with the continuous imbedding. If p=2, both sides coincide as topological spaces.
Here n 18 an integer >a, and (X, Y)y.., 0<0<L1, is the mean space of
two Banach spaces X and Y.?

 See [5], [2], [4).
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ProoF. It is enough to prove the proposition for an «a,0<a<1.® Let
fe D(A3). Then we can find an k€ L?(M, dm) such that (1+A)"h=f We have

AT f== AT, (1+ A)*h=A*(1+ A)~A**Th, t>0,
since {T:} is holomorphic. Thus
l‘Athfnpé”A"(1+A)_“AH"Tt/zATc/zh"p§C0ﬂ5t- t>YAT kil ,

for A“(1-+A4)™ is a bounded operator in L?(M,dm)® and AT r. »<const.
e, £>0.

Note that an equivalent norm for the space (L"(M, dm), D(A}))a/a.2 is given
byB)

Hf“ == ”f:il’—;“ ‘fl s
lf]:(gm thg"AzT,f“f, dt/t )1/2 '

Now,

@0

/2
If| < const. S t""z“t”'zliAT,/zhilidt/t)l

0

) 1/2
S tz!IAT,hli%dt/t)

[

:const.<
o 1j2

—const. (S 2T oHIS dt/t ) X
[}

By Minkowski's inequality, we have, for 1<p=2,

] 1/2
(S tzllaTzh/atH%dt/t)
1]

g(gu(gjmanhm)/amdt/t)””dm )”": lguh)ls -

Hence, by Proposition 2,

|f1= const. |kl <const. 1fllpue -
It follows that fe (L*(M, dm), D(A%))a/m.2, and

Wl w?. piamn e s Sc0nst. 1Flpuag -

The assertion for the case p=2 is trivial since A: is self-adjoint non-negative.
We can now prove Theorem, using Propositions 4 and 5 and the condition
(v) in Theorem. However, before that, we are going to prove a dual statement

¢ Komatsu [4], Theorem 2.7.
55 Komatsu [3], Proposition 6.2,
¢ Komatsu [4], Theorem 6.8.
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of Proposition 5 since it has a certain interest in itself.
PROPOSITION 6. Let 2<p<co. Then, for any «>0,
(LP(M) dm)r D(A;))m’nJCD(Ag)

with the continuous imbedding. Here n is an integer >a. For the case p=:2
the same remark as in Proposition 5 holds.

Proor. It suffices to prove the proposition for an «,0<a<1l. Firstly, we
note” that if |T.fll,—0 as t—co for f€L”, then Ey(f)=0 and the converse in-
equality in Proposition 2 reduces to:

Il s Mullg(Nlln, 1<p< 00

Secondly, since L?, 1< p< oo, is reflexive, it is enough to prove that A§(r(r-+-A,)7)f
is bounded for >0 if fe(L®, D(AN)an.2.2 Let fe€(L?, D(A})an.2. Then, by
Minkowski’s inequality, we have, for 2=£p<oo,

© 12
lgi(As(rir+ A )s é(& I\taT:A"('r(r+A)“‘)ﬂatllidt/t>
0
o Ie
< S lLAS T (r(r »-Arl)fnzdt/t)‘
(1}
< M(S” ILAM e T2 dt/t)m: M,
0
since r(r+A4,)' are uniformly bounded for »>0. Now using that {f>-+fl,
gives an equivalent norm for the space (L”, D(A}))asn.2,” We have
lgi(As(r(r+ Ay D Ma<const. [flwr.pui 0, -
On the other hand,

I T As(rir+ Apy ) f s Sconst. ¢ flr{r-+- A fll—0

as t->c0, because {T} is holomorphic. Hence, by the remark at the beginning of
the proof,
| As(r(r+ Ay Df s Sconst. lgi(As(r(r+ A4, ) fll»
Zconst. |1l (WP DIAG yym,2 *

It follows that fe D(A4%) and
Iflip g Sconst. [l wr.pwd 4 m.s -

REMARK. For the case of the Poisson kernel in the Euclidean n-space, a

7 See Stein [6], p. 123, and his discussion in pp. 55-56.
81 Komatsu [3], Proposition 4.5.
9 Komatsu [4], Theorem 5.3.
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more detailed result was given by Taibleson ({7]). He also gave counter-examples,
showing that his result could not be improved. The proofs of our Propositions
5 and 6, especially that of Proposition 5, are an abstraet transposition of Taibleson’s
proof of his Theorem 15. Now we study the implications of the condition (v)
in Theorem.

PRoOPOSITION 7. If feL*(M,dm), 1<p<oco, then T.f€ LM, dm), p<q<oo,
Jor any t>0, and

[T oS Kp. gt V2 2l 5 .

Proor. We only need to use the interpolation theorem. In fact, the case
when p=1 and g=:0> is nothing but the condition (v). If p#1l, or g=#oo, we
can find an r, 1<r=< oo, such that

1p=1--8-+-8/r, 1/g=0/r, 0<0<1,

since 0<1/p—1/¢<1. Interpolating

T,: L"M, dm)->L“(M, dm) ,
and

Ty: L'(M, dm)—>L"(M,dm) ,
we have, for fe L*(M, dm),

1T flle= Ko ot} fllp== K.t 2o Y0 £,
PROPOSITION 8. Let 1<p<g<ce. Then
(LP(M, dm), DAY utn. (LM, dm), D(AZ))p/n.

of a=51e(l/p—1/)>0, 8>0, and n an integer >a. Here the imbedding is
CONLLNUOUS.

This is an immediate consequence of Proposition 7 and our Theorem 2.2 in
[8] (or Theorem 1.1 in [9]).

At last, we give

Proor or THEOREM. In view of our Theorem 1.2 in [9], it is enough to
prove Theorem for an a>0. For 1<p<2=<q¢<, we have, for any a>0,

D(As* ) D(AY), ==o(1/p—1/9)>0,
with the continuous imbedding. For, by Propositions 5, 6 and 8, we have

D(Ag+')c (L”(My dm), D(A;))a+:’/n.2
C(LY(M, dm), D(AZ))arn..C D(AS) .

Here n is an integer >a+r, and all the imbeddings are continuous. Now we
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are going to prove Theorem for 1<p<¢<2 and for a positive integer «. The
case 2<p<g<co can be proved similarly. Since 1<p<¢<2, we can find a 0,
0<0<1, such that 1/g=(1-0)/p-+0/2. Interpolating

D(A3)=D(A3) ,
and
D(A3 ) C D(AY), o'=a(lip—1/2)
we have
[D(As), D(As* ")}, [D(AS), DIAD,

with the continuous imbedding. Here {X, Y],, 0<0<]1, denotes the complex
interpolation space of two Banach spaces X and Y.!'® By the commutativity
result of Grisvard ([2] p. 171), we have

[D(A3), DIAD}=D(A$)
with equivalent norms. On the other hand, by Proposition 4,
(D(AD), D(AS ) y=D(A5 ")
with equivalent norms. Hence,
D(A3*)C D(AY), v=d'0=0(l/p—1/q),

and the imbedding is continuous.
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Added in the proof. A complete treatment, including an operator theoretical
proof of the Hardy-Littlewood-Sobolev inequality is possible. The improved result
will be published shortly.



