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Let E be the space of nxm positive definite symmetric matrices of de-
terminant 1. E is an irreducible symmetric Riemanian space. Let L be the
Laplace-Beltrami operator:

We consider the diffusion process X=(x:, oo, 4t:, P:) on E with generator L
(random ellipsoid). A remarkable property of X consists in its asymptotic
behavior, which is formulated as follows.

Let ehizeh= --- Ze (4+ --- +2.=0) be the eigenvalues of x€ E. We put

e=lr—2p (20), k=1, --.,n—1,

T=(L1, «+ vy Luct) .

Then we have

(1) P;(Iimg}—i :p> ~1  for any z€E,
{—o0
where p=(1, ---,1) and %:=2:.
The problem of this type was first discussed by E.B. Dynkin [1]. In [2],
he proved, using the theory of Martin boundary, the following

(2) Pz(lim-ﬁ’i—:

= ::—‘——, Ly k200, lékén'*].) =1,
v 2 (ol

((2) is a consequence of (1)). In this paper we shall prove (1) (for arbitrary
symmetric Riemannian space with negative sectional curvature) by means of
stochastic integral equation.

1. Let E be a symmetric Riemannian space (of semi-simple type) with
negative sectional curvature. We denote by G the connected component of the
group of all isometries of E onto K and by K the isotropy subgroup of G at
20€ E. Then, G is a connected semi-simple Lie group (without center), such
that all simple components of G are non-compact and K is a maximal compact
subgroup of G. E can be identified with K\G.
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Let g, t be the Lie algebras of G and K, respectively. Then we have
(3) g=f-p,

where b is the orthogonal complement of { in ¢ with respect to the Killing form.
b can be identified with the tangent space of E at xo. Since the Killing form,
restricted on b, is an Ad K-invariant inner product (X, Y), there exists a G-
invariant tensor field g(X, Y) of type (0,2), which coincides with (X, Y) at .
We denote by L the corresponding Laplace-Beltrami operator. L is a G-invariant
clliptic differential operator of the second order. In order to construct the diffu-
sion process which has L as generating differential operator, we need the follow-
ing lemma (Dynkin [3}], Theorem 3.13).

LEMMA. Let E, (n—1,2, ---) be a sequence of subsets in a measurable space
(E, D), such that E.eB, E.TLE. Further, we suppose that to each n, there cor-
responds a Markov process in K. X™=(&{", s, 4", P:'™), where X' 1is the
part process of X'V on K.. Then there exists a Markov process X={(x., , s,
Py on E, such that C::l”i_rg o and X™ is the part process of X on E.,.

We take as E, a bounded domain with sufficiently smooth boundary such
that E. 7T E and we denote by P.(t, x, ¥) the fundamental solution of the boundary
value problem:

'L/'! ,;E”::O .

It is known that P.(t, x, y) is the density of the transition funetion of some
Markov process X, (n=1,2, ---), satisfying the condition of Lemma. Therefore
we obtain a Markov process X=:(wx+, 2, a,, P:), which is, as is easily seen, the
required diffusion process.

REMARK. We extend P.(t, z, ) to a function on [0, o)X EXE, setting

P.(t, x, =0, if (z,y)¢e ExxE,.
Then, we have
Pu(t, 2, ¥) S Pasi(t, 2, 9) .
We put
P, =z, y)—:,l‘ini Ptz y).

P, %, y) is the density of the transition function of X (with respect to an in-
variant measure on E).
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PROPOSITION 1. P.({=00)=1, for ze kK.
PrROOF. For a bounded continuous function f(z) on E,

ot 0= P x nrwdy
is a solution of
(4) ;@“v(t, x)=Lv(t, x) .
ot

If f(x)=1 on K, we have v{t,2)=P{¢,x, E). In view of G-invariance of L,
Pit, x, y) is also G-invariant, i.e.

P, x, =P, x9, ¥9) for geG.
Therefore we have

»(t, )= P, x, B)=P(, xg, E)=v(, zg) ,

that is, ¥(t, ) is independent of . On the other hand, by (4), we have

d
7 v=Lv=0.
Hence,
p)=lim v({)=1lim P{t, z, E)=1.
tig tio
2. Let the notations g, f,p, --- be asin §1. We denote by ¢ a maximal abelian

subalgebra in p and by R the root system relative to a. We put
ge={Xeg [H X]=c(H)X, for Heq}, for aeR.
Choose some order in o* (the dual space of a). Then we have
0= 3 go-ta-bm=ttat 3oe,
where m is the centralizer of a in f.

Let {ay, -+, &} be the (restricted) fundamental root system and denote by
A the set

{Heaq; a:i(H)=0, 151<p}.

A is a fundamental domain of the (restricted) Weyl group W==M\M (M(M) is
the normalizer (centralizer) of a in Ad K). For Xe€p, there exist ke K and
He A, such that

X=AdkH.
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Now the exponential mapping X »exp X is a one to one regular mapping of v
into G and we may identify expb with E. H is uniquely determined by X and
continuously depends on X. Thus we obtain a continuous mapping of E onto
E=[0, )% -+ [0, o)
7@y {ai(H), - - -, ap(H)},
where H=H(log z). Obviously, yz=yz’ if and only if ’=xk for some k€ K.
In view of the invariance of the transition function,

P, x, U= P, o, v for a Borel set I" in E.
Therefore, by a theorem of Dynkin ([4], Theorem 10.13), there exists a Markov
process on K
X (3, oo, 4, Pa)

such that

By, Py, =P, 2,77 .
Further, let A, A be the infinitesimal generator of X and X, respectively.
Then,

fe®; if and only if *f€Da,

P*Af=Ar*f,
where 7* is a linear mapping of B(E) onto B(E), defined by
Pf)=fra) .

(B(E) is the space of all bounded measurable functions on E). We want to
determine the explicit form of A in B’ (the interior of E’).

ProPOSITION 2. Let f(x) be a twice continuously differentiable function in
E! with compact support. Then we have

feds,
and
» .. 5_’ P g
(5) Af= 2 al————f+ Zbe(®) S,
ij=1 G0 ket o
where

G'ij;:(aiy “.i) »

bi(w) == ‘.);‘ 3 (@, ai) coth m“(f)

(H i3 an element of a, such that ai(H)=x:).
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ProOF. We put A’={h==exp H; a:(H)>0,1<i<p}. Then the mapping of
M\Kx A into expp=F, defined by

=W, h)=u"hy ,

is one to one and regular. We have to calculate the image of the invariant
tensor field g(X, Y) by 6¢. Let = be the projection of g onto p. Since Adh (h€ A’)
leaves m invariant, =oAd h!/? induces a linear mapping of w\f into p, which is
denoted by 7. For a tangent vector X at u€ M\K, we have

( 6 ) d(‘.')X: (77(2X(u)))g (g::; hl/ﬂu) s

where Y, is a tangent vector of E at x, obtained as an image of Y€p by a—ug.
{(X(u)=Xu-1 is defined similarly.) Let ¢ be an involution of ¢ associated with
the decomposition (3). Then we have

03c—=0 a .

We choose a basis of g.: (X, ---, X[*<'}, m\f may be identified with the space
spanned by Yi.=X\" 40X, (=1, ---, ., a€ R,). Further, Zi =X —-0X
(4=1, -+, e, a€ R,), together with H: (1=i<p), constitute a basis of p ({Hy, ---,
H,} is the dual basis of {ai, ---, ap}). Let (u,) be a local coordinate system
around %€ M\K. We put

J

Xpw)= 2 el (wYia.

X, =

As is easily seen,
AdhYio=cha(H)Y: «+sha(H)Z;:. .
Hence, by (6),

a(H)

doX,= (22 shﬂzw—c;‘,,,Zg,O .

[4

Since g. (@€ R) is orthogonal to a with respect to the Killing form, we have

_ 2 g
g”,(m)_gx (d@ (5’:& ), d@ (au/‘ ))

== (Hi, 2 ?.Sh ﬁg‘z‘fg“z‘cg»"u(u)zi‘a)::o ,

gii(x)=(H;, Hy) (~aij),

det (gu(2))= (al;loshﬁ—(—z@‘)zc(u) .
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We put

q{x):= 1l sh— (H)

a0

{each root in this product is repeated as many times as its multiplicity indicates).

From the above result, we see

S+ 2( = “':(Z“Q)

oxr

?
0%

Lf- X ai—

0x; 6:17,
-+terms involving derivatives with respect to ug.

Since, for f€CHE"), f=r*fe CYE)—Da and

Af=Lf,
we have
~ » 52 »
Af::;,;zéle ox:0x; S +k2j‘x be
where

(@)=(a:i;) ' =(a:, aj))
bi@)= T St 5 g= 5 % (w, aval) eoth *0
Zol

= }__, («, ar) coth

a>u

PROPOSITION 3. Let W1 be the collection of all open sets U such that U is a
compact set in E’ and © be the first exit time from 11 ([4], Chap. 4). Then we
have

(N f’z(r<00):() for zeE’ .

Proor. If r<cwo, &. exists and belongs to dE. This follows from the conti-
nuity of % (€0, =)). Put

Ei, ... i,={ze E; Lip= - =u:;,=0,2;>0 for J=ii}.
Then,
dE=UEq,....i .
For a subset F' of JE, we put
PF)=Pi(s<o0,%.€F) .
We shall show p(E;, ... :,)=0, from which follows (7).
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Let {aj, - -+, @;,} be a connected component of {a;,, ---, a;,} and

Fy . 5=lxe E; z;,=0 (k=1, ---,7), 2;>0, if «a; is not orthogonal to aj}.

Since i ... ,CFj. ... j,, it is sufficient to prove
oFi. ... ;)=0.
We may assume that ;. is not orthogonal to ajj, ---, a; (=1, -, r—1).

Consider the set
S ={aeR; a:kz miaj,, My is a positive integer} .
=1
As is easily seen, Sa]-r . SajzajleE where S. is the reflection of a defined by
a. Let =73 mua;, be the maximal one in X. Then we have
(18! ajk)réo (k;i]-y “';’r) .
For, if

~ 2(“]';;: .3)
Ny b= 3— - S
i (@, aq)

(3, 030<0,  §'=5S, IR

and 5>/, which is impossible. Therefore, for a root a:LE meas, (Mi220), we have
c=1
8, ©)=0.
Now suppose p(F',, ..., ;)>0. Then, in view of the continuity of % there

exist a compact set QCF;. ..., ; and a bounded domain Dc E whose boundary
consists of @ and a surface in E’ such that

f@)=P.(%,€Q)>0 for some z€D,

where o=0;,=inf {{; 2.€8D}. f(x) is an L-harmonie function in D, satisfying
the boundary condition:

f@)=1 on @,
=0 on D—-Q.

In order to show that f(x)=0 in D, we have only to construct a positive super-
harmonic function in D, U{z), such that U{z)->co, uniformly as z tends to @ ([5)
Lemma 3.3). Since D is bounded,

- b ks . .
DcD={zecE; k}_‘,mg:c,-kécl, T Se1, =misco, 14 (b=1,---,8)},
=1
for some ¢1,¢:>0. We put

. Emkbjk(x)
B o S memain
reD, % mET =

By (5), we have
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2 mkmka,ikjk::(;?’ ﬁ) s

a(H)
5

> mibj(x)= L 2 (a, f3) coth
2 a>o

As we have already proved, if (a, £)<0,
a(H)=m:>0 for some index i+ (k=1,---,7).

Therefore we have
a(H)= jﬁl mia(H)zmiei H)y=mixizce ,

from which follows that

> (a, f) coth is bounded in D .

(a.f) <0

a(H)
2

Hence we have, in D,

3 mibia)z = (6, p) coth K-y,
(8)
.1 u
Blu)z= > coth 5= Ce (Cy, C:>0).
We put

Viu)=exp S: B@)dv S rexp(w S * B(w)d'w) dv ,

v

Ulr) = S* Vin)dv—(u—a)"+C

Jue= 3 ™t

Since B(u) is bounded on [z, ci] (¢>0),

u

(9) S*exp<- SjB(w)dw)dvg_c’>0.

From (8 and (9), follows

Viu)=¢ expg "

u

1 w o,
9 coth 5 du=c Sz

Therefore
U(x)—>co uniformly as x—Q.

It is easy to see that
L S * Vwydu=— 3 mumraiein V/(Z mez;,)
Empr;
— X mabj(2) VIZ maz; ) 28, 0) .

Tk
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Hence, for a suitable choice of #, a, C, Ulz) satisfies the required conditions:
LU@)<0, Ux)>0 in D.
(See the proof of Theorem 3.2 [5].)
PROPOSITION 4. Let §=inf{t; 7€ E’}. Then, we have
P.G=0)=1  for z€iE.
Proor. Let
X=(Adk)H (Hedy.

ad X and ad H have the same characteristic polynomial

Fy= 3 et
k=ng
where n=dim g, me—=dim (a+m). Obviously, €.,==0 if and only if ai(H)=0 for
some ¢. Since cr=¢(X) is a polynomial function on p, we have
7IGE)={x€ E; D(x)=0} (=&
for some ¥(x)e C*(E). Therefore, we have, for z€ 2,

Plo'=0)=1

where ¢ =inf {t; x. € 5} (cf. [4] chap. 13, §2). This proves the proposition.

3. Let D. be a bounded domain such that DnC Dayr, D.1E’ and b®(x) a
bounded continuous function on R? which satisfies Lipschitz condition and coin-
cides with bi(z) in D.. We denote by X. the Markov process on (R?,B) governed
by the stochastic integral equation

» t t
w{t =+ zﬁ“g dfs.r%g b (eyds (=1, -+, p)
= [+]

0

where 5:=(£.1, -+, £t.5) is the path of the Brownian motion and (@) is a positive
symmetric matrix such that

— @p=(a)

(see [4] Theorem 11.4). Let X be the part process of X. on Da.. Then, by
the uniqueness of the solution of stochastic integral equation ([4] Theorem 11.6,
Corollary), X™ (n=1,2, ---) satisfy the condition of Lemma in §1.

Thus we obtain a Markov process on E’, which is equivalent to the part
process of X on E’ and satisfies the stochastic integral equation
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(10) Genmmeh Z&kjgtdfs,j+ Stbk(xg)ds k=1, ---, p)
0 0

(c.f. Proposition 3). In the same way, a Markov process Y is constructed by
the stochastic integral equation

t ta
(11) Yor=yit S &“S g+ S blysyds  (k=1,---,p),
(1] 13
where
5;;(:6):: %’L(a’k, @) coth%’i“ +nf e, ar) coth 2w .

{nr, », are the multiplicities of a; and 2a:, respectively. In case 2a:x is not a
root, n5-=0.) The termination time of Y is its first exit time 7 from U.

1° Pz oo)=1 for xeR’.

For, if #<o, Iixrn y:==y-. exists (note that the first term of the right side of (11)
t1r
is constinuous and the second term is monotone increasing). Therefore, by the
definition of %,
Yo, im0, or =0 for some 7.
But, if y..i=00, bi(y:) is bounded on [0,7]. Hence the right side of (11) is finite,
which is a contradiction. In the same way as in Proposition 3, we can show
that the latter is also impossible.
2° be(2)<belw) (k==1,---,p) in E’.

For a positive root a+#ai, 2ai, S« is also positive. Let {a', ..., a*} be the
set of all positive roots such that (@, @:)>0 and put 5%¥=S8.a* (=1, ---,8).
Then we have

(39, a)=—(a", a)<0

and

(a, a;i)==0 for asa®™, % (12k<s).
Therefore
12) bi(x) = (ar, ar) <—7~;5— coth% - n4 coth :c:;)

n >f] (ax, atP)nt (coth aWéH) —coth ﬁ(i).‘(Z.H))
i=1
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where n'® is the multiplicity of a*. Since

2(“1&, a(é))

(xr, ak)

the second term is negative. 2° immediately follows from (12).

FO(H)=a(H)— ar(H)y<a"'(H) ,

3° P& <y, for all t>0)=1 for zek’.
t “~
,C(t)-’:»%t.k(m)wyz,k(x):ig (b (Fe)—Be(ya))ds
0

is a continuously differentiable function such that
¢(0)=0 and ¢{o)==0 implies ¢'(£e)<0.
Therefore (6] Chap. 4, 16, Lemma 4), we have
et)y<0, for t>0.

g f’:(lim—y—;i - <Jé‘~ +ng.) (e, ak)> ~1.
t—o0

‘This follows from

ip

ecothu>1, limeothu=1 and f’;(litm tt.k ::O>::1.

U060

From 3°, 4°, we have

(13) P ’(m s (%’ “W")(‘“’ ‘”")) =1
{—eo
We put
p== ._.;_n:oa:: é}/l;‘ea‘k .

(Every root in this sum is repeated as many times as its multiplicity indicates.)

Since
A o,
we have
a4 (0, )= 31929 (ni s 2y

From (10), we have

r P ¢ Lz ~
> pele i= X itk X a”.’féx dé: i+ S Z‘ax#z‘bi(@'a)ds .
=1 i7=1 0i=

1]
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On the other hand,

a(H)_
2

z(p, 0) .

P
> mbi(x) 2 3L == (a, p) coth
[

axi

2o i

Therefore, as in 4°, we have
P, (um 22T () ) =1.
{=os t
Since 115’1 (an ‘*"bn)_—g _l}m U+ ﬁvm bn y

oo Tir00 f—oo

P O~ - e ity s
(0, )= lim X ﬁf%@?‘« = lim w‘“:“" + 3 Tim L2

Tivoe i=:1 {00 17k L0
. vlkf}il,k - Wi

= lim L4265 3 (e, ) (et
t ik 2

Therefore, by (14),

(15) f’:(l‘irg ﬁ;“'f“’;i(ak, ax) (—7-7'2—— +n;>) =1,

From (13) and (15), we have

-

131<1im %—"— = (ak, @) (—’}ZL ~;—rn1.), k=1, -, p) =1

t—oo

or

I\’x<1im—€£~ ::fp) =1, for zek’ ,

Lo

where we identify p€o* with an element H,€a such that p(H)=(H, H,).
Now let ¥€dE. Then, for t:>0, we have

(16) P.G,eEN=1.
For, by Proposition 4,
amn P&, ek, n=1,2, --)=0

(ra,n=1,2, --- are rational numbers in (0, %)). On the other hand, by Prop-
osition 3,

P.(3.e E’, for all t=t0)=PuF,, € E’, 0,(F: € E’, for all 20}
= ML i3, ¢ 7130, € B/} P, (B € B, for all 520))
=P, £ .

Consequently, by (17),
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P:(:T:LOGE");/*;PZ(?I:%GE", for some n)==1.

Therefore, we have

-~

P. (Iim% :p> :Pz<lim Texto :p)

fmson L—r00 t

Zri)x<010{3im ‘%“ 71:‘0})

:iMxP:%((limxT" ::p> -1, by (16) .

Hence we have obtained the following theorem.

(11
(2]

3]
f4]
(5]

(6]

8]

THEOREM.

P;(lim—‘zii— r;o) , for all zeFE.

t—00
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