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1. Introduction

1.1. Fundamentally, our task is the following: a Markov process is given;
it is required to describe all similar Markov processes, l.e. processes with the
same conditional distributions on any time interval [s, {JC(0, «) given the posi-
tions z, and x: of the moving particle at s and .

To solve this problem, it is sufficient to be able to find for any Markov
process:

a) all processes with the same conditional distributions on any interval
[t, o) given z: (we call them right similar processes);

b) all processes having the same conditional distributions on any interval
(0, s) given s (the left similar processes).

Various right similar processes differs from each other only by their behaviour
as t | 0 or, figuratively speaking, “by the way of their entrance into the state
space E”. They will be characterized by measures on the so-called entrance
space U. Left similar processes differ from each other by their behaviour as
£ 1 (the terminal time of the process). They will be characterized by measures
on the so-called exit space U.

To avoid technical difficulties connected with conditional distributions, we
shall introduce formally more restricted definitions of similar, right and left
similar processes in subsections 1.2 and 1.3.

1.2. A Markov process on a measurable space (E, &7 ) is a pair (x:, P), where
xi(w) is defined for we€ 2, 0<t<{(w) and takes values in E, P is a o-finite measure
on the space 2, and for all 5,¢>0, e #

Py € INzu, 0Su<9)=p(t, @5, I) (a.s. P, 02)", 1.1

where p(t, z, I') is a transition function®. We shall assume that the sample space

b We set 2,={w:l{w)>s}. The expression (a.s. P, 4) means “for P-almost all wc A”.
2 The function p=p(t, z, I') is called a transition function if: a) for fixed ¢ and z, p is
(Continued on next page)
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2 is the set of all (terminating and non-terminating) paths in E and that
w(w)=w(t). Hence the various processes differ from each other only by measures
P. All these measures are defined on the o-field 7~ generated by the sets
{m:zu(@ye 'Y (u>0, I'e &),

We say that processes P and P are right similar if they have the same
transition functions. We call them similar if their transition functions are
connected by relation

Bt 2, dyy= 2L pe o, dyyny), 1.2)
h(z)
where a(t) and h(z) are finite and strictly positive. (The definition of left
similarity demands some preparations and will be given in subsection 1.3.)

If P and P are right similar, then
P(Alz)=P(Alz)  (a.s. P+P, Q) (1.3)
for any t>0, Ae 47 [t,00)¥, If P and P are similar, then
P(A\Ta, x0)=P(Al2s, 2)  (a.s. P+P, Q) (1.4)
for any 0<s<t, Ae 4 [s, t]Y.

1.3, In the following we shall always accept that a transition function p
is fixed. It is easy to prove that the funetion P defined by (1.2) is a transition
function if and only if a(t)==e™** and

e Pih(x)<h(z) for all t>0, € E,
e Ph(x)->h(x) as tl0%. 1.5)

7 'é'rine;s;ar;‘én the*z;f;elég pt, z, EY<1 and p(t, 2, E)~1 as £ | 0; b) for fixed [, p is
a (0, 0o)X .»-measurable function (we denote by .s() the class of all Borel sets of
a topological space #); ¢) for all 5,¢>0, I'€ =

{26, 5 dwntt, v, D=pts 41,2, 1)
3  We denote by .,(4) the v-field generated by the sets
{w:z(w)e T} (wed, I'e ).

#  The relation (1.3) does not imply right similarity and (1.4) does not imply similarity.
However (1.4) and (1.2) are equivalent, for example, if E is denumerable, p(t, 2, ")
and P{, %, I') vanish for the same triples ¢, 2, I" and there exists a point 2o such that
(¢, zo, ¥)>0 for all ¢, y.

% We set

Pf(a)= SE”“' 2, dpF ), WPYT)= SE”‘d‘”)"“' o).

Two operators can be associated in analogous way to any kernel. We denote kernels
by small letters and corresponding operators by the same capital letters.
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Funetions h satisfying (1.5) are calied a-excessive. The totality of all such
functions will be denoted by & °.

For any Markov process P with the transition function p, (1.1) implieg that
the measures

v (Y= Plz. el t>0)
are connected by the relation
vePi=viss (S, t>0). (1.6)

Each family of o-finite measures v: (¢>0) satisfying (1.6) will be called an en-
trance law. The set of all entrance laws will be denoted by &°.

Let M be the class of all similar Markov processes which is determined by
the transition function p. An arbitrary process P€ 0l has a transition function

of the form
~at
L pt, 3, dphly)  (hETTT.
h(z)
The formula
at
vi(da) = ¢
(dx) @ Pz, e dx) t>0)

defines an entrance law. Let us write P=P¢* It follows from (1.1) that for
any 0<ti<tel -+ <in

Pet(x, €dyr, 2, € dYr, «« -, T, €AYn) 1.7
=ve, (YD) plz—1t1, y1, dy2) - - PlEa—ta1, Yu-r, dY2)R(Y)e "0 .

The formula (1.7) allows to set the one to one correspondence between W and
the set of all triples v, a, h where v€.%” and he & “".

Measures P2* with a fixed (¢, h) form a class of right similar processes.
On the other hand,

Pek(Alg)=Pif(Alx  (a.s. PihtPit 0,)

for all s>0, Ae_47(0,s). Therefore it is natural to assume as a definition that
any processes P2* and P%% are left similar. Otherwise the decomposition of
the class of similar processes into classes of left similar processes can be ob-
tained by fixing the index v in (1.7).

® For any v, a, h it is possible to construct the unique measure satisfying (1.7) with
the help of a Kolmogorov theorem. To use this theorem we have to impose some
restrictions on the state space (F, =). For example, it is sufficient to suppose that
E is a Borel set in a separable locally compact metric space and -+ is the class of all
Borel subsets of E.
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1.4. The task of describing all similar, right similar and left similar process-
es is now reduced to two problems:

PROBLEM A. To describe the set & of all entrance laws.

PROBLEM B. To describe the set .7 of all excessive (i.e. 0-excessive) func-
tions.

Strictly speaking, we have to describe sets .7 = for all @ but .9« coincides
with the set of all excessive functions relative e™**p. (As e ‘p(t, 2, E) may be >1
if @<0, the reduction requires a slight extension of the notion of a transition
function.)

To investigate problems A and B we need certain finiteness conditions.

Note that Pe*(>t)=e¢ % (k) and hence

PS}”(Q):lLim ve(h) . (1.8)

We agree to denote this value by »(h).” Let us say that k is v-finite and that
v ig h-finite if »(h)<co.

We modify the problems A and B in the following way:

PrOBLEM A’. To describe the set .54 of all ¢-finite entrance laws (for a
given ap-excessive function ¢).

ProBLEM B’. To describe the set .97 of all y-finite excessive functions (for
a given entrance law 7).

We shall construct two topological spaces: the entrance space U= U(p,q)
and the exit space U= (7(p, 7). To each point z€ U there eorresponds a solution
&% of the problem A’ and to each point ze€ U there corresponds a solution k. of
the problem B’. The formula

p= S &4 p¥(dr)
v

determines the one to one correspondence between &% and the set of all finite
Borel measures on U, The formula

B S Jeer(d2)
14

determines the one to one correspondence between 97 and the set of all finite

A

Borel measures on U.

1.5. The results formulated in subsection 1.4 are deduced under certain

. We denote also by »(h) the integral of a function & with respect to a measure ». If
the entrance law v is defined by the formula v,=uvP; where v is a measure, then both
definitions of u(h) lead to the same numerical result.
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restrictions on the transition function p, entrance law y and asexcessive func-
tion q.

For Markov chains these results were, essentially, obtained by Doob [1], T.
Watanabe {2] and Hunt [3]. The case of standard (and some other) processes
was investigated by Kunita and T. Watanabe [4], [5], [6].

The theory presented in this lecture gives the most general results under
minimal assumptions.

2. Support systems, Martin compactums

2.1. We introduce no topology in the state space E. The necessary condi-
tions on the transition function p will be formulated in the terms of support
systems.

Let V=V(E, £Z) be the set of all £Z-measurable functions on E with
the values from the extended half-line [0, ©0]. A denumerable set W< V is call-
ed a support system if the following conditions are fulfilled:

2.1.A. If ¢1, ¢2€ W and 7, 7. are positive rational numbers, then 7i¢:-+
roc2€ W,

2.1.B. If ¢, n=1,2, --+) are measures on % and p.(p)l(e)<co for each
o€ W, then there exists a measure z on && such that p(p)=l(¢) for all g€ W.

2.1.C. Let a set VoW have the following properties: if fi, f2€ V, then
firf2e Vi if fi, fr€ V and fi<f:<eo€ W, then fo—fi€ Vi if futf and f.€ Vv,
then fe V. Then V contains V.

If E is a separable locally compact metric space and & =SZ (E), then a
support system can be constructed as follows. Consider a sequence of open sets
D.t E with the compact closures. Choose a denumerable every dense subset .97
in the set of all positive continuous functions with supports in D.. Form the
sum & of all .9 and denote by W the linear span of .o over the set of

all positive rational numbers.

2.2. Let a denumerable system 57 of bounded functions separate K (i.e.
for each x+#y € E there exists f€.9° such that f@)#f(). It is possible to
imbed E in a compactum & in such a way that each f€.#” extends uniquely
to &. (We shall denote the extended functions by the same letters.) The com-
pactum & will be called the compactification of E by means of .z”.

Let R be a denumerable set. We call the function k.(z, [)>0 (e€R,x€ K,
I'e.s#) a Martin kernel (for a given support system W) if ka(—,1") is B -
measurable for each a€ R, '€ & ; k.(x, —) is a measure for each a€ R, v€ F
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and the funections
K.o (e R, ce W) 2.1

are bounded and separate E. Consider the compactification & of E by means
of system (2.1). Relying on 2.1.B, we can extend ku(z, I") for any ae R, 'e <&
to all z€ & in such a way that for any z€ 2, a€ R, k.(2, —) is 2 measure on
B and for each a€ R, o€ W, the function K.¢ is continuous on & . Let us
agree to name & the Martin compactum corresponding to the Martin kernel
k«(x.I") and the system W.

Starting from the Green kernel

Galz, I7) = re”“p(t, x, )dt
Q

we shall construet two Martin kernels and two Martin compactums. The entrance
space is a Borel set in one of these compactums and the exit space in the other.

3. Entranece space

3.1. Let us fix an acexcessive function ¢ and denote by R the set of all
rational numbers r> a0,

Suppose that:

(AI) The functions ga(—, ") (€ R, I'e <#) separate E.

(AIl) There exists a support system W satisfying the following conditions:
a) lle/gll<co for any o€ W®; b) for any o€ W, a>0 a sequence f-€ W may be
selected such that f T Gap; c¢) a sequence J,€ W may be selected for which
dntq.

The Martin compactum & corresponding to the Martin kernel

(and the support system W) will be called the Martin entrance compactum.
Denote by %1 the set of all points z€ & for which

Ko@)+ (3—a)KGao(2)=K.¢(z) for all F>a€R, ce W, 3.1
it follows from (3.1) that

(—=@)* d*Kagra(2)
—_ n| dan

\

0

A

0K aaCipmas @< | 2|

8  We set i!soil—*—suplso(x)l-»
E
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According to a theorem of Bernstein, K. :.¢(2) is a Laplace transform of a
funection F';(t) satisfying inequalities 0<<F'%(t)<lic/qll. Using 2.1.B we can choose
measures « so that e*o’!FL(#)=+i(¢). Then

Kop(d)= Swe""‘xi({:)dt

[

for all o€ W and, hence, for all ¢€ V.

Let us suppose now, that:

(AIII) There exists a denumerable set 577 C V separating measures®” and such
that for each ¢ €57 [¢/q]l<oo and Puwi(zx) is right continuous in ¢.

Then measures «; determine an entrance law r°€.%%. For z€l wf=
p(t, , Dg(x).)

3.2. Relying on the martingale theory, we construct in the space & a right
continuous in ¢ path z.(¢) (0<t<w)) so that for all ve &%, he o “.

3.2.A. P2*z.#x:}=0 except possibly a countable set of ¢.

3.2.B. For P<*-almost all o there exists a limit

Zolw)=1im 2:(w) .
tio
8.2.C. For any s>0, the closure of the path 2z:{w) 0<t<sA{{(w)) lies in &1
for P2t.almost all .
3.3. We define the entrance space U as a set of all z€ &1 for which
P:‘,’" {zo=2z}==1 .

It is proved that:
3.3.A. TFor each ve. %%, he 9 ¢

Perigee Uy=0.
3.3.B. For each positive _#(0, co)-measurable function £, fe V(Z)W©,
he 7«

M‘:"f(zo)smg F@M ™ epda)
U

where

p( =Py e l}.

9 f.e. for any two measures p5=ye such that pdp)<co for all o€ W there exists ¢ €.
such that p(@)=pe(d).
1 'We denote by V(&) the set of all positive Borel functions on «.



94 E.B. DYNKIN

In particular, for each ¢ € V(&)

Meb £ o)) - g e F (i) . (3.2)

v

Setting a=-0, k=1, f=1, ¢»==%;, we obtain the following representation for
an arbitrary ve .4

v | o). (3.3
U

A measure 2 in (3.3) is uniquely determined by v.
The formula (3.2) also implies that for all ve .4, he o7 ¢

Pizoe df= (e ds) .

4. Exit space

4.1. We shall call a function f€ V /-continuous if there is a function
F(t, ) (we 8, 0<t<(w)), left continuous in ¢ and such that

PAF(Q, o)+ f(@)}=0 for all ve $”, 0. 4.1

(The condition (4.1) is fulfilled for all ve &7 if it is fulfilled for v#(I)=p(t, z, I
@ekE, I'e &2)).

Let R be the set of all rational numbers r>0.

Suppose that the following conditions are satisfied for some measures 7 and
r®on <& and a support system W:

(BI) The measure y is finite, the measures m and 7=yG are finite on all
€ W and v i3 m-continuous (.e. 7(/)=0 if m{)=0).

(BII) For each a€ R, x€ K the measure g.(x, ) is 7-continuous,

(BIII) The density funetion k.(x, )= 9o, dy) can be selected so that the

. 7(dy)
functions

S mdx)e@ka(x,y) (ve W, aeR)
E

are .I-continuous and separate E.
(BIV) There exist constants c& such that for each a-excessive function %

mlph)<ciy(h)  (¢€ W, aeR) .1V

10 Tl;e céndition (BIV) is fulfilled, for example, if y{dx)=d(x)m(dz) and {p/¢ll <o for all
€ W. It is sufficient also that the measure SEr(dx)ga(x, -) is m-continuous for each

a>0 and its density ¥« is such that [p/¥]f<co for all pe W.
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Under these conditions we shall describe the class <7 of all 7-finite exces-
sive functions (i.e. functions % for which 7(h)<co).

4.2. Let us denote by E, the set of all points x€ F for which
S m@yeWk.(y, v)<<eg  (ve W, aeR),
E

where ¢§ are defined in (BIV). It is proved that r(E\Es)=0.
The formula
. ku(y, x)ym{dy) for xze ks,
ke(z, dy)— {
for x€ES,

defines a Martin kernel (with respect to the support system W). The corre-
sponding Martin compactum g” will be called the Martin exit compactum.

Relying on (BIII) we construet a funetion zt(w)eé? (we 2, 0<t<L(w)) which
is left continuous in ¢ and satisfies the condition P*{zs£2:}==0 for all t>0, ve &7,
he 7 ¢. (Here Ph=pot)

We prove that:

4.2.A. For Ph-almost all w there exists a limit

ze(w)=1im 2¢(w) .
et
4.2.B. For each o€V, fe V(&)
S  F@Eap@udd)=Mhe ez 4.2)
&
where

m(l)y==Piizze '},

and
m%’(f')zg m{dye(npt, v, 1) .
bol

4.3. Using (4.2) we construet a Borel subset & {5 with the following
properties:
4.3.A. m(E\F)=0 for all he g
4.3.B. For each z€ %1, ae R
fu(z, dy) =k (yym(dy) ,

where k7 is an a-excessive function, y(k2)<<1 and
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kg ket 4-iGryeke  for all 4, ae R .12 4.3)
4.3.C. For each fe V(¥)

Miewsfa= |, F@uemda) (.4)
&
Setting a=0, f=1 and taking into account (1.8), we have

v(h) :S (kD m(dz) .

&y

Hence for all z
h(x) == S‘ ke (@)ypn(dz) (4.5)
oy

4.4, We define the exit space U as the set of all ze 22“ 1 satisfying the con-

dition
Prry, —2}=1 for all ve .S”.

It is proved that:

4.4.A. ,z.z;,(%\ l?)::O for all v€.5”; hence the domain of integration in (4.4)
and (4.5) can be restricted to U.

44.B. If h(a;)ngkz(x),u(dz) with a finite Borel measure s, then p=m.

v

Thus the problem B’ of subsection 1.4 is completely solved'.

4.5. The set U of all ze U such that k=0 for all a>0 is called the passive
exit space; the set U. .-_-[7--('}'0 is called the active exit space. For all ve &7,
he 77

A

Uo

M'ﬁf(z:)zzng F@wib)edz) |

M fzet= § F@wm(dz)  (@>0) .
Ue
A function h€ .97, can be represented in the form

b= k),

Ug

1 Fix some z€ 41, € E. We conclude from (4.3) that k%(z) is uniformly continuous in
a€ R. Therefore it can be continuously extended to all positive real . The prop-
erties listed in 4.3. B remain valid for the extended functions.

13 Notice that the set of all minimal r-finite excessive function is given by the expres-
siop ck. where z€ U/ and ¢ is an arbitrary positive constant.
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with the finite Borel measure ; if and only if Ph=h for all £>0. It can be
represented in the form

b= S k. ne{d2)

Vg

with the finite Borel measure » if and only if Pih-0 as t—oo.
The formula

”

If“y kipds) (U <o, a>0)

Ua

gives a general form of a-excessive functions for which y(R)<co and y(Gh)<co
(moreover,
hraGhes | kptda).
v Ugqg

4.6. To any closed set /" in the Martin exit compaectum 2 there corresponds
an operator Pr on the set of all excessive functions. To define it we consider
the time «,=inf {£:{>0, 2.&€7I'}, construct the right continuous regularization
H(t) of the supermartingale h{(x.) and set Prh(x)=M.H{z)",

Let . be a system of closed sets of . We call an excessive function
h &7 -harmonic if Prh=h for all I"e.o”. An .57 -harmonie function is called
A-harmonie if &7 is the totality of all closed subsets of an open set A.

We prove that:

4.6.A. For each ze U the class of all ¥ \{z}-harmonic functions is given by
the expression ck. where ¢ is an arbitrary positive constant. An excessive fune-
tion h is A-harmonic if and only if z(4)=0.

4.6.B. In order that a function k:zeU) be .o -harmonie, it is sufficient
that 2 belongs to no set I'e 7, and it is necessary that there is a sequence
2Z»—2 with a finite number of members in any /"€ . An excessive function
h is . -harmonic if and only if the measure y i3 concentrated on the set

{z:k. is & -harmonic} .

5. Excessive measures

5.1. We fix a suport system W and say that a measure 7 defined on the o-
field <#Z is excessive if for all pe€ W n(Pp)<n(p)<oo (£>0) and 7(P,p)—n(p) as
tl0. An excessive measure % i8 Prinvariant if »P,=% for all t>0; it is P
vanishing if 7»(P,9)—>0 as t-—>c0 for all o€ W, Each excessive measure » can be

4 According to usual notations we set P,=P? * where a=0, h=1 and v*(I"=p(t, z, ).
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written uniquely as the sum of a Pi-invariant and a P.-vanishing measure.
Fix a function 1€ V for which ¢=Gl is finite-valued and strictly positive.
Let us assume the conditions (AD)-(ATID) and the following condition

tGoe !

(CD =l oo for any e W.
g

It is proved that the formula

’I,T:S vedt
0
defines the one to one correspondence between ¢-finite entrance laws v and [-
finite Pi-vanishing measures 5. Relying on (1.3) and setting
o_K cidt 6.1)
Jo

we conclude that the formula

y = S 9% 11(dz)
12

determines the one to one correspondence between finite Borel measures on U
and [-finite P:;-vanishing measures 7.

5.2, Consider an P-invariant measure » and an excessive function h. Let
£ be the set of all paths in E defined on all time intervals (—co, 2), where 2
range through the set (—oo, +o0]. There exists a unique measure P" on the
o-field 4" (—co, +00) such that for each —co<ti<ta -+ <t

Pliz, edys, xr,€dys, - -, 2, € dy.}
= ytf(dyl)P(t?-“Atly yly d/?h) ttt P(t?1~~t1l—1! y"—Jy dyn)h(yn) .
(The measure P% determines a stationary Markov process.)
Let W, | and ¢ have the same meaning as in subsection 5.1. Suppose that

(CID Gell<oo for all ce W.

Assume also the conditions (CI) and (AI) (but no conditions (AI)-(AIII)). Denote
by R the set of all rational numbers >0 and construct the Martin compactum &’
corresponding to the Martin kernel

ka(z, 1) = 4200 (aeR,zeE, I'e 7).
q(x)

It is possible to define a function zd{w) (we 0, —co<t<t(w)) taking values
in &7, right continuous in ¢ and such that Pi(z¢£2.)=0 for all t€ (—oo, +c0),
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[-finite Pw-invariant » and he o7. It is proved that there exists PJ-almost
surely a limit

Z...== Him 2z .

E}--o0

The passive entrance space U} is defined as a set of all z€ &’ satisfying condi-
tions:

5.2.A. ki(z, IN)=0 for all a«>0.

5.2.B. 0*(—)=k(z, —) is a Pi-invariant measure and 6(]):=1.

52.C. Pl:(z..,=2z)=1 for all he 7.

We prove that for all », k

Pilz e Ut}=0

and for any _#7(—oo, +oc)-measurable function £>0 and fe V(&)
Mw&%E:gf@mew@
v

where
(Y= Mo% (ze o)l (20) .

Setting f=1, h=1, &=%41 we have

77:& aundz) . (5.2)
Ug

The measure #” is finite and is uniquely determined by the formula (5.2).

5.3. Assume now the conditions (AD-(AIII) and (CI)-(CII). The results of
subsection 3 remain valid if we replace & by ¥/. The condition

P}, {zo==2}=1

defines a subset U} of the set &’ which is called the active entrance space.
It follows from subsections 5.1 and 5.2 that each Il-finite excessive measure 7

is represented uniquely in the form
7;:“:5 azjl(dZ) ’
o

where U'=Uju U}, 6% are the measures described by (5.1) and 5.2.B and s is a
finite Borel measure.
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