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Introduction. The theory of Martin boundary [11] is a generalization of the
boundary value problem of Dirichlet type and the theory is extended to the
case of the ideal boundary associated with the elliptic differential operator A=
div V+b-V with variable coefficients by many authors (for instance [6], [14]).

The purpose of the present paper is to construct a theory of ideal boundaries
of Neumann type associated with the elliptic operator A*: A*u=div(Vu—bu),
formally adjoint to the operator A. Such an ideal boundary was originally
introduced by Z. Kuramochi [9] in case A is Laplacian on a Riemann surface;
the boundary is now called the Kuramochi boundary and is studied by several
authors (for instance [2], [3], [10]). Recently M. Ohtsuka [12] has simplified the
main part of the Kuramochi’s theory. Ohtsuka’s method may be applied to
Laplace-Beltrami operator 4 on a Riemannian manifold of arbitrary dimension
by using some results on elliptic differential equations; in this case, the formal
self-adjointness of A4 is useful.

In the present paper, we do not assume the formal self-adjointness of A
but we assume some condition for b (see ASSUMPTION (A) in §1), and we shall
construct a theory of ideal boundaries similar to that of Kuramochi. Though
the contents of this paper are quite parallel to those of [12], we use the notion
of regular mapping defined in the author’s previous paper [7] instead of th
Dirichlet principle used in [12], and some other changes of arguments are neces-
gsary for the reason of non self-adjointness of A. However, most of the argu-
ments in §6 where we discuss the classification of the boundary points and
canonical representation of full superharmonic functions, can be achieved in the
same way as in [12]. So, in §6, we state only the outline of the procedure ex-
cept some lemmas being influenced by non self-adjointness of A.

We may establish the imbedding of the smooth boundary into the ideal
boundary. But the imbedding theorem will be shown somewhere else.

* The result of this paper was reported at the International Conference on Functional
Analysis and Related Topics held at Tokyo in April, 1969 [8].
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While the method in this paper is purely analytie, it should be noted that
the theory of the same kind of ideal boundaries is being established by the
probabilistic method (e.g. [3], [15]).

§1. Preliminaries. Let K be a non-compact orientable C=-manifold of
dimension m=2, and A be an elliptic differential operator of the form:
Au(x)=div[Vu )]+ (b(z) - Vu(z))

- “__A_]'_A,_ U v alx) gt u(x) i
m/a(m)ﬁl{ a0 }+Zb(>

au(:v)

where lla*/(®)| and [[bi(z)]| are contravariant tensors of class C? in R, |la‘i(z)| is
symmetric and strictly positive-definite for each z€ R and a(x)=det ||a:;j(z)]=
det [la*(z)|-!. We shall denote by dz and dS(x) respectively the volume element
and the m—1 dimensional hypersurface element with respect to the Riemannian
metric defined by the tensor [ja:;(z)].

Given subdomain £ of B and positive-valued continuous function w(z) on 2,
we define the measure dux=w(x)dz in 2. For any m-vector fields @ and ¥ defined
in £ with covariant components () and (¥:) respectively, we define

(@-¥)=3%, a*®¥; (as a scalar function on Q) ,
3

@, Vygu= S @-V)dux and [|@)lo..=(D, O)Y2

whenever the right-hand side of each formula makes sense. For example, if u
is a function piecewise smooth in £ in the sense defined later, then

i O wx(goo)
[PAtE)

nwnz,,m-ﬂ“g a2t Ju ou

is well defined.

By definition, a subset E of R is said to be regular if the boundary of E
consists of a finite number of simple hypersurfaces of eclass C* (E is not neces-
sarily compact)’. A function u is said to be piecewise smooth on a domain £
if it is continuous on £ and there exists a finite number of regular domains
$1, - -+, 2a such that u is of class C! in every connected component of Q-0 U

- U02,).

We denote by L%(%2) the completion of the space of all m-vector fields @ in
£2 with finite norm [|@]lo.., and by P.(©2) the totality of piecewise smooth fune-
tion ¢ on 2 such that Vye L:(2). Given compact set K@, we denote by

L E and E° respectively denote the closure and the interior of E as a subset of R.
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P.(2:K) the totality of piecewise smooth functions ¢ on 2—K such that J|;,=0
and V¢ e LE(2—-K).

Throughout this paper, we are concerned with the formally adjoint operator
A* of A:

A*u=div (Vu—bu) .

A function % is said to be harmonic in a domain 2 if it satisfies A*u==0 in
2, and is said to be superharmonic in 2 if it is lower semi-continuous and locally
summable in 2 with respect to the measure do and satisfies A*u=0 in £ in the
sense of distribution by L. Schwartz [13].

A superharmonic function % in 2 has the following properties:®

i) u is locally bounded from below;

ii) if D is a domain with compact closure Dco, if w is continuous on D
and harmonic in D and if w<w on ¢D, then w=u in D.

We fix a regular compact set Ko R and 2 point z0€ K. For any domain
00K, we set ’=0—K,, in particular R'=R—Ko.

For every relatively compact regular domain DD K,, let w® be the solution
of the following elliptic boundary value problem (1.1) satisfying the normaliz-
ing econdition w?(zy)=1:

=0

:22]

L1 A*w=0 in D, <~gy}~~ﬁuw>
onp

where 50;22- and jp respectively denote the outer normal derivative of w and the
D

outer normal component of b on éD; as is shown in [5],¥ the solution w of (1.1)
uniquely exists up to a multiplicative constant and does not change sign on D,
and accordingly, by means of the normalizing condition, ©? is uniquely deter-
mined and ©?>0 on D. »

Throughout this paper, we set the following

ASSUMPTION (A): There exist functions g€ CY(R) and w>0 on R such that

2 The superharmonicity of » in @ is usually defined by the following three conditions:
a) —co<u=oo and u is not identically equal to oo in 2, b) u is lower semi-continuous
in £, and ¢) % has the property ii) mentioned above.

Actually we may prove that, if u satisfies a), b) and ¢), then d) u is locally summable
in 2, and e) A*# =0 in 2 in the sense of distribution, and conversely that any function
with properties d) and e) coincides almost everywhere with a function satisfying a), b)
and c¢). So our definition is equivalent to usual one. We adopt this definition for the
sake of simplicity.

& Differential operators 4 and A* in the present paper respectively correspond to A*
and A in [5] (and also those in [4] cited in §2).
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; ] |
(1.2) b vgeLL(R) and lim sup log2 - <co.
DTE ze D] wiw) |

It may easily be seen that the existence of such functions ¢ and w does not
depend on the choice of zo. The second condition in (1.2) is equivalent to the
following one: there exists a monotone increasing sequence {D.} of relatively
compact regular domains such that

Pn ¢
1.3) lim D,=R and sup sup Iklog EL«EZE <eoo

. n 2t w(x)

If espeeially b- -Vp for some p€ C*R), we have w”==e? 7"’ for any D by the
uniqueness of the solution of (1.1), whence Assumption (A) is satisfied by g=p
and w==¢?.

§2. Regular mapping and kernel function. In his previous paper [7], the
author defined the regular mapping L associated with the elliptic operator A*
under the assumption (A) (§1) and the kernel function N(z, y) for the elliptic
boundary value problem with vanishing normal flux at the point at infinity.
The mapping L and the function N play important roles in the present paper.
In this section, we sketeh the main results of the previous paper [7] without
proof.

THEOREM 2.1. There exists unique function o on R satisfying that

(B) { wlze)=1, >0 on B, b—Vpe L:i(R) and

b—Vp, Vr..=0 for any ¢ € P.(R)
where p=logw. The function « is harmonic in R, and o=1lim o uniformly
on every compact subset of R for any sequence {Da.} satig}ag;ing (1.3). (See
Theorem 3.1 in {7].)

THEOREM 2.2. For any regular compact set KC R’ and any function ¢€
CY3K), there exists unique function w on R—(Ko)°—K° satisfying that

Ulsky=0, ulyx=¢, !V-y—t <co, sup ﬁl<oo and
© I o lr—g,e R—K|®
(v—l‘- —b—Vpl L, w) =0 for any ¢€ Pu(R; K+Ko) .
w [G] R —K.,0

!
The function w is harmonic in R’ —K and satisfies sup '-& -(’0—] If we
R’—~K1 [ w

denote by v?, for any DK+ Ko, the solution of the boundary value problem:
A*p=0 in DV—K, vk, =0, Vlsk=9, (ﬂ—ﬁuﬂ% =0, then we have u=lim v’

anD ‘8D fA—soo
uniformly on every compact subset of R—(Ko)°—K° for any sequence {Da} satis-

=max
e
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fying (1.3).
This theorem is obtained by replacing K in Theorem 3.2 in [7] by Koi-K.
By virtue of the above two theorems, we can define a mapping L=LS of

satisfies the condition (C). The mapping L% is called a regular mapping; this
is the restrietion of the mapping Lx.x, in the previous paper {7] to the set of
all functions ¢€ CH{oK+0Ko) satisfying that ¢lok,==0.
For any fixed ye€ E—(Ko)°—K°, we have
{(Lko) ()

2.1 , |
@1 L e |

nl:(ix,‘f:—’ for any ¢c€C!'(GK)

IIA

o 8¢ . .
¢ _, Lie) ) is uniquely extended to a

© w(Yy)

bounded positive linear functional on C(GK) and accordingly there exists a Borel
measure /t% on 6K such that % (0K)=1 and that

by Theorem 2.2. Hence the mapping

2.2 (L‘}(,c)(y):ffw(y)g -‘%ﬂd/!%(m) for any ¢€ C@K) .
ax (%)

For any lower semi-continuous function ¢ on 0K, we define (L%¢)(y) by the
formula (2.2). Thus the regular mapping L% is extended to a mapping defined
on the space of all lower semi-continuous functions on 9K, and we have the
following (see Theorems 4.1 and 4.2 in [7])

THEOREM 2.3. For any lower semi-continuous function ¢ on 0K, Li¢ is
harmonic in any connected component of R'—K in which Lo i not identically
equal to oo,

THEOREM 2.4. Let K1 and Ko be regular compact sets such that Kic Kac R’ —
Ko, and ¢ be a lower semi-continuous functinn on 0Ki. Then L%, (L% ,0)=L%»
in R'—(K3)°.

For any relatively compact regular domain DD K, we denote by N”(z, )
the kernel function of the boundary value problem:

011] o,
0n,):ap

2.3 Av=—fin D/, vl;k,=¢0,

N?(xz, 4) is also the kernel function of the adjoint boundary value problem:

2.4) A*yp=—fin IV, ’1)131(0:990, (:)’U “ﬁlﬂ))‘ =@ .
ony iap

(See [7; §2] and [4; §101.*) For any z€ R’, we denote by K(x) the totality of

See the foot-note 3).
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regular compact subsets K of R’ such that x€ K°. The kernel function N(z, ¥)
is defined by the following (see Theorem 5.1 in [7])
THEOREM 2.5. There exists unique function N(z,y) continuous on

(2.5) (R!+0Ko) < (R -+35Ko)—(2, 2); z€ (R’ +3Ko)}

with the following properties 1) and ii):
i) For any Holder-continuous function f whose support is a compact sub-
set of R!, the function

2.6) v f@Ne, vida

satisfies that

2.7 A*v=—f in R’ and ’Ulaxo:O .
i) For any fixed x€ R/, it holds that

(2.8) L% N(z, Yy=N(x, -) in B'—~K for any Ke K(x) .
Further we have

2.9 Hm N?»(z, ¥)=N(z, ¥) uniformly on every compact
subset of the set (2.5)

For any sequence {D.} of relatively compact regular domains satisfying (1.3).
COROLLARY 2.5.1 (See Corollary 5.1.1 in [7]). Let f bea C? function on R’
whose support is a compact subset of R'. Then

(2.10) SR,A*f (@)-N(z, yydz=—f(¥)
and
211 |, @ v)-Af@dy=—~f @)

COROLLARY 2.5.2. S NG, ) dS(y)=1 for any z€ R’ .
ar, Oty (1Y)

This fact is not explicitly shown in [7]. But it is proved as follows. By

Dﬂ
means of Green’s formula we may show that S QN&(—@—'—?D— dS(y)=1 for
aK, Ko
every n. Letting n->co, we obtain this corollary in virtue of (5.9) and (2.4)

in [7].

THEOREM 2.6 (See Theorem 5.2 in [7]). For any fized x€ R'-+dK, and any
regular compact set KCR’, it holds that LY N(z, -)SN(z, -) in. R’ —K; the equali-
ty holds if z€ K°.
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We can take N(z, %) as a kernel of potential. For any Borel measure ¢ in
R’, we define the potential #N by

@.12) FN('Z/):S Nz, p)ds)

whenever the right-hand side as a function of ¥ is not identically equal to oo
in R’.

For any lower semi-continuous funetion v on K/, and any regular compact
set KC R/, we define vy by

(L%¢ in R’ —K-+-0Ko with ¢=vlix
2.13) YK ::111 in K

We also define, for any fixed € R’ +0K,,
(2.14) Nglz, 1y=[N@, )l .

Here we show some lemmas which will be necessary in the following sections.

LeMMA 2.1 (Maximum-minimum prineiple). Let 2 be a subdomain of R and
assume that uw is continuous on O and harmonic in 2. Then %‘; takes its
mazimum and minimum at some Doints on 0L,

This fact may be shown from the fact that Y satisfies
(i3]
div{w(V%)}——w([b——Vp]-\?—Z—):div{\’u~bu}:0 :

LeMMaA 2.2. 1) The potential N defined above is superharmonic in R’.
i) Any superharmonic function v in a subdomain 2 of R’ is uniquely ex-
pressible in the form v=pN-+h where £ is o Borel measure in 2 and h is a
harmonic function in & (Riesz decomposition).

This lemma may be proved by the same argument as in the theory of
Schwartz distribution {13; Chap. VI] in virtue of (2.11).

LeMMA 2.8. If w and v are superharmonic in o domain £ and if u==v a.e.
in 2, then u=v in 2.

Proor. For any fixed %€ 2 and any a<u(yo), there exists a neighborhood
2.2 of ¢ such that u>«a in Q. (lower semi-continuity). Hence, from the as-
sumption and by Fubini’s theorem, there exists a regular neighborhood 22,
of ¥ such that v>a dS-a.e. on 32, and accordingly v(ye)>a. Hence we get
v(yo) =u(yo). Similarly we have w(yo)=v(¥o).

LEMMA 2.4. ([b—VD]Y, V) r..=0 for any ¢ € P.(R; Ko) which is bounded on
R,
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This is an immediate consequence of Lemma 3.2 in {7} since ¢=b—Vp satisfies
(3.1) in [7]. Though the definition of P.(R; Kv) in the present paper is slightly
different from that in [7] in the point that functions in Po(R; Ko) in the present
paper are not necessarily smooth but may be piecewise smooth, the modification

of the proof for this point is quite easy.

§3. Construction of the ideal boundary. Let N(z, %) be the kernel function
defined in §2, 2 be a relatively eompact regular domain in R containing Ko and
G¥-Ki(z, y) be the Green function for Dirichlet boundary value problem in O—Ko.
Then, by means of Green’s formula, we may show that

(3.1) N, 9)= S Nz, 9282202 W) g )
EY] an,o(z)

for any € R—2 and any y€ 2.

We have also that (see Lemma A in [7; Appendix])

sup{ supj NP Fo(z, 2)dS(z) } < oo

nop\een—u, 30

and accordingly, by means of (2.9) that
(3.2) supﬁig N(z, 2)dS(z) <o .
2 R0 )38
Combining (3.1) with (3.2), we obtain the following
LEMMA 3.1. Let F be a compact subset of R—(Ko)° and 2 be a relatively
compact regular domain containing KoUF. Then

3.3) sup {N(x, W)+ 19, NG, )] } <o,

reR~DycF

Let s0 be a metric in B which defines the topology of the one-point com-
pactification of R, and Do be a relatively compact domain containing Ko. We
define N(z, y)=0 for any € Ko and y€ R/, and put

| N(z1, ) —N(@2, )l
3.4 (e ,“3)::.: s d
@4 il @ Sn(;1~HN(ivx,y)~~N(:vz, Y

and
(3.5) 0T, @2) = pol@y, X2y o1(@1, 2) for i, x2€R.

Then, using Lemma 3.1, we may show the following two lemmas in the same
way as proofs of Lemmas 8.2 and 3.3 in the authors previous paper [6] on
Martin boundary.
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LEMMA 3.2. The function o{z, x2) is @ metric in R, which defines the same
topology as the original one in R.

LeEMMA 3.3. R is totally bounded with respect to the metric p.

Let R be the completion of R with respect to p and put §:R—~»R; the
function p(x1, z2) naturally extended to Rx R is denoted by the same notation.
Then we may also prove the following two theorems and corollaries in the same
way as corresponding theorems and corollaries in [6] cited above.

THEOREM 3.1. R s compact and S is a closed subset of R with respect to
the metric o. The relative topology in R arising from the metric is equivalent
to the original one.

THEOREM 3.2. The function N(z,y) is extended to a function continuous
on Rx(R'+3Ko)—{(z, 2); z€ R'+3Ko}, and the extended Sunction. N(z,y) is har-
monic in yE€ R —{z} for any fized e kR,

COROLLARY 3.2.1. For any closed subset E of R and any compact subset F
of R'+4-0Ko—F, the function N(z,y) is untformly continuous on EXF with re-
spect to the metric p.

COROLLARY 3.2.2. If g, ve§ and NE, y)=N(y, y) for any y€ R’ then =y,

Here we prove the following

THEOREM 3.3. R is independent of the choice of {Ko, po, Do} in the following
sense: Let Ko and Ko be regular compact sets in R, po and do be metrics
defining the topology of the one-point compactification of R, Do and Do be rel-
atively compact domains containing Ko and Ko respectively. Let N(z,y) and
Nz, y) be kernel functions defined as in § 2 corresponding to Ko and Ko respec-
tively. Define o1 and p (resp. 51 and p) by (3.4) and (3.5) with the kernel N
(resp. N), and let R (resp. R) be the completion of R with respect to the metric
o (resp. 3). Then compact metric spaces R(o) and R(p) are mutually homeo-
morphic, and the homeomorphism restricted to R is the identity mapping.

ProoF. It is sufficient to prove this theorem in case Do Ks. The mutual
equivalence of metrics po and 7o in R is evident, and the mutual equivalence of
o and 7 in any compact subset of B may easily be shown. Hence, if we verify
that s and 1 are mutually equivalent metries in K—D for a certain relatively
compact domain D in R, then we may conclude that p and 7 are mutually
equivalent in R and we obtain Theorem 3.3 by virtue of the unigueness of the
completion of a metric space. So we have only to prove the mutual equivalence
of p1 and 31 in R—D.

Let 2 and D be relatively compact regular domains such that Doc 2= @< D.
Since Doc Ko, we may show by Green’s formula that
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(3.6) N(z1, y)— Nz, y)= N1, y)— N(zz, )
i s o8 Ol N, y)dse
3K l (}nKo (InKo
for any w1, 2.€ R—Ko and ye€ D} (Dj=D— Ko)
and
3.7 N1, y)— Nzz, )= N, y)— Nz, 9)
~g (B, 2)— N, 2) 22502 s
3K on ho()
for any 1, 2:€ R——Ko and ye€ Dj .
We put
C=: sup w(y) | inf w(y), M= sup S Nz, 1)dS()
1/5_1) yi:y[l nedly) 0K,
and

]uN(xx 2) ON(x., 2)‘1

d(e)==  sup {IN(xn,y)~N<wz.y)l+M Onen)  Ongy(@)

x129€ R—D
plzy 24 <E

We by zcak,

for any ¢>0. Since N satisfies A*N=0 in R—K, and Nlaxzoii() as a function of
7, we have by Lemma 2.1

sup l Nz, )-- Nz, %) max !N(:n ) — Nz, 2/)(

yeiioi (u(?/) .Z/eti,’gi (U(’l/) %

Hence we obtain from the formulas (3.4) and (8.6) that

Fies, ) <154 sup | N, )~ Nes, )| (lﬁél :S ; dy)
! 1)0

Ve 1)0

= C10¢)| max [Nz, y)— Nz, I SCLDI5E)

yeﬂDu

whenever @1, 2:€ R—D and p(z;, 22)<e. We may also show from (3.1) that
lim () =0 since N(z, y) is uniformly continuous on (R— D) X (Ko— Do) by Corollary

$]0

3.2.1. Similarly we may obtain from (8.7) that

o1, ) =Cid(s) whenever T, €R—D and 51, x2)<e

where Ci is a suitable constant and
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o()= sup |N(w1, 9)— N, 9,
ENERY =7
’:’1(11-2’2:}.\’5
ye Dy Iy,
and also that | 1m o( J=0. From these result, we may conclude that g and 7
are mutually equnalent Theorem 3.3 is thus proved.

DEFINITION. The set S defined above is called the ideal boundary of Neumann
type (or Kuramochi boundary) of R associated with the elliptic operator A4*.

By virtue of Theorem 3.2, we can extend the definition (2.12) of the polential
#N to the case where ¢ is a Borel measure in R’-- S.

THEOREM 3.4. For any regular compact set K< R’ and any Borel measure
ooan R’+.§, we have (UN)x <N in R'—K; the equality holds if the support
of ¢ is contained in K°.

Proor. It is mentioned in Theorem 2.6 that Ny (x, -)<N(z, ) in R—(K)°—K°
for any x€ R’ and the equality holds if z€ K°. For any z€S, we take a
sequence {z.}JCR’—K which tends to 2. Then Ng(%., -)SN(x., -) and hence
Ni(z, -)=N(z, ) in R—(Ko)°—K°. If ¢ is a measure whose support is contained
in X°, we have

(W) =| LBane| Ne,2dp@=] | “LNw2dise)

=|_New, pdr@=| N pie@=aw) .

+K

For general p, we get (uN)()<(¢N)}y) by means of the inequality NysN
for xe R'—K°+8S.

§4. FH functions and FSH functions. In Definitions below, v always
denotes a non-negative and lower semi-continuous funection in R’ which is not
identically equal to oo, and vy denotes the function defined by (2.13).

DEFINITIONS. 1) If vx<v in R’ for any regular compact set KR/, then v
is called an FSH function (or a full superharmonic function) in R’; if in addi-
tion v is harmonie in R/, then it is called an FH function (or a full harmonic
Junction) in R'.

ii) If v is an FSH function and if limv,x,(2)=0 in R’ for any sequence
{Ku}az1 of regular compact sets such that (IE,:)OSDKn+1 for any n=1 and 1152 K.==K,,
then v is called an F'SHs function in R’; if in addition v is harmonic in R/,
then it is called an FHy function in R’.

REMARK. Any FH, function takes the boundary value zero on 2K, (Corollary
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4.2.2 below), but not every FSH, function does; we may easily construct counter
examples.

LEmMA 4.1. Any FSH function is superharmonic in R’.

ProoF. If v is an FSH function and if 2 is a regular domain with compact
closure 2C R/, then vyy=v in £; from this fact, we may see the superharmonic-
ity of w».

LEMMA 4.2, If {v.) s a sequence of FSH functions such that v=lim v,
exists in R/, and if v is lower semi-continuous and is not identically eq;;:l° to
oo, then v is an FSH function in R’.

In fact, for any regular compact set KCR’ and any ze€ R'—K, we have,

D) 4y tim o) 2 Ddu )

by the Lebesgue-Fatou lemma, vK(y):w(y)S S
ar @ (%) Py ax w(Z)

slhim vu(y) =v¥).

n"iEMMA 4.3. If {v.} i3 o sequence of FSHu functions such that v=1im v.
exists in R, and if v is lower semi-continuous and dominated by an r15’..08"5{0
Junction w in R’, then v is an FSHo function in R’.

This may be proved by Lemma 4.2 and from the fact that vu,<u.x, for
any K, mentioned in Definition ii).

Theorems 4.1, 4.2 and 4.3 mentioned below may be proved by the same
argument as proofs of Theorems 6, 7 and 8 in [12; §4]; Corollary 4.2.1 is an
immediate consequence of Theorems 4.1 and 4.2, and Corollary 4.2.2 may be
shown by the same way as the proof of Lemma 4 in [12; §7].

THEOREM 4.1. For any Borel measure u in R'+S, the potential uN is an
FSHy function.

THEOREM 4.2. For any FSH function v in R’ and any regular compact
set KCR', vy s equal to the potential of a measure supported by K.

COROLLARY 4.2.1. vy in the above theorem is an F'SH, function.

COROLLARY 4.2.2. Every FHo function takes the boundary value zero on K.

THEOREM 4.3. Ewvery FSH function is equal to the sum of an FH function
and a potential.

For any FSH function v in R’ and any open subset 2 of R/, we define

“.n Vo= sup vg(<v) in R’
Ke¢K(D)

where K({) denotes the totality of regular compact sets contained in 2. Then

LEMMA 4.4. If {K)CK(Q), KuC(Kar)® (021) and U Ku=0, then {vg,} is
monotone increasing in n and limvg,=ve in R’. vg isntjzln FSH function and,
in particular, vo 18 an FSH, fufr’b‘;t?on if 2 does not intersect Ko. (u+v)a=wuo+vo
Sor any FSH functions u and v.
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Proor. For m>n,' we have vy, =Wk )k, S0k, Sv2 by Theorem 2.4. Hence
{vk,} is monotone increasing and lim vy, =ve. For any fixed x€ R’ and any
a<vp(z), there exists Ke K(£) suchﬂz}?at vy (2)>a, and accordingly v, () =2v4(x)
>a whenever K< (K,)°. Hence we get lim vy, (®)>a; accordingly we may con-
clude lim vy, =ve in RB’. This result imgffgs that (u+v)e==ug+v, and also that
vg is ;r:wFSH functiun by Lemma 4.2. If 2N K, is empty, then there exists a
regular compact set F' such that F°> K, and F'n2 is empty. Hence 0o, Svor
in F—(Ko)°, and accordingly 0=vo=Zvsr in F—(Ko)°. Since v;r takes the boundary
value zero on ¢Ko by Corollaries 4.2.1 and 4.2.2, we may see that vy is an FSH,

funection.

LeMma 4.5. If 2, and 2, are open subsets of R’ and 21 2z, then (vg,)0,==va,
wn R’ for any FSH functmn V.

PROOF. %y, is an FSH function by the above lemma. Since vo,=v in 2; by
(4.1), we have (va))k=vg in R’ for any Ke K(2), and accordingly (Vop)es 2= (Vay)e,
=g, in R’. On the other hand, since (vo)x=wve in R’ for any Ke K(2:), we
have (vo))2,Svo, in R’. Thus we get (va)u,=vag,.

Hereafter E® denotes the closure of E as a subset of the compact metrie
space R (E denotes, as before, the closure of E as a subset of the original
manifold R).

For any FSH function » in R’ and any closed subset I" of g, we define

(4.2) Vr= = inf Ve

Qe Oir)

where O(I') denotes the totality of regular open sets £ in R’ such that 2=/,
Then we may prove the following lemma from Lemmas 4.3, 4.4 and 4.5 (the
proof is similar to that of Lemma 4.4).

LEMMA 4.6, If {2.}cO{), 2,20, (n=1) and ﬂQ“——[’ then {vg,} s mono-
tone decreasing in n and lim v =v, tn R/, v, 18 afn FH, function, and (u-+v)r
=ur-+vr for any FSH fu'f;gt?ons u and v.

THEOREM 4.4. vg=v in R’ for any FH, function v.

Proor. Let {D.} be a sequence of relatwely compact regular domains in E
such that Ko< D,c D,C Dayi(n=1) and U D.=R, and put 2.=R—D, and K.=
Du2—Dayy (n21). Then Vg =0, =0 m R’ since K.€ K(©2,) for every n. On
the other hand, vy,=v on 8Du.1 (COKy), vk,=v==0 on dKo by Corollary 4.2.2,
and both vk, and » are harmonic in Dj.,. Hence we get vk,=vg,=v in D},,.
Since {£2,} satisfies the assumption of Lemma 4.6 with [ NS we have limvg,

T aeco

=vg and accordingly vz=v in R’.
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§5. Integral representations of FHo and FSH; functions. Most of proofs
of theorems and lemmas in this § are similar to or essentially the same as proofs
of those is [12; §7]. So we partly skip the detail of those proofs.

THEOREM 5.1. Any FSH, (resp. F'H,) function is expressible as the potential
1N of a measure ;0 on R’ +8 (resp. S), and vice versa.

Proor. By virtue of Theorems 4.1 and 4.3, it suffices to prove this theorem
for an FHo function ». Let {D,} be a sequence of domains such as mentioned
in the proof of Theorem 4.4, Then, by Theorem 4.2, we have v=v;p5,=#,N in

ﬂav dS< oo
5K, Mg,

for any n by Corollary 2.5.2. Hence a subsequence of {z.} converges vaguely

D! for a suitable measure p. on oD, for every n, and 2.(0D, —'S

to a measure ¢ on S, and we get v=uN in E’. The converse follows from
Theorem 4.1.

LemMA 5.1, Let v be an FSH function and 2 be an open set in R’ such
that 911 Ko 15 empty. Then there exists a measure p supported by 2¢ such that
voe=p N in R.

Proor. Let {K,} be a sequence of compact sets such as mentioned in Lemma
4.4, Then, by Theorem 4.2, we have vg,=p.N for a suitable measure s, on K,
for every n, and ,ﬂn(K,,.)ff-S %d8§g —?—’1”de<¢0 where K is a fixed re-

axc, Oy, ik, O Mg,

gular compact set such that Ko K°cKcR—{. Hence a subsequence of {a}
converges vaguely to a measure ¢ supported by 2¢, and we get vp=pN in R'—
O by Lemma 4.4 since N(z, %) is continuous in x€ Q¢ for any fixed ye R —£.
Denote the subsequence by {yn} again and put va=gul| - and v=plo. Then va
(resp. v) is the measure which gives the potential part of the Riesz decomposi-
tion (Lemma 2.2) of v in (K.)° (resp. 2). Hence v, increase to v as n—oo and
accordingly ft.~-v. converges vaguely to #—v. Hence we have puN=uvN-+(z—v)N
z=lim {vn N+ (pn—va) N =1lim //,.Nzlim vg,=vp in £. Thus we have proved that
?v;;:j;zN in R'—o80. Hexggéwwe geqé%;g:,uN in R’ in virtue of Lemm 2.3.

Considering Nix, ) as a function of y€ R’ for any fixed xefc‘, we define
Ngla, ¥)=[N(, )] (¥) for any regular compact set K. Ng(z, %) and Nr(z, ) are
defined analogously (see (4.1) and (4.2)). Then we have the following

LEMMA 5.2. Let Q be as in Lemma 5.1. Then (uN)p=uNy in R’ for any
measure 1 in R'+8S.

Proor. By means of the same computation as that in the proof of Theorem
3.4, we may show that (uN)x=puNx for any Ke K(2). Hence we get (uN)gy=
1N, by virtue of Lemma 4.4.

THEOREM 5.2, For any FSH function v and any closed subset I" of S‘, there
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exists a measure y supported by I' such that

wi=| N& i) and =] 2eas.
r

molfn;w
If v is an FHo function and F;:S, this theorem gives an integral representa-
tion of v by virtue of Theorem 4.4.
Proor. Let {Z.} be a sequence of open subscts such as mentioned in Lemma
4.6. Then, by Lemma 5.1, we have vy,= /. N for a suitable measure s, on 2%
for every , and it may be seen from the proof of Lemma 5.1 that s (2=

g

& Gvax dS<co for any n, where K is a regular compact set such that Koo K°
K, Unho

cKcR—J:. Hence a subsequence of {1.} converges vaguely to a measure «
supported by (=1 ”1{2,;), and we get v,=2#N in R’ by means of Lemma 4.6, and

accordingly we have #(1*):_8 ovy

——dS by Corollary 2.5.2.
GhQUnKO
THEOREM 5.3. Let 1 be @ measure in R'+S and I' be a closed subset of S.
Then (uN)r=uNp in R'.
Proor. Take a sequence {2.} such as mentioned above. Then, on account

of Lemmas 4.6 and 5.2, we have

(UN) == lln'l(!’N)qnv~llm 4Ny, = Np .

§6. Classification of the boundary points, canonical representation. By
definition, a function v on R’ is called a function of class &7 if it is piecewise
smooth in R’ and satisfies

v v
O <oo and sup; ,
If » is a function of class &2 satisfying ~vl,;,{r,f:ﬁ0 and K is a regular compact

subset of R/, then

6.1) ([b»vmf—"@?&, vl’»i‘;f;}%)”_m:o (by Lemma 2.4)
and ‘
(6.2) (v%f-m[b»f—vm%ji, vk“fﬁ)mw:—zo (by Theorem 2.2) .
Hence
6.3) ‘v” (”“‘pm (v” e R R
(v —b-vpZ, v ) = fv-~~[b-vp]—;-j—§§w wiiv”;}’"l N
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consequently

__&[ i 1 _.LiE . v i}—“
(6.4) tIV §Zlvwg " i !z[b VP] o | - <oo,

@ h R w '
LEMMA 6.1. Let v be an FSH function of cluss <&, and 2 be an open subset
of R' such that 2N Ko is empty. Then

'UQ ’UKIJ
w !

(6.5) lim v

Ti—e00

=0

B

Jor a suwitable sequence {K.} such as mentioned in Lemma 4.4. Furthermore,
if ©1 is another open set such that 202 and 2.1 Ko is empty, then

Vo _rp_uple glale -
(6.6) (V P [b—vp] w' v @ >1y,wmo
and
Vo | Ve \ ] - ﬂ’.&i
(6.7) Ve R,ﬁzit"v‘ ]é“’“’“ w |

Proor. It is clear that (vo)i==vx for any Ke K(2), and v, is an FSH, fune-
tion of eclass &7. Hence, substituting v, for v in (6.3) resp. (6.4), we obtain
that

| pg—vp |2 —y
6.8) LE= _(v%j— ~b—vpI2, v@;}’ﬂ
[ Re R’
resp.
(6.9) voK gz‘lv”i +[j [b—vp)2e|
@ Hpo I D ip e @ |P

for any Ke K(@). It follows from (6.9) that there exist a sequence {K,} such

as mentioned in Lemma 4.4 and ©®¢€ Li(

w(b weakly

91 -920

in LE(R') On the other hand, it follows from (4.1) and Lemma 4.4 that
lim V "‘ %’i boundedly in R’. Hence, for any smooth ¥ € LE(R’) whose support

9% —s00

is a compact subset of R’, we have

lim (v zp) ::um(”"'", div yf) _(”” div o ) =(v99—, 11)
Lled R w % oo w R w @ B w w R w

and the totality of such ¥’s are dense in L:(R’). Therefore we get

(6.10) hm\' =yYe weakly in L2(R').

ey w
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Hence, putting K=K, in (6.8) and letting n—o, we obtain (6.5). Accordingly,
replacing v resp. vx by vs, resp. vk, in (6.2) and (6.4), and letting n—oc, we get
(6.6) and (6.7).

LEMMA 6.2. Let v be as in Lemma 6.1 and I" be a closed subset of S. Then

n

6.11) zgv Cmls |

i
7n—voo | iR’\w

=t 0

for a suitable sequence {2,} such as mentioned in Lemma 4.6.
Proor. It follows from (6.7) that

6.12) lim V ’U" weakly in Li(R)

n-—+oo

for a suitable {£.} such as mentioned above; the proof is similar to that of

. . Vo, .
(6.10). Since hmTZ%’} boundedly in R’, we get

(6.13) hmj[b v ]7-’1’-?*~—v—”i§R =0.
Ti-rem | PR e
(6.12) and (6.13) imply that
. Vo, Vom br g¥r
w0 (et t), (o)

On account of (6.6), we get for any =

v”ﬂ Do, 1’_"1“ — 7’”" .7_}32
L I (e I e e

@ @
L Yoy Pay (gl Y A ?’”ﬂ Doy
—(Vw —[b—vp12x, v )R».w‘“(v 72 )P (w 7ol v ),

[

2
Vo,

[

v

R, o

Applying (6.14), (6.12) and (6.13) to the above relation, we may see the existence

of lim

n—eo

that

2
V?)Z)" “ . On the other hand, if n>m, we obtain by means of (6.6)

B e

(Vv{/n V,unm) “““([b-—v ]'Ugn , V’U‘)m>
w R w (3] [ R w

2 vgn ’Uan —
R,_m+ ([b——Vp]wT, V——») . _ww() .

Applying (6.14) to this relation, we get

(6.15) lim (vf’i v ) —hmlfv””"
w R w

n> Mmoo w n-eon

! w
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. : Vo, Vs, E‘z H Vg H ’Uf, Y. 5 Vo
Since |V—7--"" g = ;[V«—fﬁ I e 4 P ” , we obtain
i w SR e (L L » W e | ® IR
: !! 1)'[)71 o v!)/ﬂ E 2 :
lim ;iv~~~~~w-— i =0, From this result and (6.12), we may conclude (6.11).
2> meson | [F 2

LEMMA 6.3. Let v and I” be as in Lemma 6.2. Then (vo)r=vr in R'. In
particular (wp)r=w, in R’

PROOF. Let 2 and ©: be open subsets of R’ such that I'c 22 and 2cic @y
’Z)g, ,K '
_E R w
=:{ holds (Lemma 6.1). Since v, —v, is a function of class & satisfying (vo—vr)lix,
=0, we have by (6.4)

<R, and let {K.,} be a sequence of compact sets for which lim HV

B ron ( 0]

I )i, | | v
| V,(,f’,’,’m DK 0, L os2ivi Ly 4 | [b--Vp]
H

I 0 PR i W ke

i
for any n .
R w

Letting n >on, we obtain by Lemma 4.5 that

Ve (r)ey | vr|
@ i

i ; —
S §l[b~Vp]1~)?———l

i El V=V

i
i
i .
| R w

R w

Let 12.) be a sequence of open sets for which (6.11) holds. Then, from the
above inequality, we have for n>m

lI ’Ul)n (‘U/)r)m‘ - ! ’ng“?)l"l EI Vo, Vr
R <O 4 — _=n
v b 52|V = i[b vp1 2]

R w0

) NI

Letting n oo and m-»co, we obtain IV »‘7;)—— 1 =0, which implies vr={(v,)r
(R e

in R’ since vr=(»:)r=0 on 0Ko. In particular, since @ is an FSH function of
class &7, we have (w/jr=w; in R’.

This lemma corresponds to Theorem 19 in [12]. The argument to derive
this lemma is not quite the same as the corresponding procedure in [12Z]; the
modification is necessary by reason of the existence of term & in the differential
operator A*. However, once Lemma 6.3 is established, we may achieve the
essentially same arguments for the classification of the boundary points and
canonical representation in our case as those in the case of usual Laplacian in
[12); only some minor modifications may be necessary.” So it seems not to be
necessary to mention the arguments in detail. We shall state only outline of
the process.

Using Lemma 6.3, we may prove the following (Cf. Theorem 20 in [12])

LEMMA 6.4. Let v be an FSH function in R’, and I be a closed subset of

5 For instance, maximum-minimum principle should be used in the form given in Lemma
2.1.
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S such that w,=0. Then (vr)r=uv,.
Applying Theorem 5.2 to v=N(, -) and I'=={&}® for arbitrary 2e S, we obtain
a function a(&) on S such that

(6.16) N, w)=a@)NE, y) and a(:“):g "Ni—‘%%d&y)
ik, Oy Y

LeMMA 6.5. a(®)=0 or 1 for any & 2e S (Cf. Theorem 21 in [12)).
We put

So=ize § a@®=0} and Si={f€S; a(®)=1} .

Then, from (6.16), we have the following

THEOREM 6.1. Ni(&, 9)=0 or =N, y) according as zeS or zeS.

By definition, S is called the essentwl part of the ideal boundary S.

THEOREM 6.2. So is an Fi-set: So= U I, where I'J's are closed subsets of S
(see Theorem 22 in [12}]).

LEMMA 6.6. If v is an FSH function, then vy==0 for any closed subset I’
of S contained in So (see Theorem 23 in [12]).

THEOEM 6.3. If v is an FSH function and I" is a closed subset of S, then

v 48 expressible in the form Ndy; in particular, any FHo Function s ex-
s,

pressible in the form X Ndt.

In fact, the measure 2 in Theorem 5.2 satisfies p(I'N{w)=0 for every ['x
(in Theorem 6.2) by Lemma 6.6. (See Theorem 24 in [12].) As for the case of
FH, functions, see Theorem 4.4 in the present paper.

DEFINITIONS. i) A Borel measure ¢ on S satisfying ;z(ﬁo)er is called a
canonical measure, and the representation S: Ndp by means of a canonical
measure g is called a canonical Tepresentati?)xn.

iiy An FHo function  is said to be extremal if v -cu (¢: non-negative con-
stant) whenever both » and u—v are FHo functions.

LEMMA 6.7. Let u be extremal and I' be a closed subset of S. If ur>0 and
u—ur 18 an FHo function, then there exists a unique point &€’ such that u-=

NG, ) with m—S % 4s.
3K, 8)1,(0
In fact, the measure y in the representation of % (Theorem 6.3) is supported

by a point £,eI'NS; since u is extremal.
The following theorem characterizes the extremal FHo functions and shows
the relation between the set S: and the set of all extremal FH, functions. (As

6 {£} denotes the set consisting of one point ¢
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for the proofs in detail of Lemmas 6.7 and Theorem 6.4, see Theorem 26 in [12].)

THEOREM 6.4. 1) Any extremal FHs function u is expressible by u=cN(g, *)
with a positive constant ¢ and a point L€ S uniquely determined by u.

ii) NE, ) is an extremal FHo function of y if and only if t€ Si.

Part i) is obtained by putting 7’=S in Lemma 6.7 and by Corollary 8.2.2.
Proof of Part ii): if £€$: and if N(, -)=u-+v where u and v are FH, functions,
we have w+viy=Nyy==N--u--v by Theorem 6.1, accordingly v=v(=cN(, -)
for some ¢220; the converse follows from i).

THEOREM 6.5. Canonical representation of any FH, function is unique.
For any FHo function v and any closed subset I' of S, the canonical measure
Jor v is supported by I'. (See Theorem 27 in [12].)
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