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Part 1
Preliminaries

1. Introduction. The object of this paper is to give a characterization of the
two recently discovered simple groups of Janko of orders 604,800 and 50,232,960
(which we designate as J, and J,, respectively) by means of their Sylow 2-sub-
groups which are known to be isomorphic groups of order 2°. For convenience
we say that a 2-group is of Janko type if it is isomorphic to a Sylow Z-subgroups
of J. or Js. More generally, for any simple group G, we say that a 2-group is
of type G if it is isomorphic to a Sylow 2-subgroup of G.

A 2-group S of Janko type can be described as follows: it is generated by
seven involutions z,, 2., &, @, by, b, and ¢ satisfying the relations

{a, bil=las, b:l=2,, las, b=z, [@1,b:]=22,

(1> [CL;, } [t b] Cl]b;, [a_, ﬂ lt bz} zb2, [t, 22]1321 s

with all remaining commutators of pairs of generators being trivial.

Actually S is generated by the three involutions a,, a., . However, to describe
S in terms of these generators alone requires 4-fold commutator relations. On
the other hand, one can give a more conceptual picture based on the easily
verified fact that the subgroup

TZ<Z], Zz, a, a.”d bl} b2>

of S of order 2° is of type PSL(3,4). Indeed, if @ denotes the automorphism of
PGL(3,4) induced by the transpose-inverse map of GL(3,4) and ¢ denotes the
automorphism of PGL(3,4) induced from the generator of the Galois group of
GF(4), then the product t*=a-¢ is an automorphism of PGL(3, 4) (and of PSL(3, 4))
of order 2. If one now forms the semi-direct product of PGL(3, 4) (or of PSL(3,4))
and the group {t* in the usual sense, then a Sylow 2-subgroup of the resulting
group is, in fact, of Janko type (see Lemma 4.8 below).

*) This research was supported in part by Air Force Office of Scientific Research grant
AF-AFOSR-1468-68 and National Science Foundation grant GP-9314.
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Because a 2-group of Janko type has such a representation, the semidirect
products of PGL(3,4) and PSL(3, 4) with the group {¢*> play a role in the paper.
It will be convenient to denote them by PGL*(3,4) and PSL*(3, 4) respectively. We
regard each as a subgroup of the automorphism group of PSL(3, 4), containing
PSL(8,4). Since | PGL(3,4): PSL(3,4)|=38, PSL(3, 4) has index 6 in PGL*{3, 4) and
2 in PSL*(3,4). Clearly PGL*(3,4)and PSL*(3,4) both contain normal subgroups
of index 2 with Sylow 2-subgroup of type PSL(3, 4).

Furthermore, one checks directly that SCN,(S) is empty if S is of Janko
type.

Our main result is as follows:

THEOREM A. If G is a finite group with Sylow 2-subgroup of Janko type,
then one of the following holds:

(1) G=0(G)Cux) for some involution z of G;

(i) GIO(G) 18 1somorphic to a subgroup of PGL*(3, 4);

(iil) G/O(G) is isomorphic to J; or Js.

As a corollary, we obtain the following characterization of J, and J;:

COROLLARY A. If G is a finite simple group with Sylow 2-subgroup of
Janko type, G is isomorphic to J, or J3.V

Characterizations of J, and J; have already been established in terms of their
orders. The existence of J, was shown by M. Hall [17] and its characterization
by its order by M. Hall and D. Wales [18]. The corresponding result was obtained
for J; by the combined work of 8. K. Wong [28] and G. Higman and J. McKay
[21], the latter proving as well the existence of J;. Furthermore, in Janko’s
initial investigation of these groups [23], he considered a simple group G* with
an involution 2* in the center of a Sylow 2-subgroup such that N*=Cs(z*) is an
extension of a normal subgroup of order 32 by the alternating group 4s. Under
these conditions, he proved that the structure of N* was uniquely determined,
that G* had exactly two or one conjugacy classes of involutions, and that cor-
respondingly G* had order 604,800 or 50,232,960. Combining this with the various
results stated above, it follows that G* is necessarily isomorphic to J; or J;.
Thus the groups J. and J; are completely characterized by means of the centralizers
of suitable involutions, these centralizers being isomorphic to N*.

We reduce the proof of Theorem A to the case in which the given group G

U Under the additional assumption that G has more than one class of involutions,
Richard Lyons, using the methods of modular character theory. has shown that G must

be isomorphic to J:. Use of his result would give a slight simplification of our proof.
See Section 11.
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is simple. Hence if 2, is an involution in the center of a Sylow 2-subgroup of
G and N=Cgz,), we see from the preceding remarks that to establish the
theorem, it will suffice to show that IV is isomorphic to the group N* above.
The bulk of the paper is devoted to this task. It is divided into two distinct
parts:

(I} The determination of the structure of N/O(N)Y;

(II) A proof that O(N)=1.

In order to solve the problem posed in (I), we are led naturally to a study
of the group N=N/O(N){z,>, which has Sylow 2-subgroups of order 2¢ and of type
As. Furthermore, because of the embedding of N in G, the group N satisfies some
additional restrictions. In fact, we obtain a solution of (I) as a direct conse-
quence of the following theorem:

THEOREM B. Let G be a finite group with Sylow 2-subgroup of type As,
which satisfies the following conditions:

(a) G has three conjugacy classes of involutions;

(b) G contains an elementary abelian subgroup A of order 16 such that
No(A)JO(N(A)) is isomorphic to an extension of A by As. '

Under these conditrons, AO(G) is normal in G.

As an immediate corollary, this yields

CoROLLARY B. Let G be a finite group with Sylow Z-subgroups of Jamko
type and no normal subgroups of index 2. If z, is an involution in the center
of a Sylow 2-subgroup of G, and N=Cs(z,) then NI/O(N) is isomorphic to the
centralizer of an involution in the center of a Sylow 2-subgroup of J, or J,.

As with Theorem A, after making an initial reduction on G, in order to establish
Theorem B it will suffice to show that O(Cu(x))=1 for every involution z of G.
Indeed, once this is known, the desired conclusion follows from Lemma 8 of
K. Harada [20].

In order to treat problem (II) above, we require a detailed knowledge of the
structure of the proper subgroups of G. As we have already noted, a 2-group of
Janko type contains a maximal subgroup of type PSL(3,4). In particular, then,
G possesses proper subgroups whose Sylow 2-subgroups are of type PSL(3,4). To
determine their possible structure, we shall classify all finite groups having such
a Sylow 2-subgroup. Specifically we prove

THEOREM C. If G isa finite group with Sylow 2-subgroups of type PSL(3, 4),
then G/O(G) is isomorphic to a subgroup of PGL(3,4). In particular, if G is
simple, then G is isomorphic to PSL(3, 4).

Likewise, to establish Theorem C, after an initial reduction, it suffices to
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show that O(C.{z))=1 for every involution 2z of G. Once this is accomplished,
it is not difficult to show that the centralizer of every involution of G is, in fact,
2-closed, in which case the theorem follows from a known result of Suzuki [24].

The proofs of Theorems A, B and C bear considerable similarity to each other.
In each case we use Theorem B of Gorenstein [14] concerning strongly flat signal-
izer functors in groups of 2-rank 4.2 In fact, if A is an elementary abelian
2-subgroup of G of maximum rank, then in each case m(A)=4, and we prove
that the mapping

0{Ce(a))=0{Cyla))
for all ¢ in A® defines a strongly flat A-signalizer functor of G. On the basis
of Theorem B of [14], we are then able to show that our group G satisfies the
assumptions of one of two theorems of D. Gorenstein and J. Walter [14%] and [16].
These theorems then yield that O(Cu(x))=1 for every involution z of G and
therefore the present Theorems A, B, C follow from the known elassification
theorems mentioned above. In Section 2, we shall state the main concepts and
results of D. Gorenstein {13], [14], and D. Gorenstein and J. Walter [14*], [16]
to the extent that they are needed in the paper.

We remark parenthetically that our proof that O(Cu{a))=1 for every involu-
tion % of G in the case of Theorem B will not generalize directly to arbitrary groups
G with Sylow 2-subgroups of type As; (in which O(G)=1). Indeed, in each of
Theorems A, B, G, our proof that O is an A-signalizer functor on G depends in
part upon the following fact: If H is a proper subgroup of G containing A4,
then every element of M,(A) lies in O(H). However, this condition is not true,
in general, among even the known groups having Sylow 2-subgroups of type As,
for these include the groups PS,{4, q) with ¢=3,5 (mod 8). It may nevertheless be
possible to show, by means of a more involved argument, that O is a (strongly
flat) A-signalizer functor in the case of arbitrary groups with Sylow 2-subgroups
of type As.

Finally a word about notation. We shall use the “bar” convention throughout
the paper: If H is a homomorphic image of the group H, then X will always
denote the image in H of a subgroup, subset, or element X of H.

In general, our notation is standard, including the following terminology:

Z.=cyclic group of order #;

Dyn=dihedral group of order 2%;

(:n=generalized quaternion group of order 2;

2 See the final comment of paper which has been added in proof.
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A,=alternating group of degree #;

S.==symmetric group of degree %,

E..=elementary abelian group of order 2%

Qs+ Ds, ete.=central product of Qs and Ds, etc,;

A,-EV =unique nontrivial split extension of E, by A; in which A acts
nontransitively on the involutions of K

A,-E® =unique split extension of E\; by A; in which A, acts transitively
on the involutions of K.

It is well known that E,; has exactly two nontrivial inequivalent split ex-
tensions by A..

2. Assumed results, In this section we state without proof the relevant
results of [13], [14], [14*] and [16] that we shall need. As mentioned in the
introduction, the only signalizer funector ¢ that we shall use is ¢=0; so for
simplicity we restrict our statements to this case.

Let A be an elementary abelian Z-subgroup of the group G with m(4)>3.

DEFINITION 2.1. We say that O is an A-signalizer functor on G provided for
each involution @ and b of A, we have

(1) 4 O(Csla)n Celby= O(Cs(b)) .

(Cf. definition 1 of [13]; note that the remaining conditions of that definition are
automatically fulfilled when 6=0).

DEFINITION 2.2. If O is an A-signalizer functor on G, and B is a noncyeclic
subgroup of A, then My(B) is the set of B-invariant subgroups K of G of odd
order such that

(2) K={KnOCsb)ibe B .

Furthermore, for any odd prime p, Mo(B; p) is the set of elements of Ms(B) of
order a power of p.

DEPRINITION 2.3. If O is an A-signalizer functor on G, we say that O is
strongly flat provided for each proper subgroup H of G such that B=AnH is
noneyelie, one of the following two conditions is satisfied:

(i) The elements of Wy(B) contained in H generate a subgroup of H of
odd order; or

(il (a) B is a four group;
(b) Any two elements of Hy(B; p), p an odd prime, which are maximal
subject to being contained in H, are conjugate by an element of Nu(B);
(¢) If K;, 1<i<m, are the distinct elements of Vo(B) which are maximal
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subject to being contained in H, then

1) K:nK;/K.nK;nO(H) is cyclic for all i#j, and

2) KinK.=K;nK, for all i#j=k+1.

If a given subgroup H of G satisfies one of these two conditions, it will be
convenient to say that H is strongly A-flat.

Theorem B of [14] asserts in the present case:

THEOREM 2.1. If A is an elementary abelian 2-subgroup of order 16 of the
group G and O is a strongly flat A-signalizer Sfunctor on G, then the subgroup

W,={0(Csla))|a € A%

of G has odd order.
We turn now to the results of {14*]. First of all, condition (1) above is
clearly equivalent to the following condition: For each a, b in A%,

(3) O(Co(@)) N Co(b)=0(Ce(d)) N Cola) .

Equation (3) forms the basis of the following definition:

DEFINITION 2.4. An elementary abelian 2-subgroup A of the group G is said
to be balanced if condition (3) holds for each a, b in A% Furthermore, G is said
to be balanced if each of its noncyelic elementary abelian 2-subgroups is balanced.

If G is balanced, it follows at once from the definitions that O is an A-
signalizer functor on G for each elementary abelian 2-subgroup A of G with
m(A)=3.

The significance of this concept can be seen by the following result, which
is a consequence of the proposition of Part III, Section 1 of [14*].

LEMMA 2.2. If the centralizer of every imvolution of the group G is 2-
constrained, then G 1s balanced.

In this paper we shall actually need a slight extension of this lemma; which
we shall now prove.

LEMMA 2.3. If for any involution x of the group G either Ceq(x) 18 2-con-
strained or Cu()/O(Ce(2)=ZX ZyX As, then G 1s balanced.

PROOF. Let a, b be commuting involutions of G. By symmetry we need
only prove that O(Cs(a)) N Cu(b)cO(Cs(h)). Set H=Ce(b) and D=0(Ce(a)) 0 H. 1f
H is 2-constrained, the quoted proposition of [14*] applies, so we may assume
that H=HJO(H)=TxL, where T is a four group and L=A4,. If aeT, it is
immediate that Cg(@) is a 2-group. Since D<Cx(@), this forces D=1 and so
D& O(H), as required. On the other hand, if de T, then Cz(a) maps onto H.
But [D, Cr(a)] has odd order and hence so does (D, H]. Since [D, H] is normal
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in H, this yields [D, H]=1 as O(H)=1 and we conclude at once that j=1.
Thus D= O{H) in this case as well.

DEFINITION 2.5. Let S be a 2-group and let A and A* be two noncyclic
elementary abelian subgroups of S. We say that 4 and A* are connected if there
is a sequence of noneyclic elementary abelian 2-subgroups A=4,, 4,, -+, 4,= A%
of S such that either A;c A, or Ai CA4; forall ¢,1<i<n—1. We say that §
is connected if every pair of noncyclic elementary abelian subgroups of § is
connected. Moreover, we say that an arbitrary group G is connected if a Sylow
2-subgroup of it is connected.

The following sufficient conditions for a 2-group to be connected are proved
in Part IV, Section 1 of [14*]:

LeMMA 2.4. If S is a 2-group in which SCNy(S) is nonempty then S is
connected.

If S is a 2-group of type As or PSL(3, 4), then SCN,(S) is, in fact, nonempty,
so S is connected by the lemma. On the other hand, if S is of Janko type, it
turns out that S is not connected (see Lemma 5.1 (i)).

In the connected case, we have the following result, which is the so-called
“balanced theorem” of Part IV, Section 1 of [14*]:

THEOREM 2.5. Let G be a group with O{G)=1 and SCN,(2) nonempty which
satisfies the following conditions:®

(a) G 1s balanced and connected;

(b) For some noncyclic elementary abelian 2-subgroup A of G, the subgroup

W.=<0(Cs(a)) [a € A%

of G has odd order.

Under these conditions, O(Co(2))=1 for every involution = of G.

To state an analogous result in the non-connected case, we need one further
concept:

DEFINITION 2.6. Let G be a group in which SCN:(2) is nonempty and let
UeU2). We say that G is weakly connected provided the following conditions
hold:

(@) Ng(U)/Ci(U) has order divisible by 3;

(b) If ue U then Cu(w) is 2-constrained and U< Ow,(Cu(u)).

(¢) If H={Ce(u), No(U)) and H is a proper subgroup of G, then H is strongly

% In this paper, the balanced theorem is used only in the case that G satisfies the
assumptions of Lemma 2.3, in which case the centralizer of every involution of G is
‘2-generated”. This ease of the theorem is proved in Part 1V, Section 3 of [14*].
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embedded in G.

(Groups with a strongly embedded subgroup have been classified by Bender
(3], 4D.

We shall see later in Section 12 that a simple group G with Sylow 2-subgroups
of Janko type is, in fact, weakly connected.

Theorem 11.3 of [16] asserts the following:

THEOREM 2.6. Let G be a finite group with no normal subgroups of index
2 and OG)==1 which satisfies the following conditions:

(a) G s balanced and weakly connected:

by If Ue U2), then the subgroup

Wy =O0Csu)|u e U

of G has odd order.

Under these conditions, O(Cs(x))=1 for every involution x of G.

This summary should make evident our procedure for demonstrating that
O(Cu(z))=21 for every involution z of G in each of Theorems A, B and C. Indeed,
we first derive sufficient information concerning the subgroup structure of G to
enable us to prove that G is balanced and that O is a strongly flat A-signalizer
functor on G, where A is an elementary abelian subgroup of G of order 16.
Application of Theorem 2.1 then yields that the subgroup W is of odd order,
so condition (b) of Theorems 2.5 and 2.6 is satisfied. (For the latter theorem, we
note that A necessarily contains an element U of U(2). But then Wyc W, and
so Wy is of odd order.)

In the case of Theorems B and C, G is connected, so condition (a) of Theorem
9.5 is also satisfied; while in the case of Theorem A we show that G is weakly
connected, so condition (a) of Theorem 2.6 is satisfied. Theorems 2.5.and 2.6
together yield that O{Cu(a))=1 for every involution z of G.

3. Strongly flat subgroups. We have already remarked that the concept of
a strongly flat A-signalizer functor on a group G will be very important for us.
In this section, we derive some preliminary lemmas which will facilitate the later
verification that O is a strongly flat A-signalizer functor for suitable elementary
abelian 2-subgroups A of G.

Throughout we consider a group G and an elementary abelian 2-subgroup A
of G with m{A)>3 and a subgroup H of G such that B=AnH is noncyclic. We
shall show, under suitable conditions on H, that H is strongly A-flat. We fix
this notation.

We begin with a definition. If be B% then clearly O(Ce(b)) n HSO(Cx(b)).
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However, this inclusion may be proper, and so there may exist B-invariant
subgroups K of H of odd order of the form K={K nO(Cub)!bc B*> with K not
an element of My,(B). It will be convenient to denote the set of such subgroups
by Ho(B; H) and to say that H is strongly B-flat, if the elements of 11,B; H)
satisfy the conclusions of Definition 2.3. (Even if B=A4, the context will make
evident the meaning of strongly A-flat intended.)

The conditions for strong B-flatness depend upon H and B alone, while those
for strong A-flatness depend also upon G. However, we have the following result:

LEMMA 3.1. If H 1is strongly B-flat, then H is strongly A-Rat.

ProoF. Every element of Mo(B) contained in H is clearly an element of
o(B; H). Hence if the set of elements of My(B; H) generate a subgroup of odd
order, so do the elements of Mo(B) contained in H. Thus, H is strongly A-flat
in this case.

Suppose then that the elements of Mo(B; H) satisfy condition (ii) of Definition
2.3. We make a preliminary observation: if K€ Wy(B; H) and L,, L, are elements
of Uy(B) contained in K, then (L., L.> € Mo(B). Indeed, since {L,, L,>c K, it has
odd order and the assertion is immediate from the definition of My/B). In par-
ticular, the elements of Uy(B) contained in K possess a unique maximal element.

Now let K;, 1<i<m, be the distinct elements of My(B) which are maximal
subject to being contained in H and let K be a maximal element of My(B; H)
containing K:, 1<i<m. By the preceding remarks, K, is clearly the unique
element of My(B) which is maximal subject to being contained in K. This
implies that K+ K; for i#j, since otherwise K;=Kj, which is not the case.
Since H is strongly B-flat, we thus have that KX n KJ/Kf n K7 nO(H) is cyelic
for 2+ 7 and consequently KN K,;/K;n K;nO(H) is also eyclic. Furthermore, for
i#j+k#1, we have KI nK;=K;jnKx. But then K;nK;<Ki andas K.nK;¢
Ho(B), we have K;nK;c K;. Thus K;nK,;cK;n K,. Similarly the reverse in-
clusion holds and so KinK;=K;nK,;. We conclude that H satisfies condition
(1i-c) of the definition of strong A-flatness.

Now let P,, P, be elements of HMo(B; p), » an odd prime, that are maximal
subject to being contained in H and let Q: be a maximal element of My(B; H; p)
containing P, 1<7<2. By assumption Q.=Qf for some element 2 in Ny(B).
Thus Pf<Q.. We claim that P e Uy(B). Indeed, we have

P,=(P.nO(Cu(d) |be B% ,
whence
P ={(P{ nO(Cs(b*)){be B*) .
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Since b runs over B* as b does, the assertion follows from the definition of
Uu(B).

But now we see that (PF, P,y e Uo(B; p) as (P!, P-y<@.. It follows therefore
from our maximal choice of P, that P < P,. Since Q1=Q§ﬂ, we obtain similarly
that P¢ <P, whence P, P?. Thus P{=P, and so condition (ii-b) of the defini-
tion of the strong A-flatness holds.

Since B is a four group by assumption, condition (ii-a) holds also, and there-
fore H is strongly A-flat.

Setting A= H/O(H), we define the elements of Uo(B; H) in the obvious way
and we say that H is strongly B-flat if the elements of WUo(B; H) satisfy the
obvious analogues of the conditions of Definition 2.3. The following lemma has
the effect of reducing the verification of strong B-flatness for H to properties
of HIO(H).

LEMMA 3.2. If H=HJO(H) is strongly B-flat, then H is strongly B-flat.

Proor. If be B% then O(Cy(b)) maps onto O(Cu(b). Hence the elements of
Wo(B; H) map onto elements of W(B; H) and each element of Ho(B; H) is the
image of an element of Wu(B; H). Since B is noncyclic, we also have that
O(H)eUy(B; H). Thus the maximal elements of Vo(B; H) are precisely the
complete inverse images of those of Wo(B; H). Hence if condition (ii) of Defini-
tion 2.3 holds for H, it follows at once that condition (ii-¢) holds also for H. We
claim that condition (ii-b) holds also. Indeed, let P, P, be two maximal elements
of Uy(B; H; p), p an odd prime. Set K;=P.,O(H), so that K;eWy(B; H). Hence
P, is a Sylow p-subgroup of K; by the maximality of P;,1<i<2. This in turn
implies that P; is a maximal element of Ho(B; H; p), 1<i<2. But then by con-
dition (ii-b) of Definition 2.3 in H, P,=P? for some element & in Niz(B). Since
Nu(B) maps onto Nu(B), it follows that K,=KT for some element 2 in Ny(B).
Thus P® and P. are two B-invariant Sylow p-subgroups of K,, whence P,=PF/"
for some y in Ck,(B). Since xye Ny(B), we conclude that condition (ii-b) holds
in H. Since B isa four group by assumption, so is B and hence condition (ii-a)
also holds in H. Thus H is strongly B-flat.

On the other hand, if condition (i) of Definition 2.3 holds in H, then obviously
it also holds in H and again H is strongly B-flat.

We also have

LEMMA 3.3. If OCub)cOH) for every bin B?, then H 1is strongly A-flat.

ProoF. Qur assumption implies that every element of My(B; H) is contained
in O(H), so H is strongly B-flat. Hence H is strongly A-flat by Lemma 3.1.

We next prove
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LeMMA 3.4. If H is 2-constrained, then H is strongly A-flat.

PROOF. In view of Lemmas 3.1 and 3.2, it will be enough to prove that H
is strongly B-flat in the special case that O(H)=1. If be B?, set C=C,(b) and
R=0.(HynC. Then [O(C), R]cOCnO.,(H)=1, so O{C) centralizes R=Co,un(b).
Theorem 5.3.4 of [12] now yields that O{C) centralizes O.(H). Since H is 2-
constrained, it follows that O(C)=1. Thus 1 is the unique maximal element of
Ho(B; H) and so H is strongly B-flat.

LeMMA 3.5. If H has dihedral Sylow 2-subgroups, then H is strongly A-flat.

PROOF. Again we may assume O(H)=1 and need only verify that H is
strongly B-flat. We may also suppose H is not a 2-group, otherwise the con-
clusion is obvious. We apply the main theorem of D. Gorenstein and J. Walter
(15] and conclude that H is either isomorphic to 4; or to a subgroup of PI'L(2, ¢}
containing PSL(2, ¢). More specifically, in the latter case, H=LE, where L=
PSL2,q) or PGL(Z, ¢), q odd, L {H, E is cyclic of odd order and is induced from
the Galois group of GF{(g), and LnE=1. We identify H with its image in A.
or PI'L{(2, ¢). We note that since B is noncyclic and H has dihedral Sylow 2-
subgroups, B is necessarily a four group.

If H=A;, we can identify B with {(12)34), (13)24)> or {(12)(34), (34)56)
as these are representatives of the two conjugacy classes of four groups in 4..
In the first case, we see that {((56 7)) is the unique maximal element of Wu(B; H)
and so condition (i) of Definition 2.3 is satisfied. In the second case, there are three
maximal elements of Mo(B; H); namely, (127)>,4(347), and {(567)>. Since
(185)246)e Ny(B) and cyclically permutes these three subgroups, it is immediate
that condition (ii) of Definition 2.8 is satisfied.

Suppose then that H=LE< PI'L(2,q). By Lemma 2.3(i) of [15], we can as-
sume that E centralizes B. We let b,, by, b be the involutions of B. By Lemmas
3.1(iii), (vii) and 3.3(ii) of [15], Cx(b;) is a dihedral group and if K;=0(Cb))E,
1<7<8, then every maximal B-invariant subgroup of H of odd order is equal
to some K. Since Cg(b:) has a normal 2-complement, the same is true of every
maximal element of Ho(B; H). By Lemma 3.1(v) of [15], O(Cy(b:)) N O(Cu(by)=1
for i=j. Hence K;nK,;=E for all i#j,1<14,5<83. Since E is cyelic, it follows
that condition (ii-e) of Definition 2.3 is satisfied.

Since B is a four group, it thus remains to verify condition (ii-b). Let P
be an odd prime and let P; be a B-invariant Sylow p-subgroup of K; 1<1<3.
Then P;=[P,, B)Cp(B). By Lemma 3.3(i) of [15], Cua(B)=BXE, so0 Cr(B)SE.
Moreover, [P;, BlJc L. Since the unique Sylow p-subgroup P of E normalizes the
unique Sylow p-subgroup Q; of O(Ci(b:)), we conclude that, in fact, P;=Q;P,
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1-73. In particular, each P; is uniquely determined. If Bc L/'=PSL(2, q),
then there exists an element x of N, (B} which cyclically permutes by, b, b,. But
then 2 cyelically permutes K., K., K, and consequently also P,, P, P;, so condi-
tion (ii-b) holds in this case.

Suppose finally that B¥ZL’. Then [BnL’{=2. For definiteness, assume
b.e Bn L/, in which case b, and b, are noncentral involutions of a Sylow 2-sub-
group S of H containing B. Hence S contains an element which interchanges
b, and b; and so P.and P are conjugate in N,(B). However, by Lemma 3.1(iii)
of {15, O:C by and O(C,(b;)) have coprime orders for v=2 and 3. Hence either
P. and P, are the only maximal elements of M, (B; p) or else @Q:=Q;=1, while
Q.+ 1, and P, i3 the unique maximal element of M,(B; p). In either case we
conclude that condition {ii-b) holds. Thus H is strongly B-flat and the lemma
is proved.

LEMMA 3.6. If H has quasi-dihedral Sylow 2-subgrowups, then H is strongly
A-flat.®

Proor. Again we may assume O(H)=1 and need only verify that H is
strongly B-flat. Since a quasi-dihedral group contains no noneyclic abelian
subgroup of order 8, B is necessarily a four group. By Proposition 2.1.1 of
J. Alperin, R. Brauer and D. Gorenstein [2], either H has a normal 2-comple-
ment or H is a Q-group, a D-group, or a QD-group in the sense of {2]. Since
the lemma is obvious in the first case, it suffices to treat the remaining three
possibilities.

Suppose first that H is a Q-grvoup. Then by Proposition 2.3.1 of [2] and the
fact that O(H)=1, we have that |Z(H)|=2. Since (B, Z(H)> is abelian, we must
have Z(H)=B. We number the involutions by, bs;, b; of B so that b )>=Z(H).
Since O(H)=1, we have O(C,(b,))=1. Furthermore, Cpb,)=C,(B),2<1<3. How-
ever, as shown at the beginning of Section 2.4 of [2], C,(B) has a normal 2-
complement X. Thus O(C,bNeX for all 4, 1<4<38, and consequently every
element of 14 B; H) is contained in X. Since |X/| is odd, we conclude that H
is strongly B-flat.

Suppose next that H is a D-group. Then by Proposition 2.1.1 of [2], H has
a normal subgroup K of index 2 with dihedral Sylow 2-subgroups. Clearly K
contains a four group. Since a quasi-dihedral group contains only one conjugacy

4 If G satisfies the hypotheses of Theorem A, one can show directly that H/OH) is
isomorphic to PSL(3,3), M, GL(2,3), or a Sylow 2-subgroup of H, in which cases it is
trivial to verify the strong flatness of H (Cf. Lemma 11.8). Thus reference to the main
results of {2] is not essential.
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claszs of four groups, K contains every four subgroup of H and, in particular,
contains B. Since O{Ckib)=0(C,ib» for b in B?, it is clearly enough to prove
that K is strongly B-flat. However, this has already been demonstrated in the
preceding lemma.

Suppose finally that H is a @D-group. By the third Main Theorem of 2],
H contains a normal subgroup K of odd index with K= PSL3, ¢}, ¢= —1{mod 4,
PSU3, ¢*3, g=1imod 4) or M;,. One verifies directly in each ecase that B cen-
tralizes O(Cx(bh. But by the Frattini argument, H=KC,(B) so certainly B
centralizes O(Cy{b)) for each b in B* and, as noted above, C,(B) has a normal
2-complement X. Thus OC,bnc X for each b in B and it follows in this case
as well that H is strongly B-flat.

We conclude this section with the following property of the groups PSL*3, 4)
and PGL*3, 4).

Lemma 3.7, If HIOH) is isomorphic to PSL*3,4) or PGL*3,4), then H
is strongly A-flat.

Proor. Once again we may assume O(H)=1 and verify that H is strongly
B-flat. Hence we may assume that H=PSL*(3, 4) or PGL*3,4). Correspondingly
we set L=PSL(3,4) or PGL{3,4), so that L is normal of index 2in H. We have
H=L{t>, where the automorphism of ¢ on L is induced by the product of the
transpose-inverse map of GL(3,4) and the field automorphism of GL(3, 4) deter-
mined by a generator of the Galois group of GF{4).

We note first that L has only one conjugacy class of involutions and the
centralizer of an involution of L is 2-closed and has no normal subgroups of odd
order. Furthermore, if L= PSL(3, 4), this centralizer is, in fact, a 2-group. These
properties of L are easily verified by direct computation.

If Bc L, it follows, in particular, that M,(B; H) is trivial and so certainly
H is strongly B-flat. Thus we can assume that B¥ L. One checks also that
every involution of H—L is conjugate to { (see Lemma 4.8(iv) and Lemma 5.1(viii))
and so without loss we can assume that t¢ B.

Regarding t as an automorphism of GL(3, 4}, we compute the centralizer of
tin GL(3,4). This is the set of matrices X such that (X*)"X=1, where X’ is
the matrix obtained from X by applying the nontrivial automorphism of GI7(4)
to the entries of X and where (X*)” denotes the transpose of X°. Thus X e GU(3, 4).
Using this observation, we obtain that C,(¢) is isomorphic to PGU(3, 4) or PSUi3, 4)
according as L=PGL(3,4) or PSL(3,4). Now PGU(3, 4 is a solvable group of
order 8-27 in which SL(2, 3) acts faithfully on an elementary abelian group of
order 9, while PSU(3, 4) is a normal subgroup of PGU(3, 4) of index 3.
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In particular, we see that a Sylow 2-subgroup @ of C,(¢) is quaternion. Since
Q< {ty is a Sylow 2-subgroup of C,(t), it follows that C,(¢#) does not contain an
elementary abelian subgroup of order 8. However, B=Cy(t) as te B. Thus B
is a four group and hence condition (ii-a) of Definition 2.3 holds. We proceed
now to verify conditions (ii-b) and (ii-c).

We have Bn L={(z,)> is of order 2 and B={z,,t>. Moreover, 2,t and ¢ are
conjugate in Ny(B), where S is a Sylow 2-subgroup of H containing B and a
Sylow 2-subgroup of C,(¢). Hence C,(t) and Cy(z,t) are conjugate by an element
of N,(B) and therefore so are K,=0(C,(t)) and K,=0(Cy(z,t)). Furthermore,
z,t inverts K, and ¢ inverts K., so K, N K,=1. We shall now argue that X, and
K, are the complete set of maximal elements of V,(B; H), in which case conditions
(ii-b) and (ii-¢) of Definition 2.3 will follow at once.

Let KX be a maximal element of My(B; H). We have already noted that
O(Cu(z,))=1 as z € L. Hence K={(R, R,>, where Ri=KnK, and R,=Kn K,.
It will clearly suffice to prove that R;=1 or R,=1; so without loss we can as-
sume that R:1 and R,+1. In particular, | K|=>9. But clearly K;< PSL({3, 4),
14722, and therefore also K< PSL(3,4). Since a Sylow 3-subgroup of PSL(8, 4)
is elementary abelian of order 9, it follows that K is a Sylow 3-subgroup of
PSL(3, 4), whence K=R,;xR; and |R,|=|R;|=38. Now set C=Cr{R,). Then (>
is a Sylow 2-subgroup of C, otherwise some involution of PSL(8, 4) would cen-
tralize R,, contrary to the above-noted fact that the centralizer of every involu-
tion of PSL(3,4) is a 2-group. Thus C={)>0(C). Since PSL(3,4) contains no
elements of order 15 or 21, we conclude at once that O(C) is a 3-group. On the
other hand, since K, is abelian of order 9 and R;< K, we have K, 0O(C), whence
(K, R:> is a 3-subgroup of PSL(3,4) of order at least 27, which is impossible.
This completes the proof.

4, Some properties of groups with specified Sylow 2-subgroups, In this section
we collect a number of results about groups with Sylow 2-subgroups of order at
most 27 which we shall need. The discussion will be based in part upon two
general concepts which will be used throughout the paper.

Let S be a Sylow p-subgroup of the group G, » a prime, and let K be a
conjugacy class of p-elements of G. An element 2 of SNK will be called an
extremal element of S in G if

[Cs(@)121Cs(y)]

for every element ¥ in SN K.
In this case, it follows directly from Sylow’s theorem that Cs(x) is a Sylow
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p-subgroup of C.iw). Furthermore, if y&Sn K, we can choose g in G such that
y=a and CyyraCyla.

These facts will be used repeatedly in the paper.

We shall also make considerable use of Glauberman’s theorem concerning
isolated involutions [9]. An involution 2 of a Sylow 2-subgroup S of the group
G is said to be isolated in G if it is not conjugate in G to any other involution
of S. If x is an isolated involution of G, Glauberman’s theorem asseris that
e Z%@), where Z*(G) denotes the preimage in & of Z(G), where G=G/OG).
Since C.(#) maps onto Cid@)=G, it follows in this case that G=0(G)Cu(x).

The following remark is useful: If the group G has a normal subgroup H
of index a power of 2 and H has an isolated involution, then so does G. Indeed,
we have G=8H, where S is a Sylow 2-subgroup of G. We may assume without
loss that O{G)=1, whence also O(H)=1. Then Z(H)is a 2-group and, as H has an
isolated involution, Z{H)+1. Sinece Z(H) is normal in S, it follows that Z(S)n Z(H)
contains an involution z. Then x¢ Z(G) and so z is an isolated inveclution of G.

We shall also make considerable use of Thompson’s well-known lemma
(Lemma 5.38 of [26]) which asserts that if S is a Sylow 2-subgroup of the group
G and R is a maximal subgroup of S, then either G has a normal subgroup of
index 2 or any involution of S—R is conjugate in G to an involution of R. In
some situations we shall actually need the following extension of this result,
which is proved by a similar transfer computation (compare Lemma 1 of {20]:
If zy, 2, «+, 2. (m>1) ave elements of S—R such that (a) = is not conjugate in
G to an element of R and (b) m?j is not conjugate in G to an element of S—R,
1<4i<n,7=1, then G possesses a normal subgroup of index 2 not containing
Xy, Tz o0y Lo

We first prove

LEMMA 4.1. If G is a group with Sylow 2-subgroup S of order 16 and G
does not contain an isolated involution, then S is either elementary abelian, homo-
cyelic of type (4.4), dihedral, quasi-dihedral, or the direct product of a dihedral
group with a group of order 2.

PROOF. Suppose first that S is abelian. Then by a theorem of Burnside,
the fusion of Sin G is determined in Ng(S). Since G does not contain an isolated
involution, Glauberman’s theorem implies that SnZ(Ng(S))=1. Since |S|=16,
this is possible only if S is elementary abelian or homoeyclic of type (4, 4). Hence
we can suppose that S is not abelian.

If S is of maximal eclass, then S is either dihedral, quasi-dihedral, or gen-
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eralized quaternion by Theorem 5.4.5 of [12]. However, the third case cannot
occur, since then the unique involution of S would be isolated in G [6]. Hence
we can also assume that S is not of this form.

Suppose next that S’ is cyclic and let z be the involution of S’. Since z is
not isolated, z is conjugate in G to an involution 2#z of S. Setting R=Cy(z),
we can therefore choose ¢ in ¢ such that #7==z and R'=S. If R were nonablelian,
then 2,(R")={2> and £2,((R")y={(z>, whence 2=z, which is not the case. Hence
R is abelian. If |R|=4, it is easy to see that S must be of maximal class,
contrary to our present assumption. Since S is nonabelian, R<S and so | R1=8.
In particular, S’c R. If R were cyclic, then 2,(R)=2,(S"), whence x=2, which
is not the case. Thus R is either elementary abelian or of type (4, 2).

Suppose R is elementary abelian. Since S is nonabelian, an element y of
S— R induces an automorphism of K of order 2, so we can write R=R,xXR,,
where R, is a four group, R is of order 2, and each is y-invariant. If y can
be chosen as in involution, then (R, ¥) is dihedral and S={(R,, ¥> X R:, so S has
one of the forms of the lemma. In the contrary case, R=20,(S) and so R is
weakly closed in S with respect to G. But then two elements of R conjugate
in G are conjugate in H=N,(R). Setting C=CuR) and H=H/C, we have that
{S{=2and so H has a normal 2-complement. Since |R|=8, H is also isomorphic
to a subgroup of GL(3,2). Together these two conditions imply that H is non-
abelian of order 6. Setting R,=C(O(H)), it follows that R, is of order 2 and
is invariant under H. But then R,CZ(H)=Z(N,R)) and consequently the in-
volution of R, is isolated in G, contrary to our hypothesis on G.

Assume next that R is of type (4,2). We have ze R as z¢ Z(S). Hence
(z,2)=8(R) and |O'(R)|=2. But J'(R)GS and so Y R)CZ(S). This forces
G R)=<(z), since otherwise {(z, 2> =2, T (R)>< Z(8) and z ¢ Z(S), which is not the
case. Since 2/#2, we conclude therefore that R#+R. Thus S=RR’ But then
R nRe has order 4 and lies in Z(S) as R is abelian. If Z(S) were elementary,
then B=(Z(S), x> would be elementary, which is not the case, so Z(S) is cyclic
of order 4. Since Z(S)=Rn R7< Ry, it follows that F'(R?)={2)>. Since also J{R)=
{2>, this yields z#=z, a contradiction.

Finally consider the case that S’ is not cyclic, whence |S'|>4 and |S/S'|<4.
Clearly equality must hold and so S is generated by two elements 2, y. Further-
more, since S is not of maximal class, its class is 2 and hence S'=Z(8). Thus
S={Z(8), x, y) and consequently S'=([z, ¥]>. But [2, y] has order 2 as S/Z(S) is
elementary abelian. Hence |S’|=2, which is not the case. This completes the
proof.
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LEMMA 4.2. Let G be a group with elementary abelian Sylow 2-subgroup
Sof order 16. If Na(S)/CiS) has order 3 or 5 and N S) contains an element
which acts fized-point-free on S, then G is solvable of 2-length 1.

Proor. Let x€S% and set C=C;{x). Since every element of Ns(S) fixes =,
our assumptions imply that N¢(S)cCc(S), so C has a normal 2-complement by
Burnside’s transfer theorem. We conclude, in particular, that the centralizer
of every involution of S, and hence of G, is solvable. But now the main result
of D. Gorenstein {11] yields the lemma.

We next prove

LeMMA 4.3. If G is a group with Sylow 2-subgroups isomorphic to Z.x D,
then G has a normal subgroup of index 2 with dihedral Sylow 2-subgroups of
order 8.

ProoF. It will clearly suffice to prove the lemma for G/O(G), since then it
will follow at once for G. Hence without Joss we can assume to begin with that
0(G)=1. We argue first that G has a normal subgroup of index 2. Since O(G)=1,
it follows from a theorem of K. Harada [19] that either this is the case or D=
0:(G)=1. By the structure of S, we have N:(S)=SC.(S) and N.(S) has a normal
2-complement. Hence if D=S8, G=Ni(S)=80(G)==S and the assertion is ocbvious;
so we may assume Dc S. Setting G=G/D, we see that N3S)=8-C5S). Hence
if S is abelian, Burnside’s theorem implies that G has a normal Z2-complement,
in which case G has a normal subgroup of index 2. The only other possibility
ig that | D|=2 and S=Dx R, where R=D;. Since Dc Z(G), Gaschiitz’s theorem
(see [22], p.121) yields in this case that G=Dx L for some subgroup L of G and
again, G has a normal subgroup of index 2.

Let H be a subgroup of index 2 in G. Then H{G and Q=S H is a Sylow
2-subgroup of H and is of order 8. If @ is dihedral, the lemma holds; so we
may assume that this is not the case. By the structure of S, @ is then abelian
and Z(S)=Q. Since Ny (S)=8Cy(S) distinet involutions of Z(S) are not conjugate
in G and hence not in H. Since |Q|=8, it follows that | N,(Q)/C.(@)| is not
divisible by 7 and so is equal to 1 or 3. Now transfer yields that H has a normal
subgroup K of index 2. If K has a normal 2-complement, so does H and hence
so does G, in which case the lemma holds. In the contrary case, SN K is a four
group, K<{G, and G/K is a four group. However, in this case we see that there
is a subgroup of index 2 in G containing K with dihedral Sylow 2-subgroups of
order 8 and the lemma is proved.

REMARK. Using the classification of groups with dihedral Sylow 2-subgroups,
one can give a more exact description of G in the above lemma. To this end,
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consider PGL{Z, q), ¢ odd, and let E denote the cyclic group of automorphisms
of it induced from the Galois group of GF{q). Set E,=0{E) and, if g is a square,
let E, be the subgroup of E of order 2!0(E,)|. Finally denote the semi-direct
product of PGL(2, ¢) and E, by PI'L«(2, q) and the semi-direct product of PSL(2, ¢
by E, (in the case that ¢ is a square; by PI'L,(2, ¢).

Using this terminology together with main theorem of J. Walter and D.
Gorenstein [15]. one obtains the following sharpened form of Lemma 4.3: G=
G/O(G) is isomorphic to one of the following groups:

{i) a Sylow Z2-subgroup of G,

(i1y A Z,,

{(iii) the symmetric group S:,

(iv) H:xZ:; where H is isomorphic to a subgroup of PI'Ly(2, q) containing
PSL2, gy, or

(v a subgroup of PI'L,(2, q) containing PSL(2, ¢).

For G to have a Sylow 2-subgroup of order 16, some additional restrictions
must, of course, be imposed on ¢ above. In particular, it is easy to see that,
except in the case that G is a 2-group, G possesses an involution 7 such that
Cil) contains a subgroup isomorphic to Z. < S,. Primarily it is this consequence
of the lemma that we shall need.

We also require the following result, which is Lemma 2 of [20]:

LemMMa 4.4, If G 15 a group with o Sylow 2-subgroup isomorphic to the
wreathed product (Z; ZQ)SZ;;, then G contains a normal subgroup of indexr 2
with an elementary abelian Sylow 2-subgroup of order 16.

Both a Janko 2-group and a 2-group of type £SL(3,4) contain a subyroup
of order 2° given by generators a, b, ¢ and relations

™ at=bi=c?=1, [a,bd]=1, a'=a, b=b-1a®.

This group is a special 2-group with center {a?, b2).

We need the following result:

LeMMA 4.5, If S is a 2-group of the type (*) above, then

(1) Aut(S) is a 2-group;

(i) If S is a Sylow 2-subgroup of the group G, then G contains an isolated
wnvolution.

ProOF. We may assume S={a,b,¢), where {a,b, c) satisfy (%). Setting
U={a, by, we have that U=Z,x Z,. Furthermore, U is characteristic in S and
2 (U)=<a* b*)=Z(S). If « is an automorphism of S of odd order, then U*=U.
But S/<a*)> and S/{b*)> are not isomorphic as is easily checked. Hence « does not
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cyclically permute the three involutions a* 8% a®bh* of 2,(U). Since |a] is odd, «
must therefore centralize 2,(U), whence « centralizes U. Since [S/U}==2, a also
acts trivially on S/U, so « stabilizes the chain S>U>1. We conclude that « acts
trivially on S and hence that a=1, thus establishing (i).

To prove (ii), we first argue that no involution of S— U is conjugate to an
involution of U. Indeed, any involution of S—U is conjugate in S to ¢ or ca.
Suppose then that ¢ or ca is conjugate to an element of . Since ¢ and ca induce
the same automorphism of U, our argument is the same in either case, so for
definiteness assume ¢ is conjugate to an element of U and hence of Z(S). Let
R be a Sylow 2-subgroup of Cs(c) containing Cs(¢)={Z(S), ¢>. Then R is a Sylow
2-subgroup of G and so Z(S)NZ(R)=<{2) is of order 2. If z==q* then a nor-
malizes, but does not centralize, Z{R)={a?* ¢). However, this is impossible since
INS(Z(R)/C(ZR))| is odd as R is a Sylow 2-subgroup of G. We reach a similar
contradiction if z=b* or a?b%

It follows therefore by the extension of Thompson’s fusion lemma described
above that G has a normal subgroup H of index 2 not containing ¢ or ca. Since
T=SnH is a Sylow 2-subgroup of H, we conclude by direct calculation that
either T=U or T={a,be, b*>=Qs>Z.. In the latter case, Lemma 4.1 implies
that H has an isolated involution. Since |G : H|=2, G also contains an isolated
involution.

Suppose then that T=U, in which case T=Z,xZ, Set G=G/OG). Since
OH)=0(G), we have O(H)=0(G)=1. But now a theorem of Brauer [5] yields
that 7 is normal in H of index 1 or 3. In the first case, G=S5 and G has a
normal 2-complement, so certainly G contains an isolated involution. Hence we
may assume |H: T|=83. Then SAG, otherwise by (i) G=5CxS)=S0)=S, con-
inverts the Sylow 3-subgroup of G/7. But 7 ecentralizes Ql(f)*-:fﬂx([j):::Z(g),
whence H=[H, ¢] centralizes 2(7T). Hence H centralizes T, which is not the case.

Our next result is known, but we prove it for completeness.

LEMMA 4.6. If the group G has an extra-special Sylow 2-subgroup of order
2, n=b, then G has an isolated involution.

ProOF. Let S be a Sylow 2-subgroup of G with center (z), and suppose by way
of contradiction that a~z for some ¢ in S—{z>. We can then choose z in G such
that a*=z and Cs(@)*<S. But as S is extraspecial, |S: Cs(a)|=2. Since |S|=2»
with =5, it follows that Cy(a) is nonabelian. But then Cy(a) =S8'=<{z> and con-
sequently 2=z, contrary to a*=z.

We conclude the section with some results of a different nature. If S is a



350 Daniel GORENSTEIN and Koichiro HARADA

Sylow 2-subgroup of PSL(3,4), then S can be generated by involutions zi, 2.,
ay, Gz, by, by satisfying

(**) la), bi]=[as, b:]=2,, [as, b]=2., and [a, b:]=22:

with all remaining commutators of pairs of generators being trivial. In fact,

we can represent S as
1 a b
S:{(O 1 c)la, b, ceGF(AI}}

0 0 1

with

11 0 1z 0 100

w={0 1 0] az-:<o 1 0), b,:(o 1 1),

00 1/ 00 1 001

100 101 10 =

1)2:(0 1 2], a={0 1 0], z=l0 1 o)

00 1 00 1 00 1
and

0,1, z, 28} =GF4) .

It is not difficult to show that the only elements of odd order in Aut(S) are

of order 3 and that a Sylow 3-subgroup P of Aut(S} can be represented by the
matrices

1 0 0y

ij 0z o)}m,yeGF@)i.
(0 0 y/

In addition, one has

1 0 vty a b6, /1 0 0O 1 2a b
(() @ 0) (O 1 c) 0 =z 0>: 0 1 :z:“yc).
0 0 ¥y 0 0 1/\0 0 ¥ 00 1

From these results, one obtains immediately the following lemma:

LEMMA 4.7. The following conditions hold:

(1) Aut(S) 1s a {2, 3}-group;

(ii) a Sylow 3-subgroup P of Aut(S) is elementary abelian of order 9;

(ili) P fires A=z, 2s, a1, @s,> and B={zy, z;, by, bo); Cp(S/A) and Cp(S/B) are
of order 3 and act fized-point-free on A and B respectively;

(iv) If Py=Cu(Z(SY), then P, is of order 3, P, acts fixed-point-free on
S1Z(8)=8/Kz,, 2.y, and Py normalizes but does not centralize {a,, as).
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(v) If A or B=Z{S)x T and a nontrivial 3-element of Aut(S), normalizes
T, then T is congugate in S to {a, a:> or by, by, respectively.

LEMMA 4.8. Let K be a group with Sylow 2-subgroup S of type PSL(3,4)
and assume that K satisfies one of the following conditions:

{a) K=PSL{3,4) or PGL3, 4

b) |K:K'|=1or 3, K'=A,-Ef, and OK)=1; or

(¢) S<K and Cir(S)=S.

Then we have

(1) K ts isomorphic to a subgroup of PGIL(3, 4);

(ii) Any subgroup of PGL(3,4) containing a Sylow 2-subgroup of PGL(3, 4)
satisfies one of the above conditions;

(iiiy If K=PSL(3, 4) and K is contained as a normal subgroup of odd index
of a group H and if C,{K)=1, then H=PSL(3, 4) or PGL(3, 4.

(iv) If K 1s contained as a normal subgroup of index 2 of a group H
having Sylow 2-subgroups of Janko type, then H is isomorphic to a subgroup
of PGL*3,4). Moreover, if H is nonsolvable, then H=PSL*3,4) or PGL*(3, 4).

Proor. If K satisfies {(a}, then obviously K is isomorphic to a subgroup of
PGL(3,4); while if K satisfies (¢), the same holds by the preceding lemma. On
the other hand, if K satisfies (b), then for each value of | K: K’|=1 or 3, K is
uniquely determined up to isomorphism. Moreover, one verifies by direct com-
putation that G=PGL(3, 4) contains a subgroup A= X such that N.(4) is a split
extension of A by Z;xAs; with N,(A)=A,-E{’. Hence K is isomorphic to a
subgroup of PGL(3, 4) in this case as well. Thus (i) holds.

The subgroups of G containing a Sylow 2-subgroup of G are easily determined.
In faet, the centralizer of every involution of G is 2-closed, so we can use Suzuki’s
classification of such groups [24] to determine them. It follows easily that any
such subgroup satisfies condition (a}, (b) or (¢).

In proving (iii) we may identify K with Inn (PSL3,4)) and H with a sub-
group of Aut(PSL(3,4)). One knows that Aut(PSL(3, 4))/Inn (PSL(3, 4)) is of
order 12 and has a normal Sylow 8-subgroup. Since |H: K| i3 odd, we have
|H:Ki=1 or 3 and in each case H is uniquely determined, whence H=K or
H=PGL(3, 4).

Finally to prove (iv), set G=Aut (PGL(3,4)) and G=1Inn(PGL(3,4)). Then
ézG(tl, t>, where ¢, is an involution induced from a field automorphism of
GL(@3, 4) and ¢, is an involution induced by the transpose-inverse map of GL(3,4).
Furthermore, t; and ¢, commute. We set G,={t,)G, Gy={t:)G and Gs={t:t:DG.
We let S be a Sylow 2-subgroup of G containing <t t.> and set S;i=SnG;, 1=1%3,
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and S=S5SnG.
1 abd

If Sis represented as the image of the set of upper triangular matrices(o é f),
a, b, ¢ in GF(4), one checks by direct computation that ¢; normalizes an elementary
abelian normal subgroup of S of order 16. Thus SCN.(S)) is nonempty and so
S, is not of Janko type inasmuch as such a 2-group contains no elementary abelian
normal subgroups of order 8.

Now set t==#,t,. As we have noted in Section 3, Cy(t) has quaternion Sylow
2-subgroups and so |C,wm(t)=2. Hence t does not centralize Z(S)=Z2.Z,. Fur-
thermore, using the representation of S of the preceding paragraph, one checks
also that |Cugit)]=2. However, Aut{Z(S)=S.. Since {{;, ;) normalizes Z(S)
and both ¢, and t=t,t. do not centralize Z(S), we see that ¢, must centralize Z(S).
Hence Z(S,)==Z(8)~Z.x Z,. However, a 2-group of Janko type has a center of
order 2. Thus S; is also not of Janko type.

Finally we consider S;. We shall prove that, in faet, S; is of Janko type.
By the structure of S, we see that S has exactly two elementary abelian sub-
groups A and B of order 16, each of which is normal in S and contains Z(S). If
t normalized A4, then C,(¢) would contain a four group, contrary to the fact that
C.«(t) has a quaternion Sylow 2-subgroup. Hence, A'=B and B'=A. Now ¢t normal-
izes, but does not centralize, Z(S). We write Z(S)={z, z,> with Zi=z, and zt=2,2s.
We let <(a;, a:> be a complement of Z(S) in A and hence {ai, at> is a complement
of Z(S) in B. We set bi=ai, 1<1<2, a,=a,a;, and bs;=b:b:. By the structure of
S, a; does not centralize b; and so [a;, b;]€ Z(S)F, 1<14,5<3. But ¢ centralizes
[a:, b:] and so [a;, b]=2z,1<i<3. This in turn implies that [a., bi]#2,, since
otherwise [as, b1]==1. Thus [as, b;]=z; or 2:2.. Interchanging z; and 2,2;, if neces-
sary, we can assume without loss that [as, bi]=2.. (This does not affect any of
the preceding relations). Conjugating by t, we obtain [b:, a1]==[a(, b:]=21z.. Thus
S, is generated by the involutions 2, 2s, &, by, @, bz, £ which satisfy all the defining
relations of a group of Janko type and so S; is of Janko type, as asserted.

By the notation introduced in Section 1, Gs=PGL*@3,4). The argument of
the preceding paragraph shows that G, does, in fact, have Sylow 2-subgroups
of Janko type. But now if K satisfies (a), we can identify H with a subgroup
of Aut(PSL(3,4)=Aut(PGL(3,4) and our argument shows that necessarily
H< Gy, whence H= PSL*(3,4) or PGL*(8,4). Likewise if K satisfies (¢), we see
that H will be isomorphic to a subgroup of PGL*3,4). To complete the proof
of (iv), we need only show that K does not satisfy (b). However, in this case
0y(K) would be normal in H and elementary abelian of order 16, whence the
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Sylow 2-subgroups of H could not be of Janko type.

Finally we have the following easily verified property of Al

LEMMA 4.9. If H is a subgroup of As with Sylow 2-subgroup of type (2,2)
then either H is 2-closed or H= A, Zsx As, 22 S;, o7 SyXSe.

Part II
Theorem A,

5. Some properties of S, In this part of the paper we shall carry out the
proof of Theorem A under the assumption that Theorems B and C are valid.
Theorems B and C themselves will be proved in Parts IIT and IV of the paper.

We let G be a group with Sylow 2-subgroup S of Janko type. Thus S is
generated by involutions zi, z:, @i, @, by, bs, and ¢ which satisfy the relations (1)
of Section 1. In this section we list without proof a number of properties of
S that we shall need. These can all be verified without diffieulty by direct
computation. They are given by the following omnibus lemma:

LeEMMA 5.1. The following conditions hold:

(i) Z8)=(z), S'=0(8)={2:>x{aby, @) =Z:XQs, S|V(S)=Z:X 2Ly X 4,
{z,, 22 18 the unique element of U(S), SCN(S) is empty, and S is mot connected
(see Definition 2.5).

(ii) S has precisely two elementary abelian subgroups of order 16; namely,
A=z, 2,, a1, 2> and B=A".

(iii) S has precisely seven maximal subgroups. One is isomorphic to Ti=
{2y, 22, Qu, Gz, by, b)Y, which is of type PSL(3, 4), three to T.=<{2, 22, @, by, Gzbz, t5,
and three to Tsy={2zi, 2, @1, by, @sbs, ta.y. Z(T:)=Z{T:)=Z(S).

(iv) T has precisely fifteen masimal subgroups. Sic are isomorphic to
U=z, 22, @, G, 0O =(Zs % Z) § Zo, mine to Up={21, 22, @y, by, sbo), which is of type
(*Y of Section 4.

(v ) T. has precisely seven mazximal subgroups. One is Uy one is Uy=
(21, 2oy by, @sbs, tard, one is Ui=<zi, 2z, @by, asbs, t)=DsxQs and is characteristic
in 8, two are isomorphic to Us={z,, 2, ay, by, t) and these are conjugate in S,
two to Us={z,, 22, Q:b1, @,102bs, t>?£Z4SZ2 and each contains z;.

(vi) T, has precisely three maximal subgroups. One is U. and two are
1somorphic to Us (Ts does not contain Us).

(vil) S=8/{z) is of type As; U, is the unique elementary abelian subgroup
of S of order 16; S splits over Us; and (G, dz, by, b2y =Ds#Ds.

(viii) The representatives of the conjugacy classes of involutions in S and

their cardinalities are:
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(ix) Csla)=Cslay)=Cslas)=A4, Colze)=T,, Cslty=<¢t, 2\, abi2s, ash2s) = Zyx Qs,
and Cs(t) =<{z.

(x) 2, 18 not the square of an element of S—Us; every element of T;—U,
and of Us—{z1, 22, by, asbsy has order 8; Us—{z1, 22, a.bs, t) contains etght involu-
tions and eight elements of order 8.

(xi) If R is an elementary abelian subgroup of S of order 8, then either
CyR)=A or B. In particular, R=A or R<.B.

(xit)y If R is a subgroup of S containing U, properly, then R contains a
conjugate of ai, az or as.

We note that the given generators of T above satisfy the same relations
as those of equations (**) of Section 4. Hence Lemma 4.7 can be applied to T,
with 21, s, @1, @2, Dy, be having the same meanings as in that lemma.

We preserve all the above notation throughout Part IIL

6. Fusion of involutions and the structure of Ci(2). In this and the next
sections we assume that G has no normal subgroups of index 2 and contains no
isolated involution and determine the possible fusion pattern of involutions in
G. On the basis of this analysis and with the aid of Theorem B, which we are
assuming in Part II, we shall then determine the structure of Cs(z1). We continue
the notation introduced in the preceding section and, in addition, we set N=Cq(z,).
We fix this notation throughout. In particular, S§ has 6 conjugacy classes of
involutions, represented by zi, 22, ¢, @1, @: and a;.

We shall prove

PROPOSITION 6.1. FEither G has one or two conjugacy classes of involutions;
and in the latter case, z,~2z:~t and @~ ~ay.

We shall carry out the proof in a sequence of lemmas.

LEMMA 6.2. ¢ is conjugate to z; in Cg(zy).

ProoF. By Thompson’s fusion lemma ¢ is conjugate in G to an element of
the maximal subgroup T:=<z, 2, @1, @z, b1, b) of Sinasmuch as G has no normal
subgroups of 2. By Lemma 5.1(ix), we see that

[ Cs(t) =] Cslay) | = Csla) | =1Csas) | <] Cs{ze) | < | Cslzr) | .

Hence if ¢ were not conjugate to z; or z; in G, it would follow that ¢ was con-
jugate to some a; and that Cs(t) was a Sylow 2-subgroup of Ce(f). However, this
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is impossible as Cs(t) and Csla;} are not isomorphic by Lemma 5.1{(ix). Thus ¢
is conjugate to z; or z; in G.

Suppose next that ¢ is not eonjugate to 2z; in G, in which case Cu(t) does
not contain a Sylow 2-subgroup of G and ¢ is conjugate to 2z;. This implies that
T, is a Sylow 2-subgroup of C,(z:) and so there exists ¢ in G such that

t9=2, and Cs(t)gg Tlr-Cs(zg\, .
Since Cs(t)Y=<{2z,> and Ti={z,, 2>, it follows that
Az, 2> .

This forces z{ =z, a8 z.2;~2:~t7~z, under our present assumptions. Hence g Cy(2))
and the lemma holds in this case.

Now assume t~z; in which case there is an element h of G such that t' =z
and Cu(t)*<S. As in the preceding case, this implies that zi<S But 2,S)=
{z;,2:> by Lemma 5.1(i). Since clearly he Cu(z)), it follows that z'=z, or 2.z,
whence z;~2;. Thus ¢ is also conjugate to 2, in this case.

Next let R, R, be Sylow 2-subgroups of C.(t) and Cs(z;) containing Cs(¢) and
T, respectively. Since t~z,, B and R, are Sylow 2-subgroups of G. Hence by
Lemma 5.1 (1), 2,(R’) and 2(R)) are each four groups. But clearly <¢, 2,>< Q(R),
while <z, 2> 2:(R]). Hence

ay=2(R") and (z, 2>=2(R)).

We can choose an element k¥ in G such that t*=2. and Rf=R,, whence also
{t, z0%={z, 22>. It follows that either 2f=z, or zz.. However, (22, =2 for
some element 7 € R; and also t*"=z,. Since either zf =2, or 2/"=z,, we obtain the
desired conclusion of the lemma in either case.

For simplicity, set U=U,={z2, 2., a:by, t:b;, t>. By Lemma 5.1(v), we have
U=Dy+Qs. We also set K=N U) and C=CU).

LEMMA 6.83. K/C=A,-E}.

PROOF. Since U<S and <(z)>=2Z(U), we have Sc K< N=Cy(z;). Hence if N==
N/{z), the preceding lemma implies that Z, and ¢ are conjugate in N. But U
is the unique elementary abelian subgroup of S of order 16 by Lemma 5.1 (vii)
and so U is weakly closed in S with respect to N. Therefore any two elements of
U which are conjugate in N are conjugate in Ns(U). This implies that K con-
tains SC properly and also that z. and t are conjugate in X.

We use this to prove that K/UC is isomorphic to A;. Indeed, Aut(U)/Inn(U)
is isomorphic to the symmetric group S; (B. Huppert [22] pp. 356-357, L. Dickson
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[7], $§197,198). Since S/U is a four group, it follows that K/UC is isomorphic
to A, Z:. Ds or A;. Suppose by way of contradiction that it is isomorphic to A,
or Z. Dy Correspondingly we have SCJK or RC< K, where R is maximal in
S. 1t follows easily from Lemma 5.1(i) and (viii) that {z;, 2> is characteristic
in S or R respectively, whence K ¢ CNy({z;, z.). This inclusion implies that z. is
conjugate only to involutions of {z, 2> in K, contrary to the fact that 2. is
conjugate to ¢ in K. This proves the assertion.

Since (z,>=Z(1), {z> is a Sylow 2-subgroup of C. Hence if we now set
K=K/C, it follows that U is elementary abelian of order 16 and that KiU=A,.
Furthermore, S splits over {/ by Lemma 5.1(vii) and so K splits over U by
Gaschiitz’s theorem (see [22], p. 121). In addition, the involutions z: and a:b; of
[J are not conjugate in K, otherwise z, or 2z, would be conjugate to a:b in K.
However, this is impossible as z,, z,;z; are involutions, while a;b; has order 4.
Thus K does not act transitively on U/* and we conclude now from the definition

As a consequence, we obtain

LEMMA 6.4. KJ/O(K) is isomorphic to a split extension of DgxQs by As.

Proor. We set K=K/O(K). Since (2> is a Sylow 2-subgroup of C,C has
a normal 2-complement. But O(C){K as O(C) char C<{ K. Hence O(C)cO(K)
and so O(C)==1. Thus C=¢(3)> and UC=1. 1t follows now from the preceding
lemma that K/(z>=UL/), where L2<z), UnL=(%), and LiZy=A,. If L
splits over (Z,>, then K splits over U and the lemma holds. However, in the
contrary case, the results of I. Schur imply that L=SL(2,5), in which case 5-U
contains an element & such that &2=23. But then S—U would contain an element
x such that a?=2,, contrary to Lemma 5.1 (x).

We also have

LeMMA 6.5. U contains exactly ten noncentral involutions and they are all
conjugate on K.

PROOF. Since U=D,*Q,, U has exactly ten noncentral involutions. A 5-element
of K—C acts regularly on U/<{z) and so permutes these involutions in two orbits
of length five. Since the noncentral involutions z; and zz: of U are conjugate
in S and have the same image in UJ{(z>, we conclude at once that K acts transi-
tively on the noncentral involutions of U.

We next prove

LEMMA 6.6. The involutions ai, @, as of S are conjugate in K.

Proor. By Lemma 6.4, Nx(S) contains a 3-element x with x¢ C. By Lemma
5.1(iii), T\ char S and so x normalizes T,. Since x centralizes z; and normalizes
Z={z, 22>=2(Ty), « centralizes Z(T;). We conclude now from Lemma 4.7 (iv) that
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a suitable conjugate of © in Nw(T\} normalizes but does not centralize <a, a.>;
and the lemma follows.

Finally we prove

LEMMA 6.7. Any element of A=<z, 2., a;, a:> which is conjugate to z, in G
is conjugate to z; in N (A).

PRrROOF. Suppose a?=z, for some ¢ in A and ¢ in G. Since A4 is abelian,
AcCila) and so without loss we can assume that 4= S. Application of Lemma
5.1(ii) now yields that either A=A or A?=A‘. In the first case, g€ N.(4), while
in the second case, gt € N,(4). Since a” =2!=z,, the lemma follows in either case.

We can now easily complete the proof of Proposition 6.1. By Lemmas 6.2
and 6.6, We have

(1} o~ and Ay~Az~Us

If zi~z;, then G has either one or two conjugacy classes of involutions and in
the latter case, these satisfy the fusion pattern asserted in the proposition.
Hence we can suppose that z,7%%2;. However, by our assumptions on G, no involu-
tion of S is isolated in G and so by Glauberman’s theorem [9], 2, is conjugate
to some noncentral involution of S. Our conditions force z;~a;. But now using
{1) together with the fusion of involutions within S, it follows that the fifteen
involutions of A divide into two conjugacy classes C,, C; in G with C,={z,, z,2;} and
[C:{=13. Lemma 6.7 now yields that C,, C. are the conjugacy classes of involu-
tions of A within N,(A). However, N (A4)/C,(A) is isomorphie to a subgroup of
GL(4,2). Since |GL{4,2)] is not divisible by 13, we reach a contradiction at once.

We shall now determine the structure of N/O(N). We prove

PROPOSITION 6.8. N/O(N) is isomorphic to a split extension of D@y by As.

Proor. It will suffice to prove that O(N)U<N. Indeed, assume this is the
cage. Then by the Frattini argument, N=O(N)XNnK), where, as above, K=
NgU). But K& N as z1)=Z(U) and so N=0O(N)K. This implies that O(K)<
O(N), whence N/O(N)= K/O(K ) and the proposition now follows from Lemma 6.4.

Setting N=N/O(N)z,>, it will therefore be enough to show that U is normal
in N. We have that S is of type 4s by Lemma 5.1(vii). Moreover, it is im-
mediate that K=NyxU) and that O(K)=0(Nx(U)). It follows therefore from
Lemmas 6.3 and 6.4 that N3(U)/ONx(U))=A,-EY. We see then that N satisfies
condition (b) of Theorem B. Suppose N also satisfies condition (a) of the theorem.
Since we are proving Theorem A on the assumption that Theorems B and C hold,
we can apply Theorem B to conclude that U=0(N)U (N, as required.

Thus to complete the proof, it remains only to show that N has three con-
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jugacy classes of involutions. Since As-Ej;’ has exactly three conjugacy classes
of involutions, as is easily checked, so does K and representatives of these can
be taken as %, a,b; and a,. (Here we have used the previously noted fact that
z, is an involution, while b, has order 4.) Since ab;, a:b;z; are both of order
4, while 2,, a; are involutions, we see that neither Zz; nor &, is conjugate to a:b;
in N. We argue finally that also @, and z, are not conjugate in N. Since 3,€ Z(S),
it follows in the contrary case that a’=3, and Cg((il)igff for some element & of
N. Then £ maps Cz(d;)'=¢%> into S'==(3., aiby, azbs,>. However, the only in-
volutions in the inverse image of S’ in S are 2, z12. and 2. This forces
3 3, contrary to the fact that = 7., and the proposition is proved.

Ploposxtlon 6.8 has a number of direct consequences we shall need in our
subsequent analysis, and which we combine into the following proposition:

PROPOSITION 6.9. The following conditions hold:

(i) N does not involve SL(2, q), ¢=5, and PSL(2, q), ¢>5, and N/O(N) does
not contain subgroups isomorphic to Z, < Z.x PSL(2, q), ¢=5, or to Z,xS,.

(1) Any A-invariant subgroup of N of odd order lies in O(N).

(iii) The three mazimal subgroups of S isomorphic to T. are conjugate in
Ny(S).

liv) If N=NJONN), then N3(A)=T.X, where X is of order 3, X normalizes
both Ty and (G, @, and Cx(X)=Xx{Z, %, t'>, where t'~t in S.

(v) If  is a 3-element of N—O(N) and K is a proper normal subgroup
of N containing O(N), then the image of = in N/K mnormalizes, but does mot
centralize, some four subgroup of N/K and the normal closure of © in N covers
N/K.

(vi) If H is a non 2-constrained subgroup of N, then HIOH)=Z, X A; or As.

Proor. If N involves SL(2, ¢), g=5, or PSL(2, q), ¢>5, then clearly so does
N=NJO(N). Since NJOL(N)= As, obviously N does not involve PSL(2, q) or SL(2, q)
for ¢>5. Suppose that N contains subgroups A, K with K< H and H/K=SL(2,5).
Then H contains a normal subgroup L with Kc L such that H/L=PSL(2, 5)= As.
Furthermore, N=0,N)H and consequently KcLcO(N)=U,. Thus K, L are
subgroups of U, that are invariant under a Sylow 5-subgroup of N and |L: K|=2.
However, by the action of 4; on U,, the only such subgroups of U, are 1, (3D,
and U,. Hence we must have K=1 and L=<z, whence H=SL(2,5). Without
loss we can suppose that SnH is a Sylow 2-subgroup of H. Thus SNnH is a
quaternion group and so contains an element & such that &=, which contradicts

Lemma 5.1 (x).
Assume next that N contains a subgroup H=Z,xZ.x PSL(2, q),¢=>5. As
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above, we must have ¢=5. But if & is an element of N of order 5, then
Ci(#)={&>> (%> and so & does not centralize a four subgroup of N. Clearly then
no such subgroup H of N can exist.

To complete the proof of (i), it remains to show that N does not contain a
subgroup H=Z;xS,. Indeed, assume H is such a subgroup of N. Since
0:(N)=U,=Qs+Ds does not contain a subgroup isomorphic to Z<Z.xZ. and
since N/O«N)=As, HNO«(N)=Z, or ZyxZ,. Correspondingly the image of i in
NJOLN) is isomorphic to S, or Z,S,. However, 4; does not possess subgroups
of either of these forms.

{ii) is immediate from the structure of N. As for (iii}, Proposition 6.8 im-
plies that | Nx(S) : SCx(S)|=38. Let x be a 3-element of Ny(S)—Cx(S). By Lemma
5.1(1), S/i0(S)=Z.x Z,x Z». Clearly T,/®(S) is a four subgroup of S/&(S), and it
is left invariant by 2 as T, is characteristic in S. It follows that z permutes
the maximal subgroups of S/@(S), other than T,/%(S}, in orbits of length 3 and
hence permutes the maximal subgroups of S, other than T, in orbits of length
3. Thus (iii) holds.

To prove (iv), observe first that as SCNy(S) is empty, AAS. Since A< Ty,
it follows that 7; is a Sylow 2-subgroup of Nz(A). Furthermore, if z is as in
(iii), © normalizes 7y as T, is characteristic in S. But then & normalizes A by
Lemma 4.7 (iii). Since A/<{Z;)> is elementary abelian of order 8, any 5-element of
N which normalizes A necessarily centralizes it. Hence | N#(A)| is not divisible
by 5 and we conclude that N5(A)=T,X, where X=(Z>. Replacing X by a suitable
conjugate in Nw(A4), we can assume without loss, in view of Lemma 4.7 (v), that
X normalizes (i, @.). Since X centralizes z, and normalizes Z(Ty=0y, 5, X
centralizes <(Z;, 7:>. But X also normalizes, but does not centralize U/,. Since
Ui{zy=Eu, we conclude at once that |Cz,(X)|=8. Furthermore, U, contains
10 noncentral involutions and X centralizes two of them; namely, 3 and .
Hence it centralizes at least one more involution ¢/+7,. By Lemma 5.1 (viii) t/~t¢
inS. Thus Cp(X)=(2, %, '), where t/~{ in S. Finally the image X in N/U,=
NJOi(N) is self-centralizing and consequently Ci(X)=Cy(X). Thus all parts of
(iv) are proved.

Next let z and K be as in (v). By the structure of N=N/O(N), we see that
either K=0(N), K=0(NXz, or K=0O(N)U,. In the first case, NJK=N and &
normalizes a conjugate of S, which without loss we may assume to be S itself.
Then, as above, % normalizes both T; and A. By Lemma 4.7, £ does not centralize
A and so normalizes but does not centralize, a four subgroup of A and hence of
N/K. In the remaining two cases N/K=A,-E}’ or A, and the corresponding
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assertion is clear. Since no proper normal subgroup of N contains &, the final
assertion of (vj is obvious.

Finally let H be a non-2-constrained subgroup of N. Then the image H of
H in N is also not 2-constrained and so is certainly non-solvable. Hence
IO H = NJOJN )= A, and Ci{O/H)i5:0(H). Thus a nontrivial 5-element of H
centralizes 0.(/1) and consequently O,/ =1 or {(z). Since N does not involve
SL(2,5) by (i), we conclude that H= A, or Z;>A., proving (vi).

Our analysis also yields

PROPOSITION 6.10. If ¢ is an involution of G which is not conjugale to z,,
then o Sylow 2-subgroup of Cla) is elementary abelian of order 16,

Proor. By Proposition 6.1, if a#z;, then a~a; and hence C.(a) contains a
conjugate of A. If R is a Sylow 2-subgroup of C.(a), it follows that | R{>16
and if equality holds, then R is elementary abelian. However, in the contrary
by Proposition 6.1, contrary to assumption.

7. Preliminary results on the subgroup structure of G. We shall ultimately
give a complete description of the structure of the proper subgroups of G (when
(7 is 2 minimal counterexample to the theorem). Here we shall derive some
necessary preliminary resulis.

We first prove

PROPOSITION 7.1. Let Z={z;,2:y. Then we have

(i) TOINAZ)) is a normal subgroup of Nu(Z) of index 18.

(11) NALCAZ) is of order 6.

Proor. Set M=NuZ) and L=C.Z), so that S and T, are Sylow 2-subgroups
of M and L respectively. By Proposition 6.1, z:~z;. Since T:<Cu(z:), we can
choose ge @G such that zi=2 and T/cS. By Lemma 5.1 (i), T{=T; and so
g€ Ns(T). Since Z=Z(T\),ge M. Clearly g€ SL and so M>SL, whence |M/L|=6,
proving (ii).

To establish (i), it will suffice to show that L is solvable of 2-length 1. Indeed,
if this is the case, then O(I)T, is characteristic in L and hence is normal in M.
But also O(LY<GM and so O(L)sO(M). On the other hand, clearly O(M)< L,
whence O(M)YcO(L). Thus O(L)=0(M) and consequently OM)T,{M. Further-
more, by Lemma 6.4, there is a 3-element z in K—C=N4U,)—Cs(U,) which nor-
malizes S and centralizes z,. Then z normalizes T; by Lemma 5.1(iii) and so =
normalizes Z. Since © centralizes z;, it centralizes Z and hence xz€ L. Thus
[NATy): CAT)]}=3. But now Lemma 4.7 (iv) yields that [N(T\) : Ci(T1)]=8. Since
oM T, <L, it follows that | L : O(M)T;{=38. Combining this with (ii), we conclude
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that | M: OM)T,|=18.

We now prove that L is solvable of 2-length 1. Lemma 4.7 (iv} also implies
that the element x above acts fixed-point-free on 7,/Z. Hence if we set L= 1/Z,
we see that 7, is a Sylow 2-subgroup of L, T, is elementary abelian of order 16,
[N;(Ty: Ci{T\)]=3, and 2 acts fixed-point-free on 7;. Hence /. is solvable of
2-length 1 by Lemma 4.2 and we conclude at once that also L is solvable of
2-length 1.

We next analyze the normalizer of 4 and B in G.

PROPOSITION 7.2, N (A)/C{A) is isomorphic to Z; < A, or Z3;x A, according
as the number of conjugacy classes of involutions in G is one or two. Further-
more, Na(AYO{NA)) splits over the tmage of A. Similar statements hold for
N (B).

PROOF. Since B=A!, it obviously will suffice to establish the proposition for
A. We set H=N,(A) and C=Cs{A). As a consequence of Proposition 6.1, the
element z; of A has either 15 or 3 conjugates in G which lie in A. Correspond-
ingly 2 has 15 or 3 conjugates in H which lie in A by Lemma 6.7. Thus
[H: Hn N]=150r 3. Furthermore, by Proposition 6.9(iv), | Hn N|{=38-64| Hn O(N}|,
a Sylow 2-subgroup of Hn N is T, and a 3-element of Hn N normalizes 7, and
does not centralize T,/A. Since HNO(N) clearly centralizes 4, we also have
HrnOWN)=C. We therefore conclude that

|HIC{=15-3-4 or 3-3-4.

But H/C is isomorphic to a subgroup of GL(4, 2)=A. By the preceding para-
graph H/C is not 3-closed. Since T,/A is a four group, a Sylow 2-subgroup of
H/C is a four group and it follows now directly from Lemma 4.9 that H/C~Z, < A,
or Zi;< A., respectively. Since T, splits over 4, N.(A)JO(N.{A)) does as well by
Gaschiitz’s theorem.

As a corollary we have

LeMMA 7.3. If R is an elementary abelian subgroup of G of order 8, then
I NARYCLR)| is not divisible by 7.

Proor. Replacing R by a suitable conjugate, if necessary, we may assume
without loss that C«(R) is a Sylow 2-subgroup of Cu(R). By Lemma 5.1(xi),
Cs{R)=A or B, say Cs(R)= A for definiteness. Hence if H=N,R; and C=CyR),
we have that A is a Sylow 2-subgroup of C and hence H=CN,(A) by the Frattini
argument. By Proposition 7.2, | N;(A)/C,(A)] is not divisible by 7. Since C,(4)=C,
it follows that | H/C| is not divisible by 7, as asserted.

We also have
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LEMMA 7.4. G does not contain o subgroup H such that HIO(H =~ PSL(2, q,) %
PSL2, q;) with q; odd and ¢q:25,1<1<2.

PrOOF. We can assume without loss that Sn H is a Sylow 2-subgroup of H.
Then Sn H is elementary abelian of order 16 and so SnH=A4 or B, by Lemma
5.11ii); say, SnH=A, for definiteness.

If G has only one conjugacy class of involutions, we know from Lemma 6.7
that the involutions of A are all conjugate in N,(A4). But then replacing H by
a conjugate by a suitable element of N,(4) we can assume without loss that the
image of z, in = H/O(H) lies in one of the two factors L, or L, in H. If G
has two conjugacy classes of involutions, we claim that this condition necessarily
holds. Indeed, by the structure of H, we have AnL;=A; is a four group,
N; (A=A, 192, and Nu(A)=Ni(A)x Ni,(A). If Z € A, or A, then clearly
% would have 9 conjugates in A under the action of Nz(A). But then z, would
have 9 conjugates in A. However, as we have already noted in Proposition 7.2,
Proposition 6.1 implies in this ecase that 2, has only 3 conjugates in A. Thus
e A, Li, i=1 or 2, as asserted.

For definiteness, assume z,€ L;. Sinee Cu(z:) maps onto Ci(3), it follows
that C,(z,)==Hn N contains a subgroup K such that K/O(K)=Z.> Z;> PSL(2,q.).
However, since K< N and ¢.25, this conflicts with Proposition 6.9 (i).

In the next three lemmas we use the extension of Thompson’s fusion lemma
stated in Section 4.

LeEMMA 7.5. If H is a subgroup of G having a Sylow 2-subgroup isomorphic
to U=z, 25, a1y, by, tay>, then H contains an isolated involution.

Proor. Let K be a Sylow 2-subgroup of H. As in the case of U; in Lemma
4.5, the proof depends only upon the structure of B and not upon the embed-
ding of H in . Without loss, we may assume that O(H)=1.

Since R~ U, R contains a subgroup W=<z,, 2., a:b,, a:b,>=Z. < @Q,. By Lemma
5.1 (x), every element of R~ W has order exactly 8. Since every element of W
has order at most 4, it follows therefore from the extension of Thompson’s fusion
lemma that H contains a normal subgroup K of index 2 with Sylow 2-subgroup
W. We have O(K)<O(H) and hence O(K)==1. By Lemma 4.1 and the structure
of W, K has an isolated involution. As noted at the beginning of Section 4, this
implies that H also has an isolated involution.

LeMmaA 7.6. If H is a subgroup of G having « Sylow 2-subgroup isomorphic
to U=z, 25, a3, by, >, then H contains an isolated involution.

PrROOF. In this case, we use the embedding of H in G to establish our
lemma. Replacing H by a suitable conjugate in G, if necessary, we may assume
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that R=SnH is a Sylow 2-subgroup of H. By Proposition 6.9:ii}, the three
maximal subgroups of S isomorphic to 7, are conjugate in N «S). But by
Lemma 5.1(v}, (v) and (vi), R lies in one of these three maximal subgroups.
Hence without loss we may assume that Rc 7.. Furthermore, T contains two
subgroups isomorphic to U; and these are conjugate in S by Lemma 5.1 (v).
Hence without loss we may also assume that R="U..

Set W={zy, 2, a1b;, t>. Then W is a central product of Z, and Q. that is,
W={aibz.>-{abs, tz:>=Z,#Qs. By Lemma 5.1 (x), R— W contains eight elements
of order 8 and eight involutions. We shall argue that H possesses a normal
subgroup of index 2 which contains none of the elements of R— W of order 8.
Consider the element ta, which is of order 8. Hence ta, is not conjugate to an
element of W, since the elements of W have order at most 4, and the element
(ta,’ of order 4 in W is not conjugate to an element of K—W. Therefore by
the extended fusion lemma, either H contains a normal subgroup K of index 2
with fa, € K or else (fa,)*=2z, is conjugate to an involution of R— W.

Consider the latter possibility. Representatives of the conjugacy classes of
involutions of R— W in R are a, and a,2.. Suppose 2;~a, in H. Put V=Cla),
so that by Lemma 5.1(ix), V=<2, 2., a;>. We can choose an element z in H such
that e/=#z and V°cR. Now R contains exactly two elementary abelian sub-
groups of order 8: namely, V and Vi={(z, 2, b;>. Replacing = by ¢, if necessary,
we may assume that ¥ normalizes V. We claim that N, (V)/Cu,(V)=S,. Indeed,
as SCN,(R) is empty and R is a Sylow 2-subgroup of H, N, (V) does not contain a
Sylow 2-subgroup of H. Hence N {(V)==(V, b of order 16 is a Sylow 2-subgroup
of H, and so N, (V)/Cn(V) has a normal 2-complement. Furthermore, this factor
group does not have order divisible by 7 by Lemma 7.3. Since b, centralizes
{z,, 2:» and conjugates a, into a2y, b; and 2 do not commute (mod C,(V)). Hence

Ny(VHICu(V)=S,, as asserted.
We shall now contradiet this conclusion. By Lemma 5.1(xi), 4 is a Sylow

2-subgroup of C«(V), VT, and T,/A is a four group. Sinece SCN4S) is empty
by Lemma 5.1(), it follows that T, is a Sylow 2-subgroup of N,(V) and conse-
quently a Sylow 2-subgroup of N,(V)C.(V) is a four group. However, this
factor group is a subgroup of GL(3, 2)=PSL(2,7) and so it must be isomorphic
to Z. . Z; or to As. Since neither of these groups contains a subgroup isomorphic
to S;, we obtain the desired contradiction. Since also Cula,z.)=V, we reach a

similar contradiction if z,~a;z; in H.
An entirely analogous argument applies to each of the remaining seven

elements of order 8 in R—W. We conclude therefore from the extended fusion
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lemma that H possesses a normal subgroup K of index 2 which contains none
of the elements of order 8 in BR— W, as asserted.

We have that Rn K is a maximal subgroup of R=U, and that R K contains
none of the elements of order 8 in R—W. One checks directly that either
RoK={e,z.,00,b0=yxDyor R K=W=Z,Qs. In the latter case, Lemma 4.1
implies that K has an isolated involution, whence H does as well. In the re-
maining case, either K has a normal 2-complement and hence H contains an
isolated involution or else, by the remark following Lemma 4.4, K=K/O(K)
contains an involution i such that Cy(it) contains a subgroup isomorphie to 2, S,.
Let » bhe an involution of K whose image is ii. Since a Sylow 2-subgroup of
Cx{n) is nonabelian, u~z, in G by Proposition 6.10. However, N/O{(N) does not
contain a subgroup isomorphic to Z,xS; by Proposition 6.9(i} and we reach a
contradiction. This completes the proof of the lemma.

LemMa 7.7, If H is a subgroup of G having a Sylow 2-subgroup isemorphic
to To={zy, 2, ar, by, @by, £ or Ty={2y, 23, a1, by, tabs, tas>, then H contains an

oML ™
solated tnvolution.

Proor. Let R be a Sylow 2-subgroup of H. The proof depends only upon

¢

the structure of £ and not upon the embedding of H in G. We may therefore
assume that R=T, or 7.

Suppose first that K=75. Then R contains U, which has exponent 4. More-
over, every element of 7T, U, has order 8 by Lemma 5.1(x). Hence by the
extension of Thompson’s lemma, H has a normal subgroup K of index 2 with
Sylow 2-subgroup U,. Since U is of type (*) of Section 4 by Lemma 5.1{v), K
has an isolated involution by Lemma 4.5 and hence so does H.

Assume then that K=T,. We want to prove that z, is an isolated involution
of H. Consider first the case z;~z, in H. We can then choose an element & in
H such that 20 =z, and Cwlz.)" = U7 < R. Since U, is the only maximal subgroup
of T. isomorphic to U; by Lemma 5.1(v), & normalizes U:;. But Aut(U,) is a
2-group by Lemma 4.5, so N,(U)=Cu(U,)R. Since z,€ Z(R) and ze N, (U, it
follows that zi==2,, contrary to 25=-2,. We conclude that z;+¢z, in H.

Suppose next that z;~¢ in H. In this case, we can choose an element z in
H such that £*:=2, and Cp{t) =:{zy, 2ea:by, 2:0:b,, t)*< K. But one checks directly
that Cr()~Z, Qs and that O(Cu())=<{2z>. On the other hand, one also checks
that QR =-Q(TH =<z, z.>. Thus zfe{z, 2z:>. Since z.74z2, in R, it follows
therefore from the preceding paragraph that zi=2;, contrary to t"=z;. Hence
z; is not conjugate to ¢ in H. Similarly 2z, is not conjugate to asb:t in H.

Representatives of the conjugacy classes of involutions of R in R ecan be
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taken as zi, 2s, 1, ¢, a:b:t. Hence to complete the proof of the lemma, it remains
only to show that z, is not conjugate to a, in H, so assume the contrary. Setting
V=Cula,), we have V=<2, z;,a,>. Furthermore, R contains exactly two elemen-
tary abelian subgroups of order 8; namely, V and V'={z,2:.b. As in the
preceding lemma, it is possible to choose x in H such that ai=2; and V=V,
On the other hand, SCN:(R) is empty, C(V)=V and Nu(V)/V is a four group.
This implies that Nx(V) is a Sylow 2-subgroup of Nu(V) and that a Sylow 2-
subgroup of N,(V)/C,(V)is a four group. Since this factor group is isomorphic
to a subgroup of GL(3,2), it must be isomorphic to Z; X Z; or A4,. In either case,
Cu(VINR(V){ N, (V). But one also checks that ZINk(V) =<z 2. It follows
therefore that <z, z;> is normal in N,(V). Sinee xe Ny(V), z{ € (2, 2>, contrary
to a’=z,. This completes the proof of the lemma.

8. The automorphism group of J: and J;. In order to show that a minimal
counterexample to Theorem A is simple, we require some knowledge of the
automorphism groups of J. and .J,. In this section we shall determine their
automorphism groups completely by proving:

ProPoSITION 8.1. The outer automorphism group of J. and J; is of order 2.9

In this section, G will denote the group J: or J;. We let S be a Sylow 2-
subgroup of G and use the notation of Sections 1 and 5. In particular, the
results of Sections 6 and 7 are applicable.

We need a preliminary lemma.

LEMMA 8.2. Cu(z) is a mazimal subgroup of G.

PROOF. Suppose false and let H be a proper subgroup of G which contains
C.(z)) as a maximal subgroup. We know that z,~2,~2:2; in G and we know
the exact structure of C.,(z)). In particular, O(Cu(z0))=1. We have Ty o Culdzy, 220).
Hence if @=2zi, 2 or 2., we have [Couiz), Ti] has odd order. The structure
of Celz) now forces Coun(@) = O(Cu(x))==1. Since {(z,, 22, is a four group, we conclude
that O(H)=1. Since Cu(z;)< H, it follows that 2 is not an isolated involution of
H. Since Cu(z)) has no normal subgroups of index 2, neither does H. Hence
Proposition 6.1 applies to H and tells us that z;~t in H.

We shall argue now that H is simple. Let K bea minimal normal subgroup
of H and set R=Sn K. Since O(H)=1 and Sz H, R is a nontrivial normal sub-
group of Sandso (2)>=Z(S)= K. Since K< H, te K by the preceding paragraph.
Hence the normal closure UJ of <z, t) in Cu(2y) is contained in K. But by Lemma
6.2 and Proposition 6.8, U=0:(Cqs(z))) is equal to Us and U is extra-special of

5) The case of Jo is also treated in [18].
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order 32. If U were a Sylow 2-subgroup of K, then z; would be isolated in K
by Lemma 4.6. However, O'K)=1as O{K)cO/H)=1. Since <z;y==Z(R)as R=2U,
it would follow that (z;>=Z(K ). But then z,€ Z{H), which is not the case. Thus
R5U and so KoC{2)>U. Since Culz)/U is simple, we conclude that Cu(z)c K.
It follows therefore from our choice of H that either K=C.{z) or K=H. How-
ever, the first case cannot occur as H does not have an isolated involution. Hence
H~K. Since K is a minimal normal subgroup of H, this implies that K has
no nontrivial normal subgroups and we conclude at once that H is simple, as
asserted.

But now by a theorem of Janko [23], |Hl=|J:| or |J;]. However, 7 divides
1J.) and does not divide |Js|. Hence, whether G=J; or J;, we see that G does
not contain a proper subgroup of the required order and the lemma is proved.

We now prove the proposition. For simplicity, we identify G with Inn (G).
It is known that | Aut (G)/G| is divisible by 2 [25], [21]. Suppose that Proposition
8.1 is false. Then we can choose a subgroup G of Aut(Gj containing G as a
normal subgroup of index 2p, where p is prime (p may be 2, of course}. By
the Frattini argument, we have ézGN,*,{S). But U=U, is a characteristic
subgroup of S by Lemma 5.1 (v). Hence ézGN{;(U) and it follows that
INGUYNAUy | =2p. Since | N,(U){=2"-3-5, we have [ N§(U){=2%-3-5-p. On the
other hand, we have already noted that Aut (U)/Inn(U)=S,. Since {z,>=C,(l),
we conclude that [Cy(U)|=2p or 4p. We have therefore shown that G—G con-
tains an element 2 which centralizes U. If p is odd, we can assume z7=1;
while if p=2, we can assume 2°€ (G, in which case 2*€ (2> =C,(U).

We set K=G{x>, so that Cx(U) is an abelian group of order 2p. Since
N Uy acts on Cx(l), and since N (U)/U is simple, we see that N, (U)=C.(z)
centralizes C,(U). In particular, a centralizes C.(z;) and consequently centralizes
Z {2, 2;>. Thus x normalizes N.(Z). Furthermore, O(N ZN<N. Since G=J,
or J;, O(N)==1 and it is immediate that O N.(Z))=1. Hence by Proposition 7.1,
NiZy is of order 27-3°, Ny(Z) has T, as a normal subgroup and C(T))=2. We
see also that Ng(Z)= N (ZKa).

Consider first the case that p is odd. If p=3,2 is contained in a Sylow
3-subgroup R of Ni(Z) and Q=R n N.Z) is a Sylow 3-subgroup of Ni(Z) nor-
malized by 2. On the other hand, if p=3, <& is a Sylow p-subgroup of Nx(Z),
so by the Frattini argument, if @, is a Sylow 3-subgroup of Ny (Z), then
NiQ) N Nx(Z) contains a conjugate of x, hence x normalizes a suitable conjugate
Q@ of Q. by an element of Nx(Z) and Q is 2 Sylow 3-subgroup of Ny(Z). But z
centralizes T, as T, cCu(z)), so Cx(T)=<Z, x>. Since CxiT\)<Ni{Z), we have
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(@, x]=Qn{Z, zy=1. Therefore x centralizes the group (Cu(z)), Q>. Since |Q]=9
and |Cs{z))| is not divisible by 9, this group contains Cg(z;) properly and hence
G={Cez:), @> by Lemma 8.1. Thus z centralizes G, which is a contradiction.

Assume next that a*=¢,. Then Cuy T)=<{Z, 2d>~Z,<Z.. Hence a Sylow 3-
subgroup of Ng(Z) centralizes {Z, x>, contrary to the fact that Ng(Z) contains
a 3-element which does not centralize Z.

Suppose finally that 2*=1. We shall argue that z or 22, centralizes 0.{Cs(z.)).
By Proposition 7.1, 2z, and 2 are conjugate in Ng( z1, 2.0, so Culz)= V.,
where Vi=DyQs, Fi=A4;, Vi<V \Fy,and z, € V,. Clearly « normalizes C¢(z:). Since
x centralizes T, =Cy(z;) and since 7' is maximal in a Sylow 2-subgroup S, of Ce{z,),
x centralizes Wi=TnV,and {V;: W,|<2. Since T, does not contain a subgroup
isomorphic to Ds*Qs, we obtain |V, : W,|=2. Since |S;: T\|=2. it follows that
S,=T\V:. Now set M;=Csz;){z), and let M,=M,/V,. Then M=) and T)
is a Sylow 2-subgroup of F,. Since Fi=A; and & centralizes 7 as well as a
nontrivial 3-element of Cgiz,) N Cglzz), we have, in fact, M,=F;x{&>. On the
other hand, we know that Aut(V,)/Inn(V,)=S;, which implies that Cu (VL VL
Since le(Vl)QMl, we conclude that x € V,Cy (V). Thus Cu (V1)={(2;, v} for some
element v of V;. Since x and zv both centralize W,, so also does ». Since
IVi: Wil=2and Vi=Ds*Qs, this forces ve Wy. Hence ve Z(W,). However, W,=
Cr,(2)=Z: < Qs as 2: € V1= Dy+Qs, whence Z(W)={zi, 2,y and so v=1, 21, 2, OF 2.
Since 2; centralizes V), we conclude that either a or wmz; centralizes V..

Since 2z, centralizes Cg(zy), it follows now that either z or xzz, centralizes
{C¢(z)), Vi>. Since this group contains Cg(z) properly, Lemma 8.1 now yields
that = or z2; centralizes G. Since 2¢ Inn (@), we reach a contradiction and the
proposition is proved.

9. Reduction to the simple case, For the balance of Part II, G will denote
a minimal counterexample to Theorem A. In this section we prove

PrROPOSITION 9.1. G is a simple group.

Proor. Clearly O(G)=1, since otherwise the theorem would hold for G/O(G)
by the minimality of G and would then follow for G. If G has an isolated involution
z, then G=C¢(x) by Glauberman’s theorem [9] and part (i) of Theorem A holds,
contrary to our choice of G. Hence G does not contain such an involution.

Suppose next that G contains a normal subgroup K of index 2. Then SNK
is a Sylow 2-subgroup of K and is of order 2°. Hence either SN K=1T, or
SNK=T, or T: by Lemma 5.1(iii). However, in the latter two cases, K would
contain an isolated involution by Lemma 7.7. (The lemma is applicable as it
depends only upon the structure of 7: and 7:.) But then G would contain an
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isolated involution as well, contrary to our choice of G.

Thus SnK=T,. But T, is of type PSL(3,4; by Lemma 5.1 (iii}. Since we
are assuming Theorem C and sinece G{K)=1, it follows that K is isomorphic to
a subgroup of PGL(3,4). We conclude therefore from Lemma 4.8(iv) that (7 is
isomorphic to a subgroup of PGL*(3,4) and so part (ii) of Theorem A holds,
contrary to our choice of G. Thus G has no normal subgroups of index 2. In
particular, G satisfies the assumptions of Section 5 and so all the results of
Seetions 6,7 hold for G.

Now let H be a minimal normal subgroup of G and set R=SnH. Then R
is a Sylow 2-subgroup of H and R=#1. Since RS,z € K. As in the proof of
Lemma 7.2, Proposition 6.1 implies that t¢ B and then Lemma 6.2 and Proposi-
tion 6.8 yield that U={z, t)¥< K. Since U is extra-special of order 32, UcR;
otherwise H would have an isolated involution by Lemma 4.6, in which case G
would as well. But then by Lemma 5.1 (xii}) R contains a conjugate of a4, a; or
a;. Now Proposition 6.1 shows that every involution of S is contained in R.
Since S=0,(8), we conclude that S=R¢ H.

Since H is characteristically simple and | Z(S)|=2, H is necessarily simple.
Henece if H is a proper subgroup of G, Theorem A holds for H and so H=J,
or J,. But Aut(H)/Inn(H) is a 2-group by Proposition 8.1. Since ScH, it
follows that G=HC(H) and that |Cg(H)| is odd. Since Co(H)<G, we have
Co(H)=O{G)=1, whence G=H, contrary to the fact that H is a proper subgroup
of G. Thus ( is simple and the proposition is proved.

10. Subgroup structure of . In this section we shall determine the possible
structures of the proper subgroups H of G.

We break up the analysis in terms of the order of a Sylow 2Z-subgroup R
of H. We fix this notation. Without loss we may assume that E<S. We first
prove

ProrosiTioN 10.1. If | R| <16, then one of the following holds:

(i) H contains an isolated involution;

(ii) H s solvable;

{iil) @ Sylow 2-subgroup of H s either dihedral, quasi-dihedral, or iso-
morphic to ZyxDs.

(iv) HJO(H) contains a normal subgroup of odd index isomorphic to
Zox Zyx PSL(2, q) with q=3, 5(mod 8), ¢ =5.

(v) H/OH) is tsomorphic to PSL(2, 16).

Proor. We apply Lemma 4.1 and conclude at once that either (i) or (iii)
holds or else R is elementary abelian of order 8 or 16 or homocyclic of type (4, 4).
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However, in the latter case, Brauer’s theorem (5] yields that RO(H) is normal
in H of index 1 or 3. But then H is solvable and {(ii) holds.

Suppose next that R is elementary abelian of order 8. By Lemma 7.3,
| N4 R): Cu{R)| is not divisible by 7 and so is equal to 1 or 3. But then Z(N,(R))
contains an involution and consequently H possesses an isolated involution, so
(i} holds.

Suppose finally that R is elementary abelian of order 16. We can assume
that H is nonsolvable and does not contain an isolated involution, otherwise (i)
or (i1) holds. The latter condition implies that R<[N,(R), Ny(R)]. Furthermore,
Ny (R)Cy(R) is not 3 or 5, otherwise H would have to contain an element which
acted fixed-point-free on R and H would be solvable by Lemma 4.2, Thus the
only possibilities are that Ng(R)/Cu{R) is cyclic of order 15 or abelian of
type (3,3). In these cases we apply the main theorem of Walter [27]. Since
H is nonsolvable, it follows that H=H/O(H) contains a normal subgroup L of
odd index such that L is isomorphic to PSL(2, 16), to PSL(2, ¢.)> PSL(2, q:) with
g: odd and ¢;>5,1<4<2, or to Z,xZ,x PSL(2, q) with ¢=3,5(mod 8) and ¢g=5.
Since PSL{2,16) does not possess an outer automorphism of odd order, it follows
in the first case that H=L, whence (v) holds. Furthermore, the second case is
excluded by Lemma 7.4, while in the third case, (iv) holds. This completes the
proof of the proposition.

For our next result it will be convenient to introduce the term PSL*?2, 16)
to denote the subgroup of PI'L{2, 16) containing PSL(2,16) as a subgroup of
index 2; equivalently the extension of PSL(2,16) by the automorphism of order
2 induced from an automorphism of GF{16) of order 2. A Sylow 2-subgroup of
PSL*2,16) is isomorphic to (Z: < ZE)SZQ.

ProrosiTION 10.2. If | R|=32, then one of the following holds:

(1) H contains an tsolated involution;

(i) H is solvable;

(iily HIO(H) is isomorphic to PSUS, 3%,

(iv) H/O(H) is isomorphic to PSL*(2, 16).

ProoF. Since R is a subgroup of S of order 32, R~ U, for some 7,116,
by Lemma 5.1(@v), (v) and (vi). If =3, or 5, then H contains an isolated in-
volution by Lemmas 7.5 and 7.6. Since U, is extra-special of order 32 by Lemma
5.1 (v), the same conclusion holds by Lemma 4.6 if 1=4. Furthermore, U, is of
type (*) of Section 4 by Lemma 5.1(iv) and so H has an isolated involution by
Lemma 4.5. Hence in each of these cases, (i) or (ii) holds.

It remains therefore to treat the cases i=1 or 6, in which correspondingly
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Ro{Z,~ ZQ)SZS or Z.,SZQ. Suppose first that R=(Z,x Z:)SZE. Then H contains
a normal subgroup K of index 2 with R K elementary abelian of order 16 by
Lemma 4.4. Clearly (i) or (ii) holds for H if it holds for K. In the contrary
case Proposition 10.1 implies that K/O(K) is either isomorphic to PSL{2, 16) or
else eontains a normal subgroup of odd index isomorphic to 2y Z.» PSL(2, q)
with =3, 5(mod 8) and ¢=5. Clearly O(K)=0(H). Hence if the first possibility
holds, then 77-=H/O(H) contains a normal subgroup L of index 2 isomorphic to
PSL(2,16). Since Cj(L)=1, H is isomorphic to a subgroup of Aut(l). However,
the automorphism group of PSL{2,16) is isomorphic to PI'L(2, 16) and we con-
clude that L is isomorphic to PSL*2,16). Thus (iv) holds in this case.

We shall show next that the second alternative cannot occur. Indeed if K
contains a normal subgroup X of odd index isomorphic to Z,» Z;x PSL{2, q) with
¢=3,5{mod8) and q=5, then clearly X is characteristic in /X and so is normal
in /I. We have X=Yx L, where Y is a four subgroup of B and L=PSL(2, ¢).
Since B normalizes X, it follows that Y<R, whence Y Z(R)#1. Hence there
exists an involution 9 in Z(R) such that Culi=2X and consequently there is an
involution ¥ in Z(R) such that C,(y) contains a subgroup X with X/0(X)=X.
However, a Sylow 2-subgroup of Cs;'y) contains R and so has order at least 32.
But then y~z, by Proposition 6.10 and therefore N contains a conjugate of X,
contrary to Proposition 6.9 (i).

Assume finally that Rz UGEZJZQ. By Proposition 2.1.2 of [2], one of the
following holds: H has no normal subgroup of index 2 and one conjugacy class
of involutions, H has a normal subgroup K of index 4 with quaternion Sylow
2-subgroup, or H has a normal subgroup K of index 2 with abelian Sylow 2-
subgroup of type (4,4). In the second case, the Brauer-Suzuki theorem {6]
implies that K has an isolated involution and then H does as well. In the third
case, Brauer’s theorem [5] implies that K is solvable and hence H is as well.
Thus (1) or (ii) holds in these cases.

Suppose then that H has no normal subgroup of index 2 and only one con-
Jugacy class of involutions, in which case H is a QD-group in the sense of [2].
Since < S, Lemma 5.1 (v) implies that z;€ R. But then by Propositions 2.2.1
and 2.3.2 of (2], if C=Cu(z)=Hn N, then C=C/O(C) contains a normal subgroup
L. isomorphic to SL(2, @) for some odd q. Thus C=HNN contains a subgroup
L such that L/O(LY~SL(2, q). Proposition 6.9 (i) now forces ¢=3. We conclude
therefore that C.(z) is solvable. But now a theorem of Fong [8] applies and
vields that H/O(H)=PSU3, 3. Thus (iiD) holds and the proposition is proved.

We next prove
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PROPOSITION 10.3. If | R|=64, then one of the Jollowing holds:

(i) H contains an isolated involution:

(i) R is of type PSL3,4) and H/OH) is isomorphic to a subgroup of
PGL{3, 4).

ProOF. If R is of type PSL(3, 4), then (ii) holds by Theorem C, which we
are assuming. We ean therefore assume that R is not of this type. Then by
Lemma 5.1(iii) R=T,or T;. In either of these cases, H contains an isolated iu-
volution by Lemma 7.7, whence (i) holds.

Finally we prove

PROPOSITION 10.4. If |R{=128, then one of the following holds:

(i) H contains an isolated involution;

(ii) H/O(H) 15 isomorphic to a subgroup of PGL*(3, 4);

(iiiy H/O(H) is isomorphic to J. or Js.

PROOF. In this case R=S is of Janko type. Since H is a proper subgroup
of G, Theorem A holds for H by our minimal choice of G and the proposition
follows.

In the next section, when G has two conjugacy classes of involutions, we
shall prove that

Cola)lOC )= 2y x Zyx Ay O Zyx Zy A, .

Once this is established, it is possible to sharpen the preceding results on the
subgroup structure of G. To preserve the continuity of exposition, we shall assume
that Cgla;) has this structure and examine its implications.

Specifically, we shall prove on the basis of this assumption:

ProrositioN 10.5. If H is a proper subgroup of G, then one of the follow-
ing conditions holds:

(i) H s 2-constrained,

(ii) H has dihedral or quasi-dihedral Sylow 2-subgroups;

(iii) HIOH)=Zy < Ay, Zox Zy X Ay, or Ay As;

(iv) HO(H)= PSL2, 16) or PSL*(2, 16);

{v) H/O(H)=PSUS, 3%);

(vi) HIOH)=PSL{3,4), PGL3, 4), PSL*(3, 4), or PGL*(3, 4);

(vii) HIOH)=J; or J..

PROOF. Suppose H has an isolated involution a. If ¢~z, we can assume
without loss that a=z,, in which case H=0 H ({1 N). But now Proposition 6.9,vi)
yields that either Hn N is 2-constrained or Hn N/O(HN N)=Z,» A.. Correspond-
ingly we conclude that H satisfies (i) or (iii). On the other hand, if @ is not con-
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jugate to z;, then a~a; and Cola)OCy an=2,« Z; % Ay or Zp X 2y < A; by our assump-
tion on the structure of C¢la,). Since H=0O(H )Y Hn Csla)), it follows at once in this
case as well that (i) or (iii) holds. Hence we may assume that H does not contain an
isolated involution. We may also assume that H is nonsolvable, otherwise (i) holds.

The structure of His given by Propositions 10.1-10.4. We examine the various
possibilities in succession. Suppose H satisfies Proposition 10.1(iii). Then either
(i1 of the present proposition holds or a Sylow 2-subgroup of H is isomorphic to
Z,~ Dy. However, by the remark following Lemma 4.4, it would follow in this
case that for some involution w in H, C,{u) contains Z,<S,. Since a Sylow 2-
subgroup of C,(u) is then non-abelian, u~z, by Proposition 6.10, contrary to
Proposition 6.9(i). Suppose H satisfies Proposition 10.1 (iv), in which case H—
HjO(H) contains a normal subgroup K of odd index with K= Z, % Z,x PSL(2, q), q=
3,5(mod 8) and ¢ 5. In this case C,(u) involves a subgroup isomorphic to K for
some involution w of H. Since u~z, or a,, Proposition 6.9(i) together with our
assumption on Cgla) forces u to be conjugate to a;, but not to z;, and ¢ to be
equal to 5. But then K is necessarily of index 1 or 3 in H and correspondingly
H=7,%7Z,< A, or Ay A;. Thus (iii) holds in this case. Finally if H satisfies
Proposition 10.1 (v}, then (iv) holds.

If H satisfies Proposition 10.2(iii) or (iv), then correspondingly (v) or (iv) holds.
If H satisfies Proposition 10.3(ii), then H=H/O(H) is isomorphie to a subgroup
of PGL(3, 4) and has a Sylow 2-subgroup of type PSL(3,4). In this case we apply
Lemma 4.8 to obtain that either H=PSL(3, 4) or PGL(3,4) or else |H: H'|=1 or
3 and H'~A,-E{. Since the latter group is 2-constrained, it follows at once
that either (i} or (vi) holds.

Suppose finally that H satisfies Proposition 10.4, in which case either H is
isomorphic to a subgroup of PGL*3,4) or to J, or J;. In the latter two cases,
{vii) holds; while in the first ease, /I contains a normal subgroup K of index 2
with A" isomorphie to a subgroup of PGLE, 4) and having Sylow 2-subgroups of
type PSI(3,4). Since H is nonsolvable, Lemma 4.8 (iv) yields that H= PSL*3, 4)
or PGL*3,4). Thus (vi) holds and the proposition is proved.

11, The structure of Cpia,). We shall now determine the structure of Celay)
in the case that ¢ has two conjugacy classes of involutions.” We set M=Cgsla,).
Then by Proposition 6.10 and Lemma 5.1(x) A=Cyla)=<z, 2, a1, @;> is a Sylow
2-subgroup of M and is elementary abelian of ovder 16. We know already from
Proposition 7.2 that if H=Ns(A), then H=H/O(H) is a split extension of A by

©) Use of Lyons characterization of J: would eliminate the need for this section.
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a group X« Y, where X=Z,and Y=A,. In particular, # is 2-closed with 7, as
its Sylow 2-subgroup and a Sylow 3-subgroup P of H is elementary abelian of
order 9. It follows now from Lemma 4.7 that for a suitable choice of P, P leaves
both {z,, Z:> and {d,, ;> invariant. This implies that Cy(@,)= AR, where | R|=3,
R centralizes <&, a.>, and R acts fixed-point-free on ¢z, £,>. Since Culay=H M

maps onto Ci{dy), we conclude at once that
( 1 \’ ! A"YAU(A} . Cuﬁ\:q\ ! =3

and that M contains a 3-element which centralizes W={a,, a:> and acts fixed-
point-free on Z={z,, 2,>.

In particular, if M is nonsolvable, Proposition 10.1(iv) applies and yields
that M=M/O(M) contains a normal subgroup 1) of odd index of the form

(2) D=W-L,

where L~ PSL(2, ¢), g=3,5{mod 8) and ¢=5 with Z<I. If M is solvable, then
clearly the same conclusion holds with ¢=3.

Our goal will be to show that, in fact, g=3 or 5. Once this is established,
it will clearly follow that D=/ and hence will yield our desired objective;
namely, a proof of the following assertion:

PROPOSITION 11.1. Cgla)/OColay)) is isomorphic to Zyx Zyx Ay or Zux 2. % As.

We shall carry out the proof in a sequence of lemmas, preserving the above
notation. By way of contradiction, we assume that ¢ >5. Our argument is based
on 2 method that was first used in Chapters IV and V of {2].

We first introduce some additional notation. Since @, ¢ Z(M) and I has odd
index in M, clearly W=2M) and Cy(L)=W. In particular, L <M and M/L is
a direct product. Hence
(3) M=WxK,

where K2L. Moreover Ciz(L)=1 and so K is isomorphic to a subgroup of
PI'Li2,q). Since Cy(W) maps onto Ci{ W), if follows that
(4 CulWi)=Wx K,

where K/O(K)>=K. We let L be the normal subgroup of K containing O(K)
such that L/O(K)=L. In addition, we bave M=O(M)Cy(W) and consequently

(5) M=0MYWxK).

Note also that as a;€ W, Co(W)=Cyu(W).
Finally consider Ci(z,) which by Lemma 8.1(iii) of [15] is 2 dihedral group
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of order ¢-—s, where ¢=:(mod4) and = 1. Since ¢=3,5{mod8) and ¢>5 by

assumption, O{C7z)+1. Since 7 is a Sylow 2-subgroup of L, it follows that for
some odd prime p, O/C;{Z,)) contains a nontrivial p-element inverted by z.. For
such a choice of p, there exists a nontrivial p-element y of L such that

(6) ya=y and yr=yl.

We fix such an odd prime p for the proof and preserve all the notation
introduced above. We wish to apply Glauberman’s ZJ-theorem [10] to certain
collections of subgroups of . To do this, we must show that each subgroup
in question is both p-constrained and p-stable. We begin with p-constraint.

Let H be a subgroup of G containing S. We shall say that H is p-constrained
within Z(8) if H is p-constrained and if O,.(H)< O(H)Z(S).

LEMMA 11.2. N 1s p-constrained within Z(8S).

Proor. Sinece {y) is A-invariant, y€ O(N) by Proposition 6.9(ii). Hence 2,
does not centralize some S-invariant Sylow p-subgroup P of X=0(N)Z(S)=
O(N)}z>. Setting R=Pn0, (X)), then R is an S-invariant Sylow p-subgroup
of O, »(X). Sinee X is solvable, it is p-constrained and so Co(R)c R. We claim
also that z; does not centralize B. Indeed, if [2;, R]=1, then [z., R, P]=1. Also
[R, Pl R, so |R, P, z:]=1 and hence [P, z;, R}=1 by the three subgroup lemma.
Thus z, centralizes P/R and consequently z, stabilizes the chain P2 R>1. We con-
clude that z; centralizes P, which is not the case and our assertion is proved.

Now set C=Cy(R), so that XCJXNy(R). Since N=XN,(R) by the Frattini
argument, it follows that C is normal in N=N/X. But %¢C and so by the
structure of N, we have C=1. Thus CcX and, as X is solvable, we have, in
fact, CC O, (X710, (N

Hence to complete the proof, we need only show that O0,(N)c X, for then
R will be a Sylow p-subgroup of O, (N) and, as Cx(R)< 0, ,(N), N will be
p-constrained within Z(S). But by the structure of N, either this is the case
or 2.€0,(N). However, in that case [z, R|<0,(N)N R=1 and so 2, centralizes
R, a contradiction. Thus 0, (N)c X, as required.

We now define the family ../ as the set of proper subgroups H of G which
satisfy the following conditions:

(a) H contains S;

(b) H contains an S-invariant Sylow p-subgroup of O(N):

(e) H covers N/O(N).

Clearly N itself is in /7.
LEMMA 11.3. If He _ 7, then the following conditions hold:
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(1) FEither HiOH) is isomorphic to NJON) or to Js;

{ii) H s p-constrained within Z(S

(iity If @ is a nontrivial S-invariant p-subgroup of H such that O,{HQ
28 normal in H, then Ng@Q)e 1.

PROOF. Since H covers N/O(N) and N has no normal subgroups of index 2,
neither does H. But H is a proper subgroup of G containing S and «,,2, are
not conjugate in H as they are not conjugate in G. Proposition 10.4 together
with the fact that J; has only one conjugacy class of involutions now vyields
that either H/O(H)=J. or H has an isolated involution. In the latter case,
H=0H)XCrlz)=0HYXHNN) and, as H covers N/O(N) by assumption, it follows
that HIO(HY=NJ/O(N). Thus (i) holds.

As for (ii), suppose first that H/O(H)=N/O(N). Then H=0(H)YHnN) and
X=0(H)Z(S)4H. If P is an S-invariant Sylow p-subgroup of O(N} contained
in H, then clearly PcO(H)c X. Moreover, the previous lemma shows that z
does not centralize P. But now (ii) follows exactly as in the preceding lemma.

Suppose, on the other hand, that H/O(H)=J.. This time we set X=0O(H)
and note that either O, (H)< X or 0,(H)=2S. Setting H=H/X=J;, we have that
PcCs(z) and that P is S-invariant. This forces P=1 and again P<X. But
now it follows as in the preceding lemma that O, (H)c X and if R is an S-
invariant Sylow p-subgroup of O, ,,(X), then Cu(R)S0, o X)<Op,(H). Thus
H is p-constrained within Z(S) in this case as well.

Finally let Q be as in (ili). We have already seen that (O, (H), Py < O(H)Z(S).
Since the latter group has a normal 2-complement, PE R and Q< R* for suitable
S-invariant Sylow p-subgroups R and B* of O(H). Since R*=I* for some element
z in Coun(S), R* also contains an S-invariant Sylow p-subgroup of O(N). Thus
Ng(@) does as well. Since @+1 and @ is S-invariant, N¢(Q) is a proper subgroup
of G containing S. Furthermore, H=0,(H)N4(Q)=0{H)Z(S)N,(@Q)=0H )N Q).
Since H covers N/O(N), this implies that Ns(Q) does as well. Hence Nu(Q)e ../~
and {iii) holds.

In order to carry out a similar analysis on the subgroup M, we need one
further property of N:

LEMMA 11.4. If P is an S-invariant Sylow p-subgroup of O(N), then the
Sfollowing conditions hold:

(1) Either [Co(W), 2] is noncyclic or [Cilas), a;, z]#1 for some 1,3, 174,
J<3;

i) [Cela:), a;]#1 for some 1,5, 1<1, j=3.

PROOF. We shall use the action of S=S/{z;> on P=P/®(P) to establish the
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lemma. Since N is p-constrained within Z/S) by Lemma 11.2, C5(P)=1 and hence
C«(Pj=1 by a theorem of Burnside.

Suppose (i) is false. Sinee W-={a,, a;> is a four group, we have by Lemma
10.5.1 of [12] that

(7) P--P,P,P,=P,P/P.P; ,

where Py=C.(W), Pi==Cpla;), and P/ is the subset of P; inverted by a,,1<1, j <3,
1#3. By our assumption, z; centralizes each P and [P, 2:] is cyclic. Hence by
(7), we have that [P, 2] is eyclic and consequently [P, z]=0Q is eyelic. But S
leaves @ invariant as z e Z(S). Since zeS', it follows that Z, centralizes O,
whence Q=<1. Thus Z, centralizes P, contrary to the fact that Ci(P)=1. Hence
(i} holds.

If (ii) were false, (7) would reduce to P=P,, whence W would centralize P,
contrary to C{P)={z;». Thus {ii) also holds.

If H is a subgroup of (¢ containing A, we shall say that H is p-constrained
within {a,> if H is p-constrained and O, (H)< O(H Ka,>.

LEMMA 11.5. M s p-constrained within {a,).

Proor. We shall first argue that z, does not centralize some A-invariant
Sylow p-subgroup T of O(M). By Proposition 6.9 (iv), there exists a 3-element
x of G which cyclically permutes a., a;, @, and centralizes Z=<z,,2.>. In par-
ticular, z¢ N. Hence if P is as in the preceding lemma, it follows by the Frattini
argument that we can choose  to normalize P. But then either [Cu(a,), as, 211
or [Cplas), a;, 2,]+1 for all 4,7,1<47,7<3. Consider the first case. We see from
equation (5) that X=[Cpa). a.]=O(M). Since X is A-invariant and z., does not
centralize X, we can take 7 to be any A-invariant Sylow p-subgroup of O(M)
containing X.

In the second case, we apply Lemma 11.4(i) to obtain that R=[Q, 2] is
noncyclic, where Q- Cuo(W). This implies that z. does not centralize R OM).
Indeed, suppose the contrary. 1f M=M/OM), then M=W x K, L< K, L~=PSL{2, ¢),
and Z< L. Hence R=[Q, 2= Cj{Z,) and so R is cyclic and is inverted by z, by Lemma
3.1(iii) of |15]. Sinee z; centralizes R 1 O.M) by assumption, this implies that R=
(RNOMM)R,, where R, is eyclic and inverted by z,. Hence [R, z;]=R,. How-
ever, (R, }=[Q, 2, 2:]=|Q, 2] = R, so R=F, is cyclic, which is not the case.

Thus T exists in all cases. Setting X=Tn 0, {O(M)), it now follows that
z: does not centralize X. Sinee any normal subgroup of M, not contained in
ODW, necessarily contains z:, we must have that O, (M)cOMW; otherwise
z:€ 0, (M) and 2z, would be forced to centralize X, which is not the case. For
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the same reason, Cy(X)c O(MW. Since X is a Sylow p-subgroup of O, (OMIW)
and O(M)W is solvable, Cy(X)S O, o[ OMIYW )= O, (M). Thus M is p-constrained.

To complete the proof, it remains to show that O,{M)sOM¥a.>. Since
O0,(M)y< O(M)YW by the preceding argument and since a, € 0,.(M}, either this is
true or W& O,{M). However, in the latter case W centralizes T inasmuch as
T is W-invariant. Since M=0MYW < K)and T is a Sylow p-subgroup of O},
W centralizes every p-subgroup of M that it normalizes. However, by Lemma
11.4 (i1) and the fact that a,, a., @; are cyclically permuted by an element of Ng(P),
W does not centralize Cpla)=Pn M.

We now define a second family .7 as the set of proper subgroups H of G
which satisfy the following conditions:

(a) H contains A;

(b) H contains an A-invariant Sylow p-subgroup of O(M);

(¢) H covers M/O(M).

Clearly M itself is in .# .

LEMMA 11.6. If He _#, then the following conditions hold:

(1) OHNXHNM) is normal in H of index 1 or 3;

(ii) H is p-constrained within {a,);

(iiiy If Q 18 a nontrivial A-invariant p-subgroup of H such that O, (H)Q
18 normal in H, then NgQ)e #7.

PROOF. Since H covers M/O(M), Cula,) involves PSL(2,q). For the same
reason, if H contains an isolated involution, a, is necessarily isolated in H and
so H=O(HYXHnM). Suppose then that a, is not isolated in H. If A were not
a Sylow 2-subgroup of H, the structure of H=HJO(H) would be given by Prop-
ositions 10.2, 10.3 or 10.4. However, in none of these cases does C,(a;) involve
PSL(2, ¢) with ¢>5. Hence A is a Sylow 2-subgroup of H and, as A is abelian,
H has the structure given in Proposition 10.1(iv) and consequently Hn M is
normal in H of index 1 or 3. Since a; is not isolated, this index is, in fact, 3.
We conclude at once that (i) holds.

Since H contains an A-invariant Sylow p-subgroup 7 of O(M), it follows
directly from (i) that 7T<O(M). As in the preceding lemma, neither a. nor z:
centralizes 7" and we conclude by the same argument that H is p-constrained
within O(H){a,>. Thus (ii) holds. Likewise (iii) follows exactly as in part (iii)
of Lemma 11.3.

We turn now to the question of p-stability. Since every element of .# has

A as a Sylow 2-subgroup and A is abelian, Theorem 3.8.3 of [12] yields at once:
LEMMA 11.7. Every element of # is p-stable.
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In order to obtain the analogous result for the elements of _ 77, we need
two preliminary lemmas.

LEMMA 11.8. If G involves SL(2, q), q odd, then g=3.

ProOF. Assume by way of contradiction that there are subgroups H, F of
G with F4H and H/F=SL(2, ¢) for some odd ¢=5. Observe first that N does
not involve SL(2, ¢) by Proposition 6.9(v) and that M does not involve SL(2, ¢
as a Sylow 2-subgroup of M is abelian. Since every involution of G is conjugate
to z or a,, the eentralizer of no involution of G involves SL(2, ¢). This implies
that C,(z) does not cover H/F for any involution z of H. In particular, this
forces | F'| to be even, otherwise H=FC,(z) for any involution x of H and C,(x)
would cover H/F.

Let Y be a Sylow 2-subgroup of F. Since N,(Y) covers H/F by the Frattini
argument and so involves SL(2, q), we can assume without loss that H=N,(Y),
in which ease Y</H. Suppose Y contains a characteristic subgroup X of order
at most 4. Then any element of H of prime order exceeding 3 centralizes X
and, as H/I" is perfect, it follows that Cy(X) covers H/F and hence so does C,(x)
for any involution z of X, a contradiction. We conclude that Y possesses no such
characteristic subgroup X. On the other hand, | H/F'| is divisible by 8. Since a
Sylow 2-subgroup of G has order 27, this forces | Y |<16. The only possibilities
therefore are that Y is elementary abelian of order 8 or 16.

If |Y|=16, then Y is conjugate to A in G by Lemma 5.1(i). However, by
Proposition 7.2, Ng{A) does not involve SL(2, q). On the other hand, if | Y|=8,
we must have ¢=7 and | N, (Y)/C.(Y)| must be divisible by 7, otherwise C,(Y)
would cover H/F. However, this is impossible by Lemma 7.3.

LEMMA 11.9. Every non-identity 3-element of J, normalizes, but does not
centralize, a four subgroup of J..

Proor. We set H=-J, and for simplicity of notation, we assume Sc H. We
note that the results of Sections 5,6 and 7 hold for H. By Lemma 6.5 of [23]
a Sylow 3-subgroup of H is nonabelian of order 27 and exponent 3 and H has
exactly two conjugacy classes of elements of order 3. One of these classes has a re-
presentative x contained in Cy(z;). But now Proposition 6.9(v) shows that z
normalizes, but does not centralize a four subgroup of Cu(z,). Thus it will be
enough to prove the same assertion when x is a representative of the remaining
conjugacy class.

If F=Ny(A), then O ={Com(a)lae A®. Since Cyla)=Z,xZ,x A, or a split
extension of Ds*@s by A4;, it is immediate that Com(a)=1 for all @ in A%, whence
O(F)==1, Now Proposition 7.2 yields that FF'=A(LXY), where L=A, and Y=Z,.
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Without loss we can assume (b, b.>< L. Since Y normalizes, but does not
centralize a four subgroup of A, we have only to show that Y does not
centralize a conjugate w of z,, so assume the contrary.

Set C=Cy,(Y) and let R be a Sylow 2-subgroup of C containing w. We can
assume without loss that we Z(R). Indeed, this is the ease if R is abelian. On
the other hand, if R is nonabelian and v is an involution of ZiR), then R Culv),
and so a Sylow 2-subgroup of C,{#) i3 nonabelian, whence v~z,. Hence we can
take v=w in this case. Thus a suitable conjugate of E lies in Cx(2;) and cen-
tralizes some Sylow 3-subgroup of C;(z;). However, by Proposition 6.9¢iv), there
is a Sylow 3-subgroup X of Cu{z)) such that C(z))nC{X)={2>x{’, z.>, where
t'~t in S. Since every involution of (2> X<t z.> is conjugate to z, in H by
Proposition 6.1, it follows that every involution of R is conjugate to z; in H.
But R contains a conjugate of b, as b, € C,{Y) and R is a Sylow 2-subgroup of
Cu(Y). Since b~a, %z in J., we reach a contradiction. This establishes the
lemma.

We can now prove

LEMMA 11.10. Ewvery element of .-}~ 1is p-stable.

PRrRoOOF. Suppose false for some element H of _#". Then for some nontrivial
p-subgroup P of H and some p-element 21 of H, we have O, (H)P<H, x¢ N,(P),
(ayCu(PYCu(PYZ O (N PYCu(P))and [P, z, x]=1. Setting F=N,(P)and regard-
ing F as an operator group on P, it follows now by a standard argument (cf.
Theorem 6.5.3 of [12]) that there exists a composition factor V of P under the
action of F such that, if F=F/Ci«{V), then #+1 and [V, &, &]=1. Thus F is re-
presented faithfully and irreducibly, but not p-stably, on V regarded as a vector
space over GF(p).

By Theorem 3.8.3 of {12], the normal closure X of & in I involves SL(2, p).
Hence G involves SL(2, p) and so p==3 by Lemma 11.8. Furthermore, obviously
#€ O(F). On the other hand, O, (H)SO(HXz)> and hence (O, (H)nO(H)P< H.
It follows therefore by the Frattini argument that H=(0,(H)NO(H)F, whence
F covers H/O(H). By definition of _+7, we know that H/O(H)=:N/O(N) or
to J.. It follows therefore that either F/O(F) is isomorphic to a nontrivial
homomorphic image of N/O(N) or to J:. In the first case, Proposition 6.9 (v)
implies that X covers FIO(F). 1In the second case, this conclusion is clear as J,
is simple.

Since F is irreducibly represented on V, we have Oy(F)=1. We set K=
04(0(F)) and C=C#(R). Since O(F) is solvable, Theorem 6.3.2 of [12] implies that
CnO(F)cE. On the other hand, B(%) is 3-stable as it is of odd order. Since
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[V, &, #]=1, this is possible only if & centralizes R. Thus zeC. Since CJF, it
follows that X ¢ and therefore C also covers F/O(F). Furthermore, 0(C)c O(F)
as 0(C) is characteristic in C and hence O(C)cCnO(F)<R. Since C=CiR), we
conclude that O(C) is a 8/-group in the center of C and that C/O(C)=FIO(F).

Finally by Proposition 6.9(v) and Lemma 11.9, the image of & in C/O(C)
normalizes, but does not centralize, a four subgroup of C/0(C). Since 0C) is a
3’-group, it follows that # normalizes, but does not centralize, a four subgroup
T of C. But 7<&) is a 3-stable group and consequently [V, &, &]#1. This con-
tradiction establishes the lemma.

We can now establish the prinecipal goal of our analysis.

LEMMA 11.11, There exist Sylow p-subgroups P, and P of G such that
NAZI P € A and N Z(J(P)))e A4 .

Proor. Choose H in .7~ such that a Sylow p-subgroup R of H has maximal
order. Since we know that H is both p-constrained and p-stable, we can apply
Glauberman’s ZJ-theorem [10] (or Theorem 8.2.11 of [12]) to conclude that

O, (H)QIH ,

where Q=Z(J(R)). But O, (H)cOH)ZS) as H is p-constrained within Z(S),
whenee O, (H) < 0, (OIHNZ(S). Sinece |Z(S)| =2, Q thus eentralizes 0, (H) O, (O(HY)
and consequently O, (O{H)Q<H. Hence by the Frattini argument some Sylow
2-subgroup of H normalizes Q. Since Sc H as He ./, we can therefore assume,
upon replacing R by a suitable conjugate in H, that Q is S-invariant. Hence
Ne@e./ by Lemma 11.3(iii). Since @ is characteristic in R, we conclude
from our maximal choice of H that R is a Sylow p-subgroup of G. Taking
R=P,, we have thus established that Ng(Z(J(P)))e. /"

Now choose H in .47 so that a Sylow p-subgroup of H has maximal order.
Arguing now with A and {a:> in place of S and Z(S) and using the fact that
H is p-constrained within {a:) together with Lemma 11.6(iii), we conclude by
the same argument that for a suitable choice of R we have No(Z(J(R))e 4
and that R is a Sylow p-subgroup of G. Taking P;=R, we obtain the second
assertion of the lemma.

We can now easily establish Proposition 11.1. Indeed, let P;, P; be as in the
preceding lemma and set H;= Ng(Z(J(P))), 1<1<2, so that Hie. /" and H;e A4 .
By definition of /7, S is a Sylow 2-subgroup of H,; while by Lemma 11.6 (), 4
is a Sylow 2-subgroup of H.. However, this is impossible as H, and H; are
clearly conjugate in G.

12. Proof of Theorem A. Now that we know the subgroup structure of
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G, we can complete the proof of Theorem A on the basis of the results of Section
2 without much difficulty. Recall that the concept of a weakly connected group
is given in Definition 2.6. We shall first prove

ProrosiTION 12.1. G is balanced and weakly connected.

PrROOF. By the structure of N=Cg(z,) given in Proposition 6.8, Cq(2)) 15 2-
constrained and so the same holds for any conjugate of 2,. If G contains
an involution @ not conjugate to 2, then a~ea, and so by Proposition 11.1,
CoaiOCaN=2Z, < Ly Ay or Zy; X Z3 <X A;. In the first case Cg(a) is solvable and
80 is 2-constrained. We see then that G satisfies the assumptions of Lemma 2.3,
so (G is balanced by that lemma.

To prove that G is weakly connected, note first that Z-<{z,, 2> is the unigue
element of U(S) by Lemma 5.1 (i). Furthermore, by Proposition 7.1, | Ne(Z)/Ca(Z))
is divisible by 3. This implies that z.==2{ and z:2,=2; for some element 2 in
Nuo(Z). Since ZcUi=S8Sn0:{Cs(z)), it follows that Z=Z*< (0 (Cslz))*=
Qo o Co{2D)) = 0 o(Ci(2y)). Similarly Z< 0, :(Celzi2:)). Since Cy(z,) is 2-constrained
by Proposition 6.9, we conclude that conditions (a) and (b) in the definition of
weak connection given in Section 2 are satisfied.

It remains to verify condition (¢). Set H={Cq(z,), No(Z)>. It will suffice to
prove that if Hc G, then H is strongly embedded in G. Since Ci(z;) has no
normal subgroups of index 2, neither does H. Since z,~z, in H, H does not
contain an isolated involution. Since S< H, Proposition 10.4 applies to H and
yields that H/O(H)=J, or Js. In the latter case, H has only one conjugacy class
of involutions. Since Culz,)< H, it follows that Csla)c H for every involution a
of H. Furthermore, NgS)c N(Z(S)=Cslz)c H. Since G is simple, G- H con-
tains an involution and we conclude from the definition that H is strongly
embedded in G.

Suppose, on the other hand, that H/O(H)=J;. Then H has two conjugacy
classes of involutions and, by Lemma 3.3 of [23], C.(a))/OC,(a))=2Z, % Z:x As.
Since Cy(2,)/0(Cs(z;)) does not contain a subgroup isomorphic to Z: < Z, < 4; by
Proposition 6.9(i), a; is not conjugate to z; in G. It follows therefore from
Proposition 11.1 that Ce{a:)/O(Csla))=Cr(a)/O(Cula,)), whenee

Cela)=0(Csle))Cula) .

But Z<Cgla,) and so Z acts on O(C¢(a,)). However, H contains a 3-element which
cyelically permutes zi, 2z, 2s=212:, and, as Cg(z,)S H, we have Cs(z,) H,1<1<3,.
Thus

0(Ce(a,))={Cowgu @) 1<i<Bc H



382 Daniel GOrReNSTEIN and Koichiro HARADA

and therefore Cy{e;)< H. Since any involution a of H is conjugate in H to a;
or z,, it follows that Cgle)s H and we conclude in this case as well that H is
strongly embedded in G.

PROPOSITION 12.2. O i3 a strongly Aat A-signalizer functor on G.

Proor. Here, of course, A=={2;, %, ¢y, @;> is elementary abelian of order 16.
As pointed out in Section 2, the fact that G is balanced implies that O is an
A-signalizer functor on G.

Now let H be a proper subgroup of G such that AnH is noncyclic. To
prove the proposition we must show that H is strongly A-flat. If H is 2-con-
strained or has dihedral or quasi-dihedral Sylow 2-subgroups, this follows from
Lemmas 3.4,3.5 and 3.6 respectively. Likewise, if H=H/O(H)= PSL*{3, 4) or
PGL*3,4), H is strongly A-flat by Lemma 3.7. Hence we may assume that H
is of none of these forms.

Proposition 10.5 shows that H =2, A;, Zy X Z: % As, AKX A, PSL(2,16), PSL*(2,
16), PSU3, 3%, PSL(3, 4), PGL{(3,4), J; or J;. In each of these cases, O{Cpian=1
for every involution @ of A and hence O(Cu(a))<O(H) for every involution a of
A. Tt follows therefore from Lemma 3.3 that H is strongly A-flat in each case.

We conclude from the definition that O is a strongly flat A-signalizer functor
on (5.

We now prove Theorem A. Since O is a strongly flat A-signalizer functor
on G and A is elementary abelian of order 16, Theorem 2.1 yields that
(O(Cela))|a e A%y has odd order. Since Z=(zi, 2z:>C A, this implies that

Wi={O{CclaVlae Z*

has odd order.

By Proposition 9.1, G is simple. By Proposition 12.1, G is balanced and
weakly connected. Since Z is the unique element of U(S) by Lemma 5.1(i), and
since W, has odd order, we see that all the hypotheses of Theorem 2.6 are
satisfied and we conclude from that theorem that O{(Cslx))=1 for every involu-
tion « of G. In particular, O(Cslz))=1. Thus Cs{z,) is isomorphic to an exten-
sion of D@ by A, by Proposition 6.8. The combined results of Janko [23],
Hall and Wales [18], Higman and McKay [21], and Wong [28] now yield that
G=J; or Js.

Therefore a minimal counterexample to Theorem A does not exist and the
theorem is proved.
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PART III
Theorem B

13, The centralizers of involutions, We now begin the proof of Theorem B.
Thus G is a group with Sylow 2-subgroup S of type 4., G contains exactly three
conjugacy classes of involutions and an elementary abelian group A of order 16
such that Ng{A)/O(N¢/A)) is an extension of AO(Ng A by A;. To establish
Theorem B, we must show under these conditions that AO(G) is normal in G.

We proceed by induction on |G| and assume that G is a minimal counter-
example. Since our assumptions clearly carry over to G/0.G), the minimality
of G implies that O(G)=1. We may assume that 4c<S. By the structure of A,
S is a 2-group of order 64 and is generated by involutions a:, 1< 16, with the
following relations:

(1) laz, as]=la;, as]=ay, [a,, a:]=a:, [a,, as]=as

’

with all other commutators of two generators being trivial. From these relations
we see that S possesses exactly one elementary abelian subgroup of order 16;
namely, {ai, @, @, a@;>. This subgroup must then be 4. Furthermore, S splits
over A: we have S={au;, as)A with {a;, as> a four group. One sees also that S
has nine conjugacy classes of involutions, represented by: k

(2) i, Az, Qolls, A3, Oy, A4y, As, Al Cp

Since S splits over A, Ng A)O(NgA)) is a split extension by Gaschitz’s
theorem and so is isomorphic to an extension of Ey; by A;. There are three
possible ways for A; to act on an elementary abelian group 4 of order 16, one
of which is trivial and a second is transitive on the involutions of A. Since
{as, asy does not centralize A, our action is certainly nontrivial. Furthermore,
we can assume that the image of {(a:, as) in No(A)/O(N, A)) lies in the subgroup
isomorphic to A, since every complement of A in S is conjugate to {as, asd in
S. Thus we see that a;, ¢; and a;a; are conjugate in G. But then if our action
were transitive, it would follow from (2) that G had at most two conjugacy
classes of involutions, contrary to hypothesis. Thus A4, acts nontransitively on
the involutions of A. We conclude therefore that

No(A)JO(Ns(AN=A, - EY .

At the same time, checking the group A;-Efy directly, we know the fusion of

involutions in G; namely,

(3) G~y Qo~Qy~Aals~Cd, and Q;~@;Ge~0;
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(interchanging a, and a.q;, if necessary).

We begin the proof of Theorem B by analyzing the centralizers of involu-
tiong in G. We shall prove

ProOPOSITION 13.1. The centralizer of every involution in G is solvable.

As usual, we carry out the proof in a sequence of lemmas. We set N=Ny(4)
and N=NJ/O(N), so that N is isomorphic to A;-E}’. The various parts of the
following lemma are easily obtained from the structure of S and N and its
proof is left to the reader.

LEMMA 13.2. The following conditions hold:

(1) ZS)=Lay and S[ayy=(Zyx Zy) Z..

(ii) S has precisely seven maxzimal subgroups. One is Uy={a;, @z, s, @5, @s>=
Qe Qs three are tsomorphic to Uy={a,, ts, a3, @4, G,5>?:(ZQXZ2)522 and the remain-
g three to Us={ai, @, a3, @s, @4as.

(iil) Cul@y) is 2-closed and [Cx(@): S]=3.

(iv) Cilaz) contains a normal subgroup of index 2 of the form (&, a>xF,
where Iz A,.

(v) Cxlas)=<a, az, @, as.

(vi) N contains an element of order 8 which normalizes U, and acts fized-
point-free on U,[{a,>.

We first prove

LEMMA 13.3. Cglay) is solvable.

ProOF. Set C=Cgla)) and C=Cgla){a,>, so that by Lemma 13.2(i), the
Sylow 2-subgroup S of C is isomorphic to (ZgXZz)SZg. Hence by Lemma 4.4,
C has a normal subgroup of index 2 with Sylow 2-subgroup U, and so C has a
normal subgroup D of index 2 with Sylow 2-subgroup U,. By Lemma 13.2 (vi),
G possesses a 3-element which normalizes U; and acts fixed-point-free on U=
Uilla:>. Furthermore, sinee U;=Qy+Q;, it follows from the structure of Aut {@s*Q3)
that [N,(Uy): UiCx(Up)]=38, or 9. However, if this index were 9, it would follow
directly that the 18 noncentral involutions of U, were conjugate in N LU, which
would imply that a;~a;, a contradiction. Since N,(U,) and U.C(U,) map onto
N(Uy) and Cy(U,) respectively, our argument shows that | Nx({,): Ci(U) =8
and that D contains a 3-element which acts fixed-point-free on {/,. But now

Lemma 4.2 yields that D is solvable of 2-length 1. We conclude that C, and
hence also C, is solvable.

LEMMA 13.4. Cyla:) is solvable.
PROOF. Now set C=Cysla:). Then U:=<ai, as, as, a, a;><C. Since a. is not
conjugate to a,, C does not contain a Sylow 2-subgroup of G and so U, is a Sylow
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2-subgroup of C. Since U=(Z.x ZQ)SZg, C contains a normal subgroup D of index
2 with Sylow 2-subgroup A4, by Lemma 4.4,

We shall show that D=D/OD)={a., a,> < A;. We know from Lemma 13.2(iv)
that DN N/O(Dyn N has this structure. Since a;€ Z(D), it follows now that
AnZIDNn N)=AnZ(N,(A)) is of order 4. Hence by a transfer theorem, D con-
tains a normal subgroup K of index 4. Since DN N does not have a normal
2-complement, neither does K. Since ANK is a four group and is a Sylow 2-
subgroup of K, we conclude from the main theorem of [15] that K possesses a
characteristic subgroup L with L20O(K)=0(D) such that L/O(D)=PSL(2, ¢) with
g=3,5(mod 8). Moreover, LD and ALnN/OD)NN is also isomorphic to
Za X Ly X Al

Now consider AL= AL/O(D). Because of our congruence on ¢, Aut(L)= PI"L{(2,q)
has dihedral Sylow 2-subgroups of order 8. Hence AL=A,x L, where A, is a
four subgroup of A. Furthermore, by the structure of ALn N/OD)n N, L con-
tains an element & of order 3 which normalizes A and has the property Ci(&)=
{d,, @&,». Since & centralizes A,, it follows that (@, @,y=A, Thus @, centralizes
L and consequently Cgla,) involves PSL(2, ¢). On the other hand, a.~a, by (3)
and so Cgla:) is solvable by the preceding lemma. This forces ¢==3 and we
conclude that D=AL={a,, @< L with L=A,, as asserted. In particular, D and
therefore also C, is solvable, and the lemma is proved.

Finally we prove

LEMMA 13.5. Cglas) ts solvable.

PrOOF. Now set C=Cgya;). Since a; is not conjugate to a, or a,, it follows
from the structure of S that a Sylow 2-subgroup of C has order at most 16.
But W={a,, @, s, asy=Cs(as)=C and has order 16 and hence W is a Sylow 2-
subgroup of C. Clearly W={a;) < {@s, a2)=Z:X Ds. Furthermore, by (3) a; is not
conjugate to any other involution of W and so is isolated in C. Hence O(CXa:»
is normal in C. Setting C=C/O(C){a,>, we have that W is a Sylow 2-subgroup
of C and is elementary abelian of order 8. On the other hand, since W= Z,; < D,
it is immediate that No(W)=WC( W), which in turn implies that Na(W)=Cx( W).
Now Burnside’s transfer theorem yields that C has a normal 2-complement and
hence so also does C. This proves the lemma.

Proposition 13.1 follows at once from Lemmas 13.3, 13.4 and 13.5 inasmuch
as every involution of G is conjugate to either a;, a: or a; by (3).

14. Subgroup structure of G. We shall now analyze the structure of the
proper subgroups of G. Our main result is as follows:

PROPOSITION 14.1. If H is a proper subgroup of G, then one of the follow-
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ing holds:

(i) H 1s solvable;

{ii) H has dihedral Sylow 2-subgroups;

{(iiiy HIO(H) is isomorphic to A,-E'L.

We carry out the proof in a sequence of lemmas. Throughout H will denote
a proper subgroup of G and R a Sylow 2-subgroup of H.

LEMMA 14.2. If H contains an isolated involution, then H is solvable.

ProoF. 1If z is an isolated involution of H, Glauberman’s theorem implies
that H--O(H)C,(z). Since C¢/m) is solvable by Proposition 13.1, the lemma follows
at once.

LEMMA 14.3. If E is an elementary abelian subgroup of H of order 8, then
| NG EDNICA Y is not divisible by 7.

Proor. We may assume Ec 8. One checks directly from the structure of
S and the fusion of involutions in G, given in (13.3) that S does not possess an
elementary abelian subgroup of order 8 whose involutions are all conjugate in
G, which immediately implies the lemma.

LEMMA 14.4. If | R| <8, then either H is solvable or R is dihedral.

PROOF. Suppose then that R is not dihedral, in which case R is necessarily
either quaternion or abelian and R is not a four group. In the first case, H
has an isolated involution and so is solvable by Lemma 14.2. Thus R is abelian.
If R is eyelic or of type (4, 2), then clearly H has a normal Z2-complement and
again H is solvable. The only other possibility is that R is elementary abelian
of order 8, in which case Lemma 14.3 implies that H has an isolated involution.
Hence by Lemma 14.2, I is solvable in this case as well.

LeMMA 14.5. If | R)=16, then H s solvable.

Proor. We may assume that H is not solvable. Lemmas 4.1 and 14.2 together
imply that either Rz Ey, Zyx Dy, Zyx Zy, Dy, or R is quasi-dihedral. However,
examination of the structure of S shows that S does not possess subgroups of
any of the last three types. Thus R=E; or Z,> D..

In the first case, we may assume R=4. Then N,(4)/C,(A) is isomorphic
to a subgroup of odd order of Ngld)CeA)=A4,. If the order is 1, H has a
normal 2-complement and so is solvable. If the order is 3 or 5 and H contains
a 3- or 5-element which acts fixed-point-free on A, then H is solvable by Lemma
4.2. Since H is not solvable by assumption, the only possibility is that
| Np(AWCu(A)]1=8 and ANZ(N,{AN=1. But then H has an isolated involution
and so is solvable in this case as well by Lemma 14.2.

Assume next that R>Z.xD;. By Lemma 4.3 H has a normal subgroup K



A characterization of Janko's two new simple groups 387

of index 2 with dihedral Sylow 2-subgroups of order 8. An examination of S
shows that S does not possess a dihedral subgroup of order 8 in whieh all the
involutions are conjugate in G. This implies that K itself has a normal subgroup
of index 2. But now the remark following Lemma 4.3 yields that H/O{H" has
a direct factor of order 2, in which case H has an isolated involution and so is
solvable by Lemma 14.2.

LEMMA 14.6. If |R|=32, then H is solvable.

Proor. By Lemma 13.2(ii), R=U,, U; or U,. If R=U,, then R is extra-
special of order 32 and so H is solvable by Lemmas 4.6 and 14.2. If R~ U, then
R={Z:x Zz)SZg and so H has a normal subgroup K of index 2 by Lemma 4.4.
But then K is solvable by Lemma 14.5 and hence so is H. Finally if R=>U,,
we can apply Lemma 4 of [20] to conclude that H contains an isolated involution.
But then H is solvable by Lemma 14.2 in this case as well.

Finally, we prove

LEMMA 14.7. If | R{==64, then either H is solvable or H{O(H) is isomorphic
to A, Ef.

ProoF. We may assume that K=S and that H is nonsolvable. If N,(4Y
CulA)= Nl A)|Col Ay= A, then Np(AYO(N,(A)= N AJONAN=A;-Ej'. But
then Ny(A) has only three conjugacy classes of involutions and it follows from
our hypothesis on G that H has exactly three conjugacy classes of involutions.
Thus H satisfies the hypotheses of Theorem B. Since H is a proper subgroup
of G, we conclude from the minimality of G that AG(H)JH. Thus H/OH)=
A, -EY and the lemma holds in this case.

We can therefore assume that N,(A4)/C,{A) is not isomorphic to 4., in which
case it is either isomorphic to Z:;x Z; or to 4,. In either case, it follows by the
Frattini argument that N,(A)CO(N{ANN,(S). Since O(N,(A)) centralizes A
and {a;>=2Z(S), it follows that a, is isolated in N,(A). However, A is weakly
closed in S with respect to H as it is the unique elementary abelian subgroup of
S of order 16. Hence if a; is conjugate in H to an involution z of A4, it is
already conjugate to o in Nu(A). We conclude therefore that a, is not conjugate
in H to any other involution of A. But now (13.2) and (13.3) show that e, is
not conjugate in H to any involution of S. Thus a; is isolated in M and so H
is solvable by Lemma 14.2.

Since |S|=64, Proposition 14.1 now follows from Lemmas 14.4 to 14.7.

15. Proof of Theorem B. We can now easily establish Theorem B in es-
sentially the same way as we derived Theorem A. We first prove

ProrosiTION 15.1. G is balanced and connected.
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PRrROOF. By Proposition 14.1, the centralizer of every involution of G is
solvable and hence is 2-constrained; so G is balanced by Lemma 2.2. Since A<S
and A is elementary abelian of order 16, SCN,(S) is nonempty; so S and hence
also G is connected by Lemma 2.4.

PRrROPOSITION 15.2. O is a strongly flat A-signalizer functor on G.

Proor. As pointed out in Section 2, the fact that G is balanced implies that
O is an A-signalizer functor on G.

Let H be a proper subgroup of G such that An H is noncyclic. We argue
that H is strongly A-flat. If H is solvable, then H is 2-constrained and the as-
sertion follows from Lemma 3.4; while if H has dihedral Sylow 2-subgroups, it
follows from Lemma 3.5. However, by Proposition 14.1, either H satisfies one
of these two conditions or else H/O(H)=A,-E. But clearly A;-E\ is 2-con-
strained and hence so is H. Thus H is strongly A-flat in this case as well, by
Lemma 3.4. It follows therefore from the definition that O is a strongly flat
A-signalizer functor on G.

We now prove Theorem B. Since O is a strongly flat A-signalizer functor
on G and A is elementary abelian of order 16, Theorem 2.1 yields that

{1) W.=<{0(Csla))]a e A%

has odd order.

Since O(G)=1 and SCN,(2) is nonempty, Proposition 15.1 together with (1)
shows that the hypotheses of Theorem 2.5 are satisfied and we conclude from
that theorem that O(Csla))=1 for every involution 2z of (. In particular,
O(Ci{a))=1. But now Lemma 8 of [20] is applicable and yields that G=A,-EY’,
contrary to our choice of G. Thus Theorem B is proved.

PART IV
Theorem C

16, Reduction to the case 0. (G)=1. We now begin the proof of Theorem
C. Thus G is a group with Sylow 2-subgroup S of type PSL(3, 4) and we must
show that G/O(G) is isomorphic to a subgroup of PGL(3,4). Since our conditions
clearly carry over to G/O(G), we can assume without loss that O(G)=1.

We have already discussed the structure of S in Section 4 preceding Lemma
4.7. We use the same notation. In particular, S is generated by the involutions
21, 23, A1, A3, by, b satisfying

(1) {ay, bi)=las, b:]=2;, [as, bil=2; [ay, b:]=212:,
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with all other commutators of two generators being trivial. We also set z:=2,2,
3=z, and by;=0bb,.

We preserve this notation throughout. We note, as with 7, in Section 5,
that the given generators of S satisfy the same relations as those of equations
{**) of Section 4 and so Lemma 4.7 can be applied to S.

In addition to the properties of S deseribed in Lemma 4.7 we need the follow-
ing elementary facts about S, proofs of which are left to the reader.

LEMMA 16.1. The following conditions hold:

(1) ZS)=8=0(S)=<z, z).

(i1) S/ =S/{ze) = S/{z122) == De# Ds.

(iii) S has precisely two elementary abelian subgroups of order 16: A=
{2y, 23, @1, @) and B=<z,, z;, by, b;>. Moveover, A and B are conjugate in Aut(S)
and each is normal in S.

(iv) S has precisely fifteen maximal subgroups. Six are isomorphic to U=
{2y, 23, Q1, A, b1>g(Z2>’(Zg)SZs; and nine to Us=<zy, 2 @41, by, asbs>. Moreover, U,
18 isomorphic to the group described in Lemma 4.5.

(v If R 18 asubgroup of S of order 8, then RnZ(S)+1; if R is elementary
abelian, then CyR)=A or B.

(vi) S has nine conjugacy classes of involutions, represented by z, z., s,
ay, Gz, A3, b1, b, bs.

(vil) Csl@)=Csla)=Cslas)=A and Cg(b,)=Cys(b:)=Cs(bs)=B.

We shall first prove

PROPOSITION 16.2. If Ou(G)=1, then one of the following holds:

(i) S is normal in G.

(ii) O0(G)=A4 or B, G=04G)K, where Kn0(G)=1, K=Z,xA; or A;, G'=
K'O4G)=A,-EY, and correspondingly K contains {by, bs) or {a, a:).

Furthermore, in each case G 1s isomorphic to a subgroup of PGIA3,4).

.We divide the proof into several lemmas.

LeMMA 16.3. If Z(S) 1is normal in G, then S is normal in G.

PRrOOF. Clearly Co(Z(S)<GG. Put C=Cs(Z(S)) and C=C/Z(S). We need only
prove that S<C, for then S{C, and, as C<G, the desired conclusion S<IG will
follow at once. We examine NjS), which is the image of N(S) in C. By
Lemma 4.7 (iv), N(S)/SC¢(S) has order 1 or 3 and in the latter case a 3-element
of C acts fixed-point-free on S/Z(S). Corresponding statements hold therefore for
N5(§ )/Ca(§ ). Application of either Burnside’s transfer theorem or Lemma 4.2
yields that C is solvable of 2-length 1. Since O(G)=1, also O(C)=1 and hence
0(C)=1. Thus S¢C, as required.
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LEMMA 16.4. If G contains an isolated involution, then S is normal in G.

PROOF. Let 2 be an isolated involution of G. Since O{(G)=1, Glauberman’s
theorem implies that z¢ Z(G). In particular, z=2, 2;, or 212:. Setting G=G/{2),
we have that S is extra-special of order 32 by Lemma 16.1(ii). Hence G also
has an isolated involution by Lemma 4.6. Since clearly 0(G)=1, it follows that
208y Z(Gy. But Z(S) is the image of ZS) in G and so Z(S) is normal in G.
Lemma 16.3 now implies the lemma.

LEMMA 16.5. If A or B is normal in G, then Proposition 16.2(i) or (i)
holds for G.

PROOF. Since A and B are conjugate in Aut(S) by Lemma 18.1(iii), the
argument will be the same for A as for B; so for definiteness assume A<G. We
may also suppose that S is not normal in G. The Sylow 2-subgroup Sof G=G/A
is a four group. Furthermore, 4 is a Sylow 2-subgroup of C¢{4) and so Co(A)
has a normal 2-complement. Since O(Co{AN<OG)=1, it follows that Cu(d)=A.
Thus G is isomorphic to a subgroup of GL(4,2)=A;. But now Lemma 4.9 is
applicable and, as S is not normal in G, either G=A4,, Z: X 4;, Z:% S; or S;x Ss.

“onsider either of the first two cases. Since S splits over 4, Gaschiitz’s theorem
implies that G splits over A. If K is one of the complements of A in G, then
K=Z, A, or A, K'= A;, and K’ acts faithfully on A. Hence G'=AK’ and so
G’ has index 1 or 3 in G. If K’ acted nontransitively on A% then the Sylow 2-
subgroup S of AK’ would be isomorphic to one of A;-Efy’ and hence would be
of type A;. However, a Sylow 2-subgroup of A; has a center of order 2, con-
trary to the fact that | Z2(8)|=4. Hence K’ acts transitively on the involutions
of A and so G'=A,-Ef. Finally we can choose K so that SNnK is a Sylow
2-subgroup of K. Thus Z(S)YSnNK) is elementary abelian of order 16 and so
Z(SYSnK)=EB. But K contains an element a of order 3 which normalizes, but
does not centralize Sn K. Since x normalizes 0;(G)=A4 and AB=S, 2 normalizes
S. Now Lemma 4.7 (v) implies that SN K~<by, b in S, so replacing K by a
conjugate we can assume (b, by K.

To complete the proof, we shall argue now that the cases G=Z,% S; or S;% S,
are impossible. Indeed, in either case, G contains a normal subgroup X of order
3. We have S=<by, b>.

X centralizes b; for some i,1<i<3. Hence if X is a subgroup of order 3
in G, whose image is X, we see that X normalizes U=(4, b;>. However, U=
(Z:xZ)§ Zy and so Z(U)={z, :>=2(S). Thus X normalizes Z(S). If G=SX,
then G==SX and so Z(S)4S8X=G. In the contrary case, G=S,xS; and G contains
a second normal subgroup Y of order 3. If Y is a subgroup of order 3 in G
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whose image is Y, the same reasoning shows that Y normalizes Z(S). Hence
Zi8)<XYS=G in this case as well. But now S<G by Lemma 16.3, contrary
to our present assumption.

LEMMA 16.6. If G contains a normal subgroup of index 2, then S is normal
in G.

Proor. Let H be a normal subgroup of index 2 of G. Then U=SnH is a
Svlow 2-subgroup of H and is a maximal subgroupof S. If U=U., then H has
an isolated involution by Lemma 4.5 and hence so does . Now Lemma 16.4
yields that S is normal in G.

We can therefore assume that U=U,. In this case Lemma 4.4 implies that
H has a normal subgroup K of index 2 with Sylow 2-subgroup E=Sn K which
is elementary abelian of order 16. By Lemma 16.1(iii), R=A or B. Setting
N=NgyR), we know that SN and that N has a normal subgroup of index 4.
It follows therefore from Lemma 16.5, applied to N/O(N), that O(N)S< N, whence
N=0O(N)Ny(S) by the Frattini argument. If z is an element of odd order in
N(S), then ze K and so [S,z]cSnK=R. Thus 2 centralizes S/E. We can
therefore apply Lemma 4.7(iii), to obtain that N,(S)/SCA(S) has order 1 or 3
and in the latter case a 3-element of N acts fixed-point-free on K. It follows
directly from these conditions that Nkx(R)/Cx(R) has the same properties. If its
order is 1, K has a normal 2-complement and hence so does (G, whence G=S.
On the other hand, if its order is 3, Lemma 4.2 implies that O(X)R is normal
of index 3 in K. Clearly also in this case K=0%X). But then we see that
K=0%G). Thus K is characteristic in G and so O(K)=O(G)=1. We conclude
that B<G and now Lemma 16.5 yields the desired conclusion that S<G.

LEMMA 16.7. If G is solvable, then S is normal in G.

Proor. Setting H=0%(G), we have that S H and that H is characteristic
in G. Hence O(H)SO(G)=1. But O¥(H)=H and, as H is solvable, this implies
that H has a normal subgroup of index 2. Thus H satisfies all the conditions
of Lemmsa 16.6 and consequently S<H. Since H is characteristic in G, we
conclude that S is normal in G.

Finally, we prove

LEMMA 16.8. If G is nonsolvable and OyG)#1, then A or Bis normal in G,

PrROOF. Set X=0,(G) and let Y be a nontrivial characteristic subgroup of
X. Then Y{G. If |Y|<4, then G/Cx(Y) is solvable. But Y contains a central
involution of S and consequently C=C,(Y)S has an isolated involution. Applying
Lemma 16.4 to C/O(C), we conclude at once that C, and hence also Ce(Y), is
solvable. Thus G is solvable, contrary to hypothesis. Hence X does not possess
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a characteristic subgroup of order 2 or 4. On the other hand, |S/X|>4 since
/X is nonsolvable. The only possibility therefore is that X is elementary abelian
of order 8 or 16.

Taking X=7Y, the argument of the preceding paragraph shows that CgX)
is solvable. Since Cu/X)<G, Co/X )= S(G), the largest normal solvable subgroup
of G. But S(G), being solvable, is 2-constrained. Since OS(G)H<O(G)=1 and
O0,(8(GN=0,{G)=X, it follows that Ce{X)cX. In particular, C«X)c X. Now
Lemma 16.1 (v) shows that | X|+8. Thus | X|=16 and s0o X=A4 or B by Lemma
16.1 (iii).

Proposition 16.2 now follows at once from Lemmas 16.5,16.7, 16.8, and 4.8.

As a corollary, we have

ProrosITION 16.9. If z 18 a ceniral tnvolution of S, then Cglz) is solvable
of 2-length 1.

ProOF. Setting H=Cg{2), we have ScH and so H=H/O(H) has a Sylow
2-subgroup of type PSL(3,4). Since ¢z is normal in H, O:(H)+1 and so Prop-
osition 16.2 applies to H. Because (Z) is normal in H, we conclude that S is
normal in A. Thus H, and hence also H, is solvable of 2-length 1.

17. Subgroup structure of ¢, Now let G be a minimal counterexample to
Theorem C. Clearly O(G)=1. By Proposition 16.2, we also have that 0,(G)=1.
We shall determine the possible structure of every proper subgroup of G. We
shall prove

ProrositioN 17.1. If H is a proper subgroup of G, then one of the following
conditions holds:

(i) H has an tsolated involution;

(it) H 1is a solvable group;

(iii) H has a dihedral Sylow 2-subgroup;

(iv) HJO(H) is isomorphic to PSL(2,16) or PSL*2, 16);

(v) HIO(H) contains o normal subgroup of odd index isomorphic Z:x Zyx
PSL2, ¢), q=3,5(mod 8, ¢=5;

(vi) HJO(H) is isomorphic to a subgroup of PGL(3, 4) with Sylow 2-subgroup
of order 2°,

We break up the proof into several lemmas.

LEMMA 17.2. If N=N4iA) and N=N/O(N), then either

(i) N contains a normal subgroup of index 1 or 3 isomorphic to A ES, or

(i) S is normal of index 1,3, or 9 in N.

Similar statements hold for Ng(B).

PrOOF. Since Sc N, N has Sylow 2-subgroups of type PSL(3,4). Since
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A< N, Proposition 16.2 vields the lemma.

As an immediate corollary we have

LemMma 17.8. The following conditions hold:

(1) =2y has 1,3, or 15 conjugates in Ny A

(i) | NelA)Ce Al 1s not divisible by 7.

Similar statements hold for Ng B).

LEMMA 174. If R 1s an elementary abelian subgroup of G of order 8, then
| No{R)/Ce(R)| 1is mot divisible by 7.

PrOOF. Set K=NgR) and C=CsR). Without loss we can assume that K n S
is a Sylow 2-subgroup of K. By Lemma 16.1(v), A or B, say A4, is a Sylow 2-
subgroup of C. Then K=CNg(A) by the Frattini argument. By Lemma 17.3 (ii),
INk({A)C (A} is not divisible by 7. Since Cx(4)=C, the lemma follows.

Now let E denote a Sylow 2-subgroup of H. Without loss we may assume R<S.
We fix this notation.

LeMMA 17.5. If | R{<8, then etther

(i) H has an isolated involution;

(ii) H 1is solvable; or

(iii) R 1s dihedral.

PROOF. We have that either K is abelian, dihedral, or quaternion. The
lemma follows in the usual way unless R is elementary abelian of order 8.
However, in this case the preceding lemma shows that H has an isolated in-
volution.

LEMMA 17.6. If |R|=16, then either

(1) H has an isolated involution;

(ii) H is solvable;

(iii) H/O(H) is isomorphic to PSL(2, 16);

(iv) HIO(H) contains a normal subgroup of odd index isomorphic to Z,x
Z.x PSL(2, q), q=3, 5 (mod 8}, ¢=>5.

PROOF. Assume (i) is false. Then by Lemma 4.1, either R=FE, Z;xD,,
Z.X Z,, Dy, or R is quasi-dihedral of order 16. However, one checks directly
that S does not contain subgroups of the last two types. Furthermore, Brauer’s
theorem [5] shows that H is solvable when R=Z,XZ,.

If R=E, we apply [27]. In view of Lemma 17.4, it follows that either (ii),
(iii) or (iv) holds or else H=HJO(H) contains a normal subgroup L of the form
Lyx L, with Li=PSL(2, g:), ¢:=3,5(mod 8), 1<i<2, and gi=5,i=1 or 2. Since
R=A or B in this case, we can assume without loss that R=A. By Lemma
17.3(i), z has 1,3 or 15 conjugates in Ng(A). Since Ni(A)= A, A,, 2, must
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have 3 or 15 conjugates in Ng{A) under the present assumptions. In the first
case, it follows that z,€ L, or L. while in the second, Z, is conjugate to an in-
volution of AnL;. Hence, in either case, there is an involution @ in A which is
conjugate to z, such that ac L, or L.. However, C¢/a) is nonsolvable, so Cyz)
18 as well, contrary to Proposition 16.9.

Suppose finally that R=Z,> D,. We may assume that H is nonsolvable. By
the remark following Lemma 4.4, there exists an involution ¢ of H such that
Cii{t) contains a subgroup of the form (> K, where K=S,. Hence H contains
an involution ¢ such that C,(f) involves S, with ¢ centralizing a dihedral subgroup
of H of order 8. By Lemma 16.1(vii), ¢t is conjugate to an involution of Z(S).

But then Cg(¢) must be solvable of 2-length 1 by Proposition 16.9, contrary to
the fact that Cg(t) involves S..

LevMMa 17.7. If |R|=32, then either

(1) H has an isolated involution;

(ii) H zs solvable; or

(iii) HIO(H) 18 tsomorphic to PSL*2, 16).

Proor. Then E=U, or U;. In the latter case, H has an isolated involution
by Lemma 4.5; while in the former case, H has a normal subgroup K of index
2 with Bn K elementary abelian of order 16. Setting H=H/O(H), the structure
of K is given by Lemma 17.5. If (i) or (ii) of that lemma holds, then so does
(i) or (ii) of the present lemma. If K= PSI(2,16), then H must be isomorphic
to PSL*2,16). Finally if K contains a normal subgroup of odd index of the
form Tx L, where T is a four group and L=PSL(2, q) for some odd ¢=5, then
T<R and hence TN Z(K)+1. But in this case, Z(R)=Z(S), so there is an in-
volution ¢ in Z(S) such that te 7. However, Cu(t) is nonsolvable as it involves
PSL(2, q) and this contradicts Proposition 16.9.

Finally we have

LEMMA 17.8. If |R|=64, then HJO(H) is isomorphic to a subgroup of
PGL(3, 4).

PRrRoOF. In this case R=S. Since Hc (G, Theorem C thus holds for H by
our minimal choice of G and the lemma follows.

Now Proposition 17.1 follows Lemmas 17.5-17.8.

As a direct covollary of Proposition 17.1, we have

PROPOSITION 17.9. The group G is simple.

Proor. Let H be a minimal normal subgroup of G, so that H is the direct
produet of isomorphic simple groups. If H=G, then H has only one factor and
G is simple; so assume Hc G. Since 0. (G)=1, the factors of H are nonsolvable.
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The structure of H is given by Proposition 17.1 and it is immediate that part
(iii), (ivy or (vi} of that proposition holds. Using the classification of groups with
dihedral Sylow 2-subgroups together with Lemma 4.8, we conclude that H=
PSL8, 43, PSL(2,16), A, or PSL{Z, q), q odd, ¢=5.

In the first case, H contains a Sylow 2-subgroup of G and Ca H)cO(G)=1,s0 G
of . Since G does not contain an abelian subgroup of order 2°, it follows in
the second case as well that C;/ HYcO(G)=1, so G is isomorphic to a subgroup
of PI'L(2,16). Since PI'L(2,16)/PSL(2,16) is eyclic of order 4, we have, in fact,
G=PI'L(2,16) and S/SnH cyclic of order 4. However, SnH=A or B and
S|A=8S]B=Z,%Z;, giving a contradiction.

If H=A,, Cs(H)+1 and, as Cs(H)<S, some involution ¢ of Z(S) centralizes
H, contrary to Proposition 16.9. Consider the final possibility. As in the proof
of Lemma 17.6, no involution of S induces a field automorphism of H. Hence
HS/Cs(H)=PSL(2, q) or PGL(2, ¢). Since S is not dihedral, this forces Cs(H)+1
and we reach the same contradiction as in the preceding case.

In Section 19, we shall show that if a is an involution of G which is not

conjugate to a central involution of S, then

Cola)/O(Cela))=Z:x Z: X K,
where
K=Z.xZ:, A, or A;.

As in Section 10, once this result is established, Proposition 17.1 can be con-
siderably sharpened. Assuming this result, we obtain, by an argument entirely
similar to that of Proposition 10.5:

PropPOSITION 17.10. If H is a proper subgroup of G, then one of the following
conditions holds:

(i) H 1is 2-constrained;

(ii) H has dihedral Sylow 2-subgroups;

(iil) HIO(H)=Z:X Ay, ZoX Zp X As, A< As;

(iv) H/O(H)=PSL{2,16) or PSL*(2,16),

(v) HIO(H)=PSL®,4) or PGL(3,4).

18. Fusion of involutions, We shall also need some further information
concerning the fusion of involutions in G.

LEMMA 18.1. A and B are not conjugate in G. In particular, A and B

are each weakly closed in S with respect to G.
Proor. If A~B in G, then by Alperin’s fusion theorem ([1] or Theorem 7.2.6
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of [12]), there exists a tame intersection Q=S R, K a Sylow 2-subgroup of G,
with A< Q and 4%+ A for some element # in Ng/Q). Since A and B are the only
elementary subgroups of order 16 in S, we must have B=A". Since A< and
(A, By=S, it follows that Q=8, so x& NS). However, by Lemma 4.7 (iii),
ACNGSS), so A®= A, a contradiction.

As an immediate corollary, we have

LEMMA 18.2. Two elements of A or B are conjugate in G if and only if
they are conjugate in NglA) or N¢'B) respectively.

We next prove

LeMMA 18.3. a,~a:~a, and by~by~b,.

ProoF. Assume that a,~z; for some 4,1<%<3, in which case a, and z. are
conjugate in N=Ng A). Then SO(N) is not normal in N, otherwise ZSYO(N)
would be as well and then z: € Z(S) would not be conjugate to a; in N. Hence by
Proposition 16.2, N==NJO(N)=Z;< A; or A; and N acts transitively on the involu-
tions of A. In particular, a;~a;~a,. Furthermore, N splits over A and by, by)
is contained in a complement K of A in N. By the structure of K, a 3-element
# of K permutes b, be, by cyclically. Clearly & ¢ N#S) and so there is a 3-element
@ in Nx(S) which eyclically permutes by, b, bs. Thus also by~b:~b; and we are
done in this case. A similar argument applies if by~z; for any 4,1<¢<3.

Thus we may assume «;%2;, by*z for any 1,4, k,1,1<1, 4, k,1<3. Proposi-
tion 16.2 implies that both N¢{A4) and Ng(B) have 2-length 1.

Suppose a;~b; for some 7,1<¢<3. If A were a Sylow 2-subgroup of Celay),
then B would have to be one of Cg/b:) and then A would be conjugate to B in
G, contrary to Lemma 18.1. Since A< Celay), the only other possibility is that
Cslay) contains a Sylow 2-subgroup R of G. But then as a, € Z(R), we have a1~z
for some 4,1 1<3, contrary to assumption. Hence a,7#b; for any 7,1<7<3.
However, since G is simple, Thompson’s lemma implies that @, is conjugate to
an involution of (B, a:>. Our conditions together with Lemma 16.1(vi) force
a;~a;. Now Lemma 18.2 implies that ¢, and a. are conjugate in Ng{4). Since
NglA) has 2-length 1, we conclude that N¢(A) contains a 3-element which cyclical-
ly permutes ai, @, ¢s. Thus ay~as~a;. Similarly by~bz~b;.

A portion of the above argument gives

LEMMA 18.4. If a: and b; are not conjugate to z; forany 1,3, k, 154, 7, k<3,
then

(i) a: is not econjugate to b; for any 2,75,1<1,5<3.

(i1) zy~zg~z;.

Proor. Under the given assumptions, A is a Sylow 2-subgroup of Cslas)
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and B is a Sylow 2-subgroup of Cs’b;). Hence if a.~b;, then A~B, contrary to
Temma 18.1. Thus {i) holds.

Since G does not contain an isolated involution, our assumptions together
with Lemma 16.1 (vi) imply that for each i, 2;.~z, for some j=+i,1<4, 3. Hence
2 ~2s~2; and so (ii) also holds.

As a corollary of Lemmas 18.3 and 18.4, we obtain

PRrOPOSITION 18.5. One of the following holds:

(1) G has one conjugacy class of involutions;

{i1) G has two conjugacy classes of involutions; represented by either 2
and a, or z, and by

(iii) G has three conjugacy classes of involutions represented by z:, @y and b,.

Finally we prove

LEMMA 18.6. If Celad/0iCslas)) contains a normal subgroup of odd index
t1somorphic to ZgﬂZg’>< PSL2, ¢), q=3,5(mod 8) for some 1,1<1<3, then

(1) INaS):8C:S)|=9;

{(ii) Z(S) 18 a Sylow 2-subgroup of Ce¢la:).

(iii) NgS) contains a 3-element which centralizes {a,, a:) and cyclically
permutes z,, 2, and 2.

Similar statements hold for Celb)jO(Ca(h)), 1<2<3.

Proor. By our assumptions on Cgla:), A is a Sylow 2-subgroup of Cula:).
In particular, a; is not conjugate to z, in G. Proposition 16.2 now yields that
N=NgA) has 2-length 1. Again by the structure of Cgla:), N—CglA) contains
a 3-element x which centralizes a;. Since N has 2-length 1, we can take =« to
normalize S. If N=0(N)S{x), then ¢, would not be conjugate to a, in N, which
it is by Lemmas 18.2 and 18.3. Thus | Nx(S): SCx(S)| >3 and now Lemma 4.7 (ii)
implies {i).

Furthermore, & normalizes Z(S) as it normalizes S,z centralizes a,, and z
normalizes but does not centralize 4. Since | A : (ZS), | =2, it follows that x
does not centralize Z(S). But then [Z(S), x]=7(S) and so Z(S)=Cyla.)’. On the
other hand, it is immediate from the structure of Csla:) that a Sylow 2-subgroup
of Csla:) is a four group. Thus Z(S) is a Sylow 2-subgroup of Cela:)’ proving
(ii). Moreover, x leaves {ai, a;) invariant by our choice of a1, a:, so « centralizes
{ay, az>., proving (iii).

19, The structure of Cy(a,) and Cu(b,). In this section we shall determine the
structure of C¢/a,) and Cg’by) in the cases that @, or b; are not conjugate to z
in G. Our argument will be entirely similar to that of Section 11. We shall prove

PROPOSITION 19.1. If @, is not conjugate to z, in G, then Cilap/OiCulay)) is



398 Daniel GORENSTEIN and Koichiro HARADA

isomorphic to Ey, Zy¥ 2.7 Ay, or ZovnZy<A,. A similar statement holds for
Ci'byy if by 18 not conjugate to z; wn G.

As usual, we carry out the proof in a sequence of lemmas. It will be enough
to prove the result for Csla;). We assume throughout that «; is not conjugate
to z, in ¢G. We set M=Cswy) and I=NyA). Our conditions imply that I does
not act transitively on the involutions of 4, whence O{I)S< I by Proposition 16.2.
But now if we apply Lemma 4.7, it follows at once that
(1) [Nu(A): Cu(A)=1 or 3

and that if this index is 3, then M contains a 3-element which centralizes W=
{a, azy and acts fixed-point-free on Z=<z, z,>. Furthermore, since a,%z, in G,
a, 18 not in the center of a Sylow 2-subgroup of G and it follows that A is a
Sylow 2-subgroup of M.

If M is nonsolvable, Proposition 17.1(v) is applicable and yields that M=
M/O{M) contains a normal subgroup D of odd index of the form

(2) D=WxL,

where L.~ PSL(2, q), =3, 5 (mod 8) and ¢=5 with Z& L. If M is solvable, then the

same conclusion holds with LZ=Z or L= A4,. In either of the latter cases or in the

former case with ¢=5, we clearly have M=L and A has one of the structures

asserted in the proposition. Hence we suppose by way of contradiction that ¢ > 5.
We argue now as in the derivation of equations (3)-(6) of Section 11 and

obtain

(3) M=WxIK,

where KoL, C{lD=1, and K is isomorphic to a subgroup of PI'L(2, q). Also

(4) CulW)=WxK,

where K/O(K)~K, and

(5) M=0MYWxK).

Once again we let L be the normal subgroup of K containing O(K) such that

LIOUK)~L. We also have Cy(W)=C¢{W). Furthermore, for some odd prime p
there exists a nontrivial p-element y of L such that

(6) yu=y and yr=yo.

Again we fix such a prime p.
In addition, we set N=Cg¢2,). Finally if H is a subgroup of G containing
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S, we say that H is p-constrained within {z> if H is p-constrained and if
0, (H)SO(H)Xz>. With all this notation fixed, we first prove

LEMMA 19.1. N is p-constrained within {(z:>.

Proor. Since N is solvable of 2-length 1 by Proposition 16.9, it is p-con-
strained. Since y=y~', it follows for the same reason that ycO(N). Hence
z: does not centralize some S-invariant Sylow p-subgroup P of O(N). Since
S=SKz,> is extra-special with center ¢Z,>, we see that Cy(Py={z>. Since
O0n(N)NnS clearly centralizes P, it follows that O,(N)nS=¢(z,>. In particular,
0,{N) thus has a normal Z-complement. Since 00, (N)) is characteristic in
O0,{N), O0,{N)»=O(N) and we conclude that 0,(N)c O(NKz,>, which establishes
the lemma.

As in Section 11, we now define the family /" as the set of proper sub-
groups H of G which satisfy the following conditions:

(a) H contains S;

(b) H contains an S-invariant Sylow p-subgroup of O(N);

{¢) H covers N/O(N).

Clearly Ne 71",

LeMMaA 19.2. If He /1", then the following conditions hold:

(1) Ow {H)>OH);

(ii) H is p-constrained within {z;);

(iii) If @ s a montrivial S-invariant p-subgroup of H such that O,(H)Q@
18 normal in H, then Ng(@Q)e 1.

PrOOF. By Proposition 17.1 H=H/O(H) is isomorphic to a subgroup of
PGL(83,4). Since G has more than one class of involutions, so does H and hence

H does not contain a normal subgroup isomorphic to PSL(3,4). But now (i)
follows from Lemma 4.8.

If H has 2-length 1, then (ii) follows by essentially the same argument as
in Lemma 19.1. In the contrary case, Lemma 4.8 implies that O,()>~E, and
that H/OJH)=A; or Zy< A;. Clearly z; € 0:(H) and every nontrivial normal sub-
group of H contains z,. Since z; does not centralize an S-invariant Sylow p-
subgroup R of O(H), it follows by the Frattini argument that C,(R)=O(H).
This in turn implies that O, (H)SO(H) and we conclude at once that H is p-
constrained within {z;>. Thus (ii) holds in all cases.

Finally (iii) is established in essentially the same way as Lemma 11.3 (iii).

We also have

LEMMA 19.3. Every element of .4 is p-stable.

PROOF. We proceed as in Lemma 11.10. With the notation P, , F, V, F as
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in that lemma, we obtain that Z€ O(F), that I is faithfully and irreducibly re-
presented on V regarded as a vector space over GF{p), that [V, %, Z]=1, and that
F/O(F) is isomorphic to a nontrivial homomorphic image of H/O(H). By the
argument of the preceding lemma, either H has 2-length 1 and H/O(H) is a
12, 8l-group or Ow o HYO(H )= Eyg, HIOw o H)ex A; or Z3 X A, and HIO(H )is a {2, 3, 5}-
group. Since #e O(F), we conclude, in particular, that p=3 or 5.

As in Lemma 11.10, we set R:OW{O(’F')) and C=CpR) and obtain that
ieC and that CnOUH< R. Since C<F, we also have that CnO(F)=0(C) and
that €0 0w s(F)=0s(C). Thus O(C)c B. Since C centralizes R, it follows that
0 AC)=0Cyx Z(R).

Let S be the image of S in F. Consider first that H, and hence also F,
has 2-length 1, in which case S0y «(F) and p=3. Since t¢C, we see that
(S, #1< 0w (] 1 Co= 00 o C)=04C)x Z(R). Thus ¥ centralizes the image of S in
Cl0w «C) and, as 0L0)S, it follows that X=Z(R)S(Z) is a group and that
Z(R)S<X. Since R is a 3/-group and {&> is a 3-group, a Hall-{2, 3}-subgroup
of X containing (&) possesses a normal Sylow 2-subgroup. We conclude therefore
that & normalizes some Sylow 2-subgroup of X. Without loss we can suppose
that # normalizes S. Since #¢ O(F), & does not centralize S.

Since [V, Z, £]=1 and F is faithfully represented on V, % must be of order
3. We need only show that © normalizes, but does not centralize, a four sub-
group T of S, for then [V, &, &]#1 as T<&) is a 3-stable group, a contradiction.
Since O(H)S< H in the present case, there exists an element z in N,(S) whose
image in /' is &. But S=AB and, by Lemma 4.7(iii), « leaves both A and B
invariant. Hence S=AB and & leaves both A and B invariant. Since # does
not ecentralize S, it does not centralize 4 or B. Since A and B are abelian, the
existence of the required four subgroup 7 follows at once.

Suppose finally that F' is not of 2-length 1. Since C{F and CnO(F)=0(C),
C/O(C) is isomorphic to a homomorphie image of a subgroup of H/O(H). We know
that Os(C)=04(C)x ZR) and % ¢ O(C). Hence if 0,(C)#1, it follows from the
structure of H/O(H) that 0C)= E;, and that & does not centralize 04C). But
then O(C X&) is a p-stable group and consequently [V, &, #]+#1, a contradiction. On
the other hand, if 04(C)=1, then O»(C)=0(C)=Z(R) and so C/O(C)= A, Zs* A;, or
Zs. However, the representation of C on Vis not p-stable and so C must involve

SLi2, p) by Theorem 3.8.3 of [12], contrary to the fact that a Sylow 2-subgroup
of C is abelian in these cases. This completes the proof of the lemma.

We also have the following analogue of Lemma 11.4,
LEMMA 194. If P is an S-invariaent Sylow p-subgroup O(N), then the
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following conditions hold:

{1y Either [Cp(W), z.] is noncyclic or [Cplad), a;, z.]#1 for some 1,7, 1<
1,7<3;

(i) [Cplad), a;}#1 for some ,7, 1<, 7<3.

PROOF. As in Lemma 11.4, we consider the action of S=S8/{z,> on P= Pj@P).
We again have C3(P)=1. Since z;€S’, the proof of (i) is identical to that of
Lemma 11.4(1). Likewise (ii) follows exactly as Lemma 11.4(ii).

As in Bection 11, if H is a subgroup of G containing A, we shall say that
H is p-constrained within {a;> if H is p-constrained and O, (H)< O(HXa,>.

LEMMA 19.5. M is p-constrained within {a.).

PrOOF. The proof is essentially identical to that of Lemma 11.5. However,
we now use Lemma 18.6 (iii) in place of Proposition 6.9 (iv) to obtain the existence
of a 3-element z of G which cyclically permutes a4, a., ¢; and centralizes Z={zy, 2.>.
Then using Lemma 19.4 (i) in place of Lemma 11.4(i), we argue in the same way
that z, does not centralize some A-invariant Sylow p-subgroup T of O(M), and
it again follows that M is p-constrained. Finally, We use Lemma 19.4(ii) in
place of Lemma 11.4(ii) to establish that M is p-constrained within {a,).

We now define a second family .7 as the set of proper subgroups H of
G which satisfy the following conditions:

(a) H contains A;

(b) H contains an A-invariant Sylow p-subgroup of O(M);

{¢) H covers M/O(M).

Clearly Me # .

LEMMA 19.6. If He _#, then the following conditions hold:

(1) OHYHnNM) is normal in H of index 1 or 3;

(ii) H 18 p-constrained within {a.y;

(iii) If Q is a nontrivial A-invariant p-subgroup of H such that O, (H)Q
18 normal in H, then NeQ)e 7.

ProOOF. The proof is essentially identical to that of Lemma 11.6. One uses
Proposition 17.1 and Lemma 4.8 in place of Propositions 10.2,10.3 and 10.4 to
conclude in the present case that 4 must be a Sylow 2-subgroup of H.

We have just seen that every element of ./ has A asa Sylow 2-subgroup.
Since A is abelian, we thus have

LEMMA 19.7. Ewvery element of _# 1is p-stable.

We have now established all the analogues of the results of Section 11 which

are needed to derive the following analogue of Lemma 11.11 by the identical
argument:
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LEMMA 19.8. There exist Sylow p-subgroups P, and P, of G such that
N Z(J Pyyye A" and N ZJ( Poye 7.

Lemma 19.8 leads to the same contradiction as in Section 11 and therefore
Proposition 19.1 is proved.

20. Proof of Theorem C., We first prove

ProposITION 20.1. G s balanced and connected.

Proor. By Lemma 16.1 (iii), SCNy(S) is nonempty, so G is connected by
Lemma 2.4. The structure of the centralizer of an involution of G is given by
Propositions 16.9 and 19.1. Using Lemma 2.3, as we did in the proof of Prop-
osition 12.1, it follows that G is balanced.

ProrositioN 20.2. O is a strongly flat A-signalizer functor on G.

Proor. Since G is balanced, O is an A-signalizer functor on G. Using
Proposition 17.10 together with the various lemmas of Section 3, it follows just
as in the proof of Proposition 12.2 that O is strongly flat.

PROPOSITION 20.3. O(Cglx))=1 for every involution x of G.

Proor. Proposition 20.2 and Theorem 2.1 together yield that W ={O(C¢la))|
a € A*) has odd order. Combined with Propoesition 20.1 and the fact that G is
simple and SCNy(2) is nonempty, we see that the hypotheses of Theorem 2.5 are
satisfied. But now the present proposition follows from that theorem.

In contrast with Theorems A and B, there is no classification theorem which
can now be immediately invoked to complete the proof of Theorem C. One re-
quires a further argument to reach the assumptions of Suzuki’s characterization
of PSL(3,4), [24], which depends critically upon Proposition 20.3.

PRrorosITION 20.4. The centralizer of every involution of G is 2-closed.

Proor. Let a be an involution of G, so that by Proposition 18.5, a is con-
jugate to z;, a,, or b,. Propositions 16.9, 19.1 and 20.3 together imply that either
Coia) is 2-closed or else a2z, and Cela)=2Z,< 7> As. Since our argument will
be the same whether a~a, or a~b;, we may assume for definiteness that a~a;.
Hence, by Proposition 19.1 and equation (5) of Section 19,

(1) Celay={a,, a:>< F, where F=A,.

We shall examine the various possibilities for C¢'b;) in succession and shall
derive a contradiction in each case. We carry out the argument in a sequence of
lemmas. Note that by equation (1}, @; is not conjugate to z; for any 7,1<i<3.

LeMMA 20.5. A Sylow 5-subgroup P of Celay) is a Sylow 5-subgroup of G
and {ai, a;> is a Sylow 2-subgroup of CeP).

PrOOF. By Lemma 18.6(i1), (%1, 2> is a Sylow 2-subgroup of Cga,)=A4,.
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Since A; has only one conjugacy elass of involutions and since a Sylow 5-subgroup
of A; is inverted by an involution, we can choose a Sylow 5-subgroup Q of Ce.ay)
to be inverted by z. If the lemma holds for @, then it clearly also holds for
P. Hence without loss we may assume Q=P.

We set C=C¢(P)and H={z,)C. Now S<{Cyz)and O(Csz,))=1. Hence Celzy)
is a {2, 3}-group by Lemma 4.7 and consequently no involution of C is conjugate
to a central involution. Since every subgroup of S of order at least 8 contains
a central involution of S by Lemma 16.1(v) and since <{a,, a:;><C, we conclude
that {a,, a;> is a Sylow 2-subgroup of €. We shall argue that C is solvable, so
assume the contrary.

Clearly O(H)=0(C). Hence if we set H=H/O(H), it follows from the main
theorem of [15] that H contains a normal subgroup K=XxIL, where | X|=2 and
L=PSL2, ), g=3,5(mod 8) and ¢>5. We set V= {21, @i, a2, s0 that V is a Sylow
2-subgroup of H and V is a Sylow 2-subgroup of X. Thus X< V and there exists
an element ¥ in L of order 3 which normalizes V and satisfies Ci(in=X. Let
y be an element of Ny(V) which maps onto 3. It will suffice to prove that
Ng(V) normalizes S, for then y will normalize S and hence also Z(S), whence
y will centralize Z(S)n V=(2,>. But then z €Cy(y), forcing X=¢(3>. This in
turn will imply that Cslz;) is nonsolvable, contrary to the fact that Cy'z,) is

2-closed.
Sinece CpV)cCelz1), C6lV) is 2-closed. But A4 is a Sylow 2-subgroup of Cy' V)

by Lemma 16.1(v), so A is characteristic in C¢'V). Since N V) normalizes
Co'V), it follows that Ng/V)c Ng{A). Thus we need only show that SN A).
We have ColA)=Cxlz,), O(Csl2))=1 and S{C¢’2;). Hence any nontrivial element
of Cs'A) of odd order must induce a nontrivial automorphism of S, which con-
tradicts Lemma 4.7(iv). Thus C¢’4A)=A4 and consequently O{N (A))=1. Further-
more, Ng A) acts nontransitively on the involutions of 4 as a, and 2z, are not
conjugate. But now the desired conclusion S<{N¢ A) follows from Proposition
16.2. We conclude finally that C=Cg/P) is solvable.

We can now quickly complete the proof of the lemma. By equation (1) above,
we have Cula)=Csla)=Cg'u,), 8o Pis a maximal subgroup of odd order in Cy'a)
for all ¢,1<4<83. Since OC)={Cona:)|1<1<8>, it follows that ({C)=P. But
ClO(Cy=Z, < Z; or A, as it is solvable, s0 P is a Sylow 5-subgroup of G. Since
{ai, azy is a Sylow 2-subgroup of C, the lemma is proved.

LEMMA 20.6. Cg'by) 18 mot isomorphic to Cglay).

PrOOF. Assume false. Then by the identical argument as above, we can
conclude that (b, b,> is a Sylow 2-subgroup of the centralizer of some Sylow 5-
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subgroup P* of . Since P~P* in G, this would imply that <{by, bp~{as, asd.
This conflicts with Lemma 18.4.

LeMMA 20.7. Cg'by) is not isomorphic to E or Zyx Zy < A,.

ProoOF. Assume false, in which case Cg'by) is 2-closed and b, is conjugate
to neither z, nor a,. Let b, be an arbitrary conjugate of b, in G. Then since
b; and z, are not conjugate in G, b;-z, must have even order, so there exists an
involution ¢in G which centralizes both b, and z;. Since Cg(z,) is 2-closed, te S.
If te Z(8), then bj ¢S as Ce't) would then also be 2-closed. If t¢ A—(z, 2>, then
t~a, in S by Lemmas 16.1{vi) and 18.3 and so A is a Sylow 2-subgroup of C¢t).
But then, as b) € Cyft), bl is conjugate to an involution of A and so to either z
or a,, which is not the case. Finally if ¢t€ B—{z, %), then t~b; in S by Lemma
16.1(vi} and 18.3, whence Cg't) is 2-closed and has B as Sylow 2-subgroup. Thus
bie B=S and we conclude that b€ S. Hence S contains every conjugate of b,
and so O.4G)+1, contrary to the fact that G is simple.

Finally we prove

LEMMA 20.8. b, is not conjugate to z, in G.

Proor. Assume the contrary. Then by Lemmas 18.2 and Proposition 16.2
N B) acts transitively on the involutions of B and NgB)Ce¢B)=NdB)/B is g
split extension of B by a group K=27,x 4; or As, and {a;, ax>S K. Furthermore,
by Lemma 18.6(1), | No(S): S{=9. Since Ng(S) normalizes B by Lemma 4.7 (iii),
we have, in fact, that Ng(B)/B and hence also K is isomorphic to Z,<A4;. We
set D=Z(K), so that {D|=3. By the structure of Csla,), D is a Sylow 3-subgroup
of Co'ay) and is inverted by an involution w of Celay).

We set C=Cg D)), H=<{w)C, and V={a4, a;, w). In particular, V is elementary
abelian of order 8. Let R be a Sylow 2-subgroup of G containing V such that
RN H is a Sylow 2-subgroup of H. Then RnC is a Sylow 2-subgroup of C as
CaH and RoC2{a,a> If RnCo><{ar, ax», then RNC contains an involution
t of Z(R) by Lemma 16.1(v). But then t~z, and so C¢'t) is 2-closed. Since
(R, D>=Cyt), we see that D) normalizes £. But En H normalizes D as DJH,
so R H centralizes D, contrary to the fact that we RnH and w inverts D.

On the other hand, C contains K and so C involves A;. Hence if we apply
the main theorem of |15] to H=H/O(H) as we did in Lemma 20.5, it follows that
H contains & normal subgroup of the form XL with | X|=2 and L=PSL{2, q),
g ~5. Reasoning now exactly as we did in Lemma 20.5, but with R in place of
S, we conclude that VA Z{R)=<{¢> is of order 2 and (#y=X. But then Cglv)
invelves PSL(2, ¢) and so is nonsolvable, contrary to the fact that v~z;. The
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lemma is proved.

This establishes Proposition 20.4. Indeed, sinee b,%z, by Lemma 20.8, Co'b, =
Z: X Zy X F, where F=Z,>Z., A; or A, by Propositions 19.1 and 20.3. However,
this contradicts Lemmas 20.6 and 20.7.

Because of Proposition 20.4, the main theorem of |24} can be applied to G.
Since G is simple with Sylow 2-subgroups of type PSL{3,4), we conclude that
G=PSL{3,4). This completes the proof of Theorem C.

Added in Proof: Reeently David Goldschmitt, using ideas of Bender’s proof
of Thompson’s so-called “Uniqueness Theorem”, has extended the results of |13]
and [14] to arbitrary A-signalizer functors of rank 4. This means that our
Theorem 2.1 above holds without the assumption of strong Aatness.

This result gives a considerable simplification in the proofs of Theorems A,
B, and C. In each case, the complete analysis of the subgroup structure of the
given group G which we have carried out is no longer needed. Instead all we

now need is a knowledge of the structure of the centralizers of the involutions
of G.
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