On hyperelliptic surfaces

By Tatsuo Suwa

The classification of hyperelliptic surfaces was established earlier by Italian
geometers (Bagnera-Franchis [1], Enriques-Severi [2]). The purpose of this note
is to take up this classification, viewing hyperelliptic surfaces as elliptic bundles.

Section 1 contains preliminary considerations about elliptic bundles, which
is a special case of the theory of elliptic surfaces of Kodaira [6]. We define a
hyperelliptic surface to be an elliptic bundle of which the first Betti number is
equal to 2. Lemmas 1 and 2 assert that our definition coincides with that of
“irregular hyperelliptic surfaces of rank »>1" in [2]. The classification of these
surfaces is given in Theorem in Section 2. As a corollary to this theorem it is
shown that the plurigenera of hyperelliptic surfaces are topological invariants.
In Section 3 we give various characterizations of hyperelliptic surfaces. Especial-
ly we show that every hyperelliptic surface has two different fiberings of elliptic
curves. It is this fact that Enriques and Severi used as a clue to the classification.

§1. Elliptic bundles.

By a surface we shall mean a compact complex manifold of complex dimen-
sion 2. A surface S is said to be an elliptic surface if there exists a holomor-
phic map ¥ of S onto a non-singular curve 4 such that the inverse image ¥ '(a)
of any general point w€ 4 is an elliptic curve. For the theory of elliptic surfaces
we refer to Kodaira [5]. Let us call the elliptic surface ¥:S-»4 an elliptic
bundle over 4 if ¥ is everywhere of maximal rank, i.e., S is free from singular
fibres over 4. In this case the functional invariant . / (w) of the elliptic surface
S is reduced to a constant. Hence zll the fibres are complex analytically homeo-
morphic to one and the same elliptic curve C, and S is the total space of a
complex analytic fibre bundle over 4 with fibre C.

Let ¥: S— 4 be an elliptic bundle over an elliptic curve 4 with fibre C. We
represent C as a quotient group: C=C/I", where [" is a discontinuous subgroup
of the additive group of complex numbers C generated by w and 1, Im » >0, and,
for any e C, we denote by [{] the corresponding element of C=C/I". Choose a
finite covering {U;} of 4 by small disks U,;. Then the surface S can be deseribed
as follows: S=lJ U;xC, where (u,[{;] e U;xC and (u, [Z:]) e U, C are identified
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if and only if
[T =lenle+ )] .

The constant ¢;; is a root of unity representing an automorphism: [{]—[¢;:&] of
C and 7;{u) is a holomorphic function of ue€ U;nU:,. Moreover we have e.=¢ie5
and [7(w]=[p:;(u)+ ()], for we U;nU; 0 Ur. The automorphism [{]—[¢;.L] of
C induces a linear isomorphism {(e;.)x of the homology group H(C, Z)~I'"~ZDZ.
The homological invariant G of S is a locally constant sheaf over 4 defined as
follows: G:U U, H{(C, Z), where (u,7,)€ U;x H{(C, Z) and (u, yr) e U x H\{(C, Z)
are identiﬁeél if and only if 7;=(¢;1)+7%. The basic member B of the family
A / , G) consisting of all elliptic surfaces whose functional and homological
invariants are (f and G is defined as follows: B:L;J U;<C, where (u, [{;]) and
(u, [&]) are identified if and only if [{;]=[e;x{:]. Let @(B) denote the sheaf over 4 of
germs of holomorphic sections of B. Moreover let | be the line bundle over 4 defined
by the 1l-cocycle {¢;:}. Then we have the exact sequence (cf. [5] Theorem 11.2)

0 G 2% 2By 0

and the corresponding exact cohomology sequence

h
(1) oo H (4, Q1) —— H \(d, Q(B)—— H*4, G)—0 .

The elliptic surface S is denoted by B”, where 7 is the cohomology class in
H:{d, 2(B)) represented by the l-cocyele {[7;.(w)l}.
On the other hand we have the exact homotopy sequence

1 ILI(C) ul(S ) T’x(d,l 1 .

Since 7, (H)~ZDZ is abelian, we have the surjective homomorphism H(S, Z)=
2(SW[7U(S), 7 S)—=(d). Hence we infer that the first Betti number b, of S
satisfies the inequality 2<b,<4. If the homological invariant G is trivial then
by;=4 or 3 according as ¢(3)=0 or ¢()#0 (see [5] Theorem 11.9). On the other
hand we infer readily that if & is non-trivial, then b,=2.

§ 2, Classification of hyperelliptic surfaces,

DEFINITION. By a hyperelliptic surface we shall mean an elliptic bundle
over an elliptic curve of which the first Betti number is equal to 2.
Remark. As will be shown in the next section, the above definition is equiv-

alent to saying that a hyperelliptic surface is a surface of geometric genus zero
having an Abelian variety as its finite unramified covering manifold. In Enriques-
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Severi (2] the surfaces of this type are called “irregular hyperelliptic surfaces
of rank r>1".

Let #:S——4 be an elliptic bundle over an elliptic curve 4 and let K
be the canonical bundle of S. Then K is given by K=¥*—i) {[6] I, Theorem
12). Since eﬁ.zl, we have ¢(i)=0 and 12f=0. Moreover {=0 if and only if G is
trivial. Hence hyperelliptic surfaces are classified into the following four types:

I) 2K=0 (K+0), I 3K=0 (K+#0),
III) 4K=0 (2K +#0), 1V) 6K=0 2K,3K=+0).

The fibres of hyperelliptic surfaces of types II) and IV) are equianharmonic
elliptic curves, and that of the surfaces of type III) are harmonic elliptic curves.
Note that, S=B" is a hyperelliptic surface, if and only if the basic member B
is a hyperelliptic surface. Moreover S and B belong to the same class. From
the general theory of classification of compact surfaces due to Kodaira we infer
that every hyperelliptic surface is an algebraic surface with the following
numerical characters: p,=0, g=1, ¢i=c,=0, where p,, ¢ and ¢, denote, respectively,
the geometric genus, the irregularity and the v-th Chern class.

Let ¥: S—4 be a hyperelliptic surface. Then ¢(f)=0 and §+0. Hence we
get H'(4, 2(1))=0 and, consequently, we have, by (1), the isomorphism H(d, 2(B))=
H*4,G). Recall that the cohomology group H(d, G) is finite, since the sheaf G
is non-trivial ([5] Theorem 11.7). Take a suitable finite unramified covering
I 44 of 4. Then the fibre space B=Bx ,d induced from 0: B—4 by the covering
map f is trivial: B=4xC. The number of sheets of f is equal to 2,3,4 or 6
according as S (or B) is of type I), II), III) or 1V), and 4 is also an elliptic curve.
Considering the fibre space S=Sx .J induced from ¥: S—4 by the covering map
f, we have an elliptic bundle ¥:S—>3. The basic member of § is obviously
o §->A~, where @ denotes the canonical projection. The map f induces a homo-
morphism f*: H{4, .Q(B))~>H‘(27, (B, and it is easy to see that if S=Bn,
ne Hi(4, 2(B)), then S=5/"". On the other hand, the sheaf G is the quotient of
the homological invariant G =dx H(C,Z) of S (or B) by the group induced from
the group of covering transformations of B over B. Hence we have a homo-
morphism f*: H¥d, G)*»Hz(z, 5) and the commutative diagram:

H(d, 9(B)——H¥4, G)
f*l lf*
H\(d, AB)y——H*4,G) .
As was mentioned above the group H%*4, G) is finite, while the group H 2(5, G)
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is isomorphic to Z%:Z, hence f*H¥d4,G)=0. Consequently, we have el f*py=
f*ely)=0. In view of the exact cohomology sequence

oo HY(, 25— H'(F, 0 Byy—— H¥F, G y——0 ,

we infer that the surface S is a deformation of B=4xC. Since S is algebraic
S is also algebraic. Thus we obtain the following

LEMMA 1. Any hyperelliptic surface has an Abelian variety as its finite
unramified covering manifold.

Now we can determine all the hyperelliptic surfaces as follows:

I) 2K=0, K+0. In this case we have H*4, G)~Z.(DZ,. Hence we have four
hyperelliptic surfaces for fixed functional and homological invariants. Let a and
f be generators of the fundamental group = (4). Then there are three possible
choices of the homological invariant G corresponding to the representations: i)
a1y, Boly, i) @-ly, f>-—1, and iii) a>—1,, f->—1., where 1. denotes the unit
2>2 matrix. But it is easy to see that these representations are essentially the
same if we make a suitable change of the generators « and 5 of =,(d). We may
assume that the period matrix of the Abelian variety S is of the form

é g :/ 3), where (1,w) is the periods of the fibre C and (1,2) is the
periods of the base curve 4. That is S is the quotient space of CxC
by the group generated by the following four automorphisms: (u, Q)
(u+1, 0), (u, O, L+1), (u, O>(u+z, {+7) and  (u, O—(u, {+w). 7 is  so
determined that there exists an automorphism g of S of the form g: (u, O
(u —4——51;, wi). By an elementary calculation, we can show that 7 is given by

7,—2—}-—% @, where n, m=0 or 1. Corresponding to these four possible values
of » we have four hyperelliptic surfaces with the same basic member. But it
is easily seen that three surfaces corresponding to yz%,% or 1—;“1
expressed in the same manner if we make a suitable change of the periods

can be

representing the Abelian variety S. Thus we have only to consider the surfaces
. 1
corresponding to 7=0 and 5
ID 3K=0, K+0. In this case, the fibre C is an equianharmonic eurve and
we may let the periods of C be (1, p*), where p=exp :331 We have H¥4, )= Z,.
Hence there exist three hyperelliptic surfaces for a fixed homological invariant.

There are eight possible choices of the homological invariant G. But as in I
we have only to consider the sheaf G corresponding to the representation: a—
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((1) :i), 5—1,. We may assume that the period matrix of the Abelian variety
& 1 0+« 0

S is of the form (0 1 5 o/
morphism g of S of the form g: (u, C):»——»(u-}*—%, pzij)‘ By an elementary calcu-

lation, we have 77:1;'—(1—102), where n=0,1 or 2. Corresponding to these three

7 is so determined that there exists an auto-

possible values of 7, we have three hyperelliptic surfaces with the same basic
member. But it is easily seen that two surfaces corresponding to zz%{lmpﬁ)
and vs«é—(l—,&) can be expressed in the same manner if we make a suitable
change of the periods representing the Abelian variety S. Thus we have only
to consider the surfaces corresponding to =0 and 77=%—(1—p2).

III) 4K=0,2K=+0. In this case the fibre C is a harmonic elliptic curve and
we may let the periods of C be (1,7). We have H¥d4, G)=3Z,. Hence there exist
two different hyperelliptic surfaces for a fixed homological invariant. There are
12 possible choices of the homological invariant G. But essentially we have only
to consider the sheaf G corresponding to the representation: m«((l) “61), Br1,.
We may assume that the period matrix of the Abelian variety S is of the form

(1) (1) ; g) is so determined that there exists an automorphism g of S of the

7
form g¢g:{(u, C)r—»(u +%, ég). By an elementary calculation we have vz—g—(l-{—i),
where =0 or 1.

IV) 6K=0,2K,3K=0. In this case the fibre C is an equianharmonic elliptic
curve and we may let the periods of C be (1, p¥). We have H*4, G)=0, hence
all the elliptic surfaces of this type are basic members. There are 24 possible
choices of the homological invariant G. But essentially we have only to consider

the sheaf (G corresponding to the representation: m—»(_?l %),ﬁr—sla. S is the
quotient space of the Abelian variety S with the period matrix ((1) g 5 22

by the group generated by an automorphism g¢: (u, C)H(u +—é—, -~p2C) of S.
Summarizing the above results, we obtain the following

TEEOREM (Compare [1] p. 596 and [2] §57). Any hyperelliptic surface con
be expressed as the quotient space of an Abelian variety A by the group generated
by an automorphism g of A. The period matriz of A and the automorphism
g are given as follows:

D (1 0 = O), i)
01 0 o

10

3 ]

0

Ol—é—-w

1

g: (u, C)*———-*(u +~12—. —C) ,
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Lo 0 1 0 . 0\
D . ( T )
A VIR W (0 1 a—p) >)
' \ 3 ,
X 1,
¢ (u, <:>+—-—->(u g .wa) ,
. 0 10 = 0
1y 6 ( i ) i) 1. .
01 0 1 0 1 E‘(H—z) 1
, 1.,
g: (;u’r C}F——*’(M “»L"’Z’ z%) ’
. 10 = 0 1
v ( ), {u, C/'|_—><u+_'.’ — z.f') ,
) 010 g gt 6 F"

where = and o denote arbitrary constants with non-zero imaginary parts.

REMARK 1. If we write the period matrices in normal forms, we obtain the
table of Enriques-Severi [2] §57.

REMARK 2. The surfaces of any one of seven types of the above table form
a complex analytic family, with parameters ¢ and » in the case I) i) and ii) and
with a parameter 7 in other cases. Moreover, these families are everywhere
effectively parametrized and complete. The dimension of the cohomology groups
with coefficients in the sheaf © of germs of holomorphic vector fields of a hyper-
elliptic surface S is computed easily. The result is as follows:

dim H(S, &)=1,

dim H (S, (_}):{2, %n the case I),

, in other cases,
dim H(S, (_))ﬂ{l, %n the case I),
0, in other cases .

REMARK 3. The 1-dimensional homology groups H.(S, Z) of the above sur-
faces are given, respectively, by 1) 1) ZDZDZ.DZ., ii) ZDZDZ,, 1D 1) ZBZDBZ,,
it) ZhZ, I i) ZHZDZ,, 1) ZDZ and 1V) ZPZ. Thus two hyperelliptic sur-
faces of different classes may have the same homology group. But S. Iitaka
remarked that the four classes 1), II), III) and IV) can be distinguished by the
fundamental group (see [4] Table II). Hence the seven types of hyperelliptic
surfaces are completely classified topologically, and the plurigenera of hyper-
elliptic surfaces are topological invariants.

ReMARK 4. The surfaces of the types I) 1), II) 1), III) i) and IV) are topologi-
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cally homeomorphic, respectively, to S'< Z(D/), S'x _#Z(E]), S'x A4 (E/y and
St _#(Ey), where S! is a circle and _#Z(I") denotes the tree-manifold associated
with a tree I' (see [3] §10).

§3. Various characterizations of hyperelliptic surfaces,

Let S; be a surface with p,=0 which has an Abelian variety as its finite
unramified covering manifold. Then we infer readily that the Chern numbers
¢t and ¢, of S; vanish, and that S, contains no exceptional curve (of the first
kind). The Neother formula 12(p,—g+1)=ci+¢: implies that g=1. On the other
hand S, is algebraic. Hence we have b, =2.

LEMMA 2. S; is an elliptic bundle over an elliptic curve.

ProOF. Let S be an algebraic surface with p,—c/=0and g=1. Considering
the Albanese map of S, we have a holomorphic map ¥ of S onto an elliptic
curve 4 such that ¥-'(u) is connected for every point w€ 4. Let = be the genus
of a general fibre of ¥. Then the proof of Theorem 51 of [6] IV implies that
the universal covering manifold % of S is given as follows:

P xC, if #=0,

P CXC}, if =1,
CxD
CxD,  if =22,

where D) denotes the unit disk {zeC] |z} <1}. Moreover in the case where n=1,
%y =C»C if and only if S is free from singular fibres over 4, g.e.d.

Now any Abelian variety which appears in the theorem of the previous
gection is an elliptic bundle S—»4 over an elliptic curve J with fibre C. S has
as a finite covering the direct product 4,%xC, where 4, is a finite unramified
covering of 4. Obviously 4, is an elliptic curve. Thus any hyperelliptic surface
S is expressed as 4,xC/%’, where % is a finite group of automorphisms of
4,XC. We have the natural homomorphism ¢: Z —»AutC. Hence S can be
viewed as an elliptic fibre space over the curve C/p{%’) whose general fibre is
4,. Moreover Cl¢(%’) is a non-singular rational curve. Hence we see that any
hyperelliptic surface S has the following structure (Compare [7] §4):

singular fibres over the base curve other than that of the form m®, where
© is a non-singular elliptic ecurve, 4) the multiplicities m; of the multiple
fibres m.0;,1=1, 2, ---, r of S satisfy the equality 3 (1477%—):22.

i

(%)
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REMARK. Possible combinations of natural numbers {(m,y, My, -+, m,) satisfy-
ing the equality in 4) are (2,2,2,2), (3,3,3), (2,4,4) and (2,3, 6), which corre-
spond, respectively, to the types I), II), III) and IV) of hyperelliptic surfaces.

Conversely let S be a surface satisfying the condition (%), then from the
theory of classification of surfaces we infer that S is an algebraic surface with
py=ci=0 and g=1. Moreover there exists an elliptic curve C, and a branched
covering map h: C,— P! such that the fibre space S, of elliptic curves induced
from S—P! by the map & is free from singular fibres and S, is an unramified
covering manifold of S. Hence we see that the universal covering of S is CxC.

From Lemma 2 together with its proof, Lemma 1 and the above consider-

ation, we have the following four equivalent characterizations of hyperelliptic
surfaces:

A) a surface with p,==0 having an Abelian variety as its finite unramified
covering manifold,

B) an elliptic bundle over an elliptic curve of which the first Betti number
b, is equal to 2,

C) a surface satisfying the condition (x),

D) an algebraic surface with p,=ci=0 and ¢=1 of which the universal
covering manifold is CxC.
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