Homotopy groups of Sp(n)/Sp(n—2)

By Kunio OGUCHI

(Comm. by I. Tamura)

§1. Main results.

For a couple of positive integers (n, k) such that n=2k, the space of k-frames
in the quarternionic m-space is known as the quarternionic Stiefel manifold.
Let us denote it by X..r. Thus, X..» is regarded as the symplectic group Sp(n),
while X... is the (4n--1)-sphere S**-', X, . is also interpreted as the quotient
space Sp(n, n—k)=Spn)/Spn—k). Let X.o.=8p(n, n) be a point space.

Denote by (E, B, F) the fibering whose total space is E, the base space B
and the fiber F. There are two fiberings associated to X .::

(A) (Xn ok, 841, X0y )= (Spn, n--k), S, Spn-—-1, n—k));
(B) (Spn), Xu r, Spin—k)).

The asscciated principal bundle of the fibering (A) is

© (Sp(n), S***, Sp(n—1))

The bundle projection Pg:Sp(n)-— X..r of the fibering (B) induces a homo-
morphism of the homotopy exact sequence of (C) into that of (A):

ey ﬂ'gH(Slnml)._..ﬁ.ﬁ; 7:i(Sp(n—1)) ._:ii.., =(Spn)) __:p_*_, iS4

N b |

e i (ST —-»d 7i(Spin—1, k))—-—-——-—)?’* = Spn, k) P s mi(Sen-ty

In this paper, we compute 7:(X,.2). Since X,.: is the total space of a sphere
bundle over a sphere, its homotopy groups are obtained from the exact sequence
of the fibering (A) together with the explicit deseription of their generators in
terms of composition, coextension and secondary composition of those of homo-
topy groups of spheres. The results are shown in the tables below.

Denote by oo the infinite eyclie group Z, by m the cyclic group of order
m, by m-+n the direct sum Z.®Z., and by (m)* the n copies of Z». For ex-
ample, co-+(2)° denotes Z8Z2,BZ:0 2.
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(1) #iXap2) for i54m +1, n>2

e e | i i . . : - . :
i li<dn-5 4n—5 4n—4'4n—3  4n—2 4n—-1 4n | 4n+1 (nodd) [4n+1 (neven)
y | E 2 @

i

s 0 e 2 | 2 | deam | o

where d(m, n) denotes the greatest common divisor of m and n.
(i) =dXno) for i>dn -1, n>2
Denote by =AY p) the p-primary component of =:(Y).
(1) =d X2 py==d(S4 % p)@m:i(S4-1; p) for prime p>3, or p=3, n=0mod 3, or

(2) 7i(Xn.2;8) for n#0mod3

v 23 a5 6|78 9 | 10 11|12|13]14§15§16§
e | 9 L0 L0 | B |27 0’()‘0 27 0'3§0}9E310i
ro L1718 19 20 21| 22 |23 24|25 | 2 | 27|
fwir | 020 0 0| 3 (3427 0 0 3‘930{

where this table is valid for »>6, and it is valid up to r=24 if »=5, up to
=16 if n—4.

(8) #i(X.:;2 for n#0mod8

9

n odd 4 +1b (2 (22 2 128 (2 2y 22 | 2+4464 l
Taer W2 mod 4 | 8416 0 (2)2 2y 2 | 2+64 | (22 (2y @3 1 2+8+32 ;
n=z4 mod 8 | 8+16 | (2)2 2y (22 | 4+321 (@7 2y | (2 2+8+32 1

‘ r 2 3 4 5 6 7 8

10 [

r o1z |13 14 15 | 16

i

|
7 odd (2)* 2p | 2+16 | (2)2+256 (2244 (2 3
i
i
|

Zamer 772 mod 4 (2)? (2t 1(2)3-+81 (2)*+128 (22+8] @)
w4 mod 8 | (2)° (2 (248} (2)°-+4+64 [(2)2+81 (2

where this table is valid for n=7, and it is valid up to r=12 if n=96, up to
r<8 if #n-5, and up to =4 if n=4.
(4) o’-:;w(Xs::;E)

H
i

Cmeer | (D48

R ST S A VRN N 16

@ +128 | @48 | @ |
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(B) moeer(Xs.0)

r 9 10 11 12 B | 4 | 1B | 16 |
mooer | (2P44 | 244464 (2)8 (2)+ 2+3+1Gi(2)3+256% @)2+4 i @) }
6) mein{Xi2;2)
r | 516 7'8 9 10 gnlmi 13 |714 ey
L 7 4
mieer | (2)% 44320 (20 i 2y (2)2+16%2+8+16% 2 1(2)3 5(2)2 4y +8§(2)4 +4464(2) +8§ @

(7)) moer(Xs.2:2)

r 2 | 3 4i 6 | 7| 8 o | 10 11 12*13

i
|
I !

24t

b
(2 2 12+416] (2% | (@2¢® |24+ [(22+44+8 (20 | @)

miesr | 4481 (23

where £==32 or 64 or 128.

§2. 7zi(Xa.2) for is4dn+1, n>2.

Throughout this paper, we use the same notations as in [6], [8] and [9], e.g.

7k for ma(S¥),

G, for the ¢g-th stable homotopy group of spheres,

tn€ Ty Nm€ Tmey, Um € Tme,, ete.,

En:nk— ki for the n-fold suspension homomorphism, with Et=E.
We sometimes omit the subseript m in the notations tm, ¥m, ---.

Denote by ¥(n)€min-2(Sp(n—1)) the homotopy class of the characteristic
map S*-2— Sp(n—1) of the fibering (Sp(n), Si*1, Sp{n—1)) which is defined in
[4]. Let 4dc be the homomorphism ="' — 7:(Sp(n-—1)) which appears in the
exact sequence of the fibering (C) in §1, then

én-—-2

do(Ea)=X(n)oxx for any aexi?y?,
1. M. James has proved in [3] that
Pax () =Nin-s ,

where pp: Sp(n—1) — S**~* denotes the bundle projection. From the commutative
diagram in §1 we have

PRroOPOSITION 2.1. da(Ea)=nbin-sca for a€ri?, where di: ni" ' ozl 4g
analogous to 4dc.

Consider the exact sequence:
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4

-~ s x Dx _
P den y in—s 7i( X 2) —=lop win—

For 4n—5=i=4n +1, the groups =¢"°, ="' and their generators are listed below:

i 4n--5 E 4n—4 4n—-3 4n—2 4n—1 i 4n i 4n+1 4n+2
U w | 2 2 24 o | o0 2
generator 11 i 7? ) f ve
2l 0 I 0 0 1] <o } 2 2 24
generator ! ‘ ! % %2 v

We identify S*-° with the fiber over the reference point of X, ., and the image
of €zt with « itself via i4:=i"° > =:i(X...) when no confusion occurs. Let
us denote by [f]l€xi(X.:) the element such that pi[5]=8 in 7', Denote by
q(n)=24/d(24, n). Now, we have

THEOREM 2.2. 7i(Xn.2)=0 for i<4n—5

Tons(Xn 2)=2Z=1{t} 7"41:~4(Xn.2)%z27:{ﬂ}
ity n.ﬂa(Xn,z)":‘iZ:i {7]')'} 7747:—2(X1:,2):*‘Zd(24, n) {U}
7;'47;“1<Xn E)EZ; {[(](’ﬂ)f]} 7?41;(Xn .‘2):‘-’Z2 - {[77}}

ﬁuH:l(Xn,?.)z {Z2®Zz o {Uz}@{[)?]oyi?} ]

§3. p-primary component.

Denote by 7:«(X; p) the p-primary component of x:(X). Since the order of
ppx(n) is prime to p for any prime >8, we have the direct sum decomposition
below :

PROPOSITION 3.1. #i(Xa.z; p)=m:(S*5; p)®=:i(S4"1; p) for p>3.

The same argument applies to the cases when p=3, n=0mod3, and p=2,
n=0mod 8. In the remainder, we will exclude those cases.

§4. Homotopy periodicity.
I. M. James has defined in [1] the intrinsic join operation
Tl X 1)Q7H{ Xom k) = Tis i 1{Xnim k)

in which the image of a®p is denoted by ax3. For a fixed element fe=;(Xn.1),
a— axf defines a homomorphism

*‘{9 . :é(Xn,k) —> F."+j+1(Xn-:-m.k) .

The element 6-=[g:] € #in-1(Xm.4) is called a g-section according to James [2], and
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he has proved that if 0€mm_1(Xn.t) is a g-section, with g relatively prime to p,
* 2l Xur; D) Tame il min s D)

is an isomorphism for i1 <4p(n-—k-+-1)—4.

In particular, set k=2, p=3, n®#0mod 3, then the element [8:]€ (X2 is
an 8-section. Hence we have

COROLLARY 4.1. minir(Xn.2; ) Zrsmensr(Xunrs2; 8) for r=8(n—2).

Hence, if n=4 this isomorphism is valid for =16, and if n=5 it is valid
for r<24, and so on. In the same way we have

COROLLARY 4.2, mTaner( X2 2=msmener{Xnss2) 2) for n£0mod 8, r54(n--3).

§5. Quasi-projective space Q..

Cellular decomposition of the Stiefel manifolds is given in [5]. In the
first step of construction, there appears a CW-complex @. which is called by
I. M. James a quasi-projective n-space [3]. We restrict our attention to the
quaternionic case.

@ is a CW-complex with a 0-cell Qo and with a (4n--1)-cell for each integer
m such that 1Sm n. It is naturally embedded in Sp(n) as a subcomplex, which
means that the inelusion map Sp(m)— Sp(n) induces a commutative diagram

below :
Qm —— Qn
! A (mzn).
Sp(m) — Sp(n)

Let us define the stunted quasi-projective space Q... to be the complex obtained
from Q. by identifying Q.—x with @ (see [3]). Then, it has the cell structure

Qn,k"‘:QO S~ Cp kil 7 Gy g2 ™ €y,

where e, denotes (4m—1)-cell. The projeetion pg:Sp(n)->Sp(n, n--k) induces
a map @.->Qn.r and Q..r is embedded in X, as a subcomplex.

According to [5], H*(X...;Z) is an exterior algebra over Z generated by
Zim—1 (n—k<m<n), where Zim-1 denotes the cohomology class dual to the
homology class {e»}. Henece the difference between cohomologies of X.i: and
@..x first appears in the dimension

{4n—k+1)—1}+{dn—b+2)—1}=8(n—k)-+10 .
Thus we have the following
PROPOSITION 5.1. The inclusion map Qn.r—> X. induces an isomorphism
Tantr(@n B) T unso(Xnk) for r=4n-—-2k)-+-8.
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§ 6. T.'i(Xn.2; 3).

Throughout this section, we assume that n#0 mod3.

Consider the homomorphism 7im»(Qn.2) = T4nsr(Xn.2) induced by the inclusion
map Qn.2-> X Take the range of r to be 25r=n for some 7o, and take n
so large that r<4n—8. It follows from Proposition 5.1 that the above homo-
morphism is an isomorphism for such n. Using the homotopy periodicity in
§4, we shall compute 7unir(@n.2).

The cell-structure of Q... is given by S‘”""’H e~ where nv generates the
8-primary component of Gs, and we denote it by ai. In the remainder of this
section, all the homotopy groups are taken to be 3-primary components of them.

Let ¢:(E*-1, §5-2) -5 (Qu,2, S**~%) be the characteristic map for the cell
e**-1, Consider the commutative diagram below:

'
wi( A1, §an-2y ik 7i(Qu.2, St*9)
Ox l Pk

zi_l(SthE) E ni(S&n—l)

where p} is induced by the map collapsing S*-° into a point. If the suspension
homomorphism E is an isomorphism, then ¢ is a monomorphism, and p} an
epimorphism, and besides 7i(Qu.2, S**~%) is the direct sum im ¢x«® ker pk. Since
Sin=5 is (4n—6)-connected, ker pi=0 whenever i=<(4n—2)+(4n—6)=8n—8 ([10]
p. 324). Comparing with the inequality r=4n—8, we conclude that for the
values of # and i in question Pk is an isomorphism. Substituting 7:(Qx.e, S4*)
with 7(S*1) in the homotopy exact sequence of the pair (@2, S***), we have
an exact sequence

et Qe R e
where J i3 given by
AN = E-17) for re=i"t,
Note that =%, ="' are in the stable range. According to [7], 3-primary
components of stable homotopy groups of spheres up to 32-stem are generated
by the following elements and their compositions:
i) Ge=tZy={a1}. Choose an element ai;: from the secondary composition

aip €<a, 3, ay=={a, 3¢, @) ,

for each % such that 15157,
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(i1) Bi€ G, B2€ G,
(iil) as’ € Gi1, as’ € Ges such that 3ay' =as, 3as’ =as.
Thus, ={2:3 and ={%;! are given in the table below:

r 1 2 3 4 b 6 7 8 9 {10111} 12 | 13| 14

A2 ol 3{0lo |39 0| 3|03 0j0 /013
generator a b1 | ai @1ef1 ay as

2 Lol 3,000,300 /|3|9}l0|3|0]|s3s

generator a; az ft | ad arfy a
r 15 | 16 | 17 18 19120 | 21 22 23 24 | 26 | 26 | 27
s 310 |lo|9+3)o]o]s 3 0| 3|3|3|o
generator | B2 ag ,aprf? B ar arofe| B | as
2=t oo |0 3 [8|0olo| 9+3 |o | o |3]|3]|o
generator as Bi? as’, apefi? P | aq

In [6] (or [7]), H. Toda has given the relations:
area; =0 for 4=1,2,4,5,7 and 8,
ayoas’ =0 for =8 and 6.

Now, let us construct some elements of 7:(@..2). Since aica;==0, there exists
an element [a:] € 74n12(Qn.2) chosen from Coext (a;, a;) (see [6] Ch. I). We have
pulai]l=a;. The following commutative diagram is well known:

fi S

Sn ¢ Sm U e?+t « Sr+t

£ P

fs So+1 ¢ ¢ Sr+t

Sn U emtt -

«

where fieExt(a, f) (see [6], Ch.I), foeCoext(8,1), fr€Coext («, f) and fic ET.
Applying this diagram to the case when n=m-—3, g=m+8=r, a=f=a;, 7=8,
we have

Coext (a1, a1)o(80)= —iylas, ay, 8> mod 8G,=0 .

Hence the right hand side consists of a single element +iia: because of the
relation given in [7]:

{ay, a1, B3O>=4Lay, 8¢, ard> .

Thus we have proved that
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3lar} =iz .

Similarly, let us choose an element [a:] from Coext (ai, ai) for each 7 such that
1=2,4,5,7 and 8. We prove that
for 1:22,5 Coext (a1, a:)o(3e)=-~iylay, a;, 3y 3 kixaly, mod{ain},
for 1=:8,6 Coext (@, ai')o(90)= —iylas, @i, 3> 3 Hixaivy Mmod 0,
for i=4,7 Coext (a1, as)o(3)= —islar, @i, 8>3 tipaiss mod0 .
(See [7] Proposition 4.17.) Thus, we have proved that
LeMMA 6.1. 8[ai] = 2iwmin for i=1,4,7,
8las] =wisaly, for i=2,5 with some integer x relatively
prime to 3
9ai’}== kigainy Sor i=3,6.
Hence, we have the results below:
THEOREM 6.2. For n#0 mod3, mumsr(Qu.2;3) and their generators are given
in the following table if n i3 large enough comparing with r:

r23456l89101112131415

7
Tintr 9 0 0 3 (21] 0 0 0 |27 0 3 0 9 3

generator | [aj] B | as) [es’] [e1)oBs [add | 82
r 16 | 17 18 19 k 20 21 22 23 1 24 25 26 ’ 27
i | 0| 0| 27| 0] 0] 3 2743 | 0| 0| 8 | 9 | 0

generator [as] Be | las'], [a1]opy? B? | ladd ‘

RemMaRK. Combined with Corollary 4.1 and Proposition 5.1, this table gives
the values of munir(Xn.2;3) for n>6, and it is valid up to <24 if =5, and up
to r<16 if n=4.

For n=:0 mod 8, munir{Xn.2; 3) is obtained as the direct sum of the groups
in the same column of the preceding table.

§7. mi(Xa2;2) for n=27.

Throughout this section, we assume that n#0 mod8. Since we have the
informations about 2-primary components of homotopy groups of spheres up to
22-stem, our ealculation of wwmir(Xn.2;2) is restricted to r<16. For these values
of », the homotopy periodicity #in+r(Xn.2;2)=timir(Xm.2;2) With nEm, n=m
mod 8 holds for n=7 (see §4). Take = large enough so; that both of the in-
clusion map Qn.o—> X..: and the pinching map 9’ : (@n.2, S**%) - (8*1, ») induce
isomorphisms Zinsr(@u.2; 2)=Taner(Xn.2; 2) and 7inir(@n.2, S5; 2).
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For the remainder of this section, =:(X), =7 denote the 2-primary components
of them. We have an exact sequeence:

L dn—d 4

% Px
~4n—5 . e T =5
Agndrt candr IMNT(QR,Z)—““) Cang oy TP T e

where 4 is defined by

AN =no B~y for Tex{y,

L ]

Note that {375 and ={}3% are in the stable range, and they are known as

follows ([6], [8] and [9]):

r 2 3 4 5 6 7 8 9 10
s 16 | 242 | 24242 | 2 | 8 0 0 2+2 | 3242
generator a N00, ¢ s, poe, 7p 4 a% K 0y 7oK
it 8 0 0 2 | 16 | 2+2 | 2+2+2 2 8
generatorz| o v? g 70, & vl, noe, pt nore 4
vex vt v 0 0 0 0 0
r 11 12 13 14 15 16 17
nins 2+2 2+2+2+42 8+2 | 8+2 8 242
generator | yop, 7% | I, vor, n2ep, pop* | v¥, pop | L, 0 i 79, 0%
it 0 0 242 | 32+2 | 2+2 2424242 842
generator x alok | pygeE | ep, gt | By vor, op, yep* | b3, opt
uex 0 wvox 0 0 0,4x,0,0 o8, 0

The last row of the table gives the values of vexil;l depending on [6], [8] and
[9] except the following:

LEMMA 7.1. (v, g,vD>=0%, vov*¥=4g3,
ProOF. In [6], we find the facts below:

(a) vo(3;1=0, hence v, o, v> consists of a single element.
(b) <y, o,v)> is essential.
€ <v,0,v> and —{o,v,2v> have a common element.

(@ 2vely, 2,7, <v,7,20=0. <o,v,7>=0.
Now since

<U’ u, <7]y 2‘; 77>>*A<oy <Uy 77) 2‘>y 7]>+<<0‘y v, 7‘>, 251 7/>EO ’
mod 00Gr+4(20)oG11-+70Gra={0?, we conclude that (v, ¢, v>==0?. Hence we have

vovk=voE =o(s, v, 5=, 7, UDes=0" .
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To construct some elements of 7:(Q..2; 2), we need some lemmas.
LeMMA 7.2. <, 8, 80=4p--8G:s.

This depends on several sublemmas,

SuBLEMMA 1. <{v,§, 85 2G;s.

Proor. Consider the following formula:

<<2C, &, 772>1 u, 8‘>'+<2‘7 <51 02; U>: 8‘>‘§"<2‘r &, <7l\2: v, 8‘>>§‘0 .

Note that (2, ¢, 72> ={+2Gy, <, 7%, v> is of order 2, and (%, v, 8>=7:Gs=0. Hence
&, v, 8> is divisible by 2. Next, consider

v, 20, 8>, v, 8> v, (2o, 8, v>, 8>+ u, 20, <8¢, v, 8:>>=0 mod 8G\s .

Note that {20, 8, v>={ <{v, 20, 8>=2{ and {8, v, 8>=0. Hence <, v, 8>=x{v, , 8>
for an odd integer z (see [6]). Thus we have proved that <, ¢, 8>c2G;s.
SUBLEMMA 2. <v, 8, {>==16p.
Proor. Observe that veGu=G{=0, and hence <, &, {> consists of a single
element. Consider the following formula:

~u, 8¢, (v, 8, 2000—v, {8, v, 8>, 26D+ v, 8, v>, 8, 20>=0 mod 0 .
Note that v, 8, 20>=(, <8, v, 8>:==0, (v, 8, v>=80, and {80, 8, 20>=4{20, 8, 20>==
4<{8¢, 20, 40>=16¢8, 20, 0)=16p. Hence we have v, 8, {>=16p.
PrOOF OF LEMMA 7.2. Consider the following formula:

K, 8¢, v, 6,160>— v, (8¢, v, 6>, 18>—<v, 8¢, <v, 6, 16>>=0 mod 16G;;s .

Note that
(@) <v, 8, v>=8q¢, and <80, g, 16:> 3420, 0, 16:>=420, 20, 16:>=8(s, 20, B:>=8p.
(b) <8, v, od>=gf for an odd integer x ([6] p.94), and <, 2{, 160>=(2x)Xv, £, 8.
(e) (v, 0,160=yC for an odd integer ¥, and <v, &, y2>=(16y)¢ by Sublemma 2.
Hence we conclude that 2y, {, 8>==8p mod 16Gs. While (v, , 8>C2G1s, we have
<, §, B> =4p--8G1s.

LeMMA 7.8. <v, 4p, 8> consists of a single element E.

Proor. Note the followings:
(a) voGs=0, 8G1s=0, hence <{v, 4p, 8> consists of a single element.
(b) <, 4p, 8>—dp, 8, v>-+{8¢, v, 4p>=0.
(€) <8¢, v, 40>==C8t, dv, p>=C8t, 7°, P>=(4¢)o{2¢, 7, Do z==0 ([6]).
Hence we conclude that <v, 4p, 8:>=<4p, 8, v>=<v, 8, 40>. Consider the following
formula:

<<U) 8!9 20>) 85, 20>""'<(), <8[r 20; 8‘>r 20’>‘*“‘<U, 8!: <2U) 841 2U>>EO .

Then Lemma 7.3 follows from the following facts:
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(d) <, 8, 20>=C, (8,20,8:>=0, (20,8, 20>=4L.
(e) <L, 8,20>3%.
(f) C"GS:O, G12°(20):0, U°G16:—0 .

Now, let us construct some elements of =i(Q».z;2) as follows:
(i) There is an element [7] € Coext (nv, 7) such that w«[7l=7%, 2[y]=0.

Recall that p is the pinching map S#-° U et*1— Sé-! of S¢»-*, Hence
ps[7]=7 by the definition of coextension. Now,

Coext (ny, 7)o(20)== —1x{mw, 1, 201G =0,

where 1 :S4-5 — Sén-3 {j gtn~1 ig the inclusion map.

ny

(ii) For even m, there is an element [v]€ Coext (v, v) such that pxv]=v, 8[v}=0.
Indeed, Coext (nv, v)o(8¢)=—ix{ny, v, 8>. Note that {2v, v, 8> and (v, 8, v>=8¢
have s common element. Hence {nv, v, 8> is divisible by 8. We choose an element
[v] such that 8[v]=0.
In the remainder of this section, we put mintr=rFins-(Qu.2;2). We have from
the preceding table that

Tans2=Z16® e = {Txa}D{]}} for = even.

(ii") For odd =, there is an element [2v] € {[7], 2¢, 7} such that py[2v}=2v, 4[20]}=0.

Iﬂdeed, p*{[n]y 251 7}}C<p4‘[77]: 2‘1 77>:<71 2" 77>::2{)+4G3'
Note that the modulus of {{y], 2,7} is generated by [7]ey*. Hence we choose
[2v] so that pg[2v]=2v. Now,

{In], 2¢, nhe(d))=£[n]o<2, 7, 4>=t[9]o7?(2)=0 .
Thus we have
Tan+e2Z16@ Zs={ixo}®{[20]} for = odd.
(iii) It follows from the preceding table that
Tinss= Lo @ Za= {1an0 0} Dlixe} ,
T 2@ 2@ 2= {10} D{ianoc}Olixpt  for n even,
Tan1s=Zo@D Zo={Tx 2} ®{1590¢} for n» odd,
Tanss =L ={1amot} for n odd.
Note that for even n
Coext (nv, v)e(2u)=—<{nw, v, 2v>=(—n/2)1x{v, 2, 40>=0,
since <v, 2v, 40>C4G10o=0. Thus we have 2([v}ev)=0, and that
an+s =2 22D Za= {Tso p}®{[v]ov}
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(iv) There is an element [s]€ Coext (nv, o) such that pilo]=0, 16[s]=nzi. for
an odd integer .
Note that <v, g, 160> =2'¢ for an odd integer z’. Henee

Coext (ny, 0)o(160) = 1x{nw, 6, 160> =nxis with x= -z,
We have the following:
anre2 125 ={[0]} for n odd;
Tans6=22:® Zes = {148, [6]} for 7n=2 mod4;
Tans 62 L4E Zan== {14, [o]} for n=4 mod§.
(v) There are elements [c] € {[7], 2, v¥, [1]€ {[7], 2, 84} such that pilel=¢, pslp]=p,
2[e]=0, 2{p]=0.

The proofs are quite similar as before, and we have
7:4,”47%Z2®Z2“—3{[’7]"0}@{[5]} ’
ﬁin+52~=-‘Z2@ZZ®ZZ::{[V]°U°0}®“7)]°5}@{[#]} ’

Tans02 20D LD Zo = {108 D{Tunt D {{p]opg .
(vi) There is an element [{]€ Coext (nv, {) such that pill]=¢, 8[ll=4ntxp.
Indeed, Coext (nv, £)o(80)== —niwy, {, 8> =dniyo-+81:Gis by Lemma 7.2. Hence
we choose an element [{] so that 8[(]=4nixo. We have the following:

Tan+102 22D Z3:@® Zs == {Tano s} D} D) for = even;

Tans 102 20D Zes P Zi= {470} D{ix0, L]} for n odd;

Tan+ 112 20@ Zo= {1370 0} D{17*} ;

Tani 12242 L@ Zo = {1490 0} D {240 ¥} Dt} for = odd;

Tant 132 LD 2@ Lo® L == {ixn?e 0} D (14707} @ (152} D {2900 £} for = even.
(vii) There is an element [«] € Coext (nv, £) such that p«lc]=x, 2[x]=0 for n even.

Indeed, Coext (nv, £)o(2t)==—1is(ny, £, 2> mod 2ixGis. Note that <2, 205
vol2e, &, 20>=uvoren=0. Henece {mv, r,2>C2Gs. We choose an element [«] so that
2[x]=0.
(viil) 2[o]oo)=—niw*.

Indeed, Coext (nv, 0)o(20)==-—1x{ny, a,2¢>, which consists of a single elment
because veG;=0, Gneo=0. Now,

{m, 0, 20>=nly, ¢, 200=nu% .
Thus we have
Tane13=2Zo® Zis={tane 2}@{[c]ea}  for = odd,
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Tan+ 182D 2D Z2® Zo = {1570 B} Diwr*, [aloa}®{[k]}  for = even.
(ix) There is an element [p]€ Coext (nv, o) such that pilo]=p, 32[p]= —nisf.
Indeed, Coext (nv, p)o(320)=—ixlnv, p, 32> ==~ nixlv, 4p, 8>== —nis’ by Lemma
7.3. We have
7-'4n+14§22@22@x41:{’1:*5}@{[7}]”‘}@14 s
where
Zase={[0]} for = odd,
A={ Z:®Zims={ix, [} for n=2 mod4,
Z:®Zu=13:L, [o}} for m=4 mod§.
(x) There are elements [p*]€{[], 20,0}, [Z]€{[z], 2, 85} such that pu[y*]=7%,
plzl=2, 2[p*]=0, 2[Z]=0.
The proofs are quite similar as before. We have the following
Tan+ 1552 48D Zo® Zo = {148} D[] o} D{[*}} for n even,
Tans s =L D L@ Zo= {158} D {[7]e o} D{[»*} for =» odd,

Tant16=220® + - - D22 (rank 6)={ixno B} {140} D{[n]eno o} ®D{[n]on*}
@A ®D{[vles}  for n even,

Tan+165222® « -+ @Z2 (rank 4)={ixn°F}®{[7]on. o} D{[7]on*} D&}
for = odd.

§8. 7524+7(Xe.2; 2).

It follows from Corollary 4.2 that for #<12 mur{Xe2;2) is obtained from
the results in §7. Throughout this section, =:(X), =7 denote 7:(X;2), m:(S™;2),
respectively.

Note that m2s4r(Qs.2) = 72eer(Xs2) and moasr(Xo.2; St —> 7244+(S®) are isomor-
phisms for r<16, and hence we compute musr=—mui(@s2) from the exact
sequence

; »
R L T Tiger * T24ir *, Thier yec,
where 4 is given by the formula:
ATy=(6v) E (") for 7ex?®.

The groups =id:,, 73, for 137 =17 are konwn as follows:
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r 13 14 15 16 17
L 84242 248 | 8+2 24+2+42+2
generator | v*, v*+&, | 7,& £, B | 7ok, 0%, v¥ov, Boy
LI 242 3242 | 242 2424242 8+2
generator 6%k p. ok | opep, ¥ |, vox, plop, yoy¥ | v¥, pou

Observe that (6v)erdl,, =0 for 13<r=17. [«]€ Coext (6v, &), [p] €6y, p), [n*]€ 7],
20,0}, [El€{[#), 2, 80} are chosen so that pulr]=x, Dlpl=p, Psly*]=7%, pula]=4.
It is obvious that the following elements are of order 2:

(€], [91or, [nlop, Inxl, [&], ek, [nlonen, [n]en*. ;

We need the relations below:
Lemma 8.1. 32[p]=2i:L.
ProoF. This follows from the commutative diagram below (see Appendix):

Vg
796(Qe.2) —— 73s(S)
*§ B
ﬁm(Qu,z) ﬁ% 7?70(5'55)

Note that E=:73(S®)—>Gis i3 an isomorphism, and 82[p]= —~1414L=2:, in
vau(sz).

LEMMA 8.2. 2([c]eo)=2i4*,

PROOF. as€nd, gs€xl;, then asXos=+2001=+4o005=0, where aXj de-
notes the reduced join of a« and . While (20s) X 0s=201s0023=0. Applying the
Proposition 3.4 of [6], we have

{Qu10, 022, 2020} =2{2010, T26, 2vss} =2{01e, 2020, Uss} B 2u1e* ,

which consists of a single element because 20130788+ 7330(2vs)==0. Hence we have
Coext (2u, 0)0(26) = ~1x{2u1s, 022, 2020} = —2tyv10™ .

Since [s]€ Coext (6u, 6), it follows that [o]c(20)=2%{.vis*.
Denote by mi=ni{le,2;2), then it follows that

75122 2@ 2@ Z:® Z:® Zo == {150¥ | D{i50* + 128} D (1570 D[]} D{isv* —[s] o0}
73822 D 2D 2D Z12s= {10 D{[7] °E}@{’5*C“16[Pl}@{[¥’]} ’
7302 Zs® 22D Z2:® Zo = {1x&} D {18 ®{[n]e o} D{[n*1} ,

70=Z® --- ®Z: (rank 8)
=2 {§470 B} D {1403 D {isv* o) D{ix B o} B[ 21} DA[v]ox} B {9l one o} DAlnlon*} .
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§9. 7520+r(Xs,2; 2).

It follows from Corollary 4.2 that for =8 =4 (Xs.2:2) is obtained from
the results in §7. We use the same notations as in §8.

Note that muosr(@s.2) = 72041-(Xs.2) and maoer(@s 2 S¥) —> 7204+(SY?) are isomor-
phisms for =12, and hence we compute =oosr=7204+(@s.2) from the sequence

4 15 ‘L* D 4

~19 P ~19
L E X BN 2047 T204r 204 MY

where d(V)=Buvis)e E-N7) for 7€=i).,. The groups =i}., and =i,, for 95»=<13
are known as follows:

r 9 10 11 12 13

Thoyr 244 | 3242 24242 242424242
generator £, g% oo | e, 00 | p*on, &, gopop, 11, vor

T, 2 8 0 0 242
generator g 4 K, of

Note that vieliis=0 for k=14, vkoorss=0 for k=11, and that the element
[7]ep is of order 2.

LeMMA 9.1, There is an slement [(]€ Coext (bv, ) such that p«{l]=¢, and
8[L]=4ix0.

ProoF. The proof is similar to that of Lemma 8.1. Note that E=:zi— Gis
is an isomorphism.

Consequently, we have the following:

LY AOYACY AL IO & IOH LI LT N
7800 = 2:D 2D Zoa= 1o x}Dfixp, (]},
70122 24® 2@ Zo= {17 } D {0} Dlixoop}
7322 2:® 22D Z:® L= {157* o} @ {1 Do oot} D {141}
For the values of r such that 1357 <16, we have to study more about the

inclusion map K’ : (Qn,2, S %) — (X2, S*%), which induces a homomorphism of
the homotopy exact sequence of (@a.2, S*%) into that of (Xa.z, St-%):

. " .
i .
X (Qn,z)—i 7:(Qn.2, S5y X, pinsiy

ke A
ix

- j* - a* -
=t s mi( X o)~ 7i( Xn 2, S 2P

— n:n—-s

Let 9/ :(Qn.2; S5 — (S*~1 %) be the pinching map. It follows from the last
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line of p. 40 of [5] that there is a commutative diagram below:
o ki .
7il@n.2, SN~ mi(Xn 2, S475)

l Px 1 Pax

Thus, we have a commutative diagram:

o ., .,
N O - Tk 3
> 7i31(Qu.z, S4%) - 7Sl 7@ 2) = 7i(Qn. 2, S5
1 \
J'pfa | lk* P
4 ! ; 4
—> nins iy Y L (X 2) p—————a*\ it

A dirvect consequence of the diagram is:

LeMMa 9.2. If there is an element [a) € zi(@n.2) snch that pla) =a+0 and
mla) =i4f for some FSe€xi"S then kilal which we denote by [a] satisfies
pasla)=a, mla]==1sp.

Now, set n=>5 and consider the 2-primary components of the groups for
1222047, 13sr=<16. 733., and 7§, are known as follows:

r 13 14 15 16 17
Ty, 248+8 | 8+2+2 8 2+2+8
generator | 7o, &, E21 | , 4, 0w % 7ok, a3, E22su
T 2+2 2432 2+2 2+24-2+2 24248
generator x, g2 r, 0 | op, 7* | By vok, g0, pop¥ | polr, v*HE, 0¥

Note that uvkogess=0 for k=11, vrodrisottrao=0 for k=7, uvien¥i,=0 for k=14,
veofika=0 for k=7, and vierie=4%: for k=7 (see [6], [8], [9]).

LEMMA 9.8, (1) ovisofs=ols, (1) wviso(Eis-tofy)=E2oug.

Proor. (i) Since E:=x)i->=zi! is a monomorphism, it suffices to show that
vieolis==od;.  Note that E&isousi € {0y, U, slov=01s0{v, o, v} mod oreonilovsy=0. Since
{ves, o, v}=0? (Lemma 7.1), we have &usovas=0l. While, visofio=0iXE2=8 16000
(1)  treo(Ero-+via®)muigo]ern, cro]=[v1s, vis)=[t1s, vis]ov= £ (32 —2v K )ov=(E3)ov (see
[6]). Hence we have viso{€is-tof)=(E)ovss.

LeMMa 9.4. (i) Denote by [¢]’ an element in Coext (5v, ¢) such that pilo) =o.
Then ([0} o0)=8i%¢& or 4(BE-+4E%).

(i) There is an element [o]’ € Coext (Bv, p) in 73(@s.2) such that pi«lo)=p,
32[p) =81 or 1x(3+wov).
(iii) There is an element [ €{[n], 2, 0% in 7us(@s.2) such that plp*V=n*
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2[»*Y =0.
Proor. (i) Coext (5u, 0)0(20) == — 1{Buss, 618, 2025} mod Uplvisonid + =130 (2u26)] == 0

is generated by 4E?%2. Hence we have (i).
(ii) The proof is similar to that of Lemma 8.1 (i). Note that ker (z}} - Gu) is
generated by weou.
(i) (7], 2, 0%}y =[n]o{2, a?, 2} =[y]og?ey=0.
Applying Lemma 9.2 to those results, we have the following:

75322 @ Ze® Z16= (147 A} D {1 L2 D {[0]o0}

=L B LD Zase® Zo = {145} B {Trwor} D{[ o]} ®{[7]ox} ,

7352 LBD LB Ly = {1k} D {[7]e 0} D[]},

YA OV AV AV AR DR R O H TN G A BT IO L LTS

where =; denotes =i(Xa. 2;2).

§10. mierr(Xe2; 2.

It follows from Corollary 4.2 that 76:+{Xs.2;2) is obtained from the results
in §7 if r=4. We use the same notations as before.
(i) 5=r=8.

Since the inclusion map Q..:— X.: induces an isomorphism mis;:r(Qs 2)22
7io++(Xs.2) for r<8, we compute 7is:-(X, :) from the exact sequence
(2]

15 11 - Px 15
Tigtr+t P Tig+r ‘Llﬁévr(Qé.Z)———""zuﬂr —_— .

Recall that J(7)=4v)«E-Y(7) for Y€ =l®. Table of =i,, 7., is given below:

r 5 8 7 8 9
Tigir 242 8 2 242
generator | 7opu, gov 4 o’ oy, ooyt
T, 2 16 242 | 2+4+2+2 242
generator ve g & o0 | nog 14, U3 | Yop, aov

Observe that 4 is trivial. There exist elements

[n] € Coext (4v, 7), [v]€ Coext (4v, v), {s]€ Coext (4v, o),
[el€ {[n], 2¢, v?}, [l € {ln], 2, 8a}
such that

p«lnl=7, palvl=v, pulol=0, pilel=c, pulpl=p:
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We prove similarly as before that the elements [v]ou, [e], [n]es, |7]ee, [], [v]ev?
are of order 2, and that 16[s]==4i.. Thus we have

a2 2o Z2® Lo {Tyyo pt} B{igo 00} Df{v]ev} ,

mae=Z® Zy= {1, [o]},

RV ACY O A R ICH B HOH TG

7@ - - @ Zs (rank 5)={ixf on}®{ixao?}®{[p]oc}®{[1}D{[v]ov? ,
where z; denotes 7i(Q.2; 2)=xi( Xy 2 2).

(i) 9=r=12

In the exact sequence

4

ix DA%
15 11 15
o4 r+1 Tis4r 75161--1-(X4,2)-————>7Tm+,»————-) ¥

the homomorphism 4 is easily known because E:rzl{,, - =i}, ,., is an enimorphism
for r=18. Table of =liy,, 7ii., is given below:

r 9 10 11 12 13
Tiosr 2416 | 2+16 2 24242
generator | «,o? 7ok, o’ 7op 1ty VoK, iop
78, 2 8 0 0 2+4
generator 7oL [ £, 62

Note that vii0li==80%,, and hence 4 is trivial for r<13. Now, we apply Lemma 9.2,
and we use the same notation asin §9. Then we see that there is an element
[€) € Coext (4v, £) such that p.[L) =, 8[¢)'=0, since E~:nii==G;s. Thus we have
w25 222020 Z16® Zo == {14} D50 @ {[n]e s}
26 =22 D Z16@® Zs = {10 a} D {140 tO{C]} ,
rer = Ze=={1ynop} ,
T2 2@ Lo = {14} D{ixve e} D{ign?e 0} .
(i) 13=rsie.
The table of #il,,, =1},, is given as follows:

r 13 14 15 16
i, 2+4+8 | 8+2+2+2 | 8+2+2 2+242+2
generator | yop, {67, '} | £, 5, 8%, ¥y | &, 0%, B 7K, oK, 08, Glop
Tiosr 2+4 2+32 2+2+2 2+2+2+2+42
generator &, g2 K, 0 0, 0, 7% | 1, ver, gopop, 70w, ¥ op
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The elements in the last row are suspension elements except 7% and 7¥/ ey,
Note that (dv)o0:=0, and =ii= Erl, 4z}1=0. Hence 4 is trivial except possibly
A(*) and A(7*on).

We use the same notations as in Lemma 9.2.

LEMMA 10.1. There are elements [fc]’e Coext (4v, r), L) € {1} 2¢, Bo) such that
pl) =x, vl =2, 2[x) =0, 2[72) =

The proof is quite similar as before.

The proofs of the following two lemmas will be given later.

LEMMA 10.2. There is an element [0°) € Coext (4v, 0°) such that ps[e®] =0,
4[¢%) =0.

LEMMA 10.3. There is an element [w) € Coext (dv, w) such that pilo)=o,
2w} =0.

Now, we prove the followings:

LEMMA 10.4. There is an element {v*) € {{0®), 4¢, v} such that pu ™} - ¥,
2071 =0

PROOF. pu[p*V € {02, 4, 1} =7 - ohorll -t ritense. Since o%;07?=0, we can choose
[7*) such that p«p*)=7r*. Now, {0° 4, 7}o(2)=00{dr, 75, 2t} == 0% (20)e77=0.

LEMMA 10.5. There is an element [p)’ € Coext (dv, p) such that pule)=p and

32(0])' =44

ProoF. ker (1 — Gu) is generated by &0y and Aoy Hence it follows from
the results in §7 that 32[p) =i4(4L -2 on-+yioy) with x, y=0 or 1.

On the other hand, Coext (v, p14)o(32es0) = —i4{dv11, 015, 32020}, hence 32[p) is
divisible by 4. Thus, we conclude that x=y=0.

Now we have the following results:

2:®Zi®DZe®Ze® Za— {1170 A ®{ix’, 1} D{[]} {0},

T30522@22022®22@Z4@Zs4:{WU}@{?:*E'°?7}@{?:$7-’°7]}®{[7‘]"ﬁ}@{i*i, el

”31~~Zs@ZzOZ2@Z2®Z2@Z2w{’t*ﬁ}O{'&*ol%}@ %*19"}@{[77]"{’}@{[‘”] ®{»*},

700=22:® - - B2z (rank 9)={ix7o&}D{ix0ox) D{1x0")D{ix0’ ot 21D {[v]or)

®{[a]on0 1 D{[7leat®{7* ]9} .
Proor oF LEMMA 10.2. Consider the commutative diagram below:
E
T 729(S 1) > m3o(S %)

i

m30(X) (—E*—-?Q(Q) _E_) 7s( Q)

”
x

Dax  Px
7:29(8’15)
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where X==X, ., @@ 2. Note that:

(@) k4 is a2 monomorphism, because 7s0(X, Q)==2=0,

(b) the top row in the square is 2 monomorphism ([6]).

Now, there is an element [+%) € Coext (4v, ¢*) such that p.fs?)==0?, which is
an element of order 4. It follows from (a) that 4[0o?)€imi}. Let us consider
E(4[0%)). Since Coext (4vis, o%5)o(drs) == —i4{dvrs, 0%, 4120} C 4%l and since Exiin
73%:-0, it follows from (b) that 4[¢*]'=0.

Proor or LEmMMA 10.3. Note that vizows is an element of order 2, hence
Eldms)own]==4(v1zewis)==0. Since E:=ij-> =} is a monomorphism, we have (4v11)e
o0, Applying the similar discussion as in the previous proof, we conclude
that 2[w]’€2ii=}} +kerky. So, we choose an element [w]’ such that 2[w]’ e
ker k..

§11. me(Xaz; 2).

Throughout this section, we use the same notations as in §10, except for
X=Xy, Q-Qs2 Consider the exact sequence

& Dax 4y

11 7 -
e VT T WUPREY ~ 2‘1‘124,-————9,424,1(){)—-“-1,.12.3.,.—-———) .

(i) 2=r<h.
71,, are given in the table below:

r 2 3 4 5 6

Thogr 8 | 2+2+42 | 2424242 2+8
generator a’ g, o, 0%y | e, pyud 0Tt L o, oo

Tiher 8 0 0 2 16
generator z v ue o

A(z) u2a( v3 vea

There is an element [2v)e{[y]’, 2, p}C=1(Q) such that p.[20)=2v, 4[20]=0.
Applying Lemma 9.2, we have an element [2v]=k.[2v) such that p.ix[20]=2v,
42410, Denoting =i=-xy(Xs,2; 2), we have

T =B 2= {150 }O{20]}
715 BLD LoD Ze= {14} D (130} B g0’ o5},
rxs@’?Za@Zz@Zz:{'i$77°5}@{'£*!4}@{’5*0'°’72} ’



(i) 6=r=9.

Homotopy groups of Sp(n)/Sp{n—2)

The following table depends on [6].

7 6 7 8 9 10
Zhaar 2+8 0 2 8+4
generator | veu, { vegw ¢'co, &
Tider 16 242 | 24242 | 242 8
generator a &, %50 | e, 11, %0 | TEH, 000 4
Izx) vea 0 0 0, veosw | do'eo

We shall construct some elements in ©:(Q) to apply Lemma 9.2.

LEMMA 11.1.

odd integer x.
ProoOF.
integer z.

Let [8:] € Coext (3v, 8)T=1(Q).

Coext 8y, 8)0(20) = — 4/ 4{3v, &, 20}
Note that viemid+=i,0201::==0.

which contains xZ;

199

Then 2([8:) c0)=x1.L: for am

for an odd

It follows from the similar arguments as before that there are elements
[V ellnV, 2, 03, [} ={[n), 2, 85} such that 2[c]'=0, 2[«]'==0, pule]l'=¢, pulr]=0.
Denote by [a]=k«[a)’, where k is the inclusion map @ —X. Now we have

(iif) 10=r=13

T.’w':"iZ;’:@Zle:{’i*E)OU}@{[gll"U} y
=@ 2= {[]}®Dll7]ea},
"go%Zz@Zz@Zzz{[7}]"5}@{[[5]}@{[77}"“} s

Due to [6], we have the table helow:

12

14

r 10 11 13
Tlogr 2484242 24+24+2+2 2424242 218
generator | ¢, o'/, 0%, 6’00 | pog, psa, ¢l olep | wopeg, p, ok, ¢'pp | g, Geo
Thgr 8 2 2+2 2416 | 2+16
generator x g o @'cy, gon? r, g% ok, Ep’
(4dx) 40’c0 /e vor, 0 0

LEMMA 11.2. A4(0)=0"cb, d(’on)=10E,

PROOF.

Consider the commutative diagram below:
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s & k"‘ - l%
za5(Q. S7) > 7:23(X, ST — mn(X, Q)
‘ 4 a0 o
Ty o T 7i8=0 .

Since k. is an epimorphism, there is an element « € 7:5(Q, S7) such that pha=—¢’.
We want to compute é.a. Consider the eommutative diagram below:

E 12
> 24

S
I P I Py

723(Q, SN —L. 2o EQ, S

Uy 6*

7l » i3

Since wveo B’ = vgofers, mi2}=={m, vsoria]=0, and ker (z§; —>73,) is generated by o’oe
and o’cc and o¢’ou, we see that vsel/==xEv’cc+yEs'os with z, =0 or 1. Hence
it follows from the diagram that

NN Opama’ oz L ya' oy with 2, y=0 or 1.

Note that d(aiio0ly)=vrouigovly=yr08s, and yell=(’or-t-gov?, Since 1) 0 € 7:(Q) and
Pl[7) 00)==100, we have d(no0)=:0. Hence A( op)==d(gov?)==70. Since o’ocon={’
and ¢’cpop=¢’oydz=yogoy?=yef, we conclude that x:==0, y=1.

LEMMA 11.3. There is an element {0?) € Coext (8vs, 0%) such that pilo?] =d,,
16[0*) =a:001s for an odd integer z.

Proor. It follows from Proposition 2.6 of [6] that

H{Usy 2”5, 8!22}1?;‘ (Usz) ’f*2ﬁs)°(8523)=:80§ ,

where H denotes the generalized Hopf homomorphism (see [6]). On the other hand,

(16¢)== 1 8iklvs, 0%o, 16e2s}s mod vie E2aly=4x];. Hence, we conclude that 16{¢%} =
xlrous for an odd integer x.

It is easy to see that there is an element [2¢] €{[2], 4, 40} such that
Pxl20Y =28, 4[20)'==0. It is known by [6] that v:oEp’=0 mod 2rl;. However, 1
can not decide exact value of v:oEeo’. We conclude that

7SR Le® L@ L@ Zs = {148 D {0} + {Ino’ o} D{2C])
T2 Ze@ 2@ Zo = {Taptoa}D{tx0 oson} Do op} ,

702 Le® 20D Z2® Za={ixn 0 100} D () D{tx0’ 0ot} D{[1] 6} ,
T2 2@ Zr = {xno 2} ®{[0?]}, where t=32 or 64 or 128.
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Appendix

Suppose that X... admits a cross-section. In [3], I. M. James has proved
that there is 2 hemotopy equivalence
G: E"an.k d Q»H—m‘k ,
which admits a commutative diagram
Ta
T @t b)) — 7i(@n.x) 7i(Qn.1)
e G, G

-
Tirsm( B Qut k1) — s i vam (B4 Q) LN Tivan(EYQn 1) .

Px
ey

This proposition holds when we speak of p-primary components of the homotopy
groups by replacing the cross-section with “g-section” such that ¢ is relatively
prime to p.

In particular, since Xs. has a 3-section, we have a commutative diagram
below: Let m—n=8k, m>n, and E* denote E3¥*,

7?4n+r(sm‘5 ’ 2) —“1—4—* Z4n+r(Qn,2; 2) —p—*‘) Ten4 r(S‘""l N 2)
lE* Gy E*
7!47n+r(s4m‘5; 2) ki > :-Mm%-r(Qm,z y 2) ‘—I—)i-) Z4m+¢(S4m"l ; 2) .
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