Regular mappings associated with elliptic differential
operators of second order in a manifold

By Seizd ITd

Introduction.

In their recent book [1], L. Ahlfors and L. Sario introduced the notion of
normal operators in open Riemann surfaces and showed the existence theorem
for ‘principal functions’. Using the existence theorem, they obtained some
remarkable results, including elegant proofs of some classical theorems, in the
theory of open Riemann surfaces. More recently, H. Yamaguchi [6] has intro-
duced the notion of regular operators, a modification of the notion of normal
operators in [1], and discussed the correspondence between regular operators and
spaces of harmonic functions with finite Dirichlet integral.

In the present paper, we shall define the regular mapping L associated
with the elliptic operator A* of the form A*u=-div(Vu—bu) under a certain
assumption for b (§1); the mapping L is a normal operator in [1] and also a
regular operator in [6] in case A is Laplacian. Using the regular mapping, we
shall define a kernel function which plays a reole of ‘Green funection’ for the
elliptic boundary value problem with vanishing normal flux at the ‘point at in-
finity . We shall also prove a theorem analogous to the existence theorem for
principal functions. .

The regular mapping and the kernel function play important roles in the
construetion of the ideal boundary of Neumann type associated with the oper-
ator A* which is a generalization of Kuramochi boundary [5]. The construction
of such ideal boundary will be discussed elsewhere [4].

§1. Preliminaries.

Let R be an orientable C*-manifold of dimension m=2, and A be an elliptie
differential operator of the form:

Au(z)=div [Vu@)] -+ b@) Vulz))

N 8 | i au(m) ou(.::)
=3 e Ve e L S

where [la*(z)]| and [|b¥2){ are contravariant tensors of class C? in R, [a¥(z)] is
symmetric and strictly positive-definite for each z€ R and a(z)=det fla:;j(x)i =
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det [jaéi(x)|~. Throughout this paper, we are concerned with the formally ad-
joint operator A* of A:
A*y==div (Vu—bu) .

We shall denote by dz and dS(x) respectively the volume element and the
m-—1 dimensional hypersurface element with respect to the ‘Riemann metric’
defined by la:(x)||. Given positive-valued and continuous function o(x) on a
subdomain & of R, we define the measure d.z=o(z)dx and put

Va, Vv)g (Vu() - Vo(@)) dut
0

(where (Vu-Vv)::}ja”“%r-évr) and
i ozt oxd
1Vullo,.= (Y, Yu)i
whenever the right-hand side of each formula makes sense. We denote by
L., the completion of the space of all m-vector field @ in 2 whose covariant
components ¢, -+, @ satisfy
ot <] Sevwosdace,

7
and by P.(£) the totality of functions ¢€CY2) such that Vge L,(#). Given
compact set K2, we denote by P.(2; K) the totality of functions ¢ € C(2—K°)
NCYL—K) such that ¢lix=0 and V¢ e LA2—K) (2 and K° respectively denote
the closure of 2 and the interior of K).

A function % is said to be harmonic in a domain QC R if it satisfies A*u
<0 in £2. A subset K of R is said to be regular if the boundary of E consists
of a finite number of simple hypersurfaces of class C?® (E is not necessarily re-
latively compact).

We fix a point e R, which we call normalizing point. For every rela-
tively compact regular domain D3as, let w” be the solution of the following
elliptic boundary value problem (1.1) satisfying the normalizing condition
wP(zo)==1:

1.1 A*w=0 in D, (»fﬁlgwwﬁpw) =
¥4

anp
A
v ” . . .
where - — and 5p respectively denote the outer normal derivative of w and

the outer normal component of b on ¢D; as is shown in [3]", the solution w of

v Differential operators 4 and A* in the present paper respectively correspond to A*
and A4 in [3] (also those in [2] cited in §2).
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(1.1) uniquely exists up to a multiplicative constant and does not change sign
on D, and accordingly, by means of the normalizing condition, «? is uniquely
determined and @®>0 on D. We put p?=log w”. Then we have

b—VpPe Lin(D)) and
b—¥p?, Vd)p,.p=0 for any ¢ € P.o(D).

(1.2)

Throughout this paper, we set the following
ASSUMPTION (A): There exist functions g€ CH(R) and w>0 on R such that

1.3 b—Vge LiL(R) and
(1.4) lim sup | log wP@) ,;<oo .
DR teD | w(e) |

It may easily be seen that the existence of such functions ¢ and w does nct
depend on the choice of the normalizing point we. The condition (1.4) is equi-
valent to the following one: there exists a monotone increasing sequence {D,}
of relatively compact regular domains such that

Dy
1.5) lim D,=R and sup sup log wln(w)

<co,
H—a0o n xelh, ! ’IU(OJ)

Hereafter {D.} always denotes a sequence of domains with this property. All
results in this paper are independent of the special choice of the normalizing
point xe and the sequence {D.}.

§2. Some properties of solutions of boundary value problems in compact sub-
domains.

We first mention some properties of Green functions of boundary value
problems implied by the results of [2].?

Let K be a regular compact set and D be a relatively compact regular
domain containing K. Let f, ¢ and ¢ be functions Hélder-continuous on D,
0K and 9D respectively.

Denote by GP¥(z, y) the Green function of the elliptic boundary value
problem :

(21) Au;““f in D““K, %L;B:i:(,"?, ulay‘::;qn,

and by N?-¥(x, y) the kernel function of the elliptic boundary value problem :

?  See the foot-note 1).
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@.2) Avi—-f in D—K, vlix=¢, 2| =or.

onp {ap

GP-¥(x, ) and NP-%{x,y) respectively are also the Green function of the adjoint
boundary value problem to (2.1):

2.1% A*y=—f in D—K, ulk-=¢, ulip=¢1,

and the kernel function of the adjoint boundary value problem to (2.2):

ha] §
2.2%) A*p--—f in D—K, vlix-=0, (J’L—ﬁpv)
dnp

this statement means that, for instance, the unique solution v of (2.2%) is given
by the formula

=P
8D

2.3) o) | Nt pde | o N0 dsw)

-4- S o(R)N2-X(x, y) dS() .

The following three lemmas will be proved in Appendix.
LEMMA 2.1. Let & and @ be relatively compact regular domains such that
Do50,50 5K, Then, for any D2, it holds that

2.4 N"K(x, y)
=GR (g, y)~{»g S A, 7). NI-FK(e, z) G E@, Y) dS(z1) dS(z)
w0 Yoo, Onu(2) Onvl( 21)
for z, ye 21— K°.
LeMMA 2.2. Let K be a fized regular compact set, and let E and F be
arbitrarily given mutually disjoint compact subsets of R—K°. Then, for any
relatively ecompact domain 2 containing KUEUF, the system of functions
( NP2-K(g, o), V.N? ~1x’(9;, ), V;,N”“K(iv, 0y V,,VyN”*K(;I, y); 1
D running over all relatively compact regular domains
l containing }
18 uniformly bounded and equi-continuous on EXF.
LeMMA 2.3. Let K be the same as in Lemma 2.2, and F be arbitrarily
given compact subset of R-—K°. Let v? be the solutions of (2.2%) where we
assume f=0, o1==0 and ¢ is any fized function € C{6K). Then, for any re-
latively compact domain 2 containing KUF, the system of functions
; ,vn’ TP
j D running over all relatively compact regular domains
l containing O

18 uniformly bounded and equi-continuous on F.
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§3. Regular mapping

Let {®?} be the system of functions defined in §1 and {D.} be the subse-
quence of {D} mentioned at the end of §1

In this §, we shall prove the following two theorems and define a mapping
of C'(0K) into the set of harmonic functions on E—X, which we shall call
regular mapping.

THEOREM 3.1. There exists a function « on R satisfying that

(w>0 on R, b—Vpe LAXR) and

B) d
LB-—-Vp, Yr =0 for any ¢€ PuR)

where p=log w; such w 1s unique up to a multiplicative constant. The func-
tion w is harmonic in R and, if we normalize o by o(x0)—1, we have w-=lim w’s

At 0

and Ve=lim Yo?» uniformly on every compact subset of R for any sequence

oo

{D.} satisfying (1.5).
THEOREM 3.2. For any regular compact set K and any function ¢€ C'GK),
there exists unique function uw on R—K° satisfying that

u |

Ul =@, ’?VQ‘, < oo, supg——l<oo and
© TN P R—K
[(vlu[bva]l’:, V{;’J) =0 for any € P.(R; K).
K et
|
The function w is harmonic in BE—K and satisfies supi-;; < mix 2| If we
F

denote by vP the solution of the boundary value problem: A*v-—-0 in DK,

oY f . . .
g, <—ﬁ~—~ﬁm} =0, them we have w~limv”» and Vu:-lm Vo’ wuni-
anp ¥}/ - n—sco

Jermly on every compact subset of R—K° for any sequence {I).} satisfying
(1.5).

To prove these theorems, we first mention the following three lemmas
whose proofs will be given in Appendix.

LeMMaA 3.1. Let {D.} be as in Theorems 3.1 and 8.2, and put w. =w” (n.-
1,2, ---). Let K be a regular compact set. Assume that (];-neLf.n(D"----—K) and
(@n, V)D& 0, =0 for any ¢ € Po (Du; K) for every n and that sup Npallo, & o

<co, Assume further that limw.=w and lim @.=@ uniformly on every com-
pact subset of R—K°, Then
8.1 @€ LAR—K) and (@, ¥P)r-k..=0 for any ¢€ P.(R; K).

This proposition holds even when K is empty if we read P.,.(D.) and P.(R)
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Jor Po (D K) and Pu(R; K) respectively.

LEMMA 3.2. If ¢ satisfies (3.1), then (¢b, Vd)r-k..=0 for any ¢ € P.(R; K)
(for any g€ PAR) if K is empty) which is bounded on K—K.

LEMMA 3.8. Assume that oy and w, satisfy the condition (B) in Theorem
3.1. Then o-wi o also satisfies (B), and we have, for each o, (v=1,2),

v-2% e LA(R) and

(2]

o s
(3} w

3.2) (v Do _(h--Vp]Le v¢> =0 for any $€ Pu(R) (p=log ).
R,o

Proor oF TueoreM 3.1. Let {D.} be a sequence of domains satisfying (1.5).
Then there exists a constant M >0 such that

3.3) Miw<oP’<Mw on D, n=1,2,---).

For any relatively compact regular domain 2, denote by G, ) the Green
function of the boundary value problem: Au=—f in 2, ulio=¢, which is also
the Green function of the adjoint boundary value problem: A*v=—f in 2,
ploe @Y Then we have

(3.4) wPn(g): ﬂg oru(@) 2@ D G50y for any yel
a0 ong(x)

whenever D.280. It follows from (3.3) and (3.4) that the system of functions
fw"n, YoPr; DD} is uniformly bounded and equi-continuous on every compact
gubset of ©. Since 2 ig arbitrary, {D.} contains a subsequence {D.,} for which
{wPw} and {VePw) converge uniformly on every compact subset of E; for the
sake of simplicity, we temporarily denote the subsequence by the same notation
{D.} as the original one. The function w:=lim @+ is positive and harmonic in

Ve =r0t

B and satisfies Vo-—lim Vo2 and o{xs):==1. We put wn=w?:, p.=logw, and
ores

p=-logw. Then

(3.5) lim PP and lim Vp" ::Vp

uniformly on every compact subset of E. It follows from (1.3) and (3.3) that
bu-quLi“(Dn); thig faet and (1.2) imply that V(pan)eLf,n(Dn). Hence

(b—Vpa, V(Pu—)p,.0,=0
by means of (1.2). Therefore
(3.6) 16—V pull,.u, S 10—YlD, .0, EMY2b—Vglro< o0

8 This situation is the same as that of G?-E(x, y) in §2.
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by virtue of (3.3) and (1.3). Hence we may apply Lemma 3.1 (where K is emp-
ty) to Pn=b—Vp. (n=1,2, ---) and ¢=b—-Vp, and obtain (B) in Theorem 3.1.

Now let {D.} be the original sequence. Then, from the above argument
and the uniqueness of @ to be proved below, we may see that any subsequence
of {D.} contains a subsequence {D.;} for which {w”=} and {Vo”®} respectively
converge to w and Vo which are independent of the subsequence and each con-
vergence holds uniformly on every compact subset of R. Hence the original
sequences {wP2} and {VeP»} converge in the same way.

The uniqueness of @ is proved as follows. Suppose that vy and w: satisfy (B),

and put w=w;+w: and p=logw. Then, by Lemma 3.8, we have ¥V 2 e LAR)
W

and accordingly

(V @y —[b—Vp] Oy V.ﬂ’.‘;:f’-’) =0 (by (3.2)

s
w [} al R,

for v==1 and 2. Hence we get

]

(V Wy — g —[b—Vp] Wy == Ry Wy w2 ) 0.
] w /R.o

On the other hand, by virtue of Lemma 3.3, we may apply Lemma 3.2 (where

K is empty) to ¢=b—Vp and ¢— D702 46 obtain that

(0]

<[b—Vp] wi—ws v Wi — s ) —0.
R ow

w w

— w2

Hence we get E%V—(—D—‘——-—- Pimee
! w

==(, Therefore —

R, w1 wn
stant and 0<e¢<1; this result implies that wi/w. is constant on E. In particular,

if wi(zo)=ws(20)=-1, then we have wy=w; on R.

PROOF OF THEOREM 3.2. Let Do be a fixed relatively compact domain con-
taining K, and u4o be a function of class C! on R satisfying wolax=¢ and whose
support is contained in Do. Since div {0?[b—Vp?)}==0 in D—K and fp-3p”/0np-=0
on 60, we may show by means of integration by part that

VP10 T
. D f—
([b vpr L, v )M.ND 0

=¢ on R where ¢ is a2 con-

and

2~

2 ey Y
(un -7yl L, v )D_“D_o

whenerer D> Do. Hence we have
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lg v7—uo fi* vP—u i V2o )
v e Y Vi D Y V) , v
i a)“ iD—K, D w” w? w DK P
D__
. . Un {b v ,,} 'v Uo
lj ’ yii D
w? w /DK w

which implies

o |
7 — v ny 2vv j
3.7 !tv A e
accordingly
g P 0 | i uo |
§ Ve 22, V-——1| +-p b=V pP]—-1 .
@.8) iv w? }! DK, WP “2‘2 o ip-k, WP [3[ vp7l @? {pok, WP

Iy} n D a) D
Since V" satisfies div{w” V-2 h([b»—w]-vﬂ—) 0 in D—Kand - > ( v,)
w? m? f w?

onp \ w?
=0 on ¢, we may see that

;UI) \
w? !;‘ K E(u” P

[
(3.9) sup |-
K

Now let {D.} be a sequence of domains satisfying (1.5). By virtue of Lemma
2.3, {D.} contains a subsequence {D.} for which {#”w} and {Vo?w} converge
uniformly on every compact subset of K—K°. It is sufficient to prove Theorem
3.2 where the sequence {D.,} in the last assertion is replaced by the subsequence
{D.,}; the convergence of the original sequence {w”z} may be shown by the
same argument as in the proof of Theorem 3.1. So we denote the subsequence
by {D.} again, and put @.::0”?, v,=v"» and u=lim v.. Then % is harmonie in

o0

R-K and ulsx—v. Since ® ~lim w. by Theorem 3.1 and since the support of

n—red

U 18 compact we obta.m from (3 9), (8.8) and by the Lebesgue-Fatou lemma
< oo, Further-

Dy ~K, oy

V|

w !
that sup’ < max; M{< co and | \'——-*' <sup’ v
RK m[ K| @ i‘ @ fp-x, sl oy [

more we may see from the definition of wv.==vP», that (V—-~~[b~~Vpn] Y
Wy

n

Vcﬁ) 0 for any ¢e€ P, (D K). Hence we may apply Lemma 3.1 to
K. w

Dy K n

I/ Vﬁif[bw—er,.]‘—yL (n=1,2, ---) and d)rr"‘\’-% »—~[b—~qu]—:z~ to obtain that

oy Wy

(@, ¥V r-k.o=0 for any ¢ € Pu(R; K). Thus we have proved that u satisfies the

condition (C).
The uniqueness of « is proved as follows. Suppose that % and v satisfy (C)

for given ¢. Then we may apply Lemma 3.2 to ¢=b—Vp and g:m to ob-
w
tain that
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([b—Vp] e
R-K.o

w w

Hence

(V u—y_’ V_z_g_—_*z_;_> ;2(‘, U—v [b—Tp] WU v u-ﬂ)) -0,
7] R-K., & @ E-K.®

@ w (&4

which implies u=v in B—K since u-=v=¢ on ¢K.

By virtue of Theorems 3.1 and 3.2, we can define a mapping L—~Lx of
CY3K) into the space of harmonie functions in B—K with the boundary value
¢ on 0K in suech a way that u==Lgy satisfies the condition (C). The mapping
L is called a regular mapping. We may easily see from Theorem 3.2 that

(3.10) Lw=:w,

(3.11) Licigi -+ eson) e Lo -vesLgs (e, €21 constant) ,
(3.12) Lo=0 if =0

and

if w=Lo and if ¢ is a function € CYR--K°)NCY{R~-K)
J such that V¢ e LA (R—K), then

f (vE-6-m, W) = S (G .ch,o)qrds
w W R-K, 0 K

[\ ung

(3.13)

In case b=:0 (whence A=A*), we have «==1 by means of the uniqueness of
o in Theorem 3.1, and accordingly p=s0. Therefore the equality in (3.13) be-
comes :
(8.14) (Vau, Vg”)zzarxi*wg %04,

ax ong

Hence we may say that the mapping L is a normal operator in [1] and also a
regular operator in [6] if A is Laplacian in a Riemann surface. Since (3.14)
implies (Vu, Vo)r-x=0 for any ve L¥R—K) satisfying vlix=0, u: =Ly is the
unique function with the minimum Dirichlet integral over R--K among the
functions with the boundary value ¢ on K.

§4. Extension of the regular mapping and some properties.

Let K be a regular compact set and L==Lx be the regular mapping defined
in the preceding §. Then, for any fixed y€ R—K°, we have

au
anx
outer normal component of b on 8K as the boundary of K (not of R—~K).

4 Note that and Bx are respectively the outer normal derivative of w and the
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@4.1) ALxW) | oy £
ey | & el
for any ¢€ CYiK). Hence the mapping ’§~~>~(~£'~£%§)£@~ is uniquely extended to

a bounded positive linear functional on C@K), and accordingly there exists a
Borel measure 1% on 6K such that #k(@K)=1 and
1.2) Lo o| XD dya)
Jox ()
for any ¢e C'GK).

For any lower semi-continuous function ¢ on 6K, we define (Lxe)(y) by the
formula (4.2). Thus the regular mapping Lk is extended to a mapping defined
on the space of all lower semi-continuous funetions on 6K. Since the limit of
g monotone increasing sequence of harmonic functions in 3 domain is harmonic
whenever the limit is not identically equal to oo, we may see that:

THEOREM 4.1. For any lower semi-continuous function ¢ on 6K, Lrxo 18
harmonic in any connected component of R—K in which Lxy is mot identi-
cally equal to co.

TuroreM 4.2. Let K, and K. be regular compact sets such that K, Ko,
and ¢ be a lower semi-continuous function on 0K;. Then Lg,(Lx¢)=Lxe in
R—(K:)°.

Proor. By means of the definition of the extension of L, it is sufficient
to prove this theorem under the assumption o€ C'(GK)). For such ¢, the func-
tion u - Lx,¢ satisfies (C) with K=K and we have ul:r,€ C'@K;), and accord-
ingly the function v=-Lx,u satisfies (C) with K=K and ¢=ul:x,. For any ¢€
P.(R; K»), the function ¢ on R—(¥,)° defined by

93449") on R--K: and =0 on K,—(Ky)°

is continuous on R-—(K:)° and satisfies |[V{]r-k,.«< oo (VJ is defined in R—Ki—
dK-). Hence there exists a sequence {¢.}< P.(R; K1) such that lim ||V —Vd|r-k, .«

=0, Since

(VTR ) =0 (=120,

U R-K,.®
we get

(VE-B-va V) =0,
) @ R-K.w

Hence u satisfies (C) with K=K, and ¢=vlx,. Consequently we get u=v in
R—(K)° by Theorem 3.2
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We shall mention a theorem similar to the main existence theorem in i;
Chap. III, 3A].
As we have shown, the regular mapping L has the following properties :

(L.1) Le=¢ on /K,

(L.2) Lieioi+c202)=c1 Loy +caLee

(L.3) Lo=w,

(L.4) Le=0 in R—K if ¢=0 on 0K,

(L.5) S < u wﬁxu>dS::0 for u="Le .
aE\ Ok

In Theorem 4.3 below, we assume that L is just a mapping of CY{0K) into
the set of functions continuous on R—K° and harmonic in R—K satisfying
(L.1-5); L is not necessarily the regular mapping defined in §3. We may
easily derive from (L.2—4) that

(L.6) supi—Lﬁlgmax £
r-K| ® | K

I
(1)5

THEOREM 4.3. Given function u continuous on R—K° and harmonic in
R—K, a necessary and sufficient condition that there ewists ¢ harmonic func-
tion w on R satisfying

(4.3) w—u=Lw—u) in R—K

18 that

(4.4) S (”“ wﬁxu)deO.
s\ ONg

The function w is unique up to an additional term of a constant multiple of
the function w, and w=co for some constant ¢ if and only of w=Lu.

We may prove this theorem by way of the entirely same arguments as
those in [1; Chap. III, 3B—3E] using the following three lemmas; proof of
Lemma 4.1 also is essentially same as that of corresponding lemma in the book
cited above.

LEMMA 4.1. Let F be a compact set in a subdomain Q of R. Then there
exists a positive constant k<1, depending only on F and 2, such that
v

1
v
maxlmi.gksup
F | ¢ |w

Jor all functions v harmonic in 2 and not of constant sign on F.
LEMMA 4.2. Let D be a relatively compact regular domain containing K,
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and ¢ be the solution of the elliptic boundary value problem :
(4.5) A0 in D-K, dlae=0, $lip=1.

Let » be a funection continuous on D—K and harmonic in D—K.
1) If v satisfies

(4.6) g (2. ,slw)ds 0 and X » 7480,
GKN UK oK ong

then we have

“.7) S <—;’f3’- ~-~ﬁnv>ds~~~0 and S v 2 gs.-0,
DN\ OnD sp ONp

and accordingly v changes sign on 6D unless v=:0 on 6D,

i) Conversely, if v satisfies (4.7), then we have (4.6) and accordingly v
changes sign on 0K unless v:=0 on oK.

Proor. By means of Green’s formula, we have

v - o .
‘ ('; ““““““ K 1’>dS 4& < - mw)ds
Ja\ ong sp\ U /

o Jy/ -~ 1 bel
et [4{8] ap
g Ly dS s {q‘i—v < e ;3:;v>}d8.
K ONK apl onp onn

Using these relations, we may see that (4.6) implies (4.7). Since the solution

and

¢ of (4.5) satisfies __:m’iiw >0 on 3D, it follows frem the second equality in (4.7)

onp
that v changes sign on o0 unless v==0 on 3D. Part i) is thus proved. Part ii)

may be proved similarly.

LEMMA 4.83. Let w be a harmonic function on R. Then w=Lw if and
only if wcom for some constant c.

Proor. ‘If’ part iz clear from (L.3). ‘Only if’ part is proved as follows.

Sinee div {m[b -¥p]}--0, the function . satisfies that

(]

() w

div {(:)(V "ig—) } - w([b Vpl-¥ Qli) c=div {Vw —bw)= A%w=0.

On the other hand, the assumption w-—=Lw implies that sup‘iv—t gmax’iu—! by
R-K | W 3K w

w . . . ..
takes its maximum at a certain point in K. Hence
(3]

(L..6), and accordingly

w
—~ must be constant.
&
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§5. The kernal function N(z, ¥).

In this §, we fixed a regular compact set KoC R, and denote by N¥z, v
the function N?-%o(x, ) defined in §2 for any relatively compaect regular do-
main D> K. For any x€ R-- Ko, we denote by K(z) the totality of regular
compact subsets K of R--K, such that x€ K°.

Let K be a regular compact subset of R--Ko and, for any relatively com-
pact regular domain D> KoUK, denote by Lf};xu the regular mapping of
CYoK-+G6Kys) into the space of harmonic functions in D--(K+-Ko). For any
0eC'WK), we put
{¢ on oK
{0 on d4Ks.

Then the function v L .0 is the solution of the boundary value problem:

(6.1 LR.o—Liwx,@ where @

A*p=0in DK, vler, 0, vl ¢,
5.2) ( o

unp /5D

and accordingly,

su [_Iig~9g~ = max d
(5.3) pmxgxog w” 1:: K | w?
and
U ) iformly on every compact
5.4 Liix,@=lm Lpne W ;
(6.4) Kikig @10 2k0®  Subset of R—(K+ Ko)°

where Lx.x, is the regular mapping defined in §3 and {D.} is a sequence of re-
latively compact regular domains satisfying (1.56) and D, DK+ Ko (n--1,2, ---).
These facts are evident from Theorem 3.2,

Hereafter L2 ,N#", -) denotes the image of N”(x, ) as a function of
y€oK through the mapping L%, for any fixed » (Lx.x, N(x, -) should be un-
derstood analogously for the function N(z, ¥) mentioned below).

We remark, among others, the following properties of the kernel function
N2z, 4): a) For any Hblder-continuous funection f(x) whose support is a com-

pact subset of D—Ko, the function v(y)t:—g f@) NPz, y)ydx satisfies that A*v
yil

=—f in D—Ko and vlg,=0. b) For any fixed z€ DKo, it holds that
L2 N?(x, )=NP>, -) in D—Ko—K for any Ke K(x) since v(y)-~N(z, ¥) is the
solution of (5.2) with ¢(#)=N?{x, y) (for y€dK). Hence it is natural to con-
sider the function N(x, %) in the following theorem to be a generalization of
N2z, y) to the case: D=R,
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THEOREM 5.1. There exists unique function N(z, y) continuous on

(5.5) (R—Kyx(R—Ko)—{(z, 2); 2€ R—Ko}

with the following properties i) and ii):
i) For any Holder-continuous function f(x) whose support is a compact
subset of R—Ks, the function

(5.6) v(y)= S Mof () N(z, y) dz

satisfies that

6.7 A*y=—f in R—Ko and vlix,=0
il For any fixed x€ R—K,, it holds that

(5.8) Lrix, N(z, -)=N(z, -) in R-—-Ki—K

for any Ke K(x).
Further we have

G lmNoG N I S ot
for any sequence {D.} of relatively compact regular domains satisfying (1.5).
Proor. It follows from Lemma 2.2 that the sequence {D.} contains a sub-
sequence {D,} for which {NPw(z, ¥)} converges to a function N(z, y) continu-
ous on the set (5.5) and the convergence is uniform on every compact subset
of the set (5.5). We denote the subsequence {Du} simply by {D.}, and the cor-
responding {w?} (defined in §1) and {L,{ffg’} (defined by (5.1))—by {w.} and {Lx,}
respectively. Put K- Ko and D=:D, in (2.4) and let v—co. Then we obtain

(6.10) Nz, ¥)—=G"%o(z, ¥)

) aGEo(, 2) 3G Fo(zy, Y)
R -N(z, z: =2 d d , Y€ — °
| Sﬂ)g N o) (2, 21) ——— Gria (21) S(z1)dS(z) for =z, y€ 0 —(Kp)

whenever 000,50, 0K,. Hence we get (5.7) from properties of Green func-
tions G2 Ku(x, i) and G-Fo(x, ). To prove (5.8), we fix x€ R—K, and K€ K(z),
and denote N2z, ) and Nz, %) simply by N, and N respectively. Then we
have

Lysk, N—N 4<!LK+K0N Lzr,oN | Lo N—=N.) l LxoN _N|
< — ‘ + N
- [ [CW @ ’

| Levk, N |

r<—l K+Kg LKON{4 max %"'g—
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since the regular mapping L%, (=L%,) satisfies (5.3) and since N, (==N**) has
the property b) mentioned above. Letting v—co, we obtain Lgix, N=N by
virtue of (5.4) and the uniform convergence of {N.(z, ¥)} as a function of ¥ on
every compact subset of R—K,—K. (5.8) is thus proved.

From the above argument and the uniqueness of N to be proved below,
we may see that any subsequence of {N?»} contains a subsequence {N.} which
converges to the unique function N uniformly on every compact subset of the
set (5.5). Hence the convergence (5.9) holds for the original sequence {N?=}.

In order to show the uniqueness of N(x, ¥), we first verify the following
fact from the properties i) and ii). For any Holder-continuous function f(z)
with compact support contained in R—K,, the funetion v(y) defined by (5.6)
satisfies that

(6.11) Ligikyv=v in R—K-—-K,

for any regular compact subset K of R—K, containing the support of f in its
interior K°, and that

(5.12) (VE--VRIZ, V) = ey
® @ R-Ky.0

for any ¢ € Pu(R; K)).
(5.11) is verified from (4.2), (5.6) and (5.8) in the following way:

(Lk+x, v)(y)rw(y)g w2 dpk v, S
aK

f(z) Nz, 2)dx
Ky

:-:S F@) dxg XY N, 2 dpre sy (2)
R-Ky ix o(2)

~§ @) Nz, y)de=v(y) for any ye R—K—K,.
R-K,

To prove (5.12), we take a C'-function A on K which equals 1 on K and has a
compact support, and put

Q=¢1+¢n where t,bs;:hxf’) and (/12“1(1‘“}&)‘/5'-

Then we have

(5.13) (v% —[b—Vp] 2, w;) = (A0, $)n-Kyt
(]

B-Kg.0

on account of (5.7), while it may be seen from (5.11) that

5.1 (VLo L, W) =0
@ (3]

B-Ky.0
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ginece (€ P.(R;, K-+ Ko). (5.12) follows immediately from (5.13) and (5.14).
Now suppose that Ni(x, ¥) and N:{z, ¥) be continuous functions on the
set (5.5) with properties i) and ii), and put
(5.6) v,(y)»:S F@ N, ydz, v=1,2,
R—K,

where f is an arbitrary Hélder-continuous function with compact support con-
tained in R Ko. Then it follows from (5.7) and (5.11) that L{‘L belongs to
(1]

P.(R; Ko) and is bounded on R—Ko, for each v, and accordingly ¢-=_t—22
@)

has

the same property. Hence

(5.15) ([b»vm VTV g Vi ) 0
R—Ko,w

w w

by Lemma 3.2, while

(o ova T v ) (e (¢=1,2)
w R-Kg.0 R-Kgy. 1

W w w

on account of (5.12), and accordingly

(5.16) (v G R (% P SemC T i ) =0.
w w R-Kg.0

w

=0. Hence we get v,=v: in R—-K,
R-Kg.»

since vi==v2==0 on 0Kp. Therefore Ni=N: on the set (5.5) by means of the
arbitrariness of f and the continuity of N; and N:. The uniqueness of N(z, )
is thus proved.

COROLLARY 5.1.1. 1) For any fived ye R—(Ky)°, N(z, y) satisfies that

(5.15) and (5.16) imply ﬁv,zf%*

5.17) A;N(, y)- -0 in xe R— Ko {y} and Nz, ¥)=0 for x€iK,—{y}
and that

(5.18) SR . A*f(x)-N(z, y)dz=—f(y)
Ty
for any fe C(R—Ko) with compact support < R—Ks.
ity For any fixred x€ R—(Ky), N(x, y) satisfies that
(6.17% AFN@, ¥)-:0 tn y€ R—Ko—{x} and N{x, y)=0 for yeiK,—{x}
and that

(5.18% [, N v-Afe dy=—f@
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for any fe C{R—Ko) with compact support < R—Ko.

These properties of N(z, %) may be seen from (5.10) and properties of Green
functions G2-%o(z, ) and GY~%o(z, ¥) in (5.10).

COROLLARY 5.1.2. Let E be a compact subset of R—K, and 2 be a rela-
tively compact regular subdomain of R such that Q> F and that 62 does not
intersect Ko. Then

Ny <eo  and

ve B, ycR-Kqut  o{Y)

(6.19)

(5.20) sup ly, N (“" y) ] doy<on |

Tel Xz«-xong

Proor. We fix a regular compact set K such that Ec K°c Kcf@--K, and
a function f of class C* on R such that f(¥)=1 on K and f(#) =0 on E—£, and
put No(z, ¥)=N(z, ¥) f(%). Let z be any fixed point in E and consider N(z, ¥)
and No(z, ¥) as functions of y. Then, by the same argument as the proof of
Theorem 3.2, we may show that

T

jR-K-Ky. @ i @

lt
(5.21) ILV—~———

{Hb Vpl -‘N—-

Q—K—Ko,m la ~K—Kgw

(consider the inequality obtained by putting D=D. in (8.8) and let n-»c0). The
right-hand side of (5.21) is bounded by a constant independent of z€ E since E
and 2—K are mutually disjoint and Lx.x, N==N by Theorem 5.1. Hence (5.21)
implies (5.20). Similarly (5.19) is proved as follows:

Ne, v, { Lxix, N, y) }
ze R, ??e kR U0 w(y) ??E ye 1?5&50 w(?!)
ésup{maxm} <co.
zeE (yeix  o(y) }’

The following theorem is a generalization of ii) in Theorem 5.1.

THEOREM 5.2. For any fived z€ R—(Ky)° and any regular compact set
Kc R—K,, it holds that Lgsx,N(z, -)SN(z, ) in R—K—Ks; the equality holds
if e K°.

Proor. If xe K°, this assertion is implied by Theorem 5.1.

. . Lksx, N N
We consider the case: x€ R—K. Since sup ——%>— =max ~, Lxsx,N
y€R-K--Kg y eIk

is bounded in any compact neighborhood of x. Therefore Lx.x, N §N on suf-
ficiently small K:ie K(z) as dim R=2. Hence, on account of Theorem 4.2 and
Theorem 5.1, we get
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Lisky N=Li sxsk(Lisxy N)ENk,sx+x, N=N in R—Ko—K—K, .

Since K: can be chosen arbitrarily small and since N(z, z)=c0, we obtain
Liixky NN in R—K,—K.

Finally we consider the case: z€GK. We approximate N(z, -) by an in-
creasing sequence {¢,} of non-negative and continuous funections on 0K+3K,.
Then lim Lk, ¢ Lkik, N by the definition of the extended regular mapping

N0

in §4. Since Lkix, 9. iz continuous on R—K°—(Ko)° and Lkik,¢»=0¢.<N on
GK+0Ky, there exists a sequence {F.} of regular compact sets such that (F,)°

DK+ Ky and Lkk, 90,z§1\4’+—1~m on ¢F, for every m and that H Fo,=K+K,.
n n=1
Hence by Theorems 4.2 and 5.1,
Licsky ¢n- L Lty 0x) <L, N+ ;];-Lpﬂ w=N+ %(u in R—F,

since € 0K (F»)°. Letting n—co, we obtain LkN<N in R—K—K,.

§6. A boundary value problem.

In this §, we consider the following boundary value problem with vanishing
normal flux® on ‘the point at infinity ’. Given regular compact set K,, Hblder-
continuous function f(x) on R—(K;)° whose support is a compact subset of
R--(K,)°, and Holder continuous function ¢(z) on 3K, find a function »(®)

satisfying:

6.1) A¥*v=-f in R—K,,

(6.2) vliky=¢  and

(6.3) Iimg ( 2 ﬁw)g; dS for any g€ Pu(R; Ko)
OYR}sp\ Uy

(D being relatively compact regular domains in R).

If we consider a similar boundary value problem in a fixed D, the condition

6.3") S (u%:’« - 5»7;)(;';(18:0 for any ¢ Pu(D; Ko)
ap\ onp
is equivalent to
6.4) 2 Bpw=0 on 8D.
onp

s The vector field vu—bu is called Aux as a terminology in diffusion theory. So we
ou
anD

call normal fluz the normal component —Bpu on 3D of the vector field.
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Hence it is natural to consider (6.3) to be the condition of vanishing normal
flux on the point at infinity.

There is nothing essentially new in this § coneerning boundary value
problems. The following theorems are only to show the relation between the
function N(z, ¥) and the boundary value problem (6.1-3).

Denote by <2 the totality of functions v € C'(R— K,) satisfying that h "R o

<co and sup {—- <co. Then we have the following
R—-Kg| @

THEOREM 6.1. Let f(®) and ¢(x) be as stated above, and Nz, y) be the
kernel function defined in §5. Then the function v defined by

©5) v(y)-:g F@) N, 9)de+ S u(x)MdS< )

K, nx (%)

belongs to & and satisfies (6.1—3). The function v€ & satisfying (6.1—3) is
unique.

Proof of this theorem is essentially confained in the proof of Theorem 5.1.
So we only sketeh the proof of Theorem 6.1.

Let v be defined by (6.5). Then it follows from (5.10) and properties of
Green funetions G %oz, y) and G“r%o(z, y) that v satisfies (6.1) and (6.2) and
that

(6.6) v and |Vv| are bounded on KK,
for any compact subset K of R. Furthermore we have
6.7) Lxv=v in R—K

for any regular compact set K containing Ko and the support of f in its interior
K°, and

6.9 (V—j;—[b—vmf’;, V) e s

R—Kg.0

for any ¢€ P.(R; Ky); proofs of these facts are essentially same as those of
(5.11) and (6.12). On account of Theorem 3.2, (6.7) implies that

<co,
I?Kw

6.9) sup‘-_\<m and ]‘v

R-K

(6]

From (6.6) and (6.9), it follows that v€ <2 and accordingly

(6.10) <V%~[b—-vm~‘%, V¢) :;lim< ~[b--Vp] =, W")p.uxo.w

B-Kyw DIR

©
. av
= lim g <n“ ﬂn?)) PAS+(f, Pr-ky1
R}sp\ Onp

bt
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for any ¢ € P.(R; Ky). (6.8) and (6.10) imply (6.3).
Uniqueness of v is proved as follows. If u and v belong to &7 and satisfy
(6.1—3), then, applying (6.10) to u--v, we have
<V~u“~?-~ —[b-vp] A Vg:’)) =0 for any ¢€ Pu(R; Ko).
o R-Ky.@

o

Since u—v—¢ on 0K,;, we get u--v in E— K, by Theorem 3.2.
From the ‘uniqueness’ part of the above theorem, we obtain the following
uniqueness theorem for kernel function of the boundary value problem (6.1—3).
THEOREM 6.2. If N(z,¥) is continuous on

[R—(Ko)°| < [R--(K0o)*]-—{(z, 2); z€ R—(KJ)°},

and if v(y)fS fx) N, )dz satisfies A*v=—f in R—Ko, vlx,=0 and

R-EK,
(6.8) for any Hilder-continuwous function f whose support is a compact subset

of R—(Ku)°, then N(z, y) is identical with N(z, y) defined in §5.

Appendix. Proofs of Lemmas stated in §§2 and 3.

In what follows, notations are referred to §2.
ProoF oF LEMMA 2.1. By means of Green’s formula, we may show that

(1) NG, 9= G, - | DB N, ) S
50 ony(z)
for z,ye2—-K°,
and that
D-K P D-K iq’ﬁ:ﬂffiﬂz
(3) N (zv y) Sa!)’_N (zy Zl) anlll (21) ds(zl)

for 26 D—@2, and ye 2, —K°.

Substituting the right-hand side of (2) for N?-¥(z, ¥) in the right-hand side of
(1), we obtain (2.4).

To prove Lemmas 2.2 and 2.3, we first show the following

LEMMA A. Let 2 be o velatively compact regular domain containing K.
Then
sup{ sup LD N2-K(w, ) dS(y)} < oo,

Do re D—-g2
ProoF. Let u be the solution of the boundary value problem: Awu=0 in

Q—K, ulx=1, ulas=0. Then —=—
Ry

<0 on 82; accordingly
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(3) min{~%}>0.
¥R oNg
Since A *NP-K(z, )=0 in 2—K for any fixed z€ D2, we have, by Green's
formula
o o DK {
(4) S N2-K(z, ) ﬁff&y_). dsﬁS _(LN;_,(E’L?/)_ dS@an--0.
20 ong IR onx(y)
On the other hand, since the function w(x)==1 is the solution of the boundary
value problem: Aw=0 in D—K, wlx==1, fm’ E =-0, we have
onnp {ap

aNI)~K(x’

(5) 1:S @ W) 484) for any e D-K.
oK onx(y)

It follows from (3), (4) and (5) that

§ N Kz, 5)dS(y) < [min{ — M}T_‘ <o
a0 -

xr ong

for any D>®2 and any z€ D-—-4.

Proor oF LEMMA 2.2. Let @, be a regular domain such that KUEUFc £,
c2,cQ. Then we have (2.4) in Lemma 2.1 for any D>3. Since NPK(z, )
in (2.4) satisfies

sup supS N2Ez, 2)dS@)< oo
20,

DD ze30

by Lemma A, we may easily derive the conclusion of Lemma 2.2 from (2.4).

Proor oF LEMMA 2.3. We fix two domains £; and 2, such that KUF«@,
cicRc2:c0, and a function k of class C* on R satisfying that h(y)--1 for
y€2; and A(y)=0 for ye R—2.. Denote by u the solution of the boundary
value problem: A*u=:0 in 2—K, ulix =9, ulsx=0, and put

ry)ul(y) for yefL—K

w(y);:{o for yeR-2.

Then A*w is of class C!' on BR—K and the support of A*w is contained in
2—2,. For any D>2, the function »?—w satisfies:

A¥pP—w)=—A%*w in DK, (v’—~w)lixg=0 and
{[M w;‘31)(1;””10)]; =0,

anp {8p

Therefore, by the formula (2.3), we obtain
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v”(y)»—w(y)::;g A*w(e)- NvK(x, yydx for any yefR-—-K.
92y

Hence, on account of Lemma 2.1 and Lemma A, we may get the conclusion of
Lemma 2.38.
We shall prove Lemmas 3.1 and 3.2 in the case where K is not empty.
The modification of these proofs to the case where K is empty is quite easy.
PrROOF OF LEMMA 3.1. We put w.=0 and #,=0 in R—D,. Then, from (1.5)
and the assumption of this lemma, it follows that sup% L,

» W

<oo and ae-
R-K. @

cordingly that [#]z-x..<o> by the Lebesgue-Fatou lemma. For any ¢ € Pu(R; K),
it is clear that ¢lp,-x€ P.(D,; K) and also that, for any ¢>0, there exists a
relatively compact domain D> K such that

! }
(sup%zlﬁ’iwn ;i + IWHR«D.«:) V¢l pep.w<c .
i o ReD,w

n

Hence, from the assumption, we get
(@, V) r—k.0l = (@, VN p-k o—(Dn, Ve’))l) —K o]
<w>uR Do lg O |

)uwfun-p.w
R~D.,w

<{<(/) On g, w;) o
} w DK, w w
#
éii’/)“ﬂ'/’n “VM.R k.o-c Wwhenever D,DD.

Letting n-—»co, we obtain [(®, V¢)r_k o/ <c. Hence we get (@, Vé)r-x..=0 as ¢
is arbitrary.

To prove Lemma 3.2, we shall show that

LeMMA B. Let ¥'e LR~ K) and assume that ¥ is continuous on R—K°
and satisfies (D, ¥)u--0 for any m-vector function @ of class Ct on R—K° such
that

(7) div{eD)=0 in BR—K and
(8) the support of © is a compact subset of R—K°.

Then there exists a function € CYR--K°) such that ¢liz=0 and T=V¢ in
R—K,

Proor. Let C be a simple closed oriented curve of class C! in R—K and,
for every point xeC, let £#==¢(x) be the unit tangent vector to C at x with the
same direction as the orientation of C. We first show that

(9) S (¥-t)ds=0 (ds denotes the line element on C)
C
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for any such C. It is sufficient to prove (9) under the assumption that C is
contained in a coordinate neighborhood U relatively compact in B—K.
We fix a local coordinate system in U, and define

@;(y)zg L@yt ds@) (>0)
c oY)

where {0, ¢>0} is a system of mollifiers which ‘tends to Dirac d-function’ as
e—0. Then

a.’)e(x—“?/) ds(x) ::0 B

div fw(y) O.(y)) = — SC (V. ool —9)-1(2)) ds(a) = — gc —

Hence, by the assumption of this lemma, we have
SU T W) O.) i) dy=0,
namely

Letting <—0 in this equality, we obtain (9).
We fix a point ;€ R—K. For any point x€ R—K°, we define

(10) 9*”(90):SC @-t)ds

where C. is a curve of class C! which starts at zo, ends at # and is econtained
in B—K except at most the end point . On account of (9), the value of @(x)
is uniquely determined by the point z and is independent of such path C.. Aec-
cordingly ¢ € C(R—K) and ¥=V¢ by means of (10). Since ¢ can be replaced

=0.

Let 2, and z: be arbitrary points on 6K, and let C be a curve of class C!
which starts at 2;, ends at z: and is contained in R—K except both terminals
21 and 2;. Define ¢t and @. similarly to those in the above argument. Then we

have S (@.- V) wdy=0 and, letting -0, we get
&

O:S -V ds:S % ds=d(2s)—(z1) &
c ¢ ot

® We should not assume that both 2; and z belong to a common coordinate neighbor-
hood for K is not necessarily connected. However, we may perform similar argu-
ments to those in preceding paragraphs by using the partition of unity.
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Thus we may see that ¢ is constant on K.

Proor oF LEMMA 3.2. Let H, be the closed linear subspace of the Hilbert
space L.,*(R-K) spanned by {V¢; ¢€ P.R; K)}, and H; be the orthogonal com-
plement of H,. Then any ¢ satisfying (3.1) clearly belongs to H,. If ¢ satis-
fies (7) and (8) and if ¢ € P.(R; K), then we have by Green’s formula

(WD, V) r—it i (V- @)+ ¢ div [0, Dnk == ~—{¢®, Vd)p-k.u;
accordingly (Y%, V¢)r-x.w- 0. The totality of ®€ H, satisfying (7) and (8) is
dense in H, by Lemma B. Hence we have (¢®, V)r-x..—0 for any @€ H, and
any € P.(R; K) bounded in R-K.

Proor or LEMMA 3.3. We may show by simple computation that

AV |* y [Vws]? ~ |Vol?

; =0 in R
wj O} w
and accordingly
bV plw:-1bl*w--2b-Vo) - Vel
7]

Z16-VpilPon 110-Vpe20: in R (p=logw).
Integrating both sides of this inequality over R, we get
b9l S b=V D1l %0y 10—V D2l < 00
For any ¢e P,(R), we may show that

({b--Vpl- Vaw=([wb—Ve]- V)
~-~‘([bm~Vp;]‘ngl)(ur{A([bﬂvpg]-V(,"')wz in R.
Integrating both sides of this equality over R, we obtain bV, V¥)r.u=0
since Pu(R)cP. (RN Puo,(R). Thus we see that o satisfies (B). Next we have,
for v--1 and 2,

(o ®, ¢

1L 1v7 —[b-¥p]

fo—1b-Vplo. on R,

thy
w
and accordingly

| |
T2 e < b VploV 4 [b—TVplan on R.

{ @ |

Integrating the squares of both sides over R, we obtain
2

| v—’—gg <21V plfh.ot 1=V lIb0,) < o0

i
|
i! @ R,
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@,

since @ and w. satisfy (B). Thus we get V—>¢€ L. (R}, and accordingly v
(£}

w

€ L.AXR). Hence it follows from (11) that

[b--¥p]=

o
<\~_"£-'_ —[b-f/pr]—“i’—, Vs”) vz (b Ny, Vg w0
w @ R,a
for any ¢ € P(R)C P, (R). Lemma 3.3 is thus proved.
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