Automorphisms of irreducible Weyl groups

By Eiichi BAnNAL
(Comm. by N. Iwahori)

§0. Introduction.

As is well known, the symmetric group of degree 6 has a mysterious outer
automorphism which transforms every transposition (an element consisting of
a 2-cyele) into an element of three 2-cycles, while all the automorphisms of
the symmetric group of degree different from 6 are inner. Since the sym-
metric group can be regarded as an example of the Weyl group of some root
system, it is natural to consider the following question: to determine all the
automorphisms of the irreducible Weyl groups in such a way that the above
mentioned fact about the automorphisms of symmetric groups can be derived
as a corollary.

In this note we give a complete determination of the automorphisms of
the irreducible Weyl groups. We list our main result in Table I on page 274.
In Appendix 2 we treat the automorphisms of the Coxeter groups of type I(p),
H; and H; in the notation of {1].

We had recourse to case-by-case considerations for each type in several
proofs, although unified treatments are very desirable. We hope that a unified
treatment should be available some time.

The author wishes to express his hearty thanks to Professors N. Iwahori
and T. Yokonuma. They considerably improved the method, showing to the
author several unified treatments instead of some case-by-case discussions in
the author’s original manusecript.

The author has also determined the automorphisms of the irreducible affine
Weyl groups (i.e. the irreducible Coxeter groups of euclidean type), which will
appear elsewhere.

Notations:
{oenen } the set ««---
(CEEEE » the ordered set of -----
<D : the subgroup generated by ----.
Co(x) : the centralizer of an element z in a group G.

Z(&) : the center of G.
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G| . the order of a group G.

involution : an element of order two.

Za . the cyelic group of order n.

D, : the dihedral group of order =.

S. : the symmetric group of degree n.

Aut(GG) : the sutomorphism group of G.

Inn (G) : the inner automorphism group of G.

Wy : the inner automorphism induced by g, i.e. !9 =gzrg™*

Out (@)= Aut {(GY/Inn (G): the outer automorphism group of G.
- is isomorphie to ---.

T~y : the elements z and y are conjugate.

¥y 1 the elements z and y are not conjugate.

Table 1. The Automorphism Group of Weyl Groups (for the notations, see
the explanatmns on pages 273 and 274).

typg of W W Z(W) Out (W) case
2 1 n=1
An (n321) (n+1)! 1 1 722 and n:£b
2 Zg n=2
Cre= By (n322) 2n.m} 2 Z, % : odd
2 ZoX Zs n:even >4
2 Zo X Sg n=4
Dy (n24) 2n--1.p! 1 1 n: odd
2 ZyxX Z,y n:even >6
G2 12 2 Z,
F A 1152 2 Dy
IoR 51840 1 1
o 2903040 2 1
Ey 696729600 2 Z;
H; 120 2 Zs
H, 14400 2 ZsX Zs
I:(p) 2p 2 see Appendix 2 p:even
1 p:odd

§1. Weyl groups.

Let @ be a reduced irreducible root system in the n-dimensional euclidean
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vector space [1]. The reduced irreducible root systems in R" are completely
classified, i.e. these are of type A, (n>1), B. n>2), C. (n>2), D (n>4), E.
(n=6, 17, 8), G. and F. (see Bourbaki [1] Chap. VI). The explicit descriptions of
these root systems are given also in [1] pages 250-275.

Let us recall some definitions:
2, @

ro=the reflection mapping of R” onto itself defined by r.(z)=a— (o, @
@, (X

a€R* xz€ R»,
W{d)=the Weyl group associated with @, ie. “={r. a€®>. (Sometimes we
denote it by W for brevity.)
@, az, ---, ay=the base of @ given in [1] pages 250-275. (cf. Figure 1 in Ap-
pendix 1 of this note)
We call n the rank of W.

ProPOSITION 1 ([1] Chap. VI, Théoréme 2). Set S={ra, Tuy -, Ta,}, then
(W@, S) is a Coxeter group. That is to say, W(®) is the group gemerated

’

by the elements {ra,, Tuy, - -+, 7a,} with the following defining relations (&);
i :rii:l
(Pag, Taj)m4i=1, 1£], where mi;j=2 if (ai,a,-):?

®

A~ N
mi;=3 if (m,aj):%“ﬂ', mij==4 if (ai,q;) “(?;-"

 and mi;=6 if (“@Yj):‘%;-i.
(Sometimes we denote r., by r: for brevity.)

REMARK. The Weyl group of type B. is isomorphic to the Weyl group of
type C..

PROPOSITION 2 (see for example [1] or [2]). Z(W)={1}, if W is of type A.
(n>2), Da (n: odd) or Ee. Z(W)={l,2}, &f W is of type Cn (=B.), D. (n:
even), Gz or Fi, where z=(r. 12 -+ )2£1 and b is the Cozeter number.

DEFINITION 1. We say that the ordered subset ((zi, 2z, ---, %.)) of 7 ele-
ments of W is a canonical generator system if (1) {xi, 22, -+, 2>=W and
(2) all the relations (¥) are satisfied by =, 2, ---, 2. when the 7., are replaced
by xi, 1=1, 2, ---, n respectively.

PrROPOSITION 3. There is a bijective map between the set of canonical gener-
ator systems of W and the set of automorphisms of W.

The proof is trivial.

Hence, in order to enumerate the automorphisms of W, we have only to
determine all the canonical generator systems of W.
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The Weyl groups of rank one or two are isomorphic to Z: or dihedral
groups respectively, so in these cases it is a very easy task to determine the
automorphisms of those groups; this will be done in Appendix 2.

Thus, from now on, we always assume that W is irreducible and that the
rank of W is more than 2, unless the contrary is stated. However some of
the propositions hold for W which are non-irreducible or of rank no more than 2.

§2. Construction of certain automorphisms and the centralizers of involutions

in W,
Let ((x, @z, ---, 22)) be a ecanonical generator system of W. Clearly we
have (1) Cw(z)~:Cw(r:) for every 1:=1,2, ---, n, and (2) 2i~x; if and only if

ri~7,;. Further we recall the following

ProrositioN 4 ([1] Chap. VI, Proposition 8). Omne has ri~7r; +f and only if
there exists a sequence v, r¥, .. @ of eglements of S such that r:i—=r9, »;
s gnd it ortb ogre all of odd order for t=0,1, .-+, ¢g—1 (¢f. Figure I in
Appendix 1).

ProprosiTioN A. (i) The following maps o; defined on S really induce
automorphisms of W. (See Figure I in Appendiz.) Note that z 18 the element
of Z(W) such that 2:/1 and z=+(r;-rs- - - 7r)V

1) «1-the identity automorphism of W, i.e. rP==r; for all i—1,2, ---, n.

2y W oof type Cun; va:vPz22r (1221, 2, -+, m—1), ral=1r,.

3) W oof type Co (n=even); o3:vP=zr; for all 1=1,2, ---, n. 6.1 7H%=r:
(2751, 2, -, m - 1), ratezzra.

4) W of type Do (neeven); oo rd=zr; for all 11,2, -+, n.

B) W of type Fu; o2 rP=zri for all i==1,2,3,4. o5 7Pry, rP=ry, rP=
2P, Ti2re. as Tiear, riteezrs, riters, itz

6) W of type Ey; os:rPz2rs for all 11,2, -, 8.

(ii) The set of all o; of a W listed in (i) forms a group (subgroup of
Aut (W) which s isomorphic to the following groups: (@) 1 when W is of
type A (n4:5), Du (n=-0dd), Es or E:; (8) Z: when W 1s of type Cu (n=—odd),
D, (noeven) or By, (V) Z:XZ: when W is of type Ca (n=cven) or F..

(iit) When W is of type As, there exists a non trivial outer autmorphism
os which transforms every transposition of Se (identified with W) into an
element of three 2-cycles. ([1] Chap. 4, §1, Exercise 6.)

(iv) o; 18 inner, if and only if 7=1.

Proor. (i) Obvious, since every ((vV, r¥, ---, rs%)) becomes a cononical
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generator system. (ii) Immediate by the direct calculations. (iv) Immediate
by considering the eigen-values of the natural representation in R” of 7€ S
and 7¥ (since we are always assuming that the rank of W is more than 2).

We denote by k, the number of all the automorphisms ¢; of W listed in
Proposition A.

PROPOSITION 5. Let (&1, @2, -+ -, T2)) be @ canonical generator system of W.
Then there exists an automorphism ¢; (1< j<ky) listed in Proposition A such
that xi~7¥ hold for all i=1, ---, n.

Proor. 1) W is of type A.: We first prove that, if Cw(x)=Cw(r1) holds for
an involution z in W, then z~7, or n=5 and z~7{%. Let the cycle type of
# in Sas1 be (L)*+-2%(2)%, and let x7¢7: and 27 (if n=5). Thus k>2 since 7
is of type k=1. Let k=2 (thus n>38), then |Cw(r))|=|Cw(x)| implies (n—-1{n—2)
=4, since |Cw(r)|=2-(n+1—2k)! and |Cw(z)|==2%-kl(n+1-2k)!, a contradiction.
Let k=3 (thus n36, since if k=38, n=5 then x~7), then |Cw(r)i=|Cy(x) im-
plies (n—1)(n—2)(n—3)(n—4)=22-3!, a contradiction. Let k>4 (thus n2T), then,
using [1-m!<{d+m)! (1>0, m>0) and 21l (I>0), |Cw(ryl=2* k! -(n+1—2k)!
€2.922.22.9%-5. (g +1—k)! <2(n—1)(n—2) 25 . (n+1—k)<2(n—1)(n~2)- (k—4! (n+
1k <2n—1(n—2)- (n—38)1 =2-(n—1)!=|Cw(r1)}, a contradiction. Proposition 4,
together with the remark preceding Proposition 4, shows that the assertion of
the proposition is true for type A..

2) W is of type C.: We can naturally regard the group W as the group
of all the monomial matrices of degree m whose non-zero coefficients are all 1
or —1. Let z be an involution in W, then by choosing a suitable element
y€ W, we have

10 k 2X2matrices

ylzy= 1~\l , for some k, I, m
1
_1\n

such that 2k+Il+m=n. Especially ri is of type k=1, l=n—2, m=0, 2r: is of
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type k—1, -0, m:=-m -2, 7y is of type k0, l==n--1, m=1 and zr, iz of type
k), 11, men-1. [Celrol=2%(n-2, [Cwlrdi=2"{n—1)! and |Cw(z) =
27-F1-1t-m!. Let Cw(x)=Cw(r.) hold for an involution z in W, and let z+r.
and gxe2r, (thus k.1, or k-0, [<n-—1, m>1, or k=0, I>1, m<n—1). Then
we have immediately |Cw(x)| <|Cw(r.)], a contradiction. Let Cw(z)=2Cw(r,) hold
for an involution x, and let z7r; and xzr; (thus k=1, or k=1, [>0, or k=1,
m>0). Let k-0, then [Cyw(x)|- ICw(r)| holds if and only if m=3 and I=5, or
m b and 1+ 3 (thus n: 8). But in this exceptional case, Cw(z) has an element
of order 15, while Cw(r)) has no element of order 15, a contradiction. Let k=
1, then [Cw(x)l- 27-1'-m! <2 (L m)! =27 (n—2) == 1Cw(r)i, a contradiction. Let
k 2 (thus n° 4). Let n::5. Then |Cw(x)] ~2%-2-11-m! 72" 2 -+m)!-=2"-2. (n—4)!
<2%2-(n- 2)!, a contradietion. Let k-2 and n==4. Then |Z(Cw(x))| =4, while
[Z(Cw(r))]- 8, a contradiction. Let k3. Then [Cw(x)|=2"k!-1l-m! <2 (k+1
Fm)l- 20 (n -3 <2 (n--2)! - |Cw(ry)|, a contradiction. Proposition 4, together
with the remark preceding Proposition 4, shows that there occur only the fol-
lowing four cases, (i) @i~ and @,~7., (ii) x1~2zr and Tn~r., (i) z1~7r; and
Lu~2Tn, (V) Zi~zr: and Tu~27ra.

We remark that there exist three normal subgroups of index 2 in W. The
first (we denote it by W.)is the kernel of the linear representations of W such
that ri—1 (11,2, ---, n—1), r.—>-1. The second is the kernel of the linear
representation such that ri—»--1 (i=1,2, ---, n—1), r.—1. The third (we de-
note it by Wi) is the kernel of the linear representation such that ri-—1 (4=
L2, -, 0D, rao>—1L

Let n be odd. Then the case (iil) is impossible, because if the case (iii) holds,
by Proposition 4 all the x; (=21, ---, ») are contained in Wi.. Also the case
(iv) is impossible, because if the case (iv) holds, by Proposition 4 all z: (=1,
--«, n) are contained in Wi Thus the assertion of the proposition is true for
type C..

3) Wis of type D,: We can naturally regard W as the subgroup Wi of
the Weyl group of type C. (we denote the Weyl group of type C. by ¥ only
in this subsection 3)). Thus W is identified with the group consisting of all
the monomial matrices of degree n whose non-zero entries are all 1 or —1 and
the number of whose (--1)-entries are even. Let z be an involution of W.
Then choosing a suitable y€ W, we have either
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yley= l\l , for some k, I, m

ylzy= or  ylazy-

In ease (i) we have |CW(95)|7‘:-;:']CQS($)!, and in case (ii) we have |Cw(z)|:=:

ICus(@)l.  All the same argument as in 2) shows that, if Cw(z)=2Cw(r) holds
for an involution @, then z~r, or n=even and x~zr.. Proposition 4, together
with the remark preceding Proposition 4, shows that the assertion of the pro-
position is true for type D..

4) Wis of type Fu: It is easily checked by making use of the determi-
nation of the conjugacy classes (or the character table) of the Weyl group of
type Fy in [6], that, if |Cw(2)|=2|Cw(r)| holds for an involution z in W, then
either x~7 or z~2zr; or £~7, or x~2r:. Proposition 4, together with the re-
mark preceding Proposition 4, and the same argument as in the case of type
C» (n=0dd) in 2) show that the assertion of the proposition is true for type Fi.

5) W is of type E. (n=6,7,8): It is easily checked by making use of
the determination of the conjugacy classes (or the character tables) of the
Weyl groups of type E. (=6, 7, 8) in (4], [5] or [3], that, if 1Cw (@) 22 Cw ()]
holds for an involution z in W of type Es, then z~w;, and that, if Cw(2)=Cw(r)
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holds for an involution z in W of type E: or Es, then z~7 or z~zr:.. But
when W is of type I:, zi~2zr: ig impossible, otherwise Proposition 4 and the
remark preceding Proposition 4 show that all z: (4=1, ---, n) are contained in
the proper subgroup of index 2 in W (i.e. in the even subgroup of W), a con-
tradiction. Proposition 4, together with the remark preceding Proposition 4,
shows that the assertion of the proposition is true for type E., g.e.d.

ReEMARK.Y One ean also treat the cases W=W(F,), W=W(E.,) by comput-
ing the number of elements in the conjugacy class containing the given in-
volution z, exploiting the fact that z is a product of mutually commuting re-
flections.

§3. Estimation of the upper bound of |{Out(W)I.

DEFINITION 2. We say that a canonical generator system ((zi, @2, - -+, Za))
is admissible when z:;~7; hold for all i+:1,2, ---, n.

In the preceding section we proved that every canonical generator system
i3 transformed onto an admissible canonical generator system by some o7' (17
< lew).

We denote by @ the set of non-oriented roots, i.e. the set obtained from @
by identifying a and —-a, a€®.

DEFINITION 3. We say that the ordered subset ((8: B2, -, Ba)) of n ele-
ments of # is a (x)-system, if the following two conditions are satisfied; (1)
Bs#F;, if 14, (2) |cos (ﬁz/‘:l’j)lmcos =

, if 17,
s
W acts on the set of (x)-systems.

L)

Let x€ W and x~7:, for some r€S. Then there exists a unique &€®
such that z=7. Set ¢(x)--a€®. Thus we have the map & from the set of
admissible canonical generator systems to the set of (x)-systems. Clearly this

b We illustrate the method for W(Es). Since all z; (i=1,2, ---, 8 of a canonical
generator system are conjugate by Proposition 4 and the remark preceding Proposi-
tion 4, x; must not be an element of even subgroup. Thus, if z3¢r and %27,
then one of the 2y and zx; must consist of three mutually orthogonal reflections.
Thus we have only to prove that, if 2 is an involution which consists of three mutu-
ally orthogonal reflections, then [Cw(x)l+#|Cw(r1)}=120. In the set ¢ of non-oriented
roots, we consider the subset 5;, 5, Ss such that (5, 8i)=n/2 (i#j). An explicit
caleulation shows that W is transitive on the set of all the sets {5;, 82, Bs} of above
type, and that there exist more than 120 such sets which contain the fixed non-
oriented root fo (e.g. So=d;). But, for the two such sets {Bo, 51, B2} and {Bs, Bs, Bal,
T8 7B TBy= TRy T8y 78, if and only if the subspaces RS +RpB: and Rps+ RS, coincide.
Furthermore R3;+RB:=RpB:s+RB,, if and only if {31, Bo}={8s, 8.}, since all roots have
the same length. Thus the assertion is true.
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map ¢ is injeetive. ¢ is also surjective as we shall see later in the proof of
Proposition 6.

DEFINITION 4. We say that an automorphism of W is a particular aute-
morphism when it stabilizes the subset S. An outer particular automorphism
is the automorphism which is particular and outer.

Let p: (=the identity automorphism), 2, ---, Ps, Prsr, ---, pt be all the
particular automorphisms of W among which p:, ---, pa are outer and pa:i,
-+-, p1 are inner. {See Figure I in Appendix 1.)

In the following we put h=hw, l=lv.

ProprosiTION B. Suppose that the group W admits a non-trivial particular
automorphism which is inner. Then Z(W)=1. Conversely, if Z(W)=1, then
every particular automorphism of W is inner. More precisely, we have (i)
hw=ly=1, when W is of type C. (n>3), E: or Es. (i) hw=1 and lwr=2, when
W is of type Ax, Es or D. (n=odd). Qi) hw=Ilw—2, when W is of type D.
(n=even>6) or Fi. (V) hw=Ilw=6, when W is of type D. (See Figure IL.).

Proor. Ilw is equal to the number of automorphisms of the Coxeter dia-
gram, and the number coincides with the value of lw given in the proposition.
(i) Obvious. (ii) The unique non identity particular automorphism p: of W isinner,
gince  Pr=t((Ta¥nor - T2 o ToetTa)(Troz o Fy v Poa)(Frog = Ts oo Fog) =0+
(’f',n;;},)), when Wisof type A.(n=o0dd); pa=t((rn 71 - Ta){Tnez -+ T3+ Fuz) -
(e, 7n72.)), when W is of type A. (n=even); Pa=1((ri--- Vaaln_1aPa-z - T1)
(Fo - PoiPuluet - P)(Ts o o+ FrorPalucs o=+ 73) + -+ (Puya)), when W is of type
D. (n=o0dd); pa=i{(rsrsrra?irars?sre)(rsrers7ars)(rs)(ra,)), Where ¢ is the highest
root, when W is of type K. (ili) and (iv)® We have only to prove that, if
Z(W)+1, then every non-trivial particular automorphism of W iz outer. Let a
non-trivial particular automorphism p be inner. Then there exists a w€ W such
that wriw t=r.; for 1==1,2, -.-,n, where v is a permutation of 1,2, ---, n.
Thus w(a:)==¢r,;, where =1 or —1, and we see that from the connectedness
of the Dynkin diagram that ¢ is independent of the ¢’s. If =1, then w=1
({1] Chap. IV n°1.5)). If e=—1 and {Z(W)|+#1, then w-=2, since the element
we W such that wlay, -+, an}=—{ai, - -, @} 18 unique and z(a:)==—a: (1741 n)
{[1}). This contradicts the assumption that p is non-trivial, q.e.d.

PROPOSITION 6. For every admissible canonical generator system ((x:, %z, « - -,
2)) of W, there exist an inner automorphism (w) and an identity or outer
particular automorphism p. A Lu<hw) of W such that ({2 Pe, 520 Py, - .-,

2 This unified proof is due to Iwahori.
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xn“"’)‘?"))L "‘((Th (TR 7'/;)).

To prove the proposition we use the following

LEMMA.® Let the subset {5, fpz, --+, B}l of © satisfy the relations (5:, 35/
VB, BBs, B las, a) )V e, ai)(a, a5) for all i, 7-21,2, - -+, n. Then there exists
a we W such that the set %, fu, - - -, 5a*} is equal to the set {ay, az, -+ -, an}.

Proor or LEMMA. Since £i, 5, -, 5 are linearly independent in R* and
2(B:, B)/(B;, 37 are non positive integers for all 4, j=:1,2, ---, n, 17, there exists
a unique root system @, in R* with fi, 5, -, B a3 its base. Furthermore,
By fw(B); welrs, va, oo, re>, 1001, 2, -+, m). We have 9D, From our as-

e

D

sumption the angle ﬁi\ﬁj is equal to the angle a{,\a;. Hence the Dynkin diagram
of ((Bi, -+, 5)) coincides with that of ((ay, -+, @) or of (e, -+, @)
(where ar o (firj > Therefore, ¥ and ¥ consist of the same number of roots.
Thus we have (1)' -thy. Hence there must exist w€ W such that {5”, f*, ---, 5."}=
[, e, -+, e}, q.e.d.

PRrROOF OF PROPOSITION 6. The ordered subset ((o(z;), ¢(&2), -- -, () of @
becomes a (x)-system. We can choose 7: €% such that ¢(x:))=7; for every i=1,
2, ---,m, so that the relations (s, 75)/V (s, T, 75) =(as, a))/v/ (s, ai)(aj, a;) may
hold for all 4, 5==1,2, ---,n. This is indeed possible since every Coxeter diagram
associated with W is a tree. Owing to the lemma, there exists a we W such
that {1®, 7e®, - -+, Tu"b={ay, ey, -+ -, @}, The assertion of the proposition is obvious
from the fact that x-=7r. if and only if 2™ = 1ry.

From Proposition 5, we can choose for every canonical generator system
(@, 22, -+, @) of W oa o; Q<g<kw), an i(w) and a p. A<u<hw) such that

-1 ., i P 1
((o45 B Pu oy Py g 0 S Py e (7 e, -+ -, 7). Thus we have

ProrosiTion 7. [Out (W) Zkw -hw .

§4. Main Theorem.

THEOREM. The kw-hw automorphisms {pu-o} (u=1,2,---, hw and j=1,2, - - -,
kw) of W are all distinet modulo Inn (W). Thus |Out (W)|=kw-hw. Further-

Z:, when W is of type As, Cn (n=0dd) or Es; Out(W)=2Z,xZ,, when W is of
type Cn (n=even) or D. (n=even>86); Out (W)=Z. X Sy==D., when W 1is of type
D Out (W)==Ds, when W is of type F..

8 The author has learned the lemma from Yokonuma. The proof given here is due to
Iwahori. In the original manuscript the author proved the counterpart of the lemma
by explicit caleulations for each type.
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Proor. The assertion is obvious when Jur—1 by Proposition A. When W
is of type D, (n=even ™ 86), {pu-o;} (u=1,2 and 7-1,2) from a group (subgroup
of Aut(W)) isomorphic to Z:X Z,, since p:-v2-292- p2. Now if p.-¢; is inner, one
has u::1 and j==1, so the assertion is true. When W is of type Fi, {p«-v;}
(u=1,2 and 7==1,2,3,4) form a group isomorphic to D, since p:-os v: pn,
Pz-G3==04- P2 and Pe-os=03-pa. Moreover, if p.-o; i3 inner, we have w--1 and j7--1,
s0 the assertion is true. When W is of type Di, {p.-oi} (v=1,23,4,5,6 and
7-=1,2) form a group isomorphic to Z: < S=2D,., since p.-a;:=0;-py for all # and
j. Now if p.-0; is inner, one has uw-=1 and j7=-1, hence the assertion is true,
g.e.d.

Appendix 1. Coxeter diagram associated with W and the description of
some automorphisms of W.

Figure 1.
(L i & ) (A.),
7y T T 1 Tu
@ o O O (Cw),
T3 T Tt T

rP=ry (1=1,2, -+, n).

Ty 7

(D")’

?. "

rl=r; (15=1,2, -, n—2), Thi, =¥, ri2:=74.1; further
1Py, ri3=ry, Py, iy,
rit=ra, I8y, =y, iy,
ISy, rI0=ry, YV, TR,

P P, P
rit=ry, rit=ry, vy, ity

for n=4.
6
) o0 (Ga).
T Ta
6)) (O g e g | (Fy),
(8! T T3 74

=1k (1=1,2,8,4).
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®) O O O O O (E).
T 73 s s s
72

rlunrs, rheosry, vhenrs, rlrer,, vl rli=ry.

¢ O O O O O -0 (EY).
T T3 4 Ts Te T
T2
(8 O O <O O O O O (Ey).
71 3 T4 5 s T 73

Appendix 2. Automorphisms of Coxeter groups of type Ip), H: and H,
(see Fig. II).

(1) W is of type I(p). (W is the dihedral group of order 2».)
(i) p-—odd. There exist ¢(p)/2 (where ¢ is the Euler funetion) canonical gener-
ator systems:

(P1, P2y -0 TPy - TATR), (k, p)=1, k<p/2.

k 7‘::'8
Set Gt Ty, PRy e P T - T
k ;;’s
Then {ox; (e, p)==1, k= p/2} form complete left coset representatives of Aut (W)/

Inn (W). Further Out (W)==Z,,.
(i) p-reven>4. There exist ¢(p) canonical generator systems:

(Fe, 1ery - P - are), (6, p)=1, k<p/2,

k—1 ., k-1 _,
,

2 2 8 2 728
and (7o, T4Tz -+ PATLPITTy - - - T2Y), (K, p=1, k<p/t.
-1 ., k-1 _,

Tz 8 T2 8
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Set G, rF=ry Y=L e - T2,
k
k—1 k—1
r2’s 72’8
2 2
PREE SLET SN S ST SR Y ST T Y SU o S
< .
KMol g K=l
2 . 2 .

Then {o,, 0,7; (k, p)=1, k<<p/2, (¥, p)=1, k' < p/2} form complete left coset repre-
sentatives of Aut (W)/Inn(W). Further Out (W)=Z> X Zsip 2.

2y W is of type Hs or H,.

Set a; (¢==1,2,3,4) € R as follows: ai;=(c"', —1,0,7), «2=(0,2,0,0), as=
©, 1, —7, —r1 and a:=(0,0,2,0), where t=(v5+1)/2. Then ((r‘/,\(re)z:?zs—:,

- N A AN -

N ) A
(alr a’3):_12&—-’ (“1’ 6(4) :—11 (az, a3):%“5 ((l'g, 0’4) ) (Ci’a, (}.'.;) 1;':;“.?. (Ffom now on,

we denote 7., by 7 ?or brevity.)

Set W(Hs)=<{rs, 73, 7s> and W(H.)={ry, 72, s, 15>, Then (W(Hy), {re, 13, 74})
and (W(H,), {71, 72, 13, 74}) are Coxeter groups of order 120 and 14400 respectively.
W(H:) contains 15 reflections which are reflections with respect to the following

0o

30 vectors: 6 vectors which are permutations of (42, 0,0), 24 vectors which are
even permutations of (+1, #:¢, oY), W(H.,) contains 60 reflections which are
reflections with respect to the following 120 vectors: 8 vectors which are per-
mutations of (+2,0,0,0), 16 vectors (&1, &1, £1, :£1), 96 vectors which are
even permutations of (0, +1, +7z, 1), Set a/=(r, ~1,7°1,0), a’=a2, a3’ =a;
and a,/’=(0,0,0,2). Note that (aa/’,\ m’)::~§~n'. (We denote r:/=7., for brevity.)

(1) The ((r,rs, 7)) 18 a canonical generator system of W(H;), and the
map » such that ri=ry (4==2, 3, 4) is indeed an outer automorphism of W(Hy),
beeause the eigenvalues of r3-7s and rs’-7/ are different. A similar argument
in the previous sections shows (together with a little calculation) that every
canonical generator system of W(H3) is transformed by an inner automorphism
onto ((re, 73, 74)) or (v, ry', ). Thus we have Out (W)=Z..

(ii) The ((r/, v, s/, r)) is a canonical generator system of W{(H,), and the
map p such that #i=». (1==1, 2, 8, 4) is indeed an outer automorphism of W(H.).
The map o2:7r;:~2r: (1=1, 2, 3, 4) induces an outer automorphism of W(H.), where
2@)=—r, x€ R* and z=(ri7ersrs)!®. A similar argument in the previous sections
shows (together with a little calculation) that every canonical generator system
of W(H,) is transformed by an inner automorphism, or by an inner automorphism
and oz, onto either ((ry, 72, 73, 7)) or ((#/, v/, rs', r)). Thus we have Out (W):=
Z2 %X Z>.
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Figure 1I.
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Thus we can easily accomplish Table 1.

(Ha).
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