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Introduction

Let K be a division ring and K. the total matrix ring of degree n over K.
As is easily observed, every maximal left ideal of the ring K. is of dimension
n?-—n regarded as a left K-module of K., is singular in the sense that it con-
sists only of non-invertible matrices and is maximal with respect to being a
singular left K-submodule of K.. On the other hand, F being a field of charac-
teristic 0, T. Sato proved (cf. [2]) that, except for the special linear Lie algebra
8l(n, F'), there is no proper Lie subalgebra of the general linear Lie algebra
gl(n, F') of degree n over F' which has the dimension larger than n*~n--1.

Based upon these circumstances, Prof. N. Iwahori raised a conjecture that
there is no singular K-submodule of K. of dimension larger than n®*—n, further
the singular K-submodules attaining the maximal dimension n®—n are given as
maximal (one-sided) ideals of the ring K.. The purpose of this paper is to
prove this conjecture. By Wedderburn’s structure-theorem, every simple ring
is isomorphic to a ring K. for a certain division ring K and a positive integer
7, so our result may have a ring-theoretical interest to some extent.

As a tool for the proof, we introduce a notion of an MM-stance for a left
K-module I of K.. This is an intrinsic version of the well-known procedure
in linear algebra to reduce a matrix over K to a so-called specified echellon type

/001*...*0*.*0*\

by elementary row-operations. A somewhat combinatorial operation on an M-
stance plays an essential rdle for the investigation of the generic form of the
matrices in M.

I would like to express my sincere gratitude to Prof. N. Iwahori for his in-
valuable advices and suggestions.
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1. Pi-stance

Let K be a division ring, I a set of indices, K’ the left K-module of all
mappings a@: I->K and M a finite dimensional left K-submodule of K!. Let e:
denote for each kel the mapping eii)=6w(i€I). For each subset JoI we
denote by =z, an endomorphism of K’, or rather a projection, such that

b = %a(j) e; (for every ac K7).
4

Definition of Stance. A stance of M, or an M-stance, is a pair (J, ¢) of a
non-empty subset J<I and a mapping (an injection in fact) ¢: J—>M which
satisfies the following eonditions:

B M= 3 Kelh),

Jes

il) m,e(f)==e; (for every jeJ).

As one can see easily, the defining properties can be re-stated in the fol-
lowing way:

1 |J=dime,

i)’ Supp (p(f)—e)NnJd=@ (for every jeJ),
where |J] denotes the cardinal number of the set J and Supp (@) the support of
the mapping a(i.e., Supp (a@)={i€ Ia(?)+0}).

If (J,%) is an M-stance and LcJ, then (L, ¢|L) is a stance for the K-
submodule J%‘LK”(J')‘

If (J, ¢) is a stance of M, then the elements ¢(j) (jeJ) of K/ are linearly
independent and form a basis for the K-module M, which we call the basis as-
sociated with the stance (J, ¢). In terms of the basis, every element ac 9 can
be exhibited uniquely as a::j};Ja(j) (5. Accordingly, the equality =sa=x/b
implies a-=b provided that aed and beM. Thus, if (J, ¢) and (J, ¢) are two
IN-stances with the same .J, then we have ¢(j)=¢(5) for all je.J and conse-
quently ¢=-¢>, that is, the mapping ¢ and the associated basis {¢(j)};es are uni-
quely determined by the set J. So we may call J by itself a stance of .

A set JCI can be taken to be an MM-stance if and only if the restriction
a+— alJ is an isomorphism of M onto K.

If a system {b,},c¢ of elements b,e K’ satisfies the condition

Supp (b)) — U Supp (b,)= @ (for every qe @),
PG
PEQ

then we call it quasi-disjoint. The associated basis is obviously quasi-disjoint.
Conversely, any quasi-disjoint system {b,ece, With a slight modification, ean be
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taken to be an associated basis for the K-module MN:== 3} Kb, generated by the
q€EQ

system. Exactly speaking, there exists an "M-stance (J, ¢) with the associated

basis {3 b¢}sce for suitable scalars 5,€ K (g€ Q). To observe this, we select an

index j, arbitrarily out of each non-empty set Supp (b))~ U Supp(b,) and bring
pkg

PEQ
them together to a set J=={j,}ieq. If we put Se=(b,(4o))* and o(f)=5 b, for

each g€ @, the pair (J, ¢) satisfies our demand.

Every subset of a quasi-disjoint system is also quasi-disjoint.

ProposITION 1.1 (Existence of Stance). Ewvery finite dimensional K-submod-
ule M=={0} of K7 admits a stance.

Qur assertion is trivial in case of dimxM=1, so we suppose that M=REKa
is a direct sum of two K-submodules 9t and Ka and that " admits a stance
(L, ¢). Then the element b=a— %La(l) (1) belongs to M and not to N and
satisfies the relation =z:b=0. Since b+0, there exists an index jo€ I such that
b(j0)#0. Obviously jo€ L.

Now, let us define a stance (J, ¢) for the K-module M. We put

J=LU{je},
e)=d)—(@ANF)B(F) ' b (for every e L),
(Go)=®B(j) b

Clearly ¢ maps the set J into W and we obtain

zrol)={(rxr+mj,) o(l)
=21, (1) —75( D — (D)) B( o)) 1 b)
=g {for every le L)
and

7y @(Jo)=(L+5)(B(7) " b=(b(40)) " 75, b=ej, .

Thus the pair (J, ¢) is indeed a stance for M.

From above, we have obtained also that, if TCIN are two finite dimensional
K-submodules, then every MN-stance L can be extended to an N-stance J.

Conversely, if ({0}==)RcM are two finite dimensional K-submodules of K7,
then, for every M-stance J, there exists an MN-stance L J.

In fact, then, the restriction s;: a+~>alJ is an isomorphism of M onto K7
and the set py(M) is a K-submodule of K’. Hence, there exists a stance LcJ
for o,(M) so that the restriction pl: b b|L is an isomorphism of p,(M) onto K%,
Thus the restriction pr=plop;: a—alL is an isomorphism of N onto K* and L
is indeed a stance for .
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More generally, we can prove that, if M=N:FEN. is a direct sum of two
non-zero K-submodules M: and 9:, then, for every M-stance J, there exist an M;-
stance L; and an t-stance L: such that J=L;UL; (necessarily a direct union).
The proof is complicated a little and is omitted.

The next proposition plays the most essential rble in this paper.

ProprosITION 1.2 (Change of Stance). Let (J, ¢) be an M-stance. If o(Jo)(ko)
+#0 for joeJ and koe I—J, that is, 1f ko€ Supp (¢(Fo))—~{Jjo}, then we get a new
stance for M by replacing J by the set (JU {ko})—{Jo}.

Put M= 3 K¢(j) and b=¢(jo), then the set L=J—{jo} plays a rdle of a

J#ig
stance for ?I]:I;d 7.b=0, b(ko)+0. So the argument carried out in the proof of
the proposition 1.1. proves this proposition.
Permutation of I and Automorphism of K’. Let o be a permutation of
I (i.e. a bijection I-»I). The permutation ¢ induces an automorphism a~aos™*
of the module K’, which we denote by the same symbol ¢, i.e.,

ga=aco"t (for every a€ K7%).
In particular, we have
g€i==€siy, Tog=0onyo0~t (for every J<I).

If Pt is a K-submodule of K/, then ¢ll={calaeM} is also a K-submodule
of K7 and ¢ is an isomorphism between the two.

If (J, ) be an M-stance, then (oJ, oopeo~t) can be taken to be a stance for
oM={valac}.

In fact, mos((go@oo™)(a())=(gors00  0gopoa  oa)(J)=0(ns¢(]))=0(€;)=€ry; for
every o{f)€o(J) andm%ﬂK(aogaoa“‘)(a(j)):: EZJ Ko(o(5) =M.

Let I=1,2, ---,n and let us represent the element @€ K’ by the column

a(l)
then cae K is to be represented by the column

L]

a(n)

(@a)XD| [l | a()

. . 3\50*1“;.1; ’
(ea)(n) a(o™(n)) a(n)
where (6o-1i.1) is a permutation-matrix whose (i, k)-entries are 8.~1¢.x Con-
sequently, if J is a stance of a K-module IR consisting of columns (resp. rows)
of length =, then ¢J is a stance for the K-module SM (resp. MT) for a suitable
permutation-matrix S (resp. T).
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From now on, let 2 be a set of n elements {1, 2, --+, n} and I the Cartesian
product £x02={(@, k)i, k€ 2}. Let us denote by Kn=K’=K?*? the total matrix
ring of degree n over a division ring X and by 9 a left K-submodule of K..

Here we consider permutations of I=02x® of type #=o¢Xt only, where «
and t are permutations of 2 and (¢x2)(i, k)=(o(5), =(k)) for (i, k)e 2x 0.

The permutation pg=¢xrt induces a permutation of rows and columns in
themselves of matrices in K.:

A=(ai i) = pA= (@1~ 11y} ,

which is realized by means of a both-sided multiplication by the two permuta-
tion-matrices S and T above mentioned:

#A=SAT (for all AcK.).

Thus, if J is a stance of a K-submodule 9 of K., then uJ=(sx7)J is a
stance for the K-submodule ST which is isomorphic to M.
For the convenience in the sequel, we put for i€ and ke 2,

JI={i} x 2 (the i-th row),
I.=02x{k} (the k-th collumn),
QO={4, 7-+1, - -, n},

T=0wx QW |

A:zeua {x29={(1, k)e Ox2\i<k}.

If Z=6x7 is a permutation of the set I®, then there exists one and only
one permutation pg=oxr of 2% which extends /== 7 and necessarily leaves
I and Iy invariant (.e., p-if=1I, p-Li==I).

We note also that (ox2)il=,wI, (6% 2) =T,

For the K-submodule I of K., the defining conditions of the Yi-stance
(J, ¢©) are as follows:

D M= 3 Ko, k),

{i,k} €T
i) e, k)=FEi: (for every (1, kyeJ),
where E: . denotes the matrix whose (7, k)-entry only is non-zero and equal to
1 and =; the projection of K. such that

A= 3 aixFEix for A=(ai)e K.

(i,k)€ET
As to the set &, let us observe the following: if tpd=FE== i}l E;: (the unit

matrix) (if in general rpA=diag(m, az, - -+, as) for which aya; - - - an£0), then
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the matrix A is surely invertible. In particular, if an M-stance J includes the

set <., then in M there exists an invertible matrix 3 o(4, 7).
FEES

2. Singular submodule

We shall call a2 K-submodule M of the total matrix ring K. over K to be
stngular if it consists only of non-invertible matrices. If a K-submodule M is
singular, then gt also is singular for any permutation p=vxc of 2x 2.

LeMMA 2.1, Let J be a subset of 2% 2 with {J|=n*—n-+1, then there exists
a permutation p:coxz of Q<2 such that pJ=> .

We utilize the induction on n. The case of n==1 is trivial. We can assume
JE2 0,

Since J= i@l (JINil) = A'Ql (JNIx) are disjoint unions, we have
w1122 0= 8 TN L nt-nt1=nn—1)+1.
Therefore, there exist indices 4 and k: such that
[adl=n, |JOLj<n—-1.
Let us take the transpositions oi=(1, %1} and z:=(1, k) of 2 and define a permu-
tation p==0g:x7y of ¥ 2. Then we have
e IO = Noyapdl=imT N Di=1TNs Il=n, ie., u-J>I
and
- DNV L =10 Ly | <<m—1 .
Now, we have
- I NI® ] g J - GTU T

SR AT TN FaRy ARSI 700 AoV ARSI IIRW Ao 0y o Y
zmEF—nd-D—-n—m—-D+1l=m—-1)2—(n~-1)+1,
which satisfies our hypothesis for n—1. By the assumption of induction, there

exists a permutation Ze==d2 X7, of I®=0% x 0% such that

Al TS U (6} X {4, i1, -+ -, ) .

i=2

Let /4 be the unique extention of 7z and p=mop;, then we obtain the inclusion
relation
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pd=1o(eny ) D pa( I U (- J T2y e po - Y o - I VTR

ST X, i1, e, 1),

which completes the proof.

We can now prove the

THEOREM 2.2. The dimension of any singular left (or right) K-submodule
M of the total matrix ring K. of degree n over a division ring K is at most
ni—n.

Proor. Let M be a singular K-submodule of K. and (J, ¢©) an M-stance.
If we assume dimxM = n®~n-+1, then we must have |J| n*—n-+1 and, by virtue
of the preceding lemma, there exists a permutation p=0¢:<c of €2 such that
pJ O, Since the set uJ is a stance of the K-submodule R, there exists an
invertible matrix in ¢t which is singular. This contradiction proves the theorem.

LEMMA 2.3. Let (J, ¢) be a stance of a singular K-submodule M of K.. I1f
there exists an index (to, ko) €J satisfying the conditions

7yl ¢ (00, Ko)=Eig kg
7,1 90, ©=0 (the zero matrix) (for every (», )€ J—(;,J U Ix,)

(resp. the same conditions for :uko), then we have

Gl U Iy — J [ < (2 —n)—dimgIM) +1 .
In faect, if we assume
G d ULy —J 15 ((nP—n)—dimg D)+ 2,
then we must have

| — G U D) =1 |1 d U Tag) — T |1 L U I

> dim M+ (02— n)—dimg M) +2)-— (2n—1)
=(m--12—(n—1)+1.

By virtue of the lemma 2.1., there exists a permutation p==oxz of 2x£ such
that
a(ig)==1, t{ke)=:1,
II'(J"A(%'DIUIko)):‘:/!‘]_‘(llUIl)j VU( {?/) A {?’r ’L,l, tT %y n} .
Then, (1, 1)==1/(%0, ko) € 1J since (20, ko)€J by hypothesis, and for ¢=ypregep™ we
have
7 @1, D=rpey (pogop™)1, 1)=pm,; 19(to, ko))
:ll(Eio,ko):EoziO). f(kc):El, 1
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and similarly for (p, ¢)e uJ—(GIUIL) we have g,r¢(p, ¢)==0, in particular
.'5'11(;!(7), P)’:O for p=2,3, -+, n

(the notation ¢(p, p) has surely a meaning since (p, p)€ 1tJ). Of course, 7., ¢(p, p)

==Ey.p for every p. In the sequel, if we define a matrix A€M by setting

A= 0,5,

e

then, since ~< JUnJ and TASTAOT fupy = Epo(7 1+ 7ps—7,1°7,), We have
n
2o A=3 Eii=F,
i=1

which implies the existence of an invertible matrix in the singular K-submodule
PR,

COROLLARY 2.4. If there exists an index io€ 2 (resp. ko€ 2) such that i J<J
(resp. I, J), then for any ke 2 (resp. for any i€ 2) we have

[e—J < {(n2—n)—dimsM) +1
(resp. lJI—J[<((R*—n)—dimgM)+1),

provided that M and J are a singular K-submodule of K. and its stance.

Now, we can characterize the singular K-submodule attaining the maximal
dimension.

THEOREM 2.5. Ewvery singular left (or right) K-submodule of the simple
ring K.=K?? of dimension n*—n is a mazimal (one sided) ideal of the ring
K.

PrOOF. Since the permutation pr=¢xr of 2x2 induces the both-sided mul-
tiplication M-—->SMT by fixed permutation-matrices S and T and the statement
in the theorem is not affected by such an operation, we can assume the order
of rows or columns in themselves freely for our convenience.

Let M be a singular left K-submodule of K. of dimension n?—n. The de-
gree n 13 assumed to be 3; for, otherwise, the proof is trivial.

Let (J, ¢) be an M-stance. If J includes a row, for instance the first row
I, then, owing to the corollary 2.4., we have |I;—J|<1 for every column-index

ke. While Lﬁ‘,l | i—dJ = I—J | =n*—(n?—-n)=n, we obtain

(1) {i—J|=1

for all ke 2. Moreover, we can prove for every (4, k)€ J—.I the inclusion rela-
tion
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(2) Supp (¢, Y

provided :JcJ. In fact, if it should be the case that Supp(¢(i, k)3 (p, ¢) with
g=k, then we could take the index (p, ¢) into J in place of (i, k), so that the
new stance (JU{(p, O —{@, &)}, since I,—J={(p, ¢} by (1) and (i,k)€ I, should
include the column I, together with the row :J. This contradicts the equality
(1).

Case 1. We assume first that there exists an M-stance J which includes at
least two rows. For expediency we assume J/cJ and «ICJ. Then, by the re-
mark just stated, the relation (2) holds for every (i, k)€ (J—:I)U(J—=I), that
is, for all (4, k)eJ. Since |Ii—J|=1 on the other hand, we can put

I—J={(i1, 1), (is, 2), -~ -, (Gn, 1)}
={(ik, k)1 k<m}

and
(3) (@, K)=FE; 1+ 5. Eiy.x

for every (i, k)e J={(, k)li==%:}, where {¢(3, k)} is the basis associated with the
stance J. We shall show that we can assume all the 4. identified.

Assume 4,=2. If 4.%%,=2, then, let us consider the matrix ¢(2, 2)=FE;: .-+
Be2Eiy2. When fz:#0 ie. (is, 2)€Supp(¢(2, 2)), we can take (i, 2) into the
stance in place of (2, 2), so that I,—J becomes to be {(2,2)} and 71=1.=2 for
the new stance J. The contrary case, however, does never stand. Because, if
it should be the case that f:.=0 i.e. n5,¢(2, 2)=FE: ., we should obtain the re-
lations

@, 2ed, 7,02, 2=FE;.:,
z1,¢(p, =0 (for every (p, Q)€ J—(IU L))

(cf. (8)), and hence, by the lemma 2.3., {(:IUL)--J!<1. This inequality con-
tradicts the faet {(2, 1), (42, 2} (eI U Ip)—J.

Thus, step by step we reform the stance if necessary, until we obtain a
stance of the form J=I—.I or, what is the same thing, I—J=:I={2} x2. Then
the matrices in the associated basis are expressible in the forms

o, K)=Eix+BirEr (1=1,3,4,---,7m).

We shall show that for every fixed row-index i+#2 all the coefficients
Bir (1<k<n) are identical. This is, however, almost self-evident. Since the
singular K-submodule R contains the matrix
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{ 1 1 o - 0
W [ ,31.1 51‘2 ,33.3 to ,Sn,n
o(1, 1 +el, 2)+ 3 ¢, ) = | 1 0 |,
i3 .
0 -
| 0 1
it must be that %i.=5.2 Similarly 5.5, =/, and we can conclude in
general B =5 200 =2 fia24; for every 1+#2.

Here, all the scalars 4 (1--1, 3,4, ---, n) are contained in the centre C of
the division ring K, because, for instance, the matrix

[1 2 0 -0
PR TR S

O .
\

e

0 1
should be non-invertible as a member of the singular left K-submodule WM for
any Z in K.

Thus, we can write down the generic form of the matrices 4 in M, pro-
vided that there exists an M-stance including at least two rows. It is as fol-

lows:
(4) A= Saireld, B)= 2 3 ain(Ei w2 Ep i)
i¥p k id¥p K
’(E E Z-lEp.q)( 2 2 a’i.kEi,k) s
g¥Ep iFp &

where p is a fixed row-index which we have assumed to be 2 for convenience,
4 (1€ 2, i/-p) are fixed scalars in the centre C of K and ai: are arbitrary
scalars in K.

To complete the proof in this case, we define a matrix @ by setting

Q= 2 (2 By ) +Ey o, (0).

GFp

Since Q(E-%gp/?qE,,,,,)u:E,,p, we have QA::»E,,,;({% %cri.kEi,k):O for all A in
. On the other hand, the set I of all matrices A satisfying Q4=( forms a
proper right ideal of the ring K,. It is at the same time a singular left K-
submodule of K. since Q commutes with every scalar in K. Hence the inclu-
sion relation NI and the maximality of 9N with respect to being a singular
left K-submodule lead the equality M=3. The ideal M is of course maximal

with respect to being a proper right ideal of the ring K.
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In the similar way, we can conclude that M is a maximal left ideal of K.
if there exists an M-stance including at least two columns. In this case, M
consists of all matrices A€ K, satisfying AP=0 for a certain matrix P, where
P, unlike @, does not necessarily commute with all sealars in X (Note that I
is assumed to be a left K-submodule).

Case 2. Secondly, we consider the case that an i-stance J includes one
and only one row or column. If we assume for instance .I<J, then for every

i1 we have [i{[--J|>1. While ilkiIMJ‘iillI"”J!f:37l, all the summands but one

are equal to 1 and the one is eq&r;l to 2. So we can assume for instance that
lil—J1=1 for 1==2, 3, ---, n—1, and |.J—J|=2.

On the other hand, because of JcJ, we have |[i—J|=1 for every column-

index k. Hence we can assume for instance

I-J=(U G 1, ) Ui, o)

Now, let us define a matrix A in M by setting

-3 .* ‘I
A= S o, i) Fen—2, m)+em—1, n-1)=|-~ -
t-1

*

@ on o
[
-

o

b

1

and we take also the matrix ¢(n, n—2) out of M. As was observed at the
beginning of the proof (cf. (2)), we can write as ¢(n, n—2)=Eu a2t 0Ly 0z
When 6+0, we can reduce this case to the Case 1 by a change of stance. If it
were that 6==0 and o(n, n—2):==Ea .2, then the singular K-submodule I should
contain the invertible matrix

I?::-"' A ‘%"5?(”1 n -2) = A 4 'éEn L2y

where & is an element #fx of K. (=0 in reality.)

As to the column, we ecan discuss in the similar way.

Case 3. Finally, we come to investigate the case that J does include neither
a row nor a column. Then we can assume for instance that

I._‘J:: 0 {(]7, 77)} .
p=l

If an index (p, p) is contained in a certain Supp(¢(, k), k)€ J), (p, p) can be
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taken into J instead of (4, k), so that the new stance J becomes to be of type
already considered. If it were that (», p)€Supp(e(, k)) for all pe 2 and @, k)
€ J={(%, k)lis=k}, then ¢@, k)=E: . for every (i, k)eJ and M should contain the
invertible matrix :LE:}: (e, 1+1)+en, 1= ’:2;3; Eiinn+Ea s

Thus the proof is complete.

REMARK. Let us denote by diag(ai, az, ---, @z) the diagonal matrix with
diagonal entries aj, az, -+, an. Now, let Pi=diag({, 0, ---,0) and Q.==diag (0,
-++,0,1); and let M, be the left ideal of K. consisting of all matrices A€ K.
such that AP;==(), and M. the right ideal of K. consisting of all A€ K. such
that @.A=(). As is readily verified, for any invertible matrix Se K. with
entries in the centre C of K, SM, is 2 maximal singular left K-submodule of
K, of dimension n2—n; and for any invertible Te K., YuT is also such a K-
submodule. Conversely, by Theorem 2.5., every maximal singular left K-sub-
module of K. of dimension n?—n has one of the two forms above (cf. (4)). They
are all mutually isomorphic as left K-modules.

Now, let us exhibit a sequence of maximal singular (two sided) K-sub-
modules of K.. As one can verify without difficulty, the set Pl consisting of
all matrices A such that Q:AP,=0 for Pi=diag(, ---,1,0, --+, 0) (1 repeated
k times) and Qu==diag(0, ---, 0,1, ---, 1) (0 repeated k—1 times) forms in fact

such a K-submodule of K. of dimension n®~k(n—k+1) for every k=1,2, ---, n.
Accordingly, we obtain a family of such K-submodules; that is, the family
{SO. T}, where S and T are matrices mentioned above and %=1,2, ---,n. In

this paper, we characterized the two extremals T and M. in this sequence as
representatives of the maximal singular one-sided K-submodules attaining the
maximal dimension. The determination of all maximal singular K-submodules
of the simple ring K. remains still unsolved for us. However, it seems to us
to be an interesting question to settle whether the family exhausts all the
maximal singular left K-submodules of the ring Ka.
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