On singular submodule of simple ring

By Yasumitsu Shibaoka (Comm. by N. Iwahori)

Introduction

Let K be a division ring and K_n the total matrix ring of degree n over K. As is easily observed, every maximal left ideal of the ring K_n is of dimension n^2-n regarded as a left K-module of K_n , is singular in the sense that it consists only of non-invertible matrices and is maximal with respect to being a singular left K-submodule of K_n . On the other hand, F being a field of characteristic 0, T. Sato proved (cf. [2]) that, except for the special linear Lie algebra $\mathfrak{Sl}(n, F)$, there is no proper Lie subalgebra of the general linear Lie algebra $\mathfrak{Sl}(n, F)$ of degree n over F which has the dimension larger than n^2-n+1 .

Based upon these circumstances, Prof. N. Iwahori raised a conjecture that there is no singular K-submodule of K_n of dimension larger than n^2-n , further the singular K-submodules attaining the maximal dimension n^2-n are given as maximal (one-sided) ideals of the ring K_n . The purpose of this paper is to prove this conjecture. By Wedderburn's structure-theorem, every simple ring is isomorphic to a ring K_n for a certain division ring K and a positive integer n, so our result may have a ring-theoretical interest to some extent.

As a tool for the proof, we introduce a notion of an \mathfrak{M} -stance for a left K-module \mathfrak{M} of K_n . This is an intrinsic version of the well-known procedure in linear algebra to reduce a matrix over K to a so-called specified echellon type

$$\begin{pmatrix} 0 \cdots 01* \cdots *0* \cdots *0* \cdots \\ 0 \cdots \cdots 01* \cdots *0* \cdots \\ 0 \cdots \cdots \cdots 01* \cdots \end{pmatrix}$$

by elementary row-operations. A somewhat combinatorial operation on an M-stance plays an essential rôle for the investigation of the generic form of the matrices in M.

I would like to express my sincere gratitude to Prof. N. Iwahori for his invaluable advices and suggestions.

1. M-stance

Let K be a division ring, I a set of indices, K' the left K-module of all mappings $a: I \rightarrow K$ and \mathfrak{M} a finite dimensional left K-submodule of K^I . Let e_k denote for each $k \in I$ the mapping $e_k(i) = \hat{o}_{ki}(i \in I)$. For each subset $J \subset I$ we denote by π_J an endomorphism of K^I , or rather a projection, such that

$$\pi_J \boldsymbol{a} := \sum_{j \in J} \boldsymbol{a}(j) \, \boldsymbol{e}_j$$
 (for every $\boldsymbol{a} \in K^I$).

Definition of Stance. A stance of \mathfrak{M} , or an \mathfrak{M} -stance, is a pair (J, φ) of a non-empty subset $J \subset I$ and a mapping (an injection in fact) $\varphi \colon J \to \mathfrak{M}$ which satisfies the following conditions:

- i) $\mathfrak{M} = \sum_{j \in J} K \varphi(j)$,
- ii) $\pi_J \varphi(j) = e_j$ (for every $j \in J$).

As one can see easily, the defining properties can be re-stated in the following way:

- i)' $|J| = \dim_K \mathfrak{M}$,
- ii)' Supp $(\varphi(j)-e_j) \cap J=\emptyset$ (for every $j \in J$),

where |J| denotes the cardinal number of the set J and Supp (a) the support of the mapping $a(i.e., \text{Supp}(a) = \{i \in I | a(i) \neq 0\})$.

If (J,φ) is an \mathfrak{M} -stance and $L\subset J$, then $(L,\varphi|L)$ is a stance for the K-submodule $\sum\limits_{j\in L}K\varphi(j)$.

If (J, φ) is a stance of \mathfrak{M} , then the elements $\varphi(j)$ $(j \in J)$ of K^I are linearly independent and form a basis for the K-module \mathfrak{M} , which we call the basis associated with the stance (J, φ) . In terms of the basis, every element $\mathbf{a} \in \mathfrak{M}$ can be exhibited uniquely as $\mathbf{a} = \sum_{j \in J} \mathbf{a}(j) \varphi(j)$. Accordingly, the equality $\pi_J \mathbf{a} = \pi_J \mathbf{b}$ implies $\mathbf{a} = \mathbf{b}$ provided that $\mathbf{a} \in \mathfrak{M}$ and $\mathbf{b} \in \mathfrak{M}$. Thus, if (J, φ) and (J, φ) are two \mathfrak{M} -stances with the same J, then we have $\varphi(j) = \psi(j)$ for all $j \in J$ and consequently $\varphi = \psi$, that is, the mapping φ and the associated basis $\{\varphi(j)\}_{j \in J}$ are uniquely determined by the set J. So we may call J by itself a stance of \mathfrak{M} .

A set $J \subset I$ can be taken to be an \mathfrak{M} -stance if and only if the restriction $a \mapsto a | J$ is an isomorphism of \mathfrak{M} onto K^J .

If a system $\{b_q\}_{q\in Q}$ of elements $b_q\in K^I$ satisfies the condition

$$\operatorname{Supp}_{\substack{p \neq q \\ p \in \mathcal{O}}} \operatorname{Supp}_{\substack{(\boldsymbol{b}_p) \neq \emptyset}} (\boldsymbol{b}_p) \neq \emptyset \ \ (\text{for every} \ \ q \in Q) \ ,$$

then we call it quasi-disjoint. The associated basis is obviously quasi-disjoint. Conversely, any quasi-disjoint system $\{b_q\}_{q\in Q}$, with a slight modification, can be

taken to be an associated basis for the K-module $\mathfrak{M} = \sum_{q \in Q} K b_q$ generated by the system. Exactly speaking, there exists an \mathfrak{M} -stance (J, φ) with the associated basis $\{\beta_q b_q\}_{q \in Q}$ for suitable scalars $\beta_q \in K$ $(q \in Q)$. To observe this, we select an index j_q arbitrarily out of each non-empty set $\operatorname{Supp}(b_q) - \bigcup_{\substack{p \neq q \\ p \in Q}} \operatorname{Supp}(b_p)$ and bring them together to a set $J = \{j_q\}_{q \in Q}$. If we put $\beta_q = (b_q(j_q))^{-1}$ and $\varphi(j_q) = \beta_q b_q$ for each $q \in Q$, the pair (J, φ) satisfies our demand.

Every subset of a quasi-disjoint system is also quasi-disjoint.

PROPOSITION 1.1 (Existence of Stance). Every finite dimensional K-submodule $\mathfrak{M} \neq \{0\}$ of K^I admits a stance.

Our assertion is trivial in case of $\dim_K \mathfrak{M}=1$, so we suppose that $\mathfrak{M}=\mathfrak{R}\oplus Ka$ is a direct sum of two K-submodules \mathfrak{R} and Ka and that \mathfrak{R} admits a stance (L,ϕ) . Then the element $b=a-\sum_{l\in L}a(l)\,\phi(l)$ belongs to \mathfrak{M} and not to \mathfrak{R} and satisfies the relation $\pi_Lb=0$. Since $b\neq 0$, there exists an index $j_0\in I$ such that $b(j_0)\neq 0$. Obviously $j_0\in L$.

Now, let us define a stance (J, φ) for the K-module \mathfrak{M} . We put

$$J=L\cup\{j_0\}$$
,
$$\varphi(l)=\psi(l)-(\psi(l))(j_0)(b(j_0))^{-1}b \text{ (for every } l\in L),$$

$$\varphi(j_0)=(b(j_0))^{-1}b.$$

Clearly φ maps the set J into $\mathfrak M$ and we obtain

$$\pi_{J}\varphi(l) = (\pi_{L} + \pi_{j_{0}}) \varphi(l)$$

$$= \pi_{L} \psi(l) - \pi_{j_{0}}(\psi(l) - (\psi(l))(j_{0})(\boldsymbol{b}(j_{0}))^{-1} \boldsymbol{b})$$

$$= \boldsymbol{e}_{l} \text{ (for every } l \in L)$$

and

$$\pi_J \varphi(j_0) = (\pi_L + \pi_{j_0})(b(j_0))^{-1} b = (b(j_0))^{-1} \pi_{j_0} b = e_{j_0}$$
.

Thus the pair (J, φ) is indeed a stance for \mathfrak{M} .

From above, we have obtained also that, if $\mathfrak{N} \subset \mathfrak{M}$ are two finite dimensional K-submodules, then every \mathfrak{N} -stance L can be extended to an \mathfrak{M} -stance J.

Conversely, if $(\{0\} \neq) \mathfrak{N} \subset \mathfrak{M}$ are two finite dimensional K-submodules of K^{I} , then, for every \mathfrak{M} -stance J, there exists an \mathfrak{N} -stance $L \subset J$.

In fact, then, the restriction $\rho_J \colon \boldsymbol{a} \mapsto \boldsymbol{a} | J$ is an isomorphism of \mathfrak{M} onto K^J and the set $\rho_J(\mathfrak{R})$ is a K-submodule of K^J . Hence, there exists a stance $L \subset J$ for $\rho_J(\mathfrak{R})$ so that the restriction $\rho_L' \colon \boldsymbol{b} \mapsto \boldsymbol{b} | L$ is an isomorphism of $\rho_J(\mathfrak{R})$ onto K^L . Thus the restriction $\rho_L = \rho_L' \circ \rho_J \colon \boldsymbol{a} \mapsto \boldsymbol{a} | L$ is an isomorphism of \mathfrak{R} onto K^L and L is indeed a stance for \mathfrak{R} .

More generally, we can prove that, if $\mathfrak{M}=\mathfrak{N}_1\oplus\mathfrak{N}_2$ is a direct sum of two non-zero K-submodules \mathfrak{N}_1 and \mathfrak{N}_2 , then, for every \mathfrak{M} -stance J, there exist an \mathfrak{N}_1 -stance L_1 and an \mathfrak{N}_2 -stance L_2 such that $J=L_1\cup L_2$ (necessarily a direct union). The proof is complicated a little and is omitted.

The next proposition plays the most essential rôle in this paper.

PROPOSITION 1.2 (Change of Stance). Let (J, φ) be an \mathbb{M} -stance. If $\varphi(j_0)(k_0) \neq 0$ for $j_0 \in J$ and $k_0 \in I - J$, that is, if $k_0 \in \text{Supp}(\varphi(j_0)) - \{j_0\}$, then we get a new stance for \mathbb{M} by replacing J by the set $(J \cup \{k_0\}) - \{j_0\}$.

Put $\mathfrak{N} = \sum_{\substack{j \neq j_0 \ j \in J}} K \varphi(j)$ and $\boldsymbol{b} = \varphi(j_0)$, then the set $L = J - \{j_0\}$ plays a rôle of a stance for \mathfrak{N} and $\pi_L \boldsymbol{b} = 0$, $\boldsymbol{b}(k_0) \neq 0$. So the argument carried out in the proof of the proposition 1.1. proves this proposition.

Permutation of I and Automorphism of K^I . Let σ be a permutation of I (i.e. a bijection $I \rightarrow I$). The permutation σ induces an automorphism $a \mapsto a \circ \sigma^{-1}$ of the module K^I , which we denote by the same symbol σ , i.e.,

$$\sigma a = a \circ \sigma^{-1}$$
 (for every $a \in K^I$).

In particular, we have

$$\sigma e_i = e_{\sigma(i)}, \ \pi_{\sigma J} = \sigma \circ \pi_J \circ \sigma^{-1} \ (\text{for every } J \subset I)$$
.

If \mathfrak{M} is a K-submodule of K^I , then $\sigma \mathfrak{M} = \{\sigma a | a \in \mathfrak{M}\}$ is also a K-submodule of K^I and σ is an isomorphism between the two.

If (J, φ) be an M-stance, then $(\sigma J, \sigma \circ \varphi \circ \sigma^{-1})$ can be taken to be a stance for $\sigma \mathbb{M} = \{\sigma a | a \in \mathbb{M}\}.$

In fact, $\pi_{\sigma J}((\sigma \circ \varphi \circ \sigma^{-1})(\sigma(j))) = (\sigma \circ \pi_{J} \circ \sigma^{-1} \circ \sigma \circ \varphi \circ \sigma^{-1} \circ \sigma)(j) = \sigma(\pi_{J} \varphi(j)) = \sigma(e_{j}) = e_{\sigma(j)}$ for every $\sigma(j) \in \sigma(J)$ and $\sum_{\sigma(j) \in \sigma J} K(\sigma \circ \varphi \circ \sigma^{-1})(\sigma(j)) = \sum_{j \in J} K\sigma(\varphi(j)) = \sigma \mathfrak{M}$.

Let $I = 1, 2, \dots, n$ and let us represent the element $a \in K^{I}$ by the column

Let $I=1, 2, \dots, n$ and let us represent the element $a \in K^I$ by the column $\begin{pmatrix} a(1) \\ \vdots \\ a(n) \end{pmatrix}$, then $\sigma a \in K^I$ is to be represented by the column

$$\begin{pmatrix} (\sigma \mathbf{a})(1) \\ \vdots \\ (\sigma \mathbf{a})(n) \end{pmatrix} = \begin{pmatrix} \mathbf{a}(\sigma^{-1}(1)) \\ \vdots \\ \mathbf{a}(\sigma^{-1}(n)) \end{pmatrix} = \begin{pmatrix} \tilde{\sigma}_{\sigma^{-1}(i),k} \end{pmatrix} \begin{pmatrix} \mathbf{a}(1) \\ \vdots \\ \mathbf{a}(n) \end{pmatrix},$$

where $(\delta_{\sigma^{-1}(i),k})$ is a permutation-matrix whose (i,k)-entries are $\delta_{\sigma^{-1}(i),k}$. Consequently, if J is a stance of a K-module $\mathfrak M$ consisting of columns (resp. rows) of length n, then σJ is a stance for the K-module $S\mathfrak M$ (resp. $\mathfrak M T$) for a suitable permutation-matrix S (resp. T).

From now on, let Ω be a set of n elements $\{1, 2, \dots, n\}$ and I the Cartesian product $\Omega \times \Omega = \{(i, k) | i, k \in \Omega\}$. Let us denote by $K_n = K^I = K^{\Omega \times \Omega}$ the total matrix ring of degree n over a division ring K and by \mathfrak{M} a left K-submodule of K_n .

Here we consider permutations of $I=\Omega\times\Omega$ of type $\mu=\sigma\times\tau$ only, where σ and τ are permutations of Ω and $(\sigma\times\tau)(i,k)=(\sigma(i),\tau(k))$ for $(i,k)\in\Omega\times\Omega$.

The permutation $\mu=\sigma\times\tau$ induces a permutation of rows and columns in themselves of matrices in K_n :

$$A=(\alpha_{i,k})\mapsto \mu A=(\alpha_{\sigma^{-1}(i),\tau^{-1}(k)})$$
,

which is realized by means of a both-sided multiplication by the two permutation-matrices S and T above mentioned:

$$\mu A = SAT$$
 (for all $A \in K_n$).

Thus, if J is a stance of a K-submodule \mathfrak{M} of K_n , then $\mu J = (\sigma \times \tau)J$ is a stance for the K-submodule $S\mathfrak{M}T$ which is isomorphic to \mathfrak{M} .

For the convenience in the sequel, we put for $i \in \Omega$ and $k \in \Omega$,

$$iI=\{i\} imes \varOmega$$
 (the i -th row), $I_k=\varOmega imes \{k\}$ (the k -th collumn), $\varOmega^{(i)}=\{i,\,i+1,\,\cdots,\,n\}$, $I^{(i)}=\varOmega^{(i)} imes \varOmega^{(i)}$, $\triangle=\bigcup_{i\in \varOmega} \{i\} imes \varOmega^{(i)}=\{(i,\,k)\in \varOmega imes \varOmega|i\leqslant k\}$.

If $\bar{\mu}=\bar{\sigma}\times\bar{\tau}$ is a permutation of the set $I^{(2)}$, then there exists one and only one permutation $\mu=\sigma\times\tau$ of $\Omega\times\Omega$ which extends $\bar{\mu}=\bar{\sigma}\times\bar{\tau}$ and necessarily leaves ${}_{1}I$ and I_{1} invariant (i.e., $\mu\cdot_{1}I={}_{1}I$, $\mu\cdot I_{1}=I_{1}$).

We note also that $(\sigma \times \tau)_i I =_{\sigma(i)} I$, $(\sigma \times \tau) I_k = I_{\tau(k)}$.

For the K-submodule \mathfrak{M} of K_n , the defining conditions of the \mathfrak{M} -stance (J, φ) are as follows:

i)
$$\mathfrak{M} = \sum_{(i,k) \in J} K \varphi(i,k)$$
,

ii) $\pi_J \varphi(i, k) = E_{i,k}$ (for every $(i, k) \in J$),

where $E_{i,k}$ denotes the matrix whose (i, k)-entry only is non-zero and equal to 1 and π_J the projection of K_n such that

$$\pi_J A = \sum_{(i,k) \in J} \alpha_{i,k} E_{i,k}$$
 for $A = (\alpha_{i,k}) \in K_n$.

As to the set \triangle , let us observe the following: if $\pi_{\triangle}A = E = \sum_{i=1}^{n} E_{i,i}$ (the unit matrix) (if in general $\pi_{\triangle}A = \operatorname{diag}(\alpha_1, \alpha_2, \dots, \alpha_n)$ for which $\alpha_1 \alpha_2 \cdots \alpha_n \neq 0$), then

the matrix A is surely invertible. In particular, if an \mathfrak{M} -stance J includes the set \triangle , then in \mathfrak{M} there exists an invertible matrix $\sum_{i=1}^{n} \varphi(i, i)$.

2. Singular submodule

We shall call a K-submodule \mathfrak{M} of the total matrix ring K_n over K to be singular if it consists only of non-invertible matrices. If a K-submodule \mathfrak{M} is singular, then $\mu\mathfrak{M}$ also is singular for any permutation $\mu = \sigma \times \tau$ of $\Omega \times \Omega$.

LEMMA 2.1. Let J be a subset of $\Omega \times \Omega$ with $|J| \geqslant n^2 - n + 1$, then there exists a permutation $\mu = \sigma \times \tau$ of $\Omega \times \Omega$ such that $\mu J \supset \triangle$.

We utilize the induction on n. The case of n=1 is trivial. We can assume $J \neq \Omega \times \Omega$.

Since $J=\bigcup_{i=1}^n (J\cap_i I)=\bigcup_{k=1}^n (J\cap I_k)$ are disjoint unions, we have

$$|n^2\!>\!|J|\!=\!\sum\limits_{i=1}^n|J\cap iI|\!=\!\sum\limits_{k=1}^n|J\cap I_k|\!\geqslant\! n^2\!-\!n\!+\!1\!=\!n(n\!-\!1)\!+\!1$$
 .

Therefore, there exist indices i_1 and k_1 such that

$$|J \cap i_1 I| = n$$
, $|J \cap I_{k_1}| \le n-1$.

Let us take the transpositions $\sigma_1=(1, i_1)$ and $\tau_1=(1, k_1)$ of Ω and define a permutation $\mu_1=\sigma_1\times\tau_1$ of $\Omega\times\Omega$. Then we have

$$|\mu_1 \cdot J \cap {}_1 I| = |\mu_1 \cdot J \cap {}_{\sigma_1(i_1)} I| = |\mu_1(J \cap {}_{i_1} I)| = |J \cap {}_{i_1} I| = n$$
, i.e., $\mu_1 \cdot J \supset {}_1 I$

and

$$|\mu_1 \cdot J \cap I_1| = |J \cap I_{k_1}| \leqslant n-1$$
.

Now, we have

$$\begin{aligned} |\mu_1 \cdot J \cap I^{(2)}| &= |\mu_1 \cdot J - ({}_1I \cup I_1)| \\ &= |\mu_1 \cdot J| - |\mu_1 \cdot J \cap {}_1I| - |\mu_1 \cdot J \cap I_1| + |\mu_1 \cdot J \cap {}_1I \cap I_1| \\ &\geqslant (n^2 - n + 1) - n - (n - 1) + 1 = (n - 1)^2 - (n - 1) + 1 \end{aligned}$$

which satisfies our hypothesis for n-1. By the assumption of induction, there exists a permutation $\bar{\mu}_2 = \bar{\sigma}_2 \times \bar{\tau}_2$ of $I^{(2)} = \Omega^{(2)} \times \Omega^{(2)}$ such that

$$\bar{\mu}_2(\mu_1\cdot J\cap I^{(2)})\supset \bigcup_{i=2}^n\{i\}\times\{i,\ i+1,\ \cdots,\ n\}$$
.

Let μ_2 be the unique extention of $\bar{\mu}_2$ and $\mu = \mu_2 \circ \mu_1$, then we obtain the inclusion relation

$$\mu J = \mu_2(\mu_1 \cdot J) \supset \mu_2({}_1I \cup (\mu_1 \cdot J \cap I^{(2)})) = \mu_2 \cdot {}_1I \cup \overline{\mu}_2(\mu_1 \cdot J \cap I^{(2)})$$
$$\supset {}_1I \cup (\bigcup_{i=n}^n \{i\} \times \{i, i+1, \dots, n\}),$$

which completes the proof.

We can now prove the

THEOREM 2.2. The dimension of any singular left (or right) K-submodule \mathfrak{M} of the total matrix ring K_n of degree n over a division ring K is at most n^2-n .

PROOF. Let \mathfrak{M} be a singular K-submodule of K_n and (J, φ) an \mathfrak{M} -stance. If we assume $\dim_K \mathfrak{M} \geqslant n^2 - n + 1$, then we must have $|J| \geqslant n^2 - n + 1$ and, by virtue of the preceding lemma, there exists a permutation $\mu = \sigma \times \tau$ of $\Omega \times \Omega$ such that $\mu J \supset \triangle$. Since the set μJ is a stance of the K-submodule $\mu \mathfrak{M}$, there exists an invertible matrix in $\mu \mathfrak{M}$ which is singular. This contradiction proves the theorem.

LEMMA 2.3. Let (J, φ) be a stance of a singular K-submodule \mathfrak{M} of K_n . If there exists an index $(i_0, k_0) \in J$ satisfying the conditions

$$\pi_{i_0}{}^{l} \, arphi(i_0,\, k_0) \!=\! E_{i_0,\, k_0}$$
 ,

$$\pi_{i_0I} \varphi(p,\,q) \!=\! 0$$
 (the zero matrix) (for every $(p,\,q) \!\in\! J - (i_0I \cup I_{k_0})$

(resp. the same conditions for $\pi_{I_{k_0}}$), then we have

$$|(i_0I \cup I_{k_0}) - J| \leq ((n^2 - n) - \dim_K \mathfrak{M}) + 1$$
.

In fact, if we assume

$$|(i_n I \cup I_{k_0}) - J| \ge ((n^2 - n) - \dim_K \mathfrak{M}) + 2$$
,

then we must have

$$egin{aligned} |J-(i_0I\cup I_{k_0})| &= |J|+|(i_0I\cup I_{k_0})-J|-|i_0I\cup I_{k_0}| \ &\geqslant \dim_K \mathfrak{M}+(((n^2-n)-\dim_K \mathfrak{M})+2)-(2n-1) \ &= (n-1)^2-(n-1)+1 \;. \end{aligned}$$

By virtue of the lemma 2.1., there exists a permutation $\mu=\sigma\times\tau$ of $\Omega\times\Omega$ such that

$$\sigma(i_0) = 1, \ \tau(k_0) = 1,$$

$$\mu(J - (i_0 I \cup I_{k_0})) = \mu J - (i_1 I \cup I_1) \supset \bigcup_{i=0}^n \{i\} \times \{i, i+1, \dots, n\}.$$

Then, $(1, 1) = \mu(i_0, k_0) \in \mu J$ since $(i_0, k_0) \in J$ by hypothesis, and for $\psi = \mu \circ \varphi \circ \mu^{-1}$ we have

$$\begin{split} \pi_{1^I} \phi(1, 1) &= \pi_{\mu \bullet_{I_0^I}}(\mu \circ \varphi \circ \mu^{-1})(1, 1) = \mu(\pi_{i_0^I} \varphi(i_0, k_0)) \\ &= \mu(E_{i_0, k_0}) = E_{\sigma(i_0), \tau(k_0)} = E_{1, 1} \ , \end{split}$$

and similarly for $(p, q) \in \mu J - ({}_{1}I \cup I_{1})$ we have $\mu_{1}I \psi(p, q) = 0$, in particular

$$\pi_{1} \phi(p, p) = 0$$
 for $p = 2, 3, \dots, n$

(the notation $\phi(p, p)$ has surely a meaning since $(p, p) \in \mu J$). Of course, $\pi_{\mu J} \phi(p, p) = E_{p,p}$ for every p. In the sequel, if we define a matrix $A \in \mu M$ by setting

$$A = \sum_{i=1}^{n} \phi(i, i)$$
 ,

then, since $\triangle \subset {}_1I \cup \mu J$ and $\pi_\triangle = \pi_\triangle \circ \pi_{{}_1I \cup \mu J} = \pi_\triangle \circ (\pi_{{}_1I} + \pi_{\mu J} - \pi_{{}_1I} \circ \pi_{\mu J})$, we have

$$\pi_{\triangle}A = \sum_{i=1}^n E_{i,i} = E$$
 ,

which implies the existence of an invertible matrix in the singular K-submodule $\mu\mathfrak{M}$.

COROLLARY 2.4. If there exists an index $i_0 \in \Omega$ (resp. $k_0 \in \Omega$) such that $i_0I \subset J$ (resp. $I_{k_0} \subset J$), then for any $k \in \Omega$ (resp. for any $i \in \Omega$) we have

$$|I_k-J| \leq ((n^2-n)-\dim_K \mathfrak{M})+1$$

(resp. $|iI-J| \leq ((n^2-n)-\dim_K \mathfrak{M})+1)$.

provided that M and J are a singular K-submodule of Kn and its stance.

Now, we can characterize the singular K-submodule attaining the maximal dimension.

THEOREM 2.5. Every singular left (or right) K-submodule of the simple ring $K_n = K^{o \times o}$ of dimension $n^2 - n$ is a maximal (one sided) ideal of the ring K_n .

PROOF. Since the permutation $\mu = \sigma \times \tau$ of $\Omega \times \Omega$ induces the both-sided multiplication $\mathfrak{M} \to S\mathfrak{M} T$ by fixed permutation-matrices S and T and the statement in the theorem is not affected by such an operation, we can assume the order of rows or columns in themselves freely for our convenience.

Let \mathfrak{M} be a singular left K-submodule of K_n of dimension n^2-n . The degree n is assumed to be >3; for, otherwise, the proof is trivial.

Let (J, φ) be an \mathfrak{M} -stance. If J includes a row, for instance the first row ${}_{1}I$, then, owing to the corollary 2.4., we have $|I_{k}-J| \leq 1$ for every column-index $k \in \Omega$. While $\sum_{k=1}^{n} |I_{k}-J| = |I-J| = n^{2} - (n^{2}-n) = n$, we obtain

$$(1) |I_k - J| = 1$$

for all $k \in \Omega$. Moreover, we can prove for every $(i, k) \in J_{-1}I$ the inclusion relation

(2) Supp
$$(\varphi(i, k)) \subset I_k$$

provided ${}_{1}I\subset J$. In fact, if it should be the case that $\operatorname{Supp}(\varphi(i,k))\ni(p,q)$ with $q\neq k$, then we could take the index (p,q) into J in place of (i,k), so that the new stance $(J\cup\{(p,q)\})-\{(i,k)\}$, since $I_{q}-J=\{(p,q)\}$ by (1) and $(i,k)\in I$, should include the column I_{q} together with the row $I_{q}I$. This contradicts the equality (1).

Case 1. We assume first that there exists an \mathbb{M} -stance J which includes at least two rows. For expediency we assume ${}_{1}I \subset J$ and ${}_{n}I \subset J$. Then, by the remark just stated, the relation (2) holds for every $(i, k) \in (J_{-1}I) \cup (J_{-n}I)$, that is, for all $(i, k) \in J$. Since $|I_k - J| = 1$ on the other hand, we can put

$$I-J=\{(i_1, 1), (i_2, 2), \dots, (i_n, n)\}\$$

= $\{(i_k, k)|1 \le k \le n\}$

and

(3)
$$\varphi(i,k) = E_{i,k} + \beta_{i,k} E_{i_k,k}$$

for every $(i, k) \in J = \{(i, k) | i \neq i_k\}$, where $\{\varphi(i, k)\}$ is the basis associated with the stance J. We shall show that we can assume all the i_k identified.

Assume $i_1=2$. If $i_2\neq i_1=2$, then, let us consider the matrix $\varphi(2,2)=E_{2,2}+\beta_{2,2}$ $E_{i_2,2}$. When $\beta_{2,2}\neq 0$ i.e. $(i_2,2)\in \operatorname{Supp}(\varphi(2,2))$, we can take $(i_2,2)$ into the stance in place of (2,2), so that I_2-J becomes to be $\{(2,2)\}$ and $i_1=i_2=2$ for the new stance J. The contrary case, however, does never stand. Because, if it should be the case that $\beta_{2,2}=0$ i.e. $\pi_{I_2}\varphi(2,2)=E_{2,2}$, we should obtain the relations

$$(2,\,2)\!\in\! J\,,\,\,\pi_{I_2}\varphi(2,\,2)\!=\!E_{2,\,2}\,,$$

$$\pi_{I_2}\varphi(p,\,q)\!=\!0\,\,(\text{for every}\,\,(p,\,q)\!\in\!J\!-\!(_2I\!\cup I_2))$$

(cf. (3)), and hence, by the lemma 2.3., $|({}_2I \cup I_2) - J| \le 1$. This inequality contradicts the fact $\{(2, 1), (i_2, 2)\} \subset ({}_2I \cup I_2) - J$.

Thus, step by step we reform the stance if necessary, until we obtain a stance of the form $J=I-{}_2I$ or, what is the same thing, $I-J={}_2I=\{2\}\times\Omega$. Then the matrices in the associated basis are expressible in the forms

$$\varphi(i, k) = E_{i,k} + \beta_{i,k} E_{2,k}$$
 $(i=1, 3, 4, \dots, n)$.

We shall show that for every fixed row-index $i\neq 2$ all the coefficients $\beta_{i,k}$ $(1\leqslant k\leqslant n)$ are identical. This is, however, almost self-evident. Since the singular K-submodule $\mathfrak M$ contains the matrix

it must be that $\beta_{1,1} = \beta_{1,2}$. Similarly $\beta_{1,1} = \beta_{1,2} = \cdots = \beta_{1,n}$ and we can conclude in general $\beta_{i,1} = \beta_{i,2} = \cdots = \beta_{i,n} = \lambda_i$ for every $i \neq 2$.

Here, all the scalars λ_i $(i=1, 3, 4, \dots, n)$ are contained in the centre C of the division ring K, because, for instance, the matrix

$$arphi(1,\,1)+\lambdaarphi(1,\,2)+\sum\limits_{i=3}^{n}arphi(i,\,i)=egin{pmatrix} 1&\lambda&0&\cdots&0\ \lambda_1&\lambda\lambda_1&\lambda_3&\cdots&\lambda_n\ &&1&&0\ 0&&\ddots&&\ &&&1&&0\ \end{pmatrix}$$

should be non-invertible as a member of the singular left K-submodule $\mathfrak M$ for any λ in K.

Thus, we can write down the generic form of the matrices A in \mathfrak{M} , provided that there exists an \mathfrak{M} -stance including at least two rows. It is as follows:

(4)
$$A = \sum_{i \neq p} \sum_{k} \alpha_{i,k} \varphi(i, k) = \sum_{i \neq p} \sum_{k} \alpha_{i,k} (E_{i,k} + \lambda_i E_{p,k})$$
$$= (E + \sum_{q \neq p} \lambda_q E_{p,q}) (\sum_{i \neq p} \sum_{k} \alpha_{i,k} E_{i,k}),$$

where p is a fixed row-index which we have assumed to be 2 for convenience, λ_i $(i \in \Omega, i \neq p)$ are fixed scalars in the centre C of K and $\alpha_{i,k}$ are arbitrary scalars in K.

To complete the proof in this case, we define a matrix Q by setting

$$Q = \sum_{q \neq p} (-\lambda_q E_{1,q}) + E_{1,p} \ (\neq 0)$$
.

Since $Q(E + \sum_{q \neq p} \lambda_q E_{p,q}) = E_{1,p}$, we have $QA = E_{1,p}(\sum_{i \neq p} \sum_k \alpha_{i,k} E_{i,k}) = 0$ for all A in \mathfrak{M} . On the other hand, the set \mathfrak{J} of all matrices A satisfying QA = 0 forms a proper right ideal of the ring K_n . It is at the same time a singular left K-submodule of K_n since Q commutes with every scalar in K. Hence the inclusion relation $\mathfrak{M} \subset \mathfrak{J}$ and the maximality of \mathfrak{M} with respect to being a singular left K-submodule lead the equality $\mathfrak{M} = \mathfrak{J}$. The ideal \mathfrak{M} is of course maximal with respect to being a proper right ideal of the ring K_n .

In the similar way, we can conclude that \mathfrak{M} is a maximal left ideal of K_n if there exists an \mathfrak{M} -stance including at least two columns. In this case, \mathfrak{M} consists of all matrices $A \in K_n$ satisfying AP = 0 for a certain matrix P, where P, unlike Q, does not necessarily commute with all scalars in K (Note that \mathfrak{M} is assumed to be a left K-submodule).

Case 2. Secondly, we consider the case that an \mathbb{N} -stance J includes one and only one row or column. If we assume for instance $|I \subset J|$, then for every $i \neq 1$ we have $||I - J|| \geq 1$. While $\sum_{i=1}^{n} ||I - J|| = |I - J| = n$, all the summands but one are equal to 1 and the one is equal to 2. So we can assume for instance that

$$|iI-J|=1$$
 for $i=2, 3, \dots, n-1$, and $|nI-J|=2$.

On the other hand, because of ${}_{1}I\subset J$, we have $|I_{k}-J|=1$ for every columnindex k. Hence we can assume for instance

$$I-J=(\bigcup_{k=1}^{n-1} \{(k+1, k)\}) \cup \{(n, n)\}.$$

Now, let us define a matrix A in \mathfrak{M} by setting

$$A = \sum_{i=1}^{n-3} \varphi(i, i) + \varphi(n-2, n) + \varphi(n-1, n-1) = egin{pmatrix} 1 & & & & & & \\ * & \ddots & & & & & \\ & & * & 1 & & & \\ & & * & 1 & & & \\ & & * & 0 & 0 & 1 \\ & & & \alpha & 1 & 0 \\ & & & 0 & eta & \gamma \end{pmatrix}$$

and we take also the matrix $\varphi(n, n-2)$ out of \mathfrak{M} . As was observed at the beginning of the proof (cf. (2)), we can write as $\varphi(n, n-2) = E_{n,n-2} + \delta E_{n-1,n-2}$. When $\delta \neq 0$, we can reduce this case to the Case 1 by a change of stance. If it were that $\delta = 0$ and $\varphi(n, n-2) = E_{n,n-2}$, then the singular K-submodule \mathfrak{M} should contain the invertible matrix

$$F = A + \xi \varphi(n, n-2) = A + \xi E_{n,n-2}$$

where ξ is an element $\neq \beta \alpha$ of K. ($\alpha = 0$ in reality.)

As to the column, we can discuss in the similar way.

Case 3. Finally, we come to investigate the case that J does include neither a row nor a column. Then we can assume for instance that

$$I-J=\bigcup_{p=1}^n \{(p, p)\}.$$

If an index (p, p) is contained in a certain $Supp(\varphi(i, k))((i, k) \in J)$, (p, p) can be

taken into J instead of (i, k), so that the new stance J becomes to be of type already considered. If it were that $(p, p) \notin \operatorname{Supp}(\varphi(i, k))$ for all $p \in \Omega$ and $(i, k) \in J = \{(i, k) | i \neq k\}$, then $\varphi(i, k) = E_{i,k}$ for every $(i, k) \in J$ and \mathfrak{M} should contain the invertible matrix $\sum_{i=1}^{n-1} \varphi(i, i+1) + \varphi(n, 1) = \sum_{i=1}^{n-1} E_{i,i+1} + E_{n,1}$.

Thus the proof is complete.

REMARK. Let us denote by diag $(\alpha_1, \alpha_2, \dots, \alpha_n)$ the diagonal matrix with diagonal entries $\alpha_1, \alpha_2, \dots, \alpha_n$. Now, let $P_1 = \text{diag}(1, 0, \dots, 0)$ and $Q_n = \text{diag}(0, \dots, 0, 1)$; and let \mathfrak{M}_1 be the left ideal of K_n consisting of all matrices $A \in K_n$ such that $AP_1 = 0$, and \mathfrak{M}_n the right ideal of K_n consisting of all $A \in K_n$ such that $Q_n A = 0$. As is readily verified, for any invertible matrix $S \in K_n$ with entries in the centre C of K, $S\mathfrak{M}_n$ is a maximal singular left K-submodule of K_n of dimension $n^2 - n$; and for any invertible $T \in K_n$, $\mathfrak{M}_1 T$ is also such a K-submodule. Conversely, by Theorem 2.5., every maximal singular left K-submodule of K_n of dimension $n^2 - n$ has one of the two forms above (cf. (4)). They are all mutually isomorphic as left K-modules.

Now, let us exhibit a sequence of maximal singular (two sided) K-submodules of K_n . As one can verify without difficulty, the set \mathfrak{M}_k consisting of all matrices A such that $Q_kAP_k=0$ for $P_k=\operatorname{diag}(1,\cdots,1,0,\cdots,0)$ (1 repeated k times) and $Q_k=\operatorname{diag}(0,\cdots,0,1,\cdots,1)$ (0 repeated k-1 times) forms in fact such a K-submodule of K_n of dimension $n^2-k(n-k+1)$ for every $k=1,2,\cdots,n$. Accordingly, we obtain a family of such K-submodules; that is, the family $\{S\mathfrak{M}_kT\}$, where S and T are matrices mentioned above and $k=1,2,\cdots,n$. In this paper, we characterized the two extremals \mathfrak{M}_1 and \mathfrak{M}_n in this sequence as representatives of the maximal singular one-sided K-submodules attaining the maximal dimension. The determination of all maximal singular K-submodules of the simple ring K_n remains still unsolved for us. However, it seems to us to be an interesting question to settle whether the family exhausts all the maximal singular left K-submodules of the ring K_n .

Aoyama Gakuin University

References

- [1] Nathan Jacobson, Structure of Rings, Amer. Math. Soc. Colloq. Publ., Providence, 1964.
- [2] Terukiyo Sato, On linear Lie algebra of a certain dimension, Tohoku Math. J., 12 (1960), pp. 71-76.

(Received September 13, 1968)