On B-group properties of pseudo-semi-dihedral groups

By Hikoe Enomoto

This note is a continuation of Kanazawa-Enomoto [1], where it is proved that a semi-dihedral group of order 2^{n+2} is a *B*-group if n>2, while in case n=2 it is not a *B*-group. In this paper we shall prove the following:

THEOREM. Let H be a pseudo-semi-dihedral group of order 2^{n+2} with $n \ge 2$, i.e. H is a group generated by two elements x, y with the defining relations $x^{2m}=y=e$, $y^{-1}xy=x^{m+1}$, where $m=2^n$. Then if n>2, H is a B-group. For n=2, H is not a B-group.

We note here that 'pseudo-semi-dihedral groups' form one of the six types of 2-groups which have a cyclic subgroup of index two. For the other five types, all B-groups among them have already been determined (see [1]).

1. Let H be a pseudo-semi-dihedral group of order 4m as in the above theorem. Then the center C of H is a cyclic subgroup of order m generated by x^2 . Let h, k be in H. Then h and k commute if and only if one of h, k or hk^{-1} is an element of C. Otherwise one has hk=hkz, where $z=x^m$ is the unique central involution in H. Now we decompose an element $\sigma=\sum_{h\in H}a_h\cdot h$ in the group ring ZH into four parts as follows ($\sigma_{(i)}$ is called the i-th part of σ):

$$\sigma_{(1)} = \sum_{h \in \mathcal{D}} a_h \cdot h$$
, $\sigma_{(2)} = \sum_{h \in \mathcal{D}} a_h \cdot h$, $\sigma_{(3)} = \sum_{h \in \mathcal{V}} a_h \cdot h$, $\sigma_{(4)} = \sum_{h \in \mathcal{V}} a_h \cdot h$.

Also we put $\sigma' = \sigma_{(1)} + \sigma_{(2)}$ and $\sigma'' = \sigma_{(3)} + \sigma_{(4)}$. Then for σ , τ in ZH, we have $\sigma_{(i)} \tau_{(j)} = \tau_{(j)} \sigma_{(i)} z$ if $i \neq 1$, $j \neq 1$ and $i \neq j$. Otherwise $\sigma_{(i)} \tau_{(j)} = \tau_{(j)} \sigma_{(i)}$ holds. For h in H and σ in ZH, we denote by $c(h; \sigma)$ the coefficient of h appearing in σ , i.e. $\sigma = \sum_{h \in H} c(h; \sigma) \cdot h$. For any mapping f of Z into Z, we define a mapping f^* of ZH into ZH by $c(h; f^*(\sigma)) = f(c(h; \sigma))$ for σ in ZH, i.e. $f^*(\sigma) = \sum_{h \in H} f(a_h) \cdot h$ for $\sigma = \sum_{h \in H} a_h \cdot h$. For σ in ZH we define the support $S(\sigma)$ of σ by

$$S(\sigma) = \{h \in H : c(h : \sigma) \neq 0\}$$

and the dual σ^* of σ as $c(h; \sigma^*) = c(h^{-1}; \sigma)$. (As to the definitions and basic properties of B-groups or S-rings, see [1] or [2]).

2. In order to show that H is a B-group for n>2, it is enough to show that any primitive S-ring over H is trivial (see (1.4) in [1]). Now let \mathfrak{V} be a non-

trivial primitive S-ring over H and we shall derive a contradiction in case n>2.

LEMMA 1. B is a commutative ring.

PROOF. For σ , τ in \mathfrak{B} , put $\rho = \sigma \tau - \tau \sigma$. Then we have

$$\rho = (\sigma_{(3)} \tau_{(4)} + \sigma_{(4)} \tau_{(3)} + \sigma_{(2)} \tau_{(4)} + \sigma_{(4)} \tau_{(2)} + \sigma_{(2)} \tau_{(3)} + \sigma_{(3)} \tau_{(2)})(e-z),$$

and so we have $\rho z = -\rho$. Now we shall define a mapping f of Z into Z by f(a) = |a|. Then $f^*(\rho)z = f^*(\rho)$ holds, and therefore $f^*(\rho) \in Z \cdot H$, where $H = \sum_{h \in H} h \in ZH$ (see (1.3) in [1]). But $\rho_{(1)} = 0$ implies $(f^*(\rho))_{(1)} = 0$, and therefore we have $f^*(\rho) = 0$, hence $\rho = 0$. This means $\sigma \tau = \tau \sigma$ for any σ , τ in \mathfrak{B} , that is, \mathfrak{B} is a commutative ring, and the lemma is proved.

Now suppose that the simple basis of \mathfrak{V} is $\{\tau_1, \dots, \tau_s, \tau_{s+1}, \dots, \tau_r, \tau_{s+1}^*, \dots, \tau_r^*\}$, where $\tau_i = \tau_i$ $(i=1, 2, \dots, s)$ and $\tau_j \neq \tau_j$ $(j=s+1, \dots, r)$. If we put $\rho_i = \tau_i$ $(i=1, 2, \dots, s)$, $\rho_j = \tau_j + \tau_j \neq (j=s+1, \dots, r)$ and $\mathfrak{W} = \sum_{i=1}^r \mathbf{Z} \rho_i$, it is easily checked that \mathfrak{W} is a non-trivial primitive S-ring over H and $\sigma = \sigma^*$ holds for any σ in \mathfrak{W} . Therefore in the following we may and shall assume that the simple basis of \mathfrak{V} is $\{\tau_1, \dots, \tau_r\}$ and $\tau_i = \tau_i$ holds for $i=1, \dots, r$.

LEMMA 2. Let σ be in \mathfrak{V} . If we have $\sigma''z=\sigma''$, then σ is contained in the trivial S-ring \mathfrak{V}_0 .

PROOF. $\sigma_{(4)}z = \sigma_{(4)}$ implies $(\sigma^2)_{(2)} = (\sigma^2)_{(3)} = 0$ (mod. 2ZH). Therefore if we define a mapping f of Z into Z by f(x) = x (mod. 2), where f(x) is equal to 0 or 1, then the support $S(f^*(\sigma^2))$ of $f^*(\sigma^2)$ is contained in a proper subgroup $\langle x^2, y \rangle$ of H, since $(f^*(\sigma^2))_{(2)} = (f^*(\sigma^2))_{(3)} = 0$. Because $\mathfrak B$ is primitive, we have $S(f^*(\sigma^2)) \subset \{e\}$ and therefore we may write

$$(2.1) \sigma^2 = a \cdot e + 2 \cdot \rho$$

with $\rho \in ZH$ and $a \in Z$. On the other hand $(\sigma^2)_{(1)}$ is equal to $\sum_{i=1}^4 (\sigma_{(i)})^2$ and $\sigma''z = \sigma''$ implies $(\sigma'')^2 = 0 \pmod{2ZH}$. Therefore we have

$$(\sigma^2)_{(1)} = (\sigma_{(1)})^2 + (\sigma_{(2)})^2 = \sum_{h \in S(\sigma')} h^2 \pmod{2ZH}$$
.

Hence (2.1) implies

(2.2)
$$\sum_{h \in S(\sigma')} h^2 = a \cdot e \pmod{2ZH}.$$

For h, k in $\langle x \rangle$, the equation $h^2 = k^2$ implies h = k or h = kz. Hence (2.2) implies that if h ($\neq e$, z) $\in S(\sigma')$ then $hz \in S(\sigma')$ with $c(h; \sigma) = c(hz; \sigma)$. Therefore we may write

$$\sigma' = b \cdot e + c \cdot z + \alpha \cdot (e+z)$$
, $b, c \in \mathbb{Z}$, $\alpha \in \mathbb{Z}H$.

Then $(\sigma'-(b-c)\cdot e)z=\sigma'-(b-c)\cdot e$ holds, and therefore $(\sigma-(b-c)\cdot e)z=\sigma-(b-c)\cdot e$,

since $\sigma''z=\sigma''$. This implies $\sigma-(b-c)\cdot e\in Z\cdot H$, hence $\sigma\in\mathfrak{V}_0$ (see (1.3) in [1]).

LEMMA 3. Let σ be in \mathfrak{V} . Then $\sigma_{(1)}=0$ implies $\sigma=0$ if n>2.

PROOF. $\sigma_{(1)} = 0$ implies $(\sigma^2)_{(i)} z = (\sigma^2)_{(i)} (i = 2, 3, 4)$, since

$$\sigma^2 = (\sigma_{(2)})^2 + (\sigma_{(3)})^2 + (\sigma_{(4)})^2 + (\sigma_{(3)}\sigma_{(4)} + \sigma_{(4)}\sigma_{(2)} + \sigma_{(2)}\sigma_{(3)})(e+z)$$
.

Then by Lemma 2 we may put

$$\sigma^2 = a \cdot e + b \cdot H$$
 a, $b \in \mathbb{Z}$.

In our case we may assume that σ is simple, and put

$$t = |S(\sigma_{(2)})|, u = |S(\sigma_{(3)})|, v = |S(\sigma_{(4)})|.$$

Then considering the coefficient of e and the sum of coefficients in each part of σ^2 , we have

$$(3.1) t+u+v=a+b,$$

$$(3.2) t^2 + u^2 + v^2 = a + bm,$$

$$(3.3) 2uv = 2vt = 2tu = bm.$$

If $tuv\neq 0$, then (3.3) implies t=u=v, and we have $t^2=a$ from (3.2) and (3.3). Then (3.1) implies

$$3t-t^2=b>0$$
.

This means t=1 or t=2, but then we have m=1 or m=4 respectively, contradicting to our assumption n>2. Therefore tuv=0, and so at least two of t, u and v are equal to zero. Hence $\langle S(\sigma) \rangle$ is a proper subgroup of H, and so σ must be equal to zero.

LEMMA 4. Let g be an odd integer and σ an element of \mathfrak{V} . Then \mathfrak{V} contains uniquely an element $\sigma^{[\mathfrak{g}]}$ such that $c(h^{\mathfrak{g}}; \sigma^{[\mathfrak{g}]}) = c(h; \sigma)$ for any h in C.

PROOF. The uniqueness part follows from Lemma 3. To show the existence of $\sigma^{[g]}$, we choose a prime number p such that $p>2\cdot \max_{h\in \sigma}|c(h;\sigma)|$ and $p=g\pmod{m}$, and put

$$\sigma_{(0)} = \sigma_{(2)} + \sigma_{(3)} + \sigma_{(4)}$$
.

Then $\sigma_{(0)}$ and $\sigma_{(1)}$ commute, and so we have

(4.1)
$$\sigma^p \equiv (\sigma_{(1)})^p + (\sigma_{(0)})^p \equiv \sum_{h \in \mathcal{C}} c(h; \sigma) \cdot h^g + (\sigma_{(0)})^p \pmod{p\mathbf{Z}H}.$$

Now we shall consider the product of p elements of $S(\sigma_{(0)})$. Suppose a_i of them are elements of $S(\sigma_{(i)})$ (i=2,3,4). Then the product is in C if and only if each a_i is odd. Now suppose a_i of $\{j_1, j_2, \dots, j_p\}$ is equal to i (i=2,3,4), and each a_i is odd. The we have

$$\sigma_{(j_1)} \, \sigma_{(j_2)} \, \cdots \, \sigma_{(j_p)} = \sigma_{(j_2)} \, \cdots \, \sigma_{(j_p)} \, \sigma_{(j_1)} z^{a_1 + a_2 + a_3 - a_{j_1}}$$

$$= \sigma_{(j_2)} \, \cdots \, \sigma_{(j_p)} \, \sigma_{(j_1)} \, .$$

Continuing this process, we have

$$\sigma_{(j_1)}\cdots\sigma_{(j_p)}=\sigma_{(j_2)}\cdots\sigma_{(j_p)}\sigma_{(j_1)}=\cdots=\sigma_{(j_p)}\sigma_{(j_1)}\cdots\sigma_{(j_{p-1})}.$$

Hence we have $((\sigma_{(0)})^p)_{(1)} \equiv 0 \pmod{pZH}$, and then (4.1) implies

$$(\sigma^p)_{(1)} = \sum_{h \in G} c(h; \sigma) \cdot h^g \pmod{pZH}$$
.

Now we define a mapping f of Z into Z by $f(a) \equiv a \pmod{p}$, $|f(a)| < \frac{p}{2}$, and put $\sigma^{[g]} = f^*(\sigma^p)$. Then $\sigma^{[g]}$ is an element of $\mathfrak B$ and $\sigma^{[g]} \equiv \sigma^p \pmod{pZH}$. Therefore $c(h^g; \sigma^{[g]}) = c(h; \sigma)$, and the lemma is proved.

The following lemmas are proved in the same way as in [1].

LEMMA 5. (1) If g, g' are odd integers, then $(\sigma^{[g]})^{[g']} = \sigma^{[gg']}$, and if $g \equiv g'$ (mod. m) then $\sigma^{[g]} = \sigma^{[g']}$.

- (2) $\sum_{h \in \mathcal{O}} c(h; \sigma) = \sum_{h \in \mathcal{O}} c(h; \sigma^{[\sigma]}) \text{ and } |S(\sigma_{(1)})| = |S((\sigma^{[\sigma]})_{(1)})|.$
- (3) For any σ in \mathfrak{V} , there is an element ρ in \mathfrak{V} such that $\sigma = \rho^{(\mathfrak{o})}$.

LEMMA 6. For g odd, the mapping φ_g of $\mathfrak V$ into $\mathfrak V$, defined by $\varphi_g(\sigma) = \sigma^{\lceil g \rceil}$, is a ring-automorphism of $\mathfrak V$.

LEMMA 7. Let g be odd, and $\{\sigma_1, \dots, \sigma_r\}$ be the simple basis of \mathfrak{V} . Then $(\sigma_1^{[\mathfrak{g}]}, \dots, \sigma_r^{[\mathfrak{g}]})$ is a permutation of $(\sigma_1, \dots, \sigma_r)$, and $|S(\sigma_i)| = |S(\sigma_i^{[\mathfrak{g}]})|$.

Now we shall define a rational element of $\mathfrak B$ as in [1]: an element σ in $\mathfrak B$ is called rational if and only if it coincides with $\sigma^{[g]}$ for all odd integers g. All the rational elements in $\mathfrak B$ form a primitive S-subring $\mathfrak B'$ of $\mathfrak B$. We can show that $\mathfrak B'=\mathfrak B_0$ implies $\mathfrak B=\mathfrak B_0$ as in [1], and therefore we may and shall assume $\mathfrak B=\mathfrak B'$ in the following.

Now suppose $\mathfrak{V}\neq\mathfrak{V}_0$. Then there is a simple element τ in \mathfrak{V} such that $S(\tau)$ $\ni e, z$. By the rationality of \mathfrak{V} , we have $\tau_{(1)}z=\tau_{(1)}$, and then $(\tau^2)_{(i)}z=(\tau^2)_{(i)}$ (i=2,3,4) hold. Hence by Lemma 2 we may put

(8.1)
$$\tau^2 = a \cdot e + b \cdot H \quad a, b \in \mathbb{Z}.$$

Now put $s=|S(\tau_{(1)})|$, $t=|S(\tau_{(2)})|$, $u=|S(\tau_{(3)})|$, $v=|S(\tau_{(4)})|$. Then considering the coefficient of e and the sum of coefficients in each part of σ^2 , we have

$$(8.2) s+t+u+v=a+b,$$

$$(8.3) s^2 + t^2 + u^2 + v^2 = a + bm.$$

$$(8.4) 2(st+uv)=2(su+tv)=2(sv+tu)=bm.$$

From (8.2) and (8.3), we know that b(m-1) is even and so b is even, since m-1 is odd. Therefore (8.1) implies

$$\tau^2 \equiv a \cdot e \pmod{2ZH}.$$

Now we shall consider the first part of τ^2 . The solutions h of $h^2=x^{4i}$ are x^{2i} , $x^{2i}z$, $yx^{2i}w$ and $yx^{2i}wz$, where $z=x^m$ and $w=x^{m/2}$. Therefore (8.5) implies that $h \in S(\tau_{(4)})$ is equivalent to $hz \in S(\tau_{(4)})$ if $h \neq y$, yz, since $\tau_{(1)}z=\tau_{(1)}$. We shall show that this equivalence holds even if h=y or yz.

By way of contradiction suppose $\tau_{(a)} = \rho + y$, $\rho \in \mathbb{Z}H$, $S(\rho) \ni y$ and $\rho z = \rho$. Then

$$(\tau^2)_{(2)} = 2\tau_{(1)} \tau_{(2)} + \tau_{(3)} \tau_{(4)} (e+z)$$

$$\equiv \tau_{(3)} y(e+z) \pmod{.2ZH}.$$

Therefore (8.5) implies $\tau_{(3)}y(e+z)\equiv 0$ (mod. 2ZH), and then we have $\tau_{(3)}z=\tau_{(3)}$, since $\tau_{(3)}$ is simple. Similarly we have $\tau_{(2)}z=\tau_{(2)}$ and therefore we may write

$$\tau = \tau' + y$$

with $\tau'z=\tau'$, $S(\tau')\ni y$. Then we have a=1, since

$$b=c(z; \tau^2)=|S(\tau')|=|S(\tau)|-1=a+b-1$$
.

But we have $(a+b)^2=a+4bm$ from (8.2) through (8.4), and so b=4m-2. Therefore $|S(\tau)|=a+b=4m-1$. On the other hand $|S(\tau)| \le 4m-2$, since $S(\tau) \ni e$, z. This is a contradiction and thus we have obtained the following

LEMMA 8. $\tau_{(4)}z = \tau_{(4)}$.

Now we can complete the proof of our theorem just in the same manner as in [1], exchanging the 3rd part for the 4th part.

3. We shall show here that a pseudo-semi-dihedral group of order 16 is not a B-group. It is shown by the same idea as in [1], but we shall give here another type of example.

Let G be the Weyl group of the simple Lie algebra of type (D_5) . Then G is the semi-direct product of S and D, where S and D are isomorphic to the symmetric group \mathfrak{S}_5 on five letters and the elementary abelian group $\mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z$

Now put

$$x = \begin{pmatrix} 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix}, \qquad y = \begin{pmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Then the group $H=\langle x,y\rangle$ generated by x and y is isomorphic to a pseudo-semi-dihedral group of order 16, and $S\cap H$ consists of identity matrix alone. Therefore we have G=SH=HS and we may regard G as a permutation group on H with H as a regular subgroup. The isotropy subgroup of e is S, and H is decomposed into three S-orbits K_1 , K_2 and K_3 , according to the number of negative entries:

$$K_1 = \{e\}$$
 , $K_2 = \{x^3, \ x^4, \ x^5, \ yx^5, \ yx^7\}$, $K_3 = \{x, \ x^2, \ x^6, \ x^7, \ y, \ yx, \ yx^2, \ yx^8, \ yx^4, \ yx^6\}$.

Since $K_iS=SK_i$ (i=1, 2, 3), and $\langle K_2\rangle=\langle K_3\rangle=H$, S is a maximal subgroup of G; i.e. G is primitive as a permutation group on H. Therefore H is not a B-group.

University of Tokyo

References

- [1] M. Kanazawa and H. Enomoto; On B-group properties of semi-dihedral groups, J. Fac. Sci., Univ. Tokyo, Sec. I, 15 (1968), 71-85.
- [2] H. Wielandt; "Finite Permutation Groups," Academic Press, New York and London, 1964.

(Received February 5, 1969)