On some discrete subgroups of $SL_2(R)$

By Kisao TAKEUCHI

Let A be an indefinite quaternion algebra over Q, i.e. a normal simple algebra over Q such that $A \otimes_Q R \cong M_2(R)$ and let O be an order of A. Denote by $\operatorname{tr}(\gamma)$ and $\operatorname{n}(\gamma)$ the reduced trace and the reduced norm in A respectively. Put

$$U = \{ \varepsilon \in O | \varepsilon O = O, \ \mathbf{n}(\varepsilon) = 1 \}$$
.

Then by the isomorphism $A \otimes_Q \mathbf{R} \cong M_2(\mathbf{R})$, U can be identified with a discrete subgroup Γ_0 of the special linear group $SL_2(\mathbf{R})$. The group $SL_2(\mathbf{R})$ operates on the upper half plane $H = \{z \in \mathbf{C} | \text{Im } z > 0\}$ by the operation

$$H\ni z\mapsto g(z)=\frac{az+b}{cz+d}\in H$$
 for $g=\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in SL_2(\mathbf{R})$.

It is well known that Γ_0 is a Fuchsian group of the 1st kind, i.e. Γ_0 is a properly discontinuous group and its quotient space H/Γ_0 has finite volume. Let Γ be a subgroup of Γ_0 of finite index. We call such a group Γ the Fuchsian group derived from the quaternion algebra over Q. In this paper we shall prove the following theorem.

THEOREM. Let Γ be a Fuchsian group of the 1st kind. Γ is derived from a quaternion algebra over \mathbf{Q} if and only if Γ satisfies the following condition. (1) tr (γ) is a rational integer for every γ in Γ .

In order to prove our theorem we must prepare several propositions.

PROPOSITION 1. Let Γ be a Fuchsian group of the 1st kind in $SL_2(\mathbf{R})$ such that the set $\operatorname{tr}(\Gamma)$ is contained in a finite algebraic number field k. Then there exists an element g in $SL_2(\mathbf{R})$ and a finite algebraic number field K such that $g^{-1}\Gamma g \subseteq SL_2(K)$.

PROOF. Take a hyperbolic transformation γ in Γ and denote by \mathfrak{A}_1 , \mathfrak{A}_2 eigenvectors of γ and by λ , λ^{-1} eigen-values of γ respectively. Since $|\operatorname{tr}(\gamma)| > 2$, λ is a real number. We can choose \mathfrak{A}_1 , \mathfrak{A}_2 such that their coefficients are in the field $k(\lambda)$ and $\det(\mathfrak{A}_1,\mathfrak{A}_2)>0$. Put $g_1=\frac{1}{\sqrt{\det(\mathfrak{A}_1,\mathfrak{A}_2)}}(\mathfrak{A}_1,\mathfrak{A}_2)$ and $K=k(\lambda)$. Then $g_1^{-1}\gamma g_1=\begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$. Take an element $\gamma=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ of Γ such that c>0 and put $g_2=\begin{pmatrix} \sqrt{c}^{-1} & 0 \\ 0 & \sqrt{c} \end{pmatrix}$. Then we know that $(g_1g_2)^{-1}\Gamma g_1g_2$ contains two elements

$$\gamma_0 = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$$
 $(\lambda^2 \neq 1)$ and $\gamma_1 = \begin{pmatrix} a_1 & b_1 \\ 1 & d_1 \end{pmatrix}$ $(b_1 \neq 0)$.

Take an arbitrary element $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ of $(g_1g_2)^{-1}\Gamma g_1g_2$.

By the following relation

$$\begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \lambda a & \lambda b \\ \lambda^{-1}c & \lambda^{-1}d \end{pmatrix}$$

a+b and $\lambda a+\lambda^{-1}d$ are contained in K. Hence a and d are contained in K. Especially a_1 , d_1 are contained in K. Since $\det(\gamma_1)=a_1d_1-b_1=1$, b_1 is also contained in K. On the other hand, by the following relation

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a_1 & b_1 \\ 1 & d_1 \end{pmatrix} = \begin{pmatrix} aa_1 + b & ab_1 + bd_1 \\ ca_1 + d & cb_1 + dd_1 \end{pmatrix}$$

 aa_1+b and cb_1+dd_1 are contained in K. Hence b and c are also contained in K. Proposition 2. Let the assumption be the same as in Proposition 1. Put $k_0=Q(\operatorname{tr}(\gamma)|\gamma\in\Gamma)$ and $A=k_0[\Gamma]=\{\sum_{i=1}^d a_i\gamma_i|a_i\in k_0, \gamma_i\in\Gamma\}$. Then A is a quaternion algebra over k_0 .

PROOF. By the Proposition 1 we can assume that Γ contains two elements $\gamma_0 = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} (\lambda^2 \neq 1), \quad \gamma_1 = \begin{pmatrix} a_1 & b_1 \\ 1 & d_1 \end{pmatrix} (b_1 \neq 0) \quad \text{and} \quad \Gamma \subseteq SL_2(K_0) \quad \text{where} \quad K_0 = k_0(\lambda) \quad \text{is equal}$ to either k_0 or a quadratic extension over k_0 . Hence we have $A \subseteq M_2(K_0)$ and $1 \neq \dim_{k_0}(A) \leq 8$. We shall show first that the radical R of the algebra A is trivial. Since $R^c = \{0\}$ for some integer e, we have $\operatorname{tr}(\gamma) = \det(\gamma) = 0$ for every element $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in R. By (2) we have a + d = 0 and $a\lambda + d\lambda^{-1} = 0$. Hence a = d = 0. Moreover, by (3) we have b = c = 0. This shows $R = \{0\}$.

Let Z be the center of the algebra A. We shall show that $Z=k_0\cdot 1_2$. Take an arbitrary element $\gamma=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ of Z. By the fact that γ commutes with γ_0 , we have b=c=0. Since γ commutes with γ_1 , we have a=d. Hence $\gamma=a\cdot 1_2$. By (1) α is in k_0 . Hence A is a normal simple algebra over k_0 . Put $r=\dim_{k_0}A$. Then $1 \neq r \leq 8$ and r is a square number. Hence r=4. This completes the proof.

PROPOSITION 3. Let Γ be a Fuchsian group of the 1st kind in $SL_2(\mathbf{R})$ such that $\operatorname{tr}(\Gamma)$ is contained in the ring of integers O_k of a finite algebraic number field k. Put $k_0 = \mathbf{Q}(\operatorname{tr}(\gamma)|\gamma \in \Gamma)$,

$$A=k_0[\Gamma]=\{\sum_{i=1}^d a_i \gamma_i | a_i \in k_0, \gamma_i \in \Gamma\}$$

and $O=O_{k_0}[\Gamma]=\{\sum_{i=1}^d a_i\gamma_i|a_i\in O_{k_0}, \gamma_i\in \Gamma\}$.

Then O is an order of the quaternion algebra A.

PROOF. It is trivial that O is a ring and generates the algebra A over k_0 . We have only to show that the ring O is a finitely generated O_{k_0} -module. By the preceding propositions we may assume that the group Γ contains two elements

$$\gamma_0 = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} (\lambda^2 \neq 1) \text{ and } \gamma_1 = \begin{pmatrix} a_1 & b_1 \\ 1 & d_1 \end{pmatrix} (b_1 \neq 0),$$

and that Γ is contained in $SL_2(K_0)$ where $K_0=k_0(\lambda)$. Take an arbitrary element $\gamma=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ of O. Then by the condition (2) a+d and $\lambda a+\lambda^{-1}d$ are in O_{k_0} . Hence a and d are in the ideal $\frac{1}{\lambda^2-1}O_{k_0}$. By (3) aa_1+b and cb_1+dd_1 are also in $\frac{1}{\lambda^2-1}O_{k_0}$. Thus we know that all coefficients of γ in Γ are contained in an ideal of K_0 . Hence O is a finitely generated O_{k_0} -module.

PROOF OF THEOREM. It is trivial that a group Γ derived from a quaternion algebra over Q satisfies the condition (1). We must prove the converse. Put $A=Q[\Gamma]$ and $O=Z[\Gamma]$. Then by the preceding propositions we know that A is a quaternion algebra over Q and that the ring O is an order of A and that the group Γ is a subgroup of the unit group of O. We must see that the quaternion algebra A is indefinite. Since $R[A]=R[\Gamma]\subseteq M_2(R)$ and $R[\Gamma]$ is a quaternion algebra over R, we have $R[A]=M_2(R)$. Hence $A\otimes_Q R\cong R[\Gamma]=M_2(R)$. The unit group of O can be identified with a Fuchsian group Γ_0 and Γ is a subgroup of Γ_0 . Hence Γ is of finite index in Γ_0 . This completes the proof of our theorem.

COROLLARY TO THE THEOREM. Let Γ be a Fuchsian group of the 1st kind contained in $SL_2(\mathbf{Q})$. Then Γ is commensurable with the unimodular group $SL_2(\mathbf{Z})$ if and only if $\operatorname{tr}(\gamma)$ is a rational integer for every element γ in Γ .

PROOF. If I' is commensurable with $SL_2(\mathbf{Z})$, by the lemma in [1], we know that I' satisfies the condition (1). Conversely, we assume that I' satisfies the condition (1). Put $A=\mathbf{Q}[\Gamma]$, $O=\mathbf{Z}[\Gamma]$. Then A is a quaternion algebra over \mathbf{Q} and is contained in $M_2(\mathbf{Q})$. Hence $A=M_2(\mathbf{Q})$. O is an order of $M_2(\mathbf{Q})$. It is well known that there exists an element g in $GL_2^+(\mathbf{Q})$ such that $O\subseteq g^{-1}M_2(\mathbf{Z})g$. Hence group I' is contained in $g^{-1}SL_2(\mathbf{Z})g$ and is of finite index. Since $g^{-1}SL(\mathbf{Z})g$ is commensurable with $SL_2(\mathbf{Z})$ group I' is commensurable with the unimodular group $SL_2(\mathbf{Z})$. This proves the corollary.

In the paper [1], we needed three conditions to show that group I' is commensurable with the unimodular group $SL_2(\mathbf{Z})$. Now this corollary shows that we need the only one condition.

Let k be a totally real algebraic number field and let A be a quaternion

algebra over k such that $A \otimes_Q R \cong M_2(R) \times K \times \cdots \times K$, where K is Hamilton's quaternion algebra. Let O be an order of A. Put $U = \{ \varepsilon \in O | \varepsilon O = O, \ n(\varepsilon) = 1 \}$. Then U can be identified with the Fuchsian group Γ . $Tr(\gamma)$ is an integer in k for every γ in Γ . If we could prove the converse, this would be a generalization of our theorem. However, this is not true because we can find some counter examples in [2] which are well known as Hecke's group.

University of Tokyo

References

- [1] K. Takeuchi, "On a Fuchsian group commensurable with the unimodular group" J. Fac. Sc., Univ. of Tokyo, Sec. I, 15 (1968), 107-109.
- [2] E. Hecke, "Uber die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung" Math. Ann. 113 (1936), 664-669, Math. Werke, 591-626.

(Received February 25, 1969)