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Introduction

The theory of the classification of homogeneous bounded domains has been
developed by Piatetski—éapiro and others (cf. [8], [5], {1]). In consequence the
classification was reduced to that of affine homogeneous Siegel domains of the
first kind or the second kind. In this paper we take up the problem of the
classification of Siegel domains of the second kind from the point of view of
their Silov boundaries (For the definition see §1). We shall consider exclusively
non-degenerate Siegel domains (For the definition see §2.), which form a remark-
able class of Siegel domains of the second kind. The class of non-degenerate
Siegel domains contain all irreducible symmetric bounded domains which are
not of tube type (cf. Thoerem 2.4). Our main theorem (Theorem 2.2) is as
follows:

THEOREM. Let <7 and <’ be mon-degenerate afiine homogeneous Siegel
domains of the second kind in C». Let S and S’ be the Silov boundaries of
 and 2, respectively. Then < and &’ are holomorphically equivalent
1f and only if S 1s carried to S’ by some linear transformation of C*.

In §1 for Siegel domains of the first kind or of the second kind we prove
the existence and the uniqueness of their Silov boundaries (cf. Theorem 1.1).
These faets were implicitly proved in Piatetski-éapiro [4]. We recall the strue-
ture of the affine automorphism group % (S) of Silov boundary S (Piatetski-
éapiro [4] or Theorem 1.2). In §2 the main theorem is proved. It follows from
Theorem 2.1 and Theorem 2.2 that any non-degenerate affine homogeneous Siegel
domain <7 can be reconstructed uniquely by its Silov boundary S from the
affine automorphism group <°(S). In Theorem 2.3 we consider the decomposition
of non-degenerate Siegel domains to irreducible components, In §3 we give various
examples of non-degenerate Siegel domains.

The authors wish to express their thanks to Prof. N. Tanaka for his valuable
suggestions. The authors should like to thank to Prof. M. Takeuchi for helpful
conversations.

b The‘xst named author is partially supported by the Matsunaga Science Foundation.
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§0. Notations and definitions

Let R be a real vector space of dimension » and V be an open convex cone
with the vertex 0 in R which contains no entire straight lines. For brevity
such a cone is called a convex cone in E. A linear automorphism g of R is called
an automorphism of V if ¢ leaves V stable. The group of all automorphisms
of V is denoted by Aut V. If a convex cone V can be represented as a direct
sam of two lower dimensional convex cones, then V is called reducible. Other-
wise V is called irreducible.

Let W be a complex vector space of dimension m. A hermitian mapping F
of W+ W into Re (~the complexification of R) is called a V-hermitian form,
if the following two conditions are satisfied;

1) F(u,weV for all ue W. (V means the closure of V.)

2) Flu, u)>0 for all ux0.

For a convex cone V in R and a V-hermitian form F on W, we define a
domain <7(V, F') in the complex vector space R.x W by putting

OV, Fy={z+v—1 y, W)€ R W; y—Fu,wye V}.

If W=:(0), then <Z(V,F) is called a Siegel domain of the second kind. 1f
W~ (0), then <Z(V, F) is called a Siegel domain of the first kind, which is also
called a tube domain over V. Hereafter, for brevity, a Siegel domain of the
first kind or of the second kind will be often called a Siegel domain. The group
of all complex affine transformations of the vector space R.< W is denoted by
Aff (R W), An affine transformation g€ Aff(Rcx W) is called an affine auto-
morphism of <7 (V, F), if g leaves &¥(V, F) stable. The group of all affine
automorphisms of <2(V, F) is denoted by %%, which is called the affine auto-
morphism group of <7(V, F). If %, istransitive on £Z(V, F), then the Siegel
domain <7 (V, F') is called affne homogeneous. As is known in [1] or [5], if a
Siegel domain <2(V, F) is affine homogeneous, then a maximal connected
R-triangular subgroup & acts simply transitively on ZZ(V, F). The group &
is called an Jwasawa subgroup of Z. and is uniquely determined up to con-
jugateness in %

Let <7 be a domain in the complex number space €». A function f is said
to be holomorphic on the closure <o of &7 if f is defined on certain open set O
containing < and is holomorphic on 0. Let E be a ring of functions which are
holomorphic on ¢/ and attain their maximums on <7. A closed subset Sg of
< is called a determining set for E (cf. [9]), if for each function f€E the
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maximum of |f| on <7 is attained at a point of Si. If the minimal deter-
mining set for E exists and is unique, then it is called the Silov boundary of

<7 with respect to F.

§1. Silov boundaries and their affine automorphism groups

Let V be a convex cone in R and <2(V, F') be a Siegel domain in Rox W.
The closure of F(V,E)Y—Rex W and VCR are denoted by </(V, F) and V,
respectively. And the boundaries of <7(V, F') and V are denoted by d.22(V, F)
and ¢V, respectively.

LEMMA 1.1. </(V, F)={z++v =1y, W)€ Rex W; y--F(u, w)e V).

Proor. Suppose that a point (To-+~+'—1 ¥, %) € Rex W satisfies o Fuo, o)
eV. If we denote by Rc(us) the complex linear subspace {{(x-++/ —~1y, u);
w=ua) < Rex W, then the set .= Z(V, F)N Rc(us) is the tube domain over
the convex cone V- Flus, ue)={x-+F(uo, #o) € B; € V) with the vertex F(ue, %o).
Hence the closure 7w, of S2., in Rc(uo) coincides with the “tube domain” over
the closed cone V--F(uo, o) with the vertex F(uo, ). Consequently #.€ V+
Fluo, 1o) implies (Zo-- v —1 Yo, o) € Ty, Which shows (@o-++ —1 4o, we)€ <2(V, F).

q.e.d.

For a Siegel domain <Z(V, F) in Rcx W, we define the subset S of Rex W
by putting,
(1.1 Se{(x-+v —1y,u); y—Flu, u)=0} .

As an immediate corollary to Lemma 1.1 we obtain the following

LEMMA 1.2. 09(V, F)={x +v =1y, u); y—Fu, weoV}). In particuler S
is a elosed subset of the boundary of Z(V, F).

Let a coordinate of (2, )€ Rex W be (21, «++ Zn, %1, -+ -, Un). We denote by
E the set consisting of all functions which are holomorphic on <7(V, F') and
satisfy the following condition (#).

® |z, 010 if (2,0 DV, F) and 21zl + 5 fucdoeo .

E has a natural ring structure, and for every f€ FE the absolute value | f(z, u)|
attains its maximum on <2(V, F). The following lemma has been stated in
Piatetski-Sapiro [4], but we give the proof for the completeness.

LEMMA 1.8. Let 7(V, F) be a Siegel domain in Rex W and let fell. Then

PrOOF. Let Po=(xo++v —1 %o, us)€ (V, F') be the point where the maximum
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of I flon </(V, F)is attained. If yoz F (1o, uo), then we have (zo4+ —1 9o, %o) € S.
Therefore we consider the case that ys=F (us, #e). Using the notations in the
proof of Lemma 1.1, we see that (xo-++v' —1 %o, %) € Zu,C Rc(ua). Let P be the
complex line along v — 1 (¥ — F(uo, %)) in Re(uo) passing through (v —1 F (e, us),
ue) and Po. Then the complex line P with the origin (v —1 F(ue, uo), #o) is
naturally identified with the complex plane. Let H be the upper half-plane in P
with respect to this identification. Then we can see HC o7, <7 (V, F). If we
denote by f. the restriction of f to P, then f, is holomorphic on H and the
maximum of |fi] on H is attained at (zo++ —1 s, uo)€ H. Therefore by the
maximum principle, fi is a constant on H. Hence the maximum of |fi| on H
is attained at a point on real axis of P, which means that the maximum of
Ifl on < (V, F) is attained at a point of S. gq.e.d.

Let <&7(V,F) be a Siegel domain in Rcx W. Then using the V-hermitian
form F we define the product of elements of R W as follows,

(a/, ¢Ya, ¢)~(at+a’—2Im Fle, ¢, c+c’) ,

where a,a’€ R and ¢,¢’e€ W. Under this multiplication Rx W becomes a Lie
group, which is denoted by RW. We define the action of RW on R¢x W in
the following manner,

1.2 (a,e)e+v =1y, wy=@+at+v —1{y+2Fu, )+ Fle, ), u+e) .

Since this operation is effective, RW can be regarded as a Lie subgroup of
Aff (Rex W),

LEMMA 1.4, The group RW s simply transitive on S. In particular S is
an affine homogeneous submanifold of Rex W,

Proor. By easy calculations we see that S is stable under the operation
of RW. For an arbitrary point (x-++ —1F(u,u),w) €S, take the element
(—a, ~u)e RW. Then by (1.2) we have

(—x, =)@+~ —1 Flu, u), u):=(0,0) €S,

which implies that RW is transitive on S. Furthermore we see that the iso-
tropy subgroup at (0, 0) of RW is reduced to the identity. q.e.d.

From now on we choose a coordinate system (¥, - -, ¥») of R such that the
cone V is contained in the set #:>0, ---, #.>>0. And let the coordinate system
(z1, ++ -, %a) of R¢ be the natural complexification of (yi, -, ¥x). If we denote
by (Fi, ---, F,) the components of the V-hermitian form F with respect to the
coordinate system (21, ---,2.), then each Fi(u,u) is a positive semi-definite

hermitian form on W and Fy(u, u)= En,‘ Fi(u, u) is positive definite on W,
vl
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LEMMA 1.5, The function
P, wy— 11 Y
flz, w) Moy
on Rex W belongs to E: The maximum of 1f] on <7 (V, F) is attained at only
one point (0,0 € S.
Proor. We put ze=zc+v —1yr (1-7k-<n). Then

|f(z, u)ll B

1 x;ﬁ*(_y:%-i)Q )

Z7(V,F) is contained in the set y:>Fu(u,u) (1<k-n). Therefore for any
point (z, w)€ & (V, F) we have x*+(yi-+1)2>1 for each 1k <n, which implies
that |f(z,w)2<1 for every (z,u)€ </ (V, F). Obviously {f(0,0)|==1. Suppose
that |f(2%, u”|==1 for a point (2%, u®e Z(V,F). And let 2°=(z° - -, 2,%) and
let z’=w++ —1w" (1--k-“n). Then we have (x:%)?+(y:°+1)%=1 and %:°>0
for each 1<k<n. Hence 2= -+ =x."=y%= --- =9,°=0. On the other hand
Y Fi(u®, u% (1<k<n) imply that kél Y= él Fi (w0, u®)=Fo(u®, #®. Since the
left-hand side is equal to zero and F) is positive definite, we see u°=0. Hence
we have (z°, u%)==(0,0). It is obvious that f is holomorphic on <¥(V, F). If
(z,u)e <7 (V, F) and ;‘;’,] lz:f2-+ ?_.‘l lu:i2-»o0, then | f(z, u)|—0 since Aﬁl ye > Folu, ).
Therefore f€E. q.e.d.

THEOREM 1.1. Let <Z(V, F) be a Siegel domain in Rex W. And let S==
{x+v—1y,weRcx W; y=F(u,w)} and E be the ring of functions which are
holomorphic on </ (V, F) and satisfy the condition &). Then the Silov boundary
Se of & (V, F) with respect to E exists and is unique. Furthermore Sy—S.

Proor. It is sufficient to prove that S is the unique minimal determining
set for . By Lemma 1.2 and Lemma 1.3 S is a determining set for E. Since
the group RW leaves <7 (V, F) stable, </ (V, F) is also stable under RW. There-
fore it follows that the group RW acts on the ring E. Let p, be an arbitrary
point of 8. By Lemma 1.4 there exists g€ RW such that g¢-po=(0,0). Hence
we see from Lemma 1.5 that f-g€ £ and that the maximum of |f-g| on </ (V, F)
is attained at only one point p.. This shows that S is the unique minimal de-
termining set for E. q.e.d.

From now on we shall call S the Silov boundary of <(V,F), And we
define the group %°(S) by putting

Z(8)={ge AR (Rcx W); gS=8) .
The group £(S) is a closed subgroup of Aff (R:x W) and is called the affine
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automorphism group of S. As is known in [4], [1], the affine automorphism
group . of SY(V, F) is written in the following way

(1.3) EFo= 7 -RW  (semidirect),

where &%’ is the isotropy subgroup of &, at (0,0). Then we have the fol-
lowing theorem of Piatetski-éapiro [4].
TUEOREM 1.2. Let <2(V,F) be a Siegel domain in Rcx W, S be the Silov
boundary of it and F be the isotropy subgroup of Z(S Y at (0,0)€S. Then
1) there exist the representation p of S into GL(R) and the representa-
tion o of S into GI(W) such that

oY F (u, v)y=F (s(R)u, o(h)v) he 572 .
9) D (S)=<F -RW  (semi-direct)
3) Z°(S) acts on Rex W as follows

(hy @, )+~ —1y, u)

where h€ (72/", ac R, ce W,

&) SO 97, in particular, F(S)D Fa

5) he .57 belongs to 7 if and only if pth)e Aut V.

In the next section we shall study under what condition £°(S) coincides
with & ..

§2. Non-degenerate Siegel domains

Let <7(V, F") be a Siegel domain in Rcx W. As was seen in §1, the group
RW is uniquely determined by £(V, F'). The underlying vector space of the
Lie algebra of RW is naturally identified with R-- W, W being econsidered as the
real vector space, and bracket relations in R4 W are given (cf. [1], [8]) by

[e, ¢/]=—41Im F(¢, ¢) c,c’eW.
In particular

2.1 Fu, w)y= —i—[ju, uj,

where 7 is the real linear endomorphism of W corresponding to +/-—I-multipli-
cation of the complex vector space W.
Therefore {ju, u]x0 for all ux0,we€ W, since F is V-hermitian form. In
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particular we see
(2.2) (0)y=[W, Wl R, if Wa:(0).

DEFINITION 2.1. A Siegel domain 2(V, F) is called non-degenerate if
[W, WI=R is satisfied. Otherwise <2(V, F') is called degenerate.

DEFINITION 2.2. A homogeneous bounded domain <2 in C* is called non-
degenerate if <7 is holomorphically equivalent to a non-degenerate affine homo-
geneous Siegel domain.

We denote by L the linear closure in R of the set {F(u, u); w€ W}. Then
L is regarded as a subspace of the Lie algebra R-+W of the group RW cor-
responding to Z(V, F).

Lemma 2.1, [W, Wi=L.

PrOOF. (2.1) shows that Lo [W, W]. Conversely for u,ve W

[, v]=—4Im F(v, w)
= —Im {(F+u, v-w)—F(w—u, v-w)++v —~1F@+v-1u, v+ ~1w
VI F(w— —1u,v—+ —1u)
=FWw—v —1u,v—V=1w—F@w+v —1u, v+ ~—1u),
which shows [u,v]€ L. q.e.d.

LemMA 2.2. If L=R, then there exists 1.€ V such that
To= i a: I (us, us) ,
9=

where a:>0, %, -+, € W and n=dim E.

PrOOF. Being L=R, there exist u;, ---,%.€ W such that the system
(F(us, ), -+, F(n, )} is a base of R. We denote by K the convex closure
of the points 0, F'(ur, us1), - - -, F'{#ta, wx). Then we have KcV since V is convex.
Furthermore F(ui, ), - -+, F (4., %) are linearly independent and so the interior

K¢ of K is not empty. Using the fact that V is convex, we can see that the
interior of V coincides with V. Hence K< V holds. If we choose a point
x0€ K¢, then x. is a point satisfying the conditions of the lemma. q.e.d.

THEOREM 2.1. Let <(V, F) be an affine homogeneous Siegel domain and S
be the Silov boundary of it. Let €a and Z(S) be the affine automorphism
groups of (V,F) and S, respectively. Then Z(S)=%. if and only if
(V, F) is non-degenerate.

Proor. Suppose that <7 (V, F) is non-degenerate. In order to prove
Z(8)= & . it is sufficient to prove %:52’. By Lemma 2.1 and Lemma 2.2
there exists x.€ V such that
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Loz 3 i F(we, ui) , a;>0.

Using Theorem 1.2 we have
o(Mzo= 3 aiplh)F(ui, uiy== 3 ai F(elhyu;, o(hyus) ,

for every he % Since a:>0 and F(s(h)u:, s(h)u:) € 17, we gee p(hyz.€V. By
the invariance of the interior points we obtain o(h)x.€ V for every he .92’"
On the other hand g(5#°) is transitive on V since <7 (V, F') is affine homogeneous
(ef. 1], (4], [8]). Therefore for an arbitrary xz€ V, there exists A’e S such
that o(h)zy==2. Hence we have

o(hyz=—oh)p(hao=ohh )z € V,

for every he ;E”, which implies p(h)€ Aut V. Taking account of Theorem 1.2
we see .,‘3%%

To prove the converse it is not necessary to assume that < (V, F) is affine
homogeneous. Suppose that F(V, F) is degenerate, Then [W, W]&R. The
subspace [W, W] is invariant under p(&’?). In fact, {W, W]=L by Lemma 2.3
and

oW F(u, w)y=F(s(h)u, s(h)u)e L ,

for each he 92” . We choose a base of B with respect to which o(k) can be re-
presented by the following matrix

pi1lh) * ) ’

o) ”< 0 pru(h)

where g1, and pr/, are representations on L and R/L induced by g, respectively.
For every real number { we define a linear transformation A(f) of R by putting

pilh) * > 3

Aty=(
( ) 0 [H.‘/L(h) ‘;f“t' 17:—--

where n-:dim B and s=:dim L. Then A(f)€ GL{(R) except finitely many ¢ say,
except t—=t;, -+, tx, Furthermore if t2¢t,, -- -, tx, then the linear transformation
hit) on Rex W
—A(t € R¢
hit): ‘%z (t)z z ¢
u—a(h)u ue W,
belongs to 952 In fact we have
ABYF (u, v)=pu(R)F (u, v)=p(R)F (u, v)=F (a(h)u, a(h)v) ,

since F'(u, v) can be written as a complex linear combination of the elements
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of L. Hence S is stable under A(t) and (0,0)€ S is left fixed by k(t), from which
it follows that h(t)e;? for each txt, -+, t.. We denote by (@, -, xs) the
component of w€ R with respect to the base of R. Then there exists ao=(x:°,
-+, 1% € V such that at least one of 2%, -+, x.% are not equal to zero. The
orbit {A(t)xs; t€ R, t2cty, ---, t} is a dense subset of a straight line in R. But
this set is contained in V since %= %°. Therefore V contains an entire
straight line, which is a contradiction. Consequently we have [W, W]—R. q.e.d.

Let X and X’ be complex vector spaces. Subsets M X and M’ X! are said
to be linearly equivalent if there exists & complex linear isomorphism of X onto
X’ by which M is carried to M’

THEOREM 2.2. Let 2(V, F) and Z(V', F') be non-degenerate afine homo-
geneous Siegel domains, and let S and S’ be Silov boundaries of (V,F) and
GV, F), respectively. Then F(V,F) and Z7(V’, F’) are holomorphically
equivalent iof and only ©f S and S’ are linearly equivalent.

Proor. If Z7(V,F)CRcx W and Z(V/, F/)CRi<x W are holomorphically
equivalent, then they are linearly equivalent (cf. [1], [8]). We denote by o the
linear isomorphism under which <Z(V, F') is carried to <»(V’, F’). Then, as is
seen in the proof of Theorem 6.1 of [1], there exist the linear isomorphism €1
of R onto R’ and ¢: of W onto W’ such that

(2.3) ole+v —1y, w=(@@)+vV 1oy, ¢:(u)) =z, yeR,ueWw
2.4 w1 F(u, v)=F'(¢2(u), g2(v)) -
Let (x+v —1y,u)eS. Then

e1(y)— F'(pe(u), ¢2(u)) = oy —F (u, u))=:0 ,

which implies that ¢(S)==5".

Conversely, suppose that S is linearly equivalent to S’. Then there exists
a linear isomorphism ¢ of Rcx W onto RLx W’ which carries S to §’. Hence it
follows that ¢- Z7(S)-¢'= Z(S). Let %, and ¥ .’ be the affine automorphism
group of 2(V, F)and 2(V', F’), respectively. Since <7(V, F) and <2(V', F')
are non-degenerate, we have Z(S)= % and ¥°(S8) . (cf. Theorem 2.1).
Therefore we obtain ¢- Z.-¢~'= Z7.’. Since &¥(V, F) is non-degenerate, there
exists 20€ V such that xo= 2 aiF(ui, i), where a:>0 (cf. Lemma 2.2). Then
zo=(v' =11, 0)€ SV, F). "From the arguments in the proof of Theorem 1 in
Chapter 1 of [4], it follows that there exist the linear isomorphisms ¢ of R onto
R’ and ¢: of Wonto W’ satisfying (2.3) and (2.4). Using (2.4) we have ¢((z0)€ V7;
which shows ¢(zo)= (v —1 ¢1(20), 0)€ SF(V’, F), Therefore
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AV, F)=¢{ Za-20)=(¢ Fap™WNel2o)) = Z(V!, F) .

Hence &7(V, F) is linearly equivalent and of course holomorphically equivalent
to &7(V’, I”) under ¢.

Let <7 be a homogeneous bounded domain in C*. If <7 is not holomor-
phically equivalent to the direct product of two homogeneous bounded domains,
then <7 is called irreducible. It is known in [1] that every homogeneous bounded
domain is uniquely decomposed into the direct product of irreducible domains.

THEOREM 2.3. Let <& be a homogeneous bounded domain in C*. Then <
is mon-degenerate if and only if each irreducible component of < is non-
degenerate.

PrOOF. Let &7 &7« - -+ ¥ &7, be the irreducible decomposition of &7. And
let (V, FYCRexX W and <(Vy, Fi)c Ricx Wi (1{1<'s) be affine homogeneous
Siegel domains which are holomorphically equivalent to & and &7, (1<i<s),
respectively. Then there correspond to <Z(V, F') and 2(V., F:) the groups RW
and R:W., respectively., From Proposition 6.1 and the proof of Proposition 6.2
and Proposition 5.1 in [1], we see that

RW=R W5 - X R W,
R=Ri+---+R, (direct sum)
W=W. 4 -+ W, (direct sum) .

&

Hence we obtain [W, W)= 3 [W:, W:]. On the other hand we know

i1

W, WlcRr, [W; WicR; 1<i<s) .,

Suppose that <2 is non-degenerate. Then there exists a non-degenerate Siegel
domain which is holomorphically equivalent to <. Therefore by uniqueness of
realizations (ef. Theorem 6.1 [1]) &(V, F') is also non-degenerate, which shows
[W, Wl=R. Consequently we have [W;, Wi]=R: (1<i<s). This means that
each <(Vy, Fy) is non-degenerate. The “if” part of the theorem is easily
proved. q.e.d.

Let V be a convex cone in K and ¥ be a subgroup of Aut V. The group
% is called separable, if R is the direct sum of two < -invariant proper sub-
spaces.

LEMMaA 2.38. (Vinberg [7]) Let V be a convex cone in R, & be a connected
closed subgroup of Aut V and _4~ be the normalizer of & in GI(R). If &
acts transitively on V, then the connected component A47° of A4~ is a subgroup
of Aut V.
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Using Lemma 2.3 we obtain the following two lemmas, which are generali-
zations of results of Rothaus [8].

LEMMA 2.4. Let Vand & be the same as in Lemma 2.3. If € is separable,
then V is reducible.

LemMMa 2.5, Let V be irreducible and & be the same as in Lemma 2.3.
Then the centralizer of & 1n GL{(R) consists of all scalar matrices with non-
zero coefficients.

COROLLARY 2.1. Let V be an irreducible convex cone in R and @ subgroup
& of Aut'V be the comnected component of an algebraic subgroup of GL(R).
If & acts transitively on V, then the center of & consists of all scalar matrices
with positive coefficients.

ProoF. Under the assumptions of the corollary it is known in Vinberg [7]
that % contains the group of all scalar matrices with positive coefficients. Since
V is a convex cone, the center of & contains no scalar matrix with negative
coefficients. Hence the corollary is an immediate consequence of Lemma 2.5. q.e.d.

A homogeneous bounded domain & in C* is said to be of tube type if <7
is holomorphically equivalent to an affine homogeneous Siegel domain of the
first kind.

THEOREM 2.4. Let <7 be a symmetric bounded domain. If each irreducible
component of 2 is not of tube type, then < is non-degenerate.

PRrOOF. Since &7 is symmetric, each irreducible component is also symmetrie.
Therefore by Theorem 2.3 we can assume without loss of generality that < is
irreducible. Let < (V, F)C Rcx W be an affine homogeneous Siegel domain which
is holomorphically equivalent to &7. We may assume that <(V, F) is the
Cayley transform of <7 due to Koranyi-Wolf [2]. Since £7 is not of tube type,
we have W=2x(0). The connected component %.° of the affine automorphism
group of <Z(V, F') can be decomposed as follows (cf. (1.3)),

Gl = PV RW (semi-direct) ,

where S#7° is the connected component of S#°. According to Koranyi-Wolf [2],
&F°° is reductive. R and W can be regarded as subspaces of the Lie algebra
G. of &.°. Then R is an abelian ideal of G, and W is invariant under
Adq, 577 (cf. [1], [8])). Furthermore Adr 57 == Adr &.° holds and Adz 7" acts
transitively on V (ef. [1], [8]). Since %.% is the connected component of an
algebraic group (cf. (1], ]2]), AdrS#”° is the connected component of an reductive
real algebraic group. Furthermore V is irreducible, since <7(V, F) is irreducible
(ef. [1]). Hence from Corollary 2.1 (or [2], [6]) we see that the center of Adr . 77°
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consists of semi-simple endomorphism. Therefore by a theorem of {3}, Adr 2"°
is fully reducible. Suppose that Adr #° is not irreducible. Then by Lemma 2.2
V is reducible. This is a contradiction. Hence Adp 7" is irreducible. On the
other hand W.~(0) implies [W, W1]£(0) (cf. (2.2)). Furthermore [W, W] is in-
variant under Adz " ({11, [8]), which shows [W, W[=R. q.e.d.

§3. Examples of non-degenerate Siegel domains

Piatetski—éapiro {4] has constructed some examples of affine homogeneous
Siegel domains corresponding to irreducible classical self-dual cones. We shall
give some examples of non-degenerate Siegel domains corresponding to such cones.
We may study that by means of the theory of the root system of j-algebra
(ef. 5], [8]), but we shall check here whether the linear closure of {F(u,u); ue W}
is R or not. We shall use the following notations for irreducible self-dual cones.

a) The cone H*(p, R), p>1,

Let R be the real vector space H(p, R) of all real symmetric matrices of
degree p. We denote by H*(p, R) the set of all positive definite matrices in
H(p, R). It is known that H*(p, R) is an irreducible self-dual cone. We define
a coordinate system of R in the following way. For each matrix Y=(yuw)€R,
the coordinate of Y is defined to be (yi1, -, Yp.ps Y21, Ysa, Ys2, ===, Up.ty =77y
v dim H(p, R)=—4-p(p+D).

b) The cone H*(p,C), p:1.

Let R be the real vector space H(p, C) of all hermitian matrices of degree
p. We denote by H*(p, C) the set of all positive definite matrices in H(p, C).
It is known that H*(p, C) is an irreducible self-dual cone. We define a coordinate
system of R in the following way. For each matrix Y=(y:..)€ R, the coordinate
of YV is defined to be (yi.1, - -+, ¥p.p, Re Y2, Imy2.1, Re ya1, Im 93,1, Re %32, Im #3 s,
-o,Re ¥Yp.p1, Im Yp.pr). dim H(p, C)=p*.

¢) The cone H¥*(p, K), p>1.

Let R be the real vector space H(p, K) of all hermitian matrices of degree
2p satisfying a relation

YJ=JY,

i 0 01
3.1 J::<0 J) and ]:‘—<~1 O>.

We denote by H*(p, K) the set of all positive definite matrices in H(p, K).

where
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It is known that H=*(p, K) is an irreducible self-dual cone. We shall write Y
in the form Y=(yr.), &k, t=1, ---, p, where y:.'s are 22 minor matrices. Then
from (3.1) we obtain ‘Wi.c=¥er, Ye.0J=3Ys:. Hence it follows

e !:(uu 0 ) ‘ y“:( uf ¢ ?Lz)  ke<t.

0 Ur k —Uke Wk

We put wec=aw.e+~ —10e.e, vee=ck.c+~ —1di.«, where au.r, be.r, cr.r, di.s are real.
We define a coordinate system of R in the following way. For each matrix
Y=(yz.) € R, the coordinate of Y is defined to be (ui., -+, Up.5, @12, br 2, €12,
diz, Qi bip, Cp, Gip, GQesy bos, Cos, das, o, Gty Doty Coorpy Apet. o).
dim H(p, K)=p(2p-—-1).

Let E;; be a square matrix such that its (7, ) element is equal to one and
others are equal to zero.

1. Let V=H<*(p, R) and s be a positive integer and 7(t) be a non-decreasing
integer-valued function defined on an interval [1,s] such that 0<#(1), #(s)- p.
Consider the complex vector space W of all p<scomplex matrices 11:=(us ;) such
that ur:=0 for k>»(t). Obviously dim W==n tft}i" ). We put FI,B)-
7712~(11"i‘§~5“‘i‘~‘11) for I, e W. It is known in [4] thaﬁ FALB) is a V-hermitian
form and that the corresponding Siegel domain &7 (V, F) is affine homogeneous.

ProrosiTioN 3.1. <Z(V, F) is non-degenerate if and only if »(8)—~p. In par-
ticular £7(S)= %’ is valid in this case.

Proor. Suppose that r(s)2p. Then each W=(ui) € W must satisfy the re-
lation u#,..==0 for t=1, ---,s. Hence the p-th coordinate of F(lI, ) with respect
to the coordinate system chosen in a) is zero, which implies that the linear
closure of the set {F'(1,11); le W} is not R. Consequently <7 (V, F') is degenerate.

To prove the converse suppose that »(s)=p. It is sufficient to see that the
set {FQUW; U=(us)€ W, ue =0 for 1<k-<p,1<tIs~1) contains %—p (p4-1)

linearly independent vectors in R. For such a 1l we have

(s 8l *

R s‘ & 8 2
3.2) FAL W= € Uz, iy, [uz.s

Re up.aiil,s Re up,aﬁz_p """ tup al‘
Put

Wi=kis, 1<i<p
W ;=FEi+E;., l<i<j<p.
Then the system {F(Il;, L)1 <1<p), F(Wi ;, W) (L<1<j<p)} is a base of R, In
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fact by (3.2) their coordinates are given by

Pv(uh ur)f:(]‘, 0' 0, cey 0’ 0)
J;"(uz, ug),(k’ 1, O, S 0' O)

F(lpespy Upsy gy (x, %, %, SR B § I
Hence the linear closure of the set {F(,1); Ue W) is R, which shows that
Z(V, I}y is non-degenerate. q.e.d.

2, Let V-H*p,C) and s, s: be two positive integers and »i(f) (1==1, 2) be
non-decreasing integer-valued functions defined on intervals [1, s;] (:==1, 2) such
that 0<ri(1), #i(s:) “p(¥==1,2). Consider the complex vector space W of all
p~ % complex matrices W -=(u;”) such that ui’,—0 for k>rit) (i=1,2). Put
W--W, +W, (dxrect sum as vector space). Then W is a complex vector space
of dimension m ,;'X’ ri(t) %flE‘rz(t). For U, Ve W, and 112, B e W,, we put
Fi(um, §o) - i WP and  Fylls, Q= ;W%W'. Let F(Il, B)=F,(1v, B)
A+ B, V@) for (10, 1®), B=(BW, B2y, It is known in [4] that F A, V) is
a V-hermitian form and that the corresponding Siegel domain <7 (V, F) is affine
homegeneous.

PROPOSITION 3.2. <2(V, F') is non-degenerate if and only if 7.(s)=p or
72(82)=p. In particular Z°(S)= % . is valid in this case.

PrROOF. Suppose that »(s;)>p and 7(s;)>p. Then each U==(I™M, )= ((wll),
(w;r))e W must satisfy the relations u{,=0, 1<k<s, and u2,=0, 1<1<s,.
Hence the p-th coordinate of F(I1, 1) with respect to the coordinate system chosen
in b) is zero, which implies that the linear closure of the set {F(I, 1); le W}
is not K. Consequently £Z(V, F) is degenerate,

To prove the converse suppose that »(s,)=p. It is sufficient to see that the
set {F'AL1); (U, (0)) = ((u i), (O e W, 1Y, =0 for 1-7k-"p, 12t <5, —1) contains
p* linearly independent vectors in B. TFor such a !l we have

(iul(l) 2 * )
1 Ush, i, fugli 12 |

3.3 FQ, - D L

u;}‘\ﬂlul ey T Iu}(}‘}”IS/

Put
Wi ==F;, for 124<p
W= Ey o+ Ejs, for 1:41<j<s:,
B =FEi o +v—1E;,, for 1<i<j<s .
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Then we can verify that the system {F (L@, W) (10 p), FAUG WD A Jiaj<p),
F@®Y, B (17i<j < p)) is a base of R. In fact using (3.3) we have
! 1
} Yo 22 PR
FL®, 1,9 ,(2 ,0,0,---,0, 0)

F(uzm’ IR E (,«(’ %’ 0,---, 0, 0)

. 1
AT Vi — y
FORE L, Bi,,0)= <“\’, Hy ok, e, K, ‘é“ .

Hence the linear closure of the set {F(I,1); lle W} is R, which shows that
<¥(V, F) is non-degenerate.

In the case of 7:(s2)=p the proof is quite analogous and so will be omitted.

3. Let V==H*(p, K)and s be a positive integer and r(f) be a non-decreasing
integer-valued function defined on an interval (1, s] such that 0<r(1), 7(s) - 2p.
Consider the complex vector space W of all 2pxs complex matrices 1l="(ws.0)
such that we.=0 for k>7(t). dim W=m=Xr(@). For 1,¥eW we put
F(ll,Q?):~V;A(1I‘B~~%»Ji§‘u‘J) for I, ReW. It is known in 4] that FQL,QB) is a
V-hermitian form and that the corresponding Siegel domain <Z(V, F') is affine
homogeneous.

PROPOSITION 3.3. <Z(V, F) is non-degenerate if and only if »(s)==2p—1 or
2p. In particular & (S)= ¥’ is valid in this case.

ProOF. Suppose that 7(s)<2p—2. Then each U:-(ui..)€ W must satisfy the
relation %, =u,..=0 for 1<t<s. Hence the p-th coordinate of F(I, if) with
respect to the coordinate system chosen in ¢) is zero, which implies that the
linear elosure of the set {F(I,1); le W) is not R. Consequently <7(V, F) is
degenerate.

To prove the converse suppose that 7{s)=2p—1 or 2p. It is sufficient to see
that the set

{(FOLW; U=(ux.)€ W, ur..=0 for 1-k-p, 12881},

€ H(p, K) —yx «'s are 2x2 minor matrices— is given by

1 [uzkml.alz‘*'luzk.alz 0
(3.4) i )
2 0 Urea o2+ [Uze.s]?
(3.5) y 1 (ulkul.sl—ézt-»l.a‘*‘ﬁzk,xuzt,a uzk-—l,sﬂzt,s‘“’azk,au2£~x,o>
. kLt
2 ok, silat—1 s— Hok-1,sUse.s  WUok silzt st i2ky sUat 1,5

Put



146 Soji KaNEYUKI and Masaki Supo

Wi Eeirs for 19<p,

L o Flain s Eejore for 10i<jp,

By ;ov =1 Eeenwt Esjae for 12i<5<p,
W, o B o Eejy s for 1c1<j<p,

W oo 1 Eoi ot Ebjoa s for 145 <p .

Then the system {F(1;, U) Qi p), F(li;, W) Q<i<i<p), FR ;% Hd<igy
sy, FQY S, W Ari<i<p), OO, B (1 ~3<j<p) is a base of R. In fact
using (3.4) and (3.5) we have

FAL, ) = <f12 0.0,---,0, 0) ,

F(ly, )= < ;0 )0, o) ,

F(’Bp iy py gl;; -1, Ir)‘ <$, I AN _;) i

Hence the linear closure of the set {F(1l,1); e W} is R, which shows that
<y(V, F) is non-degenerate,

Nagoya University and
Tokyo Metropolitan University
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