Remarks on the theory of interpolation spaces

By Atsushi YoSHIKAWA™
{(Comm. by K. Yosida)

0. Introduction.

The purpose of this paper is to give some theorems of inclusion of certain
interpolation spaces connected with infinitesimal generators of semigroups. We
state in §2.5 our abstract theorems, which are based on the theory of mean
spaces of Lions-Peetre [7], developed by Grisvard [3] and Komatsu [6]. As we
shall see in §4, these theorems give an operator theoretical treatment of some
classical imbedding theorems due to Russian school (Besov [2], Nikol'skii [8)])
originally proved by the theory of approximation of entire functions.

In order to explain our results, we here consider a simple case (Example
2.1). Let Ey=L?R), E;=LYR), 1<{p<g<co (R is the real line). Consider the
translation in E; (we assume here t:0 for simplicity):

G f(@)=flz+1), fEE: (2=0,1).

G(t) forms in each E; a semigroup of bounded operators of class (Co) (if g=oo,
we interprete the semigroup as the dual of that in L!(R)), and the resolvent
R(A)f(x), 2>0, of the infinitesimal generator of G(¢) (in E;) is given by the
formula:

RO)f(z) = S:e-uﬂm Bdt, 350

From this we can deduce the estimate
N RS @) Loery < LA || flz) || Lo im

with oe=1/p—1/q, L=(1—0)'"°, that is, R(4) is of the norm << LA""! as the operator
from E, into E: (ef. Definition 2.1). Applying our Theorem 2.1 to this estimate
Jor "resolvent”, we can obtain an imbedding theorem of Sobolev's type:

Bt (R)C BH(R), 1< <o, t:s~~% +%>0, §>0, p<q ,

with the eontinuous injection (Theorem 4.1). Here the spaces B,*."(R) are defined

*)  This paper was completed when the author was “boursier étranger du gouvernement
frangais”.
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in the following way (cf. Definition 4.1):
(i) in case 3>0 is not an integer, B,*"(R)3a f if and only if fe W,*(R) and

©.1) U”rw—u»m{ S"’ i(Md,)(”f(fc)“(‘E%>(a>f(x+t)épdx}r,pdt]m<oc

0 -y dﬂ:

where (s> is the greatest integer <s;
(i1) in case s>0 is an integer, B,*"(R)3f if and only if fe W,*(R) and

0.2) U? et Si f (£ )“> fa)—-2 (-5;)“?(:::-% B+
n (‘&%)m fla+28) %pdw}wdt ]l" oo

where {(g>==g—1.

If p or 7=:0¢0, then the integral seminorms in (0.1) and (0.2) should be inter-
preted as ess. sup. in the corresponding variables.

In the case that many mutually commutative operators are given, for exam-
ple, differential operators 9/6x7, j=1, -- -, n, in the space L*(R"), 1<p< oo, (where
we denote by (', ---, z") the generic point of the n-dimensional Euclidean space
E™), we can obtain similar estimates for “resolvents” as above (cf. Examples 2.3
and 2.4) and some imbedding theorems of Nikol’skii {8] follow as a direct ap-
plication of our Theorem 2.4 (cf. Theorem 4.3).

In the above considerations, we did only employ the estimate for “resolv-
ents”, However, resolvents are closely related to semigroups, and sometimes
we can easily obtain the estimate for “semigroups”. In fact, suppose that there
are given semigroups of class (Co) Go(t) and G.(t) respectively in Banach spaces
E, and E,, and that Go(t) and G.(t) are restrictions of another common semi-
group G(t) in a larger space. Then we can often obtain a certain estimate for
G(t), considered as an operator from E, into E.:

GO gy, <CE, £>0, 60

(cf. Definition 2.2 and Example 2.2). Taibleson [10] treated some imbedding
theorems in this way in case Go(f) and Gi(t) are holomorphic semigroups, that
is, each Gi(f) has a holomorphic extension in a sector |arg t| <w;, 0<w;<=z/2. But
he used the holomorphicity of these semigroups as an essential tool for his
proof. However, we can reduce the estimate for “semigroup” to that of “re-
solvent” without using heolomorphicity (Theorem 2.1 and Corollary 2.1), and if
Go(t) and G.(t) are holomorphic, these two estimates are, in a certain sense,
equivalent (Proposition 2.3 in §2.5),
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Moreover, there exist “semigroups” that admit the estimate for “semigroups™
but not holomorphic. For example, let Fo==L?(R), E\ = L{(R), 1<p<qg< . I

0.3) G f(x)=e"=* f(z), £0,feE: (i=0,1),

then it is not difficult to see that each Gi(¢) is a semigroup of class (Cy) in E,
and that G(t), which is defined by the right-hand side of (0.3), satisfies the fol-
lowing estimate:

0.9) IGOS @ Lra < (o)t f) o, o= ;17 71774! »<q.

However, Gi(f), 1=0, 1, do not have any holomorphic extension to the lower half
plane in complex plane {(cf. Yosida [12], Chapter 9).

We can also treat the case that the “resolvent” or the “semigroup” are
“compact”, and in this case we have some compact inclusions (Definitions 2.1*
and 2.2%, and Theorems 2.1* and 2.2%).

The contents of this paper are as follows: §1is devoted to the preliminary
results, which are to be required in the sequel, that is, the definitions and some
properties of the mean spaces, and others. In general, propositions are without
proof except some fundamental and easily provable ones. In §2, we state our
definitions (Definitions 2.1-2.4) and give illustrations of these definitions by ex-
amples (Examples 2.1-2.4). To understand our formulations, these examples are
basic. In §2.5, we state the abstract theorems (Theorems 2.1-2.4), whose proofs
are given in §3. §4 contains some applications. Here we state some classieal
imbedding theorems and give their proofs. However, since the essential parts
of their proofs are to be found in those of our Theorems 2.1-2.4 and in the ex-
planations of the Examples 2.1-2.4, these proofs are fairly short.

In the preparation of this paper which was done mainly in Tokyo, the
author received many valuable suggestions and advices from Professors K. Yosida
and H. Komatsu, Messrs, K. Masuda, D. Fujiwara and K. Hayakawa. In Paris,
in the final stage of completing this paper, Mr. Shimakura gave the author
pertinent advices, and Prof. J.-L. Lions kindly read the manuscript and gave
valuable indications.

1. The theory of the mean space.

1.0. In this section we recall some results of the theory of the mean space
of Lions-Peetre [7]. The definitions and general properties of mean spaces are
given in §1.1, The mean space of a Banach space and a domain of definition
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of a certain linear closed operator in this Banach space, for example, an infini-
tesimal generator of a semigroup of operators of class (C,), was studied in
great detail by Lions-Peetre [7], Grisvard {3], and Komatsu [6]. We state some
of their results in subsequent paragraphs. §1.0 concerns preliminary results
for these paragraphs, and some fundamentals that are to be employed throughout
this paper.

Let & and & be two Hausdorff linear topological vector spaces. For a
linear operator L from % into &, we denote by D(L) the definition domain
of L, which is a linear subspace of &. In cace ¥ = %, we may consider the
powers (I)*, n=0,1,2, ---, of L, which are defined as follows:

(i) (L)*==the identity operator I, in &,

(ii) (L)'=L,

(iii) (L) for each n>1 is the operator xz——L((L)*'z) with the domain

DUL)y" ={x e D(L)*"); (Ly*'ze D(L)}.
If & = $=a Banach space F, and L is a closed operator with the non-empty
resolevent set in E, then (1), n=0,1,2, ---, are closed (see Taylor [11]), and each
D((L)*) becomes a Banach space with the graph norm:

Izloum= 3 I(LYals, z€ DALY .

Let L be a linear operator from a Hausdorff topological vector space ¥ into
another one &, and E and F be subspaces of & and & respectively. The
restriction of L in E into F’ means the operator z{——Lx with the definition
domain {(#€ END(L); Lx€ F}. We denote by Lg r this restrietion, and more
simply Lg for Les if F=F, or by L in case well-understood. If D(Lg r)=E,
we say that Lr r is the restriction of L on E into F. If E=F, we simply say
the restriction of L in E or on E instead of the restriction of L in E into F or
on E into E. In case we treat spaces with suffices such as E, or E| we often
abbreviate L, r, by Lo and Lg, by L; (:==0,1) ete.

For two Hausdorff topological vector spaces & and &, &€ . % means that
Z is contained algebraically in & with the continuous injection, or & is con-
tinuously imbedded in &7

PRrOPOSITION 1.1. Let & and F be two Hausdorff topological vector spaces
and E and F be two Banach spaces continuously imbedded in ¢ and F respec-
tively. Let L be a linear operator from & into Z.

(i) If L is a continuous linear operator on & into F, then the restric-
tion Lyr of L in E into F 13 closed;
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(iiy If & and & are Banach spaces and L is a closed linear operator
from 25 into &, then Le.r is also closed;
(ill) Let &=, and E=F. If &, E and L are as in (i) or (ii), and if
Lg is a bounded operator on E, then
(L)WE:‘(LH)’“ s 7n:‘:19 2) Tt e
PROPOSITION 1.2. Let ¢ be a Hausdorff topolegical vector space and E be @
Banach space continuously imbedded in &. Let L be a linear operator in &,
(1) If L is a continuous operator on & and if there exists 2 such that
2+ L 48 an automorphism of & and (A--Lg)y™' s bounded on E, then
D((L mE)::D((LE)m) y m‘::lr 29 Tt
(ii) If ¢¢ is a Banach space and L is a closed operator in &, and if there
exists 1 such that i+L is invertible in & and (A+Le)™' is bounded on E, then
DULY)y=D(Leg)™) , m=1,2,---.
PRrOOF. (i) We prove this proposition by the induction on m. For m=l,

the assertion is trivial.
Now let us assume that the assertion is proved for m«<n—1. Let z€ D{(L)%).

From the resolvent equation, we have, in &,

n--1

(14 Ly Lyt =T — 0+ L= L= 5 (n;1>(~—1)"2"(2=-}~L)"‘Lx

k=0

n=l/n—1 .
Lo+ S ( )(—1)’"’/’."L(A+L)"kx :
i=o\ k
However, since (A-+Lg)~*k=(2+L)3*, we have that
G+ Ly (Lyre=+Lyg " (L)%we e E and
L+ Ly *e={I—i0+ Ly i+ Ly g={I-2Q+ Ly @+ Ly# "z E
Hence Lze E and € D(Lg). Therefore we see that
Leze D{L)") and (LYwx= (L)% Lex .
Thus from the hypothesis of induction, we obtain D({(L)%)c DU(LEe)™).
(ii) Since D{L)%)yc D(L)™), we can prove the asgertion in the same way
as in (1).
We say (B, Ei, &) is an interpolation triplet if Eo and E, are two Banach
spaces continuously imbedded in a same Hausdorff topological vector space & .

For example, (D(L), E, E) is an interpolation triplet if E is a Banach space and
L is a closed linear operator in E.
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When an interpolation triplet (E, E\, 2¢) is given, we can construct two
Banach spaces E,N Ey and Eo-+ E, as follows: Ey7E: is the space of x€ EvnEy
with the norm

E,-+ E, is the space of s=z0--z: with z:€ E; for 1=0,1. Its norm is given by

felee,= inf  (lwolle,-tialie) .

E=Tgday

For an interpolation triplet (E\, E:, &), we say that a Banach space E is an
intermediate space of E, and E, if

EnEcEcE+E .

1.1. Let R* be the multiplicative group of positive real numbers. We write
by t its generic point and by dt/t its Haar measure. For a Banach space E, we

denote by LZ(E), 1.7p~ oo, the space of strongly measurable E-valued functions
f defined on RE* such that

. _ y
U | FBIE 4:»] <o if p<os

(1.1 W brpan == 0

ess. sup. HFOle <eo if p=oco .

LI(E) is a Banach space with the norm given by (1.1). Now we can define the
mean space. Let (o, K., &) be an interpolation triplet.

DEFINITION 1.1 [7]. The mean space (Es, Ei)s.», 0<0<1, 1<{p<eo, is the space
of means

i dt
e=\ u®) -
X SO u(t) ¢
where tu(t) € LL{(IE) and 17 u(t) € LI(EY).
ProrosiTioN 1.3 {7]. (Es, Es.» is a Banach space with the norm

laelieg 5, ,7=inf max (Pu@®zey, 1 u®zey)

where the infinimum is taken over all «(f) with o= ru(t) dti such that tPu(t) € LL(Ey)
&
and 5 'u{t)e L(E)).
ProrosITION 1.4 [7]. (E,, Es.» is an intermediate space of E,; and E,, more
precisely,
EnEyc(Fy, Ee.» < (Fo, Eo. oS Eo+ E) if p<q.
We have, for all x€ EoNE),
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! T B
il e, Epg o <eiizlie, ik,

where ¢ is a constant. Especially, if p<co, then EsNE, is dense in (Ey, Edo.p.

Ezample 1.1 [7). Let 2 be a domain in the n-dimensional Euclidean space
R, We denote by L#(2) the space of functions f defined and measurable in Q
and whose p-th powers are integrable if p<co, or f are essentially bounded if
p=oo. LP) is a Banach space with the norm

r N/p
I_S 3f(’b)l”dTJ for p<os ;
ess. sup. f(x) for p=oo
€L
Let 1<p, g<oo. Then (L*(2), LY2), =2’(2)) is an interpolation triplet.

(L@, Lo =Lr@) i 220 L1
» q r

THEOREM 1.1 [7]. Let (E., E\, &) and (Fo, B, ) be two interpolation
triplets. Suppose that a linear operator L on & into 5 is given. If the
restrictions of L on E: into F: are continuous with norm w; for i=0,1 respec-
tively, then we have the restriction of L on (Eu, Eis.p, 0<0<1, 140 <00, which
18 continuous with the norm o< we%w;.

THEOREM 1.1*% [T} Let (E., E1, %) and (Fo, Fi, &) be two interpolation
triplets. Suppose that a linear operator L on & into F is given.

(i) E=E.=E\. If both restrictions of L on E into Iy and into F, are con-
“tinuous and one of them is compact, then we have the restriction of L on E
into (Fo, F1)e.», 0<0<1, 1< p< o0, which 18 compact.

(i1) F=Fy=F,. If both restrictions of L on E, into I and on E, into F are
continuous and one of them is compact, then we have the restriction of I on
(Es, E)e.p, 0<0<1,1<p< 00, into F, which 18 compact.

DEFINITION 1.2 [7]. We say that a Banach space E is of class Ku(E, E)),
0<0<1, if

(Eo, Ex)o.zC Ec (Eo, El)a,w

(cf. Proposition 1.1). We also say E: is of class Ki(FE), £)), =0, 1.
TueoREM 1.2 [7T]. Let Fo and F\ be two Banach spaces respectively of class
Ky (Ev, EY) and Ko, (Ev, E\), 0<0s<0 <1, Then

(Ey, EVip=(Fo, Fi)a.p , 2= (1—0e)) -+ 0.1 .

THEOREM 1.3 [7]. Let Es and E: be two Banach spaces such that E\cE,. If
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two Banach spaces Fo and F are respectively of class Ko (Es, E\), i=0, 1, and if
o<y, then Fic Fs.

1.2. Let E be a Banach space. Let A be a closed linear operator in £ such
that every />0 belongs to the resolvent set o(-—A) of —A and the estimate

") e Ay

holds for every 2>0, where M is a constant independent of Z>0. We call such
an operator A “of type (h)” and we often say that A satisfies (k).

THEOREM 1.4 [3], [6]. Let A be of type (h) and m be any positive integer.
(F, DAY ) 5, 001, 1 0p Soo, is the space of all x€ K such that

(A= A) ) e e LK)
and its norm ts given by
@l paamng ,=llalle -+ 1EPm(AG+A) ) zilLie .
REMARK 1.1 {3], [6]. Let z€ (&, D{(A)"))s » and
() =ent™( Ayt A", t>0, Ca=1"@2m)/"(m)* .
Then we have
tmou(tye LUE) and tmi-mu(t) € LE(D{A™)
and

T= S:u(t)%i .

Moreover we have
max ([t ut) Hl,f;;(h'n fieme—my(t) He2inamy) < Cllzllie. piamng »

where C is a positive constant independent of x (Grisvard [3], Prop. 3.1.).
TusOREM 1.5 [3], [6]. Let m,n be positive integers, and 0<8, o<1, If
mi-=ng, then
(E, DI(AY"Ne.p=(E, D{AN¢.» .
THEOREM 1.6 [3], [6]. Let m, n be positive integers. Suppose 0<f—n/m<i<].
Then x € (F, DLAY)e.» if and only if
x € DAY and (Ayrxe (B, DAY o—nim.p

There is an important subeclass of operators of type (h), that is, the infini-
tesimal generators of semigroups of bounded operators (of class (Co)). We say
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that a family G(t),t>0, of bounded linear operators in a Banach space E is a
semigroup of class (Co) if the following three conditions are satisfied:

(1) IG®Ie-e<M, t>0, for some M>0;

(ii) G(0)=the identity operator in E, G(£)G(s)==G(t-*-s) for every £, s:»0; and

(i) IGESf—Sfle (t>0) tends to 0 as t for every fE K.

We define an infinitesimal generator —A of a semigroup G(t) of class (Co) a8
an operator with the definition domain D(— A)=={x € E; strong limit of ¢ (G(t)--I)z
exists when t—0} and —Ag= hm tHG)—I)x for x€ D(—A). A linear opera-
tor —A4 in E is an 1nﬁmtesxmal generator of a semigroup G() of class (Co) if
and only if —A is densely defined and closed, and the resolvent set p(—A) of —
contains all i>0 with the estimate:

(1.2) A+ Ay " lp.p I MA™, n=1,2,---

The resolvent of —A for each 1>0 is connected with the semigroup G(t) by the
following formula:

(1.3) (1t A) i = Swe‘“G(t)xdt, c€E, >0 .
Q

For more detailed discussion, see Yosida {12].

THEOREM 1.7 [6], {7]. Let —-A be an infinitesimal generator of a semigroup
G(t) of class (Co) in E. Then (E, D(A)™)s.» coincides with the space of all x€E
such that

8 I-G()x € LYE)

with the norm
lzls+ it (I—GE) "l Ll

REMARK 1.2. When G(f) is a bounded holomorphic semigroup, then we can
obtain another characterization of the mean space (Komatsu [6], and implicity
in Taibleson {10}).

1.3. Let A',---, AY be N closed linear operators in a Banach space £. Sup-
pose that

(i) each A7 is of type (h) (§=1, -+, N); and

(il) (QA4+A9) (- A%y t=(p+ AR 1A+ A9 for 2, #>0 and 7, k=1, ---, N.

THEOREM 1.8 [3]. For 0<6<1,1<p<co, we have

N N
(N D(A%), Eo.p= 1) (D(A), EVa.s .
=1 1=
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AY
REMARK 1.8. Let ze€(n D(A4%), E)s» and
Jj=1

N N
()= N YAE+ AN E+A) .
i1 i=1

Then we have
t-tu(tye LUE), tP*Autye LYEY, k=1,---,N,

and

,,,,, A
fcg u(t)t .

0
Moreover we have
max ({8 'u@) L2, 1t A @) e2e) < Cllel X puan.ey,,
i=1

(See Grisvard {3}, Prop. 7.1).
1.4. We say for a closed linear operator A in a Banach space K that A is

of type (ha) or A satisfies (hn) if p(—A) contains every 20 with arg /Zf:gi‘in ,
k=0, -, m~1, and
N+ Ay Y gar < Ml

for 70, arg zr_?ﬁ{i, k=0, ---,m—1 (Grisvard [3]). If A is of type (h.), then
{A)™ is of type (h), since

m—1
(4 (Amye= T (A+ ¥ 2 e, 1>0, 2€ DA™ .

Thus from Theorem 1.8, we obtain
THEOREM 1.9 [3]. Let A}, ---, AY be N closed linear operators in a Banach
space E. Suppose that each A7 is of type (hn;) for some positive integer m; and
that
(A AR W+ ATy = (e A (A AR

; Fom
for 20, w#0, argk:»‘%ll, arg p::ng;z—':—-,l, I, integers. Then for 0<¥¢<1,
1:.p-co, we have

N N
(0, DA™, Eo.p= 1 (DA™, Eop -
i Je=

In §2.4, we shall give some examples of the operators satisfying the hypo-

thesis of Theorem 1.9.
1.5. Let (&y, By, &) be an interpolation triplet. Let A be a continuous linear
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—~

operator on ¥ such that i+ A4 for every 2>0 is an automorphism of ¥ . Let
Ai=Ag, (¢=0,1). Each A: is a closed linear operator in E;. Assume both As
and A, satisfy (h).

THEOREM 1.10 (ef. [3]). Let As., be the restriction of A in {(Ee, Eo.p. Then
we have
D((Ag. )™ =(D{(Ao)™), D((A1)™))e.»  for m=1,2,.---.
Proor. Let x€ D({A4s ,)™). Then there exists y€(E,, Ei)s.» such that a=
(A+ Ay ™y for 2>0. Since y€ (&, Ei)o.p, there exists w(t) such that
tPw(t)e LE(Ey), t'w(t)e LUE))

and
Y= Sm w(t) éi .
0 t

Let z(H)=(A-+A)""™w(t). Then z{t)==(i+ Ao) " w(t)=(A+ A:;)™w() and
tPz(t)e LL(EY), t*'z(t) e LE(E))

and

”

=0+ A)"y=U+A)" x w(t) %E = Sj (8 %t— € (D((A0)™), D((A1)"))o.» .

0

The continuity of the inclusion mapping follows immediately from the above
relation. Now we are going to show the converse inclusion relation. Since
D({(A)™)=D((A+A4:)™), i>0, we may assume that each A; has a bounded inverse
(1==0,1). Let x be any element in (D((40)™), D((A)))s.». Then there exists
Eyiy Ei-valued u(t) such that

Aoy ulty € LL(EY), t* (A "ut) e LYEY) ,

and

(7 AT
o ‘o u(t) i

o

Let (A)"u(t)=v(t). Then v(t)=(Ao)"u(t)=(4:,)"u(t), and
Y= Sm »(t) -(-it—t~ € (Eo, Er)s.s
[

Since y=(A4)"z in &, x€ D{As.)™ . q.e.d.
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2. Definitions, Examples, and Theorems.

2.0. First we give some notations. We denote by R* and T" the n-dimen-
sional Euclidean space and the n-dimensional torus respectively. R!'and T' are
simply written as R and 7 respectively. We denote by z==(z',---,2") or y=
(', ---,y") their generic points. For l-dimensional case, x' is written simply
asx. Forzandye R, zi-y=(x" iy, -, x"+y"), ca=(cx’, - - -, cx"*) for c€ R, and
lxlzx(i}l (x93, For other notations, consult §1. In §2.1, we give a definition
about’ dthe estimate for “resolvent” and its compact version (Definitions 2.1 and
2.1%), and examples (Examples 2.1 and 2.1%). Definitions concerning the estimate
for “semigroup” (Definitions 2.2 and 2.2%) are given in §2.2 with Examples 2.2
and 2.4%. §§2.8 and 2.3 are for the estimate for many commutative “resolvents”
(Definitions 2.3 and 2.4 and Examples 2.3 and 2.4). We state our theorems in
§2.5 (Theorems 2.1, 2.1,* 2.2, 2.2,* 2.3, 2.4, and some remarks).

2.1. Consider an interpolation triplet (K., Ei, ¥°). Let A be a continuous
linear operator on ¢.

DEFINITION 2.1. We write A€ (s, Es, E)) if the following two conditions are
satisfied:

(i) for j=0,1, each A;, the restriction of A in Ej, is of type () (see §1.0
and §1.2);

(ii) for every 2>0, i+ Ag,+k, is invertible, and (4i+A)™!, considered as an
operator from E, into E., that is, (A--A)%h is defined on the whole Ey, and it is
continuous with the estimate

n(} ) L A)‘Otl HE()*-'H; = L}‘Gﬂ

where ¢ and L are positive constants independent of A
Example 2.1. In order to illustrate the above definition, we state that

@1 ¢ (A L L), L@(R)) L 1op<g<oo ;
dx P q :

and that
{ 1

2.1 4 e, LR, C R) , lap<oo,

2.1) i € < s (R), C(E) p

Here C(R) is the Banach space of uniformly continuous bounded functions f on
R with the norm IEfi%c,;ze):;meskx | fl@).
(i) ProoF oF (2.1). Let E,==L7(R), E\=LY(R), and & = &'(R), the space of

bounded distributions. Let A::f—d%. Consider the integral
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2.2 RO (2)— V it f(w - t)dt
R
where fe <#’(R), >0 and the integral is in the sense of distribution. Consider
this integral (2.1) for fe E:.. Then it converges in E;, and it gives the restric-
tion R(4); of R{) in E,;, which is a continuous linear operator on E; with the
following estimate (10, 1),

2.3) HR(Aillpm ol 28
for every 2>0. To prove this inequality, first we rewrite the integral (2.2) as
follows:
2.2) RO () \m Ki(—t)f(x -tydt
where
0 for t>0
() = { . ’

Kit) et for t<0 .
Note that
2.4 Kie L"(B), 177 "o, and [Kilirran=0r)"Vr, 2>0.

Hence by Young's inequality for convolution (for example, {4]), we obtain the
inequality (2.3). From the above inequality, we see, for fe€ Ey+E:, the integral
(2.2) converges, and it gives the restriction E(2)s,+s, of B(Z) on Ey-+E;, continuous
linear on E:-+E,, with the estimate

N R Eyra,ll oy, ngsmy <A
for every 7>0. On the other hand, we see, by definition of A: etc., that
R():fe D(A:)y for any fekE: (1=0,1),
R(Dugrn,g€ D(Ar, . 1,) for any geFEot+FEi,
and
AiRQ)iff—ARAif,
Apgin R(Buyng=g--iRWa,69 .
Since the equation
(2+A)f=:0, fe F'(R),

implies f=:0, 2+ An,.r, is invertible for every 2>0 (even for Re i+0). A fortiori
i-+Aj; is invertible for 2>0 (3=0,1). Thus we see 4-4-A; and i-4-Apye, map D(AS)
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and D{Ap,an,) onto E: and Ly E, respectively in a one-to-one way (i=0,1).
Hence we have

@5 R G A)™",  i=0,1,
and
(2.6) RAw,en, (Ar-Apgn)™?

for every i>0. We note that
(RWaysn)i- R
and
(Aggin)i A, 10,1,

Now let f& Ev—L?(R) in the formula (2.1). Then we have, from (2.3) and Young’s
inequality,

@ Y S”e'v‘-t fwindt| <Lrv S,
£y

with o+~ L and L—@ -mr,
¥y g

Thus we see (A+A), is defined on the whole E, for every 2>0 and it is
continuous with the estimate (2.7). Hence we have (2.1).
d

(ii) ProoF or (2.1"). Let Ey=:L?(R), E;=C(R), and & = <Z'(R). Let 4= e

Then arguing as in (i), the integral (2.2) gives the resolvent of —A: for each
2==0,1, 2>0. The estimate (2.3) and the relation (2.5) hold for the present choice
of Fs, E: and A. Since, for fe L*(R), and for 1>0,

@.7) emz)f(av)ufe@.f(xsh)a»“(l };)’)/(g lf(y)-—f(y*-!“h)l"dy)l/p
R

for any he R, v€ R; and since,
) o / 1V .
(2.7 TR @)~ ( 1- ;) ATV e 0=,
for any € R, we readily see (2.1). q.e.d.
REMARK 2.1, We can show from the above proof that

1
IRe 2] '

2.3 Rl g, 1=0,1,

2.9) {RGWo.1ley-r,~ LIRe 2, v= % - % Le-(1—a)t-
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for every 7 with Re 2>0. For i with Re 2<0, defining

0

R()f(@)= S e flottdt

and arguing as above, we can obtain the relations (2.5) and (2.6) for such 7, and
same estimates as (2.8) and (2.9).

REMARK 2.2. In Example 2.1, it is clear that D(—A:) for each 1 is dense in
E:, and the relation (2.1) and the estimate (2.2) show that — A, is the infinitesimal
generator of the translation semigroup G@): flz)——f(x+1), £>-0, in each E; (cf.
§1.2). We also note that (2.1’) reflects a general property, namely:

ProproSITION 2.1. If A€ (o, Ev, E)) and if D(As) is dense in Ky, then the
image of Eo by the mapping (24-A)oh, i>0, is contained in the closure of D(A:)
in K.

ProoF. Let ze€ Es. Then (i+-A)*ze K\, >0, and pe+A)' (44w e D(AY),
#>0. Since D(Ao) is dense in Es, and since Ao is of type (h),

lp(p+ A)1A+ Ay e — Q4 A) 2 )le, = Q-+ A) (e + A) e —x) e,
<A+ A ggmm 1+ A) a2 py—0 a8 p——co . q.e.d.
DEFINITION 2.1%, We say A€ (s, By, E))* if A€ (g, E,, E\) and if moreover A
satisfies the following condition:

(14-A)7%: is a compact operator from E; into E: for every i>0.
Example 2.1*. In order to illustrate Definition 2.1%, we 2.1*, we state that

@.1* dg (2wt L, Ly ), 17 p<g<en s
dz P q
and that
@)% —‘Le(i LA(T) cm)* 1<p<on
A dx p s ? y .

Here C(T) is the Banach space of continuous functions f on T with the norm
I f llcay=max | f(2)] .
zE€T

PROOF oF (2.1)%. (i) Let E,=L*(T), E\=L«T), and & == & '(T), the space of
distributions of period 1. Let A= :1% Consider the integral (2.2) for fe <Z/(T).

The integral is in the sense of distribution. Since f is periodie, the integral can
be written as followings:

[Tensaroa= § (7" s = S e | o sernar
0 N=0 Ne=d

N s0
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: *'1"~—, iie’“f(:c stdt .
1—e™ )¢

Arguing as in Example 2.1, we obtain the continuous operator R(%);:, 1=0,1,
R(#)p,cn, with the same estimates ag (2.3). Since the equation

GrAf=0, fez(T), >0,
implies f--0, we see, as in Example 2.1, that
(2-+A) R, 1-:0, 1,
and
(A-Angen) = R ngor, .

By a similar consideration as in Example 2.1, we have that

HA+A) Miegeen, "L
for every A>0 with o= % w—-—(l}w and L= (1) Thus we have shown that
de (—;% (T), Lv(T)).

To see the compactness of the operator (A+A),, for fixed 2>0, let fi€ Eo
with || fillg,<1, k=1,2, ---. We are going to show that {(2-- 4)"'fi} forms an equi-
bounded and equicontinuous set in E.. Since 7T is compact, this implies the
compactness of (A-+A4)7), (See Yosida [12], the proof of the Fréchet-Kolmogorov
theorem, p. 275~277). The equiboundedness follows immediately from the fact
that A€ (o, Eo, Ey). In order to see the equicontinuity, let % be any small
number (Jh}<1). We have, for h>0,

’ g me“' (frlz-+8)— frlz+s+h)ds

0 4

| Sme“" fe(x 4 8)ds— e Swe““ Jilx + 8)ds’
k

0 #y

= (1=t gme‘“ Srle 1 8)ds + Sh e~ fule + s)ds !
Jh 0 &y
oo h
o (1—efh) S e * | fr(x-+8)|ds -+ S e | file-+8)lds -
g £y Jo L Ey

(1 Lk)+ Telk, B).
As before, Li(k)« LA"|| fills,<<La""*. Since

Lk, )< {g : { Sh e | fiula-+-9)lds ]qdm}w )

. J0

we obtain, arguing as in the proof of Young's inequality (see [4]),
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Bte, )< ({"emas ) g ((Meras )T
Jo ¥

J O

For h<0, we should change the partition of integrals, and we consider
A—eML(k)-+e*(k, k). In both cases, since 1-- %«—%— >0 and >0, we see
that

\ me"’“’ (fsc(x 4 8) — frla-g-- h)) ds:. -0

« 0

/ F‘yl
as h, uniformly for f:. Hence we have (2.1)*.

(ii) PROOF oF (2.1)*. Let Eo=L¥T), E\=C(T), & =<2’(T), and A-- ;'z,
Then arguing as in the proofs of (2.1) and (2.1)*, we easily see (2.1)*. ’f‘he
assumption p>1 is needed to show the convergence of I.(k, h) when h——0. q.e.d.

2.2. Let (Ey, Ei, %) be interpolation triplet, and A be a continuous linear
operator on &°. In this section we consider the case that each --4; (320, 1) is
an infinitesimal generator of an equibounded semigroup Gi(t), t>0, of linear
operators on E;. We first note the following

PROPOSITION 2.2. Let (Eo, Ei, &) be an interpolation triplet, and G(), t>0,
be a family of linear operators on & such that we have, in each E:, 1=:0,1,
an equibounded semigroup Gi(t), £0, as the restriction of G(t) on E;, that is,
for each 1=0,1, Gi(t), t >0, satisfies

(1) 1Gi®llE~r, < Mi:

(it) G:i0)=1, and G.)G:(s)=G:i{t+3) for t,s>0.

If Go(t) 1s a semigroup of class (Co) and if we have, for t>0, the restriction
Gt)os of G{t) on E. into Ei, then the image of Eo by the mapping G{th. s
contained in a closed subspace of Ei, and the restriction of Gi(t) in this subspace
forms a semigroup of class (Co).

Proor., Let F={ye E:; G.\(t)y——y as t——0}. Then it is easy to see that
F is a closed subspace of E:, that Gi(t), >0, maps F into F, and that the
restriction of Gi(t), >0, on F is a semigroup of class (Cy). We are going to show
that G(t)e.1(Ee)C F. Since G(t)o.1, >0, is defined on the whole E), it is continuous.
Thus, for any z€ Ey, s>0,t>0,

1G1(8)G()o 12— G(t)ox]lo, = |G (Gol8)z — D) 8, = 1G B0 | Egr | Go(8) |y .

Since Go(s), 20, is a semigroup of class (Cy), the right-hand side of the above
inequality tends to 0 as s. g.e.d.

Thus, we confine ourselves to the case that each G.(t), t>0, ::=0,1), i3 a
semigroup of class (Cy), and — A; is the infinitesimal generator of Gi(f). Then
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it is easily seen that the restriction of —A in Ey-+E, generates a semigroup of
class (Cy), which we denote by G(), in Es+E:, and that Gi(f) is the restriction
G{)i of G(t) in E; (1=:0,1). In faet, the estimate for the resolvent of —A; for
each ¢ implies that of --Ap s, and that D(Ar,+s) is dense in E,-+E; follows
from the fact that D(A.) is dense in E: for each 7. Thus —As +s, generates a
semigroup G({t) of class (Co) in Eo-+ E: which takes the same values as Gi(f) on
E; (i=0,1). We also note that the restriction G(t)s,- », of G(f) forms a semigroup
of class (Co) in EvN K.

DEFINITION 2.2. G(t)€ S(v, E», E,) means that G(f), considered as operators
from FE, into K, that is, G{t)o.;, are defined on the whole B, for all t>0, and
they are continuous with the estimate:

WG o llkgr, “Kto4+- K, K>0, K'>0,0>0,

where K, K’, and ¢ are constants independent of £>0.
FEzample 2.2. In order to illustrate the above definition, we state that

(2.10) Gitye S(’%« (% %—) , LR, Iﬂ(R")) 1< p<q<oo
and that

.10 Giye s(m— LR, C(R”)) 1<p<es .

Here G(t) is defined by

(2.11) Gt) f(x) {f(m) : b

for fe &Z/(R"); and C(R") is the Banach space of uniformly continuous, bounded
functions f on R* with the norm | fllcien = - max | ().
(1) IF;ROOI-‘ oF (2. 10) Let Eo= AL?’(R”), E1~- LYRY), &=cF"(R", and

0 0"
: SENY Fe IS SIS S - 7 g 10t1 (8= i
A (aye - (oa;’*) It is well-known that the restriction G:(8)=G(#),
t>0, 1==0, 1, of G(¢) in each E; is a semigroup of class (Co), and that —A; is
the infinitesimal generator of Gi(t) (Yosida [12]). By Young’'s inequality for
convolution, we see that G(t)s.: is defined on the whole E, for ¢t>0 with the

estimate:
IG®o1 EgmEy K Kt~

where o= 12’5<l — %)>0 and K= (27)~*(1—a)"/*-, (K’-=0). Hence we have (2.10).

Y
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(ii) PROOF OF (2.10)". Let E., #¢, A be as in the proof of (2.10). Let E,=C(R").
Then G.i(t) for the present choice of E, is, as is well-known (Yosida [12]), a semi-
group of class (Co) with the infinitesimal generator —A4,. Since, for >0, and
fe€ LR,

(G S} < Kt/%2]) flliopmy

and

605 Gwferh< ke | 1w faidy |

for any 2, he R* with K:<1-—1~)‘3' (1“;)(21) "'-::}, we see (2.10). q.e.d.
DEFINITION 2.2*%, We say G(tj)oe S(o, Eo, ED)* if G(t)e S(o, Eo, E)) and if the

operator G{t)o.: is, for each ¢>0, a compact linear operator on E, into Ei.
Ezxzample 2.2%. In order to illustrate Definition 2.2%, we state that

(2.10)* G(t)es(-?% (37 wl—), LT, L«(T"))* , 1<p<g<eo,
2\p gq.

and that

(2.10)% G(t)es(—z’-‘;, Le(T™, C(Tﬂ))* , 1<p<oo .

Here G(t) is given by

‘ J f@, t=0,
.12 Gt)f () =
|| oe—nfmay,  t>0,
with
1 LlzekiE
2.13) Ge(Z) = — oo 2 e ., 1>0;

and C(T") is the Banach space of continuous functions f on 7'* with the norm
Hfilc<r’*):I:15aT!§ (f@)l.
(i) PrOOF OF (2.10)*. Let Ey=L»(T"), E\=L«(T", and &£ 22 (T". Let
2 pac]

A=4d=- z_o . RUL (2.12) defines a semigroup G:{t) of class (Co) in each

@x)? (@z™)?
E;, 1=0,1, as the restriction of G(t). The infinitesimal generator of G.(f) is the

restriction — A; of the operator —A. Since
lge@litan<l, and  [ge@)l|en <eu(l4-tm2

we have, for 1<r<co,
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ge@lirram <o (L4tmt-1/m/2)

by the logarithmic convexity of L”-scales (cf. Example 1.1 in §1.1). Hence, we
have, by Young’s inequality for convolution,

1G04 [l pyer, e HEmmpmiia/zy |
Thus

Gl e s(ﬁ (i - —1-) , Lo(T™), L‘?(T")) .
2\p ¢
Now we are going to see the compactness of the operator G(t)o., for each fixed
t>0. It is enough to show that for any set {fe@li-1.. CE; with W fellpe<l1,
{G()s.1 f+} is equibounded and equicontinuous in E: (see Yosida f12], p.275-277).
The equiboundedness is an immediate consequence of the the fact that Git)e
S{—’l (—I—W-L),L?’(T“),LQ(T")). Let he T*. Since
2\p ¢

( Srn IG(E) felw-+ ) -G @) () 1 odc ),,q

la i/q

( SM KM (ge(@+-h—y)—g(z—y) f W)dy | dm)

{* 1/r l/p
(\ lye(x":«h)~~~gt(x)!’dx> (S lf(y)l"dy> , L.l 1, '

JTn T T q p
for every fixed £>0, the equicontinuity follows immediately. Therefore, (2.10)*
has been shown.

(ii) PROOF OF (2.10)*. Let Eo==L»T", E:~=C(T"). Let & and A be same
as in the proof of (2.10)*. Then (2.12) defines a semigroup Gi(t) of class (Co) in
each I; with the infinitesimal generator --A4:. As before, it is easily seen that

G(t)eS(%, Le(T™, C(T")) .

In order to show the compactness of G(t)o.:, consider f.e Es, I filig, 1. It is
clear that {G(t)o..fi} is equibounded in C(T"). The equicontinuity of {G(t)o 1 fr}
follows from the following inequality:

IG@ fule+ Ry — G fil [ S lg;(yuhh,)mg,(y)[?”dy}lww[ S | flw) P’d-y]w

for x,he T", and p’=p/(p—1). Thus we have (2.10)*. q.e.d.
2.3. Let (K, Ey, &) be an interpolation triplet. Let A7, j=1,---, N, be
mutually commutative continuous linear operators on &°. Let E.j, k=1, ---, N ;
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7==0, ---, N be Banach spaces continuously imbedded in £, and Ewo:Es, Evv= E,
for k=1, ---, N. Let 0., -+, 0y be positive numbers.

DEFINITION 2.8, We write {A!, -+, AY € ({ay, - -+, ox}, Es, E)) if the following
two conditions are satisfied:

(1) A'€(vj, Erpijotror, Eragon) for j, k=1, ---, N where

-y
(ii) therestriction of (A4 A%, 2>0, in En are mutually commutative, that is
(- AR) TR AL T = A AL T e AR
for »>0 and 2>0,%,7=1,---, N; k=1,---,N;1=0,---, N.
Ezample 2.3. In order to illustrate the above definition, we state that

@15 fole, e (]

Dt Gar | |

_1___.1‘., ceey, _1.. _....}..?., L])(R“)’ Lq(Rn))
p ¢ " p aq

where 1:-Ip<g<co,

PROOF OF (2.14). Let Eb=L(R"), Ei=Li(RY, & = #"(R"Y, and Ai= azf’
j=1,---,n. The operators A’ are mutually commutative, and continuous on‘ .
We are going to introduce the spaces Ex;. Let = be a permutationof (1, - - -, n).
Let p==(ry, -+, rx) be a set of real numbers such that 1<r.<l --- <rm<oo. We
denote by L~ the space of functions f, measurable in R", which satisfy the

following condition:

{2.16)
o P P ' 3 7202/ 72(1) e ra(3)/T(2) .:”“’/f*(ﬂ)
i fllze== {< lf(:rx)i”ﬂmdm»“’) da=t ’} - daEin <o

-0 —y

where mx=(x"®, ... "™}, [ is a Banach space with the norm given by (2.16),
and it is continuously imbedded in £&’/(R". By Fubini’s theorem, L*=L7(R"

if j)’l:: “ee ;j;fr"‘::/r. Let e (}i k%_l ':' n""/;;’?““l n~~-’1(3+2 " ki’i1> and [ e
ot e B et Y

{p---pqg---q. We set Eyy=Lw;, k=1, ---,n; =0, ---,n. For such spaces,
see, for example, Benedek-Panzoni [1]. Consider the integral

{2.17)7 Ri() flx)= S “e"f‘ Sflo+tepdt for j=1,--,nm
¢

4
where 1>0,e;=(,---,0,1,0, ---,0), f€ %, and the integral is in the sense of
distribution. Considering these integrals in Ei:, we obtain the restrictions R/(A)u
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of Ri(4) in Ex. Now we show the continuity of R’(1)y, that is, let us show that

(2.18) [S n-t jl S l

e

oo { g 1
S e”“f(a:—%—tej)dtl dz' .- dat }de’“ dx"] ”

[

]Pl?

.«'..1._ el pt L. i o1, n e
Er {Sm“l{imlﬂx}{'d& dz i dat d:z;:l )

In fact, let o', .-, 2he L”(R) where g¢’=g¢/(g—1). For almost every
(xl”; Tty wn),

”

g f?(fu"f”ff?’f?cljj Bwe*“ f(x+t€j)dt)dxl <o dat
I l 0 ’,

b

i Swe—“ dt{ Spl | fle+ten)) elxt -+ zdidet --- dx‘}

e dHU |t tepldat - dat |7
o Y 4

l/q’l

X[:X le(@t, -, a2bjr'dat - - dx‘:] .
r! f

Thus for almost every (z!*!, --., z"), we have

o

U ig”e—uf(xwe,-)dt?«dxx dxz]”"

rt 0 |

égwe‘”[g Klf(:c%«tej)l"dx‘ dm’]‘/th.
0 R

If p=1, (2.18) follows immediately by Fubini’s theorem. For p>1, let
glattt, - 2™y e LY (B*Y) where p’=p/(p—1). Then

Sn l%j»(:c'-“","‘-";-;m”)[ure~“f(x~i-te,~)dz[“dxl da;’]/qda:’“ co dan
n— J o i

o gwe*“ dt { g |ty oo, m")l[g | fle+te)lodda - dm’]llqdm‘“ d:c"}
Jo { rr-t SR
{
{

< g et dt

4

£ . ifp’
[3 l Ig”(x“‘l, cee )P ettt L dxn]
R

\[g [X | flz-+te))lodat - dxl]mda:‘“ dx"T/pl,..
,R”"l nt R j

Hence we obtain (2.18).

In the same way, we have that Ri()u, j=1, ---, n are continuous on every
B, k=1, ---,n; =0, ---, n, with the estimate

@.19) Ry < i—
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for each fixed 2>0,

The commutativity of R/(D)u and Ré(Au, ¢,5=1, ---, n; k=1, ---, n; =0, - - -,
n; 1>0,v>0, follows immediately from that of R¥(2) and R¥2) in ¥°. The latter
is obvious from the formula (2.17)7 and (2.17)°. Since for each j=1, ---,n the
equation

(A+ANf=0, fe gZ'(R), 1>0

implies f=0, 2+A% is invertible for every 1>0. Here E=3 Eu. Hence, a
fortiori 2+ A%, is invertible for every 1>0, and as in Example 2.1, we have

(2.20) @+ AL =RiMu
and

(2+A%) ' =RiQ)r
for j=1, - -, n.

Now we are going to show that (A-+A7%;l..; is continuous for each A>0,
and for each j=1,---,n. We have shown in the above that

e

S " et f(z+te;)dt
[i]

Q 3 i/g
dat .- dxHJ
£ J’ /e
<S et dt [S  Vfle+teplodat - dait }
o ( RI=1

From this, we can show as in Example 2.1 that

i

—

® ¢ : e
g e—“f(ib+tej)(lt! dzt -+ dﬁ?’_lda:i'j]

o
|:g i | flayledat - dxj~i]p/quj}l/ﬂ
Ri=

< Lo { S”

where a:—i———%— and L=(1—0)'"". Integrating in 27*!, ..., z*, the p-th powers
of the both sides of this inequality, we obtain that
2.21) WRIA) 15105l ey jg gy < LA

In this way, we see that each R/(A)kuij—tr—1,knij-r) is defined on the whole Eiuj_r
and it is continuous with the estimate

2.22) ”Rj(z)k}!(j“k)—l g1y igEk.u(jak)—l“‘ﬁk;x{j—-k) < Lae—t

where a:%—% and L=(1—0¢)’. Hence we have ,LJ?__ 9 }e
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(o, -+, o}, LR, LAR") with o % %and 1-p<g<co. For the sake of facile

understanding of the above considerations, we give a diagram for the case n:=3.

. _ /123y _ 123\ _ /123 B
In this case, ,..1&(1 55 ) ™ »(23 1>, '-3—A<3 i 2), =(ppp, p=QpD),
123

g2 g p), ps=(g qq). Let L2S" correspond to p==:(p ¢ ) and == ( i i k)’ that
is, LrA7 [, Then Eo=:FEe:= Fog==Ely, Ey== =Fs=Ep=FEuy, Ean=LiA?, E.=1L%",

ijk
ooy = LYS? ) KoL, Eao= LGP, Ew=L{%". The diagram becomes as follows:

A2, 1

. tid Al —1 - 1. {o+ A3 1
Fo B /1Y) e o By e Bl

Ea L % ferdh-l B, R I )%

: o
By w1 OEy, ‘ﬁ-i{‘iﬁi‘,@, By wtdh! | Ey

Remark 2.3. It is not difficult to see that each D(A47%,) is dense in Ei, J, k=
1,---,m; =0, .-, n, in the above example. From the relations (2.17)7, (2.20),

and from the estimate (2.19), we see that each --A, generates a semigroup of
class (Co) in K, the translation semigroup in the j-th coordinate Gi(t): f(x)—>
S(x-itej).

2.4. Let the spaces Eu, E\, Ej, 5, and the operators A7 be as in §2.3
(j=1,--,N; k=0,---,N). Let m; be positive integers, and «; be positive
numbers (51, ---, N).

DEFINITION 2.4, We write {4, -+, A¥fe (s, ---, on}, {m, -+, my}, Eo, B if
the following two conditions are satisfied:

(i) the restrictions 4%, of 47 in Eu are of type (hn;) (see §1.4), and

(A1 AL Mt ALY = 0 A O Al

for 4+0, v:0, arg A-2rzim;, argv=2r"z'm;, (»,r’: integers), j, k=1, ---, N;
10, -+, N,

(ii) for every j, k=1, ---, N, there exists a ray i#0, arg 1=2rz/m; (with a
certain positive integer ), such that (i+A4/)~!, considered as operators from
Erui-t 1 into Eipjon, that is, (+ AN Gosoismiy are defined on the whole
FEraowa for all 4 on this ray, and they are continuous with the estimate:

. N L1
A+ A])k;}(jmlnul.k;a(jmk) ”Ek;:«:jr—k = Ehngjory s Lkl a]es
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where L;. is a positive constant independent of /. x(n) is the function defined
by (2.15).
Ezxample 2.4. 1In order to illustrate the above definition, we state that

(2.23) {c~—c - }e({U,"',U},{mx,"'zmn}, LA(R™), LY(R") ,
al ox" [ R |

where ¢ :;—1‘—}—, 1<p<g<eo, and ¢j, =1, ---, n, are suitable complex num-
bers such thz?at —qarg ci+2kx/m;Ex/2 (mod. 7).

Proof of (2.23). Let the spaces Ky, Ei, Equ, & and the operators be same as
in Example 2.3, 7=1, ---,7; k=0, ---,n. By the argument in Remark 2.1 and
the proof of (2.14), we can see that

. .1
(2.24) A+ AL ey e < Redl
forevery 4 with Re 250 (j=1, - -, n;k=1,---,n;1=0, - - - ,m; and A+ A7} iyt kot

is defined on the whole Eru-r_:, and it is continuous with the estimate;
(2.25) 1A+ AN Gon -t ki N Bk ot =B gty < LIRe A7

for / with Re 450, where a-:—lz—)-—%— and L=(1—0)'"*. The commutativity of

(A-Ai)™ and (+AL)™Y, Rel#0, Rev~0,4,75, k=1, ---,n; =0, ---,n, can be
shown as in Example 2.3. Let m;, 5=1, ---, n, be certain positive integers. Let
¢i=c(m;)==0 be suitable complex numbers such that —arg ¢;+2k=/m;£x/2 (mod. 7).
Then from the above considerations, (2.23) follows immediately. q.e.d.

2.5. Here we collect our main theorems and related results. All these
propositions are to be proved in §3. In the statements of the theorems, m or
m;, j=1, ---, N, are certain positive integers. For Theorem 2.2 or Theorem 2.x*,
2=:1, 2,3, 4, the notations, definitions, and examples are given in §2.z.

THEOREM 2.1. Let (E,, E\, &) be an interpolation triplet, and A be a con-
tinuous linear operator on &. If A€ (o, Eo, E\) then

(B, D((Ad)™)o+0rm.p < (Eyy DEAD™)0.p

where 0<0<0~:——;’; <1 and 1<p<oo.

THEOREM 2.1%, Let (Eo, Ei, &) be an interpolation triplet, and A be a
continuous linear operator on &. If A€o, Eo, E)*, then we have, for

0<0<+2- 2% 1 550, and for 1<p<co,
m m

(Eo, D((Ao)m))8+a/m+6/m.pc(El; D((Al)m))ol’ .
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If 6>0 and p<cs, the injection is compact.

THEOREM 2.2. Let (Es, E\, &) be an interpolation triplet, and —A be a
continuous linear operator on & whose restriction —A: in each E: (1=0,1)
generates a semigroup Gi(t), t =0, of clags (Co) which turns out to be the restric-
tion on E: of a semigroup G&), £:0, in Ev+E.. If Git)e S, E;, E)), then

(Bo, D((A)™)ovorm.p < (Ery DI(A)™)orn

where 0<0<0-- " <1 and 1~ p~ co.
m

COROLLARY 2.1. If 0<o<1l in the above theorem, then we have that k,-A€
(o, Ev, E) for some ko and that (A-+ko+A)%h, Re i>0, is a continuous linear

operator on K,y into I with the estimate:
-+ feo -+ A) Shllgy -k, < M’{ Re 2]°1, Re 1>0,

Jor some M’ >0.

REMARK 2.4. Let (b, E\, ) be an interpolation triplet, and A be a con-
tinuous linear operator on #°. Consider the case that each —A4: (1=0,1) is an
infinitesimal generator of a holomorphic semigroup G:(t) in E:, that is, each Gi(t)
is a semigroup of eclass (Cy), and has a holomorphic extension to the sector

larg t| < g —w; for some i, 0<wi< -g— Then, for each 1==0, 1, the resolvent set
of — A, p(-—Ay), contains each 4, 1=:0, larg 3| <z—w; and
NGA+ AN g, <M (arg DAY, 1520, larg A <m—o;

(see Yosida [12], Chapter 9). It is easy to see that D(—Ag,.x,) is dense in Eo-+E),
that o(-~Ag, ) contains each 2, i+0, larg 4| <z—w, w=max (w, @), and that

N+ Apger) Nrger-pere, < M (arg H|217, 240, larg Al <7—~w .

Hence - Ag,+x, generates a holomorphic semigroup G(t) in Ev+Ey, and G =G(®),
1=:0,1. Then we have the following

ProrosiTION 2.8. Let E,, E\, A be as in Remark 2.4. If (A+A4)", 150,
larg | <=--w, are continuous as operators from E, into E:, and if

12+ A)or il egr, << M (arg D]A°Y, 6>0,
Sfor such 2, then we have
Gtye S(o, Eb, E)) .

THEOREM 2.2*%. Let (Eo, E\, &) be an interpolation triplet, and —A be «
continuous linear operator on & whose restriction —A: on each E; (1=0,1)
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generates a semigroup Git), t>0, of class (Co) which turns out to be the restric-
tiono n E:i of a semigroup G{t), t=0, of a class (Co) in Eo+E. If Gie
S(o, Eo, EV*, then, for 0<6L0-+ %+~% <1, 30, and for 1< p<co,

(Eo, D((Ao)m))8+o/m&6,’m.pc(El, D((Al)m))o.l) .

The injection is compact for >0 and p<co.
THEOREM 2.3. Let (Es, E\, &) be an interpolation triplet, and A7, j=1,---, N,
be continuous linear operators on &. If {AY, -, A¥}e oy, -+, on}, Bo, EY), and

if S o<1, then
=i
N . ~ )
N (Be, DAY, &, < 1 (B, DA
j=1 T j:1 2.y i=1

N
where 080+ Elcrj<1 and 1< p<oo,
i<
THEOREM 2.4. Let (Eo, Ei, &) be an interpolation triplet, and A7, j=1, ---, N,
be continuous linear operator on &°. If

{Al» STy A;V}e ({Uly Tty 0‘\’}7 {mlr Tt mN}J E09 El)y

L
and if 3 oymi7 <1, then
i=1

A (Bo, DA™, § e, © O By DUAD"0.s
i= i =

;
g m—1
21 i

N
where 00O+ 2 omi <1 and 1<p<oo.
i=1

3. Proofs of Theorems.

3.0. In this section we give the proofs of our Theorems 2.1-2.4 in §2.5.
For the notations consult the indication given at the'beginning of §2.5. Prop-
osition 1.2 which makes legitimate our formulations is implicitly employed, and
we often omit the subscripts such as %, 7, in Ai, A¢j, G(f);s ete. in the following

proofs.
3.1. ProOF OF THEOREM 2.1. Let a€ (Ko, D((A0)™)ososm.» and set
. :F@k) E( AVK(F . ~2k
wr(t) (o) (A E+ A) 2a, t>0,k>m.

We note, by our Theorem 1.5 and Remark 1.1, that

tmo+ous(t) € LE(E), tm9+o=*(A) us(t) € LE(Eo)
and
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Vuk(t) @ . in B,
9 t

From our hypothesis,
w1 @Ol Cit"lun®) e, (Ci=2@m +1)L/m) ,
and
HAY Um s @O e, CiE? ) (A) " um () | 1y
Therefore we have
t"0un i (t) € LE(EY), 1" ™(A) " Unu(t) € LL(E))
with
1t um i O rLen < CliE™ un(®) |12y
and

e (A mir 128y 7 Gt (AY un (@ 125y

Hence br:Smum“(t)%t—e(E,,D((A;)’”))n,,,, and since a=b in Et+Ei, a—be

(E.,D(A)™))s.,. Finally from our proof and Remark 1.1,
”xl!<51-1’<<~41>"‘1)0,p<ClIimlltﬁio,D(mo;"‘naw/,,,,,, . q.e.d.

PRroOF oF THEOREM 2.1*. 1In the proof we denote by || o and || |: the norms
in (Fo, D{(A0)™)srom-1rim-t.p and in (., D{(A)™)s., respectively. Let a.€
(Eo, DUA)™)bs0m=145m-1,p With laullo<M for n==1,2, ---. We show that there is
a subsequence {a}/} of {a.} such that {a!/} converges in (E\, D((A)™))e.»,. Let

W) e A A for ¢30 (cun {ﬁw-——g’:’:l)%)

where [ corresponds to the indices occurring in the proof. Since (1+4)! is com-
pact on I into I\, and since the operators (4)""1(1+ A)" 27t and (A)2»+i(1-} A)~2m—t
are bounded on E\, we can choose a subsequence {a.) of {a.} such that

(1 +A)'am—> b, in E, for some element e E, ;

é;'u-ni(]_) —Cot1 (‘4)7"% ‘(13” A)~2m—‘lbl ”El < %‘%‘ ’

and

“ (A)mu:)u (1) “Cm-*L(A)Em‘L' 1(1 “' A)*zm—-lbl HEI < % .
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Since (t--A)"'am—> be=(1+A)(t-+A)"'b, in E, by the resolvent equations, and
since the operators t™(4)™'!(t-~ A)"2»* and (A)!"*'(¢t4-A)~*""! are bounded on E,
for >0, we can choose a subsequence {@n:} of {@w—} (B==1,2, ---) satisfying

Hunk(k) “'01114‘,»1}6,}1‘?1([1)”&‘: l(k ‘Z" A)~2m~-]bk H Ey < Mk‘-a

and

where a>m-1. Hence we obtain a subsequence {a}; a,=a..} of {a@.} with the

property
3.1’ 2, () — €+ 1 (A)™ 1 (- A) 27, < “Mi""
and

4 | Y . m+1 2mal =1k, | Mkn—a
3.2 1A () = Cmaakem 1 AV (= A2 ey <
for k<n; k, n=1,2, ---. Here u},=u.. Similarly we can choose a subsequence
{a’/} of la}} satisfying
(3.1") ) —Cmir i (e Aoyl < MEZ g L

n ke

and
38.2") (A ul (1) —emear™ (AP A) 72 1be i, < Mk,::?“ » 7 “]1;“ ,

for k- n; k, n==1,2, ---. Here u'’ corresponds to a’’. Evidently (3.1’) and (3.2%)
hold for /), k<n. Now we are going to show that {a}/} coverges in
(B, DUAD ). 5. Since for k<1,
(At A) == {(s -+ AY(E-- Ay (A (s + A) e
el (8- )+ A AY (s A) e, x € Ky,
we have

e Artals, (1455
i

! I
| M, ) NCAY(s -+ A) o),
i
< max (1 M () 0¥ § ATl 0<s,
where M, is the constant for type (h) corresponding to A:. Hence we have

m-il
(33) “th(A}m%x(t_e_ A)ﬂzam—zx“b}l_{ Cz (_‘E_) ﬁsmv, 1(A)m~; 1(8 A)~2m——2xnh‘l
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and
B4 HA It Ay, G (-;’l) IS(AYmI(s - A)Emng

if t<s (Ce==(max (1, My))*™*%), Therefore for z€ (Ey, D{(Ao)™ )0 vosmi/m.» We have,
from our hypothesis,

ML
(i_) figmer(Aymri(t ,E_A)'~27:¢-2:c}$h,1 “Cisolls™(A)™(s - A)_g’”ivifﬁ;o .

Multiplying both sides by s™#*# and integrating their p-th powers from ¢ to the
infinity in ds/s, we obtains, by Remark 1.1,

(3.5) Enofiem e (A"t A) 2t Cat ol
Similarly,
(3.6) tm{)“t(A)zm ;»l(t,Tf,A)»»zrn—zwz}Hl / Cét“ﬁézméto .

Let x-=a}/--a}’. Then we have, from Theorems 1.3 and 2.1,

Beells < max {{E" 0 @)~ ul’ @)Ly, {870 (A @ ) —ul O 2wy} , p<oo .
Note that the guantities in the above braces are integrals of those in the left-
hand sides of (3.6) and (3.7). For any >0, let n be large enough that

2Cne max (Cs, CQ’)M(pﬁ)*l/ﬁn~—5< _z__

and
2mir max (Cs, CLOYM(p(mo-1-a)) Yy mo=o :Z
where
Utm ‘H(A)m,«% I(ZH" A) zfnw».—'!xiih,l < C‘ta;ixﬁﬁo ‘ Cstaiixﬁo
and

(;t(A)Evmd(l;_‘L A)-zrn—-‘zxiil;l o C:taﬁx” £y : Cétul{xﬁo .

Choose k£ and ! large enough that k,I>n and
4 “)‘,I /__....0,..‘.... 4 )t : s pimd—a)y~1/p f_ .
Ce ( ; )((m P2 )<
Then

) ) dt fi/n n—1 { 1/7 n=1 { 741 [
g t”“’*’hu’,ﬁ(t)uui'(t)!!}gl—t— ::k + 2 S + 2 X -+ X =ht+l+ls+1.
0 i=

[ LJyt+n i=t )3 »
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By the choice of n and (3.5),

3]

/0
L < (Cm-;—i)p S tmapgztmﬂ(A)m-,»x(t“%AA)-—am-emizg‘xét_t__

1/n —(mypiap) s \?
gg(em.,,lcf,vzgx;!gg §m99 50518 (AU Cimn)? Tt <(-) :
o mbp-+op 4

1< (emsn)? g°°tmw;;tm-ﬂ(A)m+l(z«:~Arzm-zxs;g,%i

<(Cacmre)?lwlif Swrév—!dt 2 (@2MCsCmir)? "[l’f < <}‘_)” )
k3 po 4

By (3.3) and (3.1%,

n~1

i+ dt
B@na) S, | oAy )t 4
j

=1

]

. .
g(CzCWZ+1)p 2 g” tmop (le«)p gi(j+1)m+x(A)m+x(j+1+A)-—2m—2x“§lét_t_
i

J=1

71 j41
<etrs, S’, troridtfoul! (G4 D —ul G+ DB,
2

J=

< (2(}'2M<——1~ + —1-)>p 1 "g ((F-+1)mor—jmow)(§4-1)~Pe
k l mOp J=1

_}-___ i _l_ p__]'__ - Smep—pa <i)p
<(4¢;M(k-r z )) i < ()
Similarly by (3.3) and (3.1), Ig<(—f{>”. Hence

el &) —ut’ Ly <e .
In the same way, from (3.4), (3.29), (3.2}, (8.6) and the choice of n,k,
igmo=m((A)mul @) —(A)mul @)L <e .
Therefore, for & and [ large enough, we have
la¥ —al’l:<e. g.e.d.

3.2. PROOF OF THEOREM 2.2. We shall reduce the theorem to Theorem 2.1.
Since the restriction of G(¢) in Ey( E, forms a semigroup of class (Cy), the domain
of the restriction of A in Ey,N E\, and a fortiori D(Ao) N D(A,) are dense in EyNE,.
Since the restriction of A in (&, E\)e.q has the domain (D(40), D(A1))s.¢ (Theorem
1.10), we immediately see that this restriction generates a semigroup of class

(Co) in (b, E1)s.q for g< oo, This semigroup is the restriction of G{) in (Es, Ei)o.e.
Since '
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(Kt Ky < Kttor- - K'0, 0<0<1; K,1>0,K' >0,
we have, by Theorems 1.1 and 1.2,

G(tye SWo, Ey, (Es, E)s.q) ,

Gtye S((1- -0, (Bo, B, E)
and

Gty e S —0)a, (Es, E\i.q, (Eo, Ea ), 0<0<0'<1 .
Choose 0-:0s<0; --- <Oy-1sueh that ¢;==(;—0;.)<1, j=1, ---, N and éx g;=1.
Setting Ei- (Lo, L)y, <00, (Bo- E° Ev=EY), we see
Gtye S(o;, B, Ky,  j=1,---,N.
Hence we may assume that
G{tye S(u, By, E) with 0<o<1.
Now in Ko+ E,,

2+ A) 1= g "ot Gtyadt, 10 .

o

However, if v € E;, then the right-hand side converges in E, since 0<s<1, and
K.
(A A) )l (KT (0D a -+ K ) |l gy << Co (Z"“‘ + A A )Hxiiso
9

I\ 1/a
oG zls, for Anke: (K-) .

Co

Hence,

Na4-kot Ay Hgymn, < 2Csiot, 2>0 .
Since the operators ko - A:, 1::0, 1, satisfy (), as is easily seen, we have
kot A€ (6, By, EY) .

Since DA™ ==D((ko-+ AD™), 1=:0,1; m=1,2,---, we obtain the theorem by
Theorem 2.1. q.e.d.
Proor oF COROLLARY 2.1, This is an immediate consequence of the above

proof of Theorem 2.2.
PrOOF OF PrROPOSITION 2.3. As is well-known, a holomorphie semigroup G(t)

is expressed by the following formula:
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GOy = TE{ S e (2~ Ay 'edz, € By +Ey, t>0,

I

where we take path of integration I'={i(s); s€ B}< o( - A4) such that
~;'—<§arg2(s)[<::-m«,u for |s| large,
and
Rei(s)>0 for |s| not large

(see Yosida [12], Chapter 9). From the holomorphicity of the integrand, it
follows that

1 1 7 =i 11 ¢ —1
g e a4 1 A Ll (R [ee .
GOr=-5 5 3 St,-e <t ) T o Sp" (t A) dr

Let ze E;. Then this integral converges in E\, and we obtain
1G®zle, < él—g et o dy) [t lells, . q.e.d.
TiJr i

PrOOF OF THEOREM 2.2*. Employing Theorem 1.1 and 1.1%, we may assume,
as in the proof of Theorem 2.1, that 0<o<1. We are going to show that the
compactness of G(t)o. for each ¢>0 implies that of (A+A)T: for each i>0. Let
ar€ By with flaalle, <1 for n=1,2, ---. We shall show that, for each fixed >0,
we can choose a subsequence {a}} of {a.} such that {(2-+A)~'a}} converges in E:.
We begin by choosing a subsequence {a.i} of {a.} satisfying

1G W)@ —blls, < % for some b€ E, .
Choose, repeatedly, subsequence {@nix} 0of {@nr_1) such that
1G ()t G l— )by |15, < 71{ (ke=1,2, ) .

Here we have used the compactness of G(t)o.;, £>>0. Thus we obtain a subsequence
{a’(zl); a,‘,"mam,,} of {(Ln} such that

HG(k)a,‘,,”~G(lc—~1)b;!]1»;x<—%: for kom.

Again by the compactness of the operator G(®)o.., >0, we can choose a sub-
sequence {@azn} of {a')} such that G(«%—)am——» b in E, for some b:€ E,. As

before we obtain a subsequence {a'?} of {g.n} satisfying
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G+ )at Gl <~ for k<n.

Ey

Repeating this procedure, we finally obtain a subsequence {a}; ah=a/"} of {a.}
with the property:

3.7) I G(jwi— l—)a:,m(;(j)bk <L for jom and k<n,
{ k lE, N
where §=0,1,2, --+; k,n=1,2, --- and b are certain elements in E\. We shall

show that {(A-+4)'al} converges in E,. For z€ E,

3.8 (2+A)“'»x~r§me““G(t)xdt in EotE,

[

for every fixed >0 and this integral converges in E:. Let ¢ be any positive
number. Take k large enough that

a- oo (4

2(.&&: -+ gl) < £ and A (K S et t“"dt+ _12 e—l(lc-n/m) < _i_ .
1—o¢ I kat/k i 3

Let # and m be large enough that =, m>k and

(i " }-u) Ma< - where [G@®)|,-5, <M .
n m 3

Let z=a/—a/ in (8.8), then

ke ] k
1+ A) e, < g”k GO mdt+ S S”w e GOz, dt+
0 =0 J je1/k

»-!~S° e Gt)z g, dt =T+ Lot Ts
kv1/k

By the choice of k,

and

- o 4 s
h<2(K X ernped + K g ) < =

k41 /k

Since G(t)x:rG(t»jw —1];) G(j+-%c~>x for t>j+‘}c~, we have by (3.7)

IG@)zle, < M| G (j+i)x | <M,<—1~ +—1m> .
Ik k/ 'k n m
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Thus
k=3 ¢ rkersk )
L=% S Gty e, dt
7=0 J jxi/k
k—1 Cis1+1/k 13
<M.(—1«+»1~> pS) S Y i gt < %(l-:ul—)«; .
n m/ i=0 )ik ; n m 3
Hence

Ha-+-A)y Hen—anle, <e,

that is, (A+ A1 is compact for every fixed i>0. g.e.d.
3.3. PRrOOF OF THEOREM 2.8. We remark that

N N .
3.9 Ol(Eo, D(4%0))e.r= jﬂl(Eélg D(A%;)e-05.»
ju -
~ ~
by Theorem 2.1 where ¢=0+ X ;. Let a€ ﬁ (EY, D{(A%))s.» and set
Fe=1 F=1

wlt)= 3 t¥A(A -+ T (A +t)a .
J=1 PESY
Then
N
N N . ) X z a; N 3 .
flu e, < 21 A _IIX(A’~:~t)‘*AJ(A’ +t)afle, < Cit ! 21 lA4i(Ai+talg, ,
3= i= Jj=
and, for k=1, .-, N,
N
A%t e, < 21 t¥ A1(A7+1) .IIk(A‘%- AN AR als,
2 Cot' T 55T || ARAR -+t al e,
By our assumption and (3.9), we have
tPut)e LIU(E) and t*tA*u(t)e LL(E))
for k=1, .-, N. Hence
i dt ¥ )
b=\ ul)—e€ N (E, DA7))s.»
) t i=1
and from Remark 1.3,
bl < Collallo .

N
Here we mean by || llo and || |l: the norms of _ﬂ1 (Es, D(A70))e.» and ?\1 (E\, D(A7)e.»
i= e
respectively. Since, by Remark 1.3,
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a A;S u(t)éut- in Es,
0 t

we have q-—b in Fpi Ei. Therefore a=be 1 (B, D(A7).,. q.e.d.
=1

3.4. Proor or THEOREM 2.4. Since

’lili“l

(3'10) (,j é(Ai)wzz) tee 1T (Ai‘ */:"’""1(1),7.'12)” , i:il, e N s
el

for 1>0 on each space Eij, k=1, ---,N; j=0,---, N, and on E=3IE:; with
ww==eti/m and since A are of type (hm,) on each of these spaces, we see that
(AH™: are of type (R) in each space. Next, we may assume that, for p>0,

ﬂ("”g'Ai);::iwkm,tomi -k)“Ekp(i—l:pxﬂﬁ’k[n(i‘.k; < Ligpt L
Then from (3.10) in E and from that A are of type (h)) in Ekui-n-, it follows

that, for € Erui k-,

mi= 1

h(/ <A. )ml) 127]‘1'!;4(1»[)' le/”/mt 1/my I-I H(Al /I ’"i(ymt lxi“‘h“(’-’” 1
7 Lagdodmat/my(MERR-Ymy ™t igle, o g
,, Cik)-”/m l—”(x”ﬂ.,.u kY1 ¢

In the above caleulation, Mi.* are the constants for type (hm;) for Alsu-m-1
Hence we see that

{(AY™:, -« -, (A¥)m~) € ({,.‘i‘_’ cen, v 1 , Eu, E;) ,

ms m v}

and the theorem follows immediately from Theorem 2.3. q.e.d.

4. Applications.

4.0. Finally we give some applications of our theorems in §2.5. We begin
by defining the function spaces of Besov [2], Nikol'skii [8] and others, which we
are going to treat. We note our notations are found in §§1 and 2.

4.1. In the space L*’(R), 1< p<ee, consider the operator A:—(%c— with the

domain D(A) = er L*(R): ~~—f in the sense of distribution belongs LP(R)}

Then as we have seen in Example 2.1, A is a closed linear operator in L*(R) of
type (h) (see §1.2), and —A is an infinitesimal generator of class (Co), the trans-
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lation semigroup in this space (see Remark 2.2).
DEFINITION 4.1. For 1J7rJoc and for s>0,

4.1) B 7(R)=(L*(R), D{(A)"Ne/m.»

where m is any fixed integer>s. As seen from Theorem 1.5, Bj."(R) does not
depend on the choice of m, and from Theorems 1.6 and 1.7 and Remark 2.2, we
have another characterization of B "(R): since D((A)®)= Wi5(R), m=1,2, ---, by
definition,

(i) incase s>0is not an integer, B;-"(R)3f if and only if fe W{’(R) and

dx dz

where <{s> is the greatest integer<s;
(ii) in case s>0 is an integer, By -"(R)3f if and only if fe W’(R) and

4.3) 4{ Sot“ [ S i (%f” f@)—2 (5%)““ Fltt)
- (g;)m Flx-+2t) { ' da;]m) dt}l/r< oo

where <{s>=s—1. If r=-cc, then the integral norms in (4.2) and (4.3) should be
interpreted as ess. sup. in the variable ¢.
DEFINITION 4.1, For l1<r<cc and for §>0, we define

(41’) BLf(R) :(C(R)‘ Cm (R))s/m,r

where m is any fixed integer>s. Consider the operator 4:= —gﬁ; in the space

C(R), with the domain of definition D(A)r:{fe C(R); f is differentiable and

—g:—n-f belongs to C(R) } As seen in Example 2.1’ and Remark 2.2, 4 is the
infinitesimal generator of the translation semigroup in C(R), and since

C™(R)=D({A)™), BL™(R) is expressed more concretely, by Theorems 1.5, 1.6 and
1.7, as follows:

(i) in case s>0 is not an integer, BL"(R)3f if and only if fe C*(R) and

w2y {|Teee(swl(9) @ () feo| Yar} <o

where (s> is the greatest integer<s;
(i) in case s>0 is an integer, Bx"(R)3f if and only if fe C/(R) and
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4.3 { rt (sup <__4__><.> s -2 d )" s

cen |\ dz dx
d \ (82 INT l 17
= -2t ) dt e
< dx ) J )§> f <
where {gy=:8--1, If r==53, then the integral norms in (4.2%) and (4.3’) should be
interpreted as ess. sup. in the variables.

THEOREM 4.1. Let 1.-p<qco. Then we have, for s>—}1;~~(1;, (~1— f-O),
[ve]
SR BLNR), 1ories, tes— b4l
» q

with the continuous injection.

ProOF. This is an immediate consequence of Example 2.1, and of our Theorem
2.1,

REMARK 4.1. From our argument in Example 2.1, we can easily extend
the previous theorem to the functions with values in a Banach space.

Consider the operator A::—g;— in the space L*(T), 1+ p<co, with the domain

D(4) = { fe Lp;_:zl';  in the sense of distribution belongs to L*(T) } Then as

we have seen in Example 2.1%, 4 is a closed linear operator of type (&) in L?(T).
DEFINITION 4.1*. For 1:Ip<eo, 1l:ir=lco, and for s>0,

By (T)=(LXT), DUA)"N)s/m.r

where m is any fixed integer>s.

As seen from Example 2.1* and from the argument in Remark 2.2, —4
generates the translation semigroup in L?(T). Thus, as in the case of Bj"(R),
we can give a more concrete characterization of the space Bj-"(R), but we do
not repeat the procedure. Also we can give the following definition, consider-
ing the operator A- i in C(T) (cf. Example 2.1%, and Definition 4.1").

dzx
DEFINITION 4.1%. For 1 .r<co and s>0,

BL(T)=(C(T), C™(T)sm.r

where m is any fixed integer s, and C™(T)=D{(A)™).
From our Theorems 2.1 and 2.1%, and from our Example 2.1%, it follows

immediately.

THEOREM 4.1*. Let 1-ip<gqi=c. Then we have, for s>—1—~—1—,

p q
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BTy BE(T), lwraoo, tmge— - L , 00
q

with the continuous injection if 6=-0, and the compact injection if 6>0 and if
r<oo,

5 \¢
4.2. In the space L?(R"), 1-ip< =0, consider the operator 4~ J ( ¢ ) e

ozt
—(—::%;—) with the domain D(A)={fe L*(R"); Jf in the sense of distribution
L7}
belongs to L?(R")}. Then as seen in Example 2.2, —A generates a semigroup
G(t) of class (Co):

(@) if t-0,
4.4 G@) fla)= n o .

for fe L*(R").
DEFINITION 4.2. For 1-{p<es, 1 r«oo, and for s>0, we define
A(s, p, 7; BY)==(L"(R™), DUAY)s2m.
where m is any fixed integer>>s2.
A 2 -~ 2
Consider the operator Am.lm(azl) d e (::;) in the space C(R"). Then
> ¢ v 12
—A generates a semigroup G(t) of class (Cy) in C(R"), and G(t)f(x) is given by
the formula (4.4) (fe C(R™).
DEFINITION 4.2, For 1<7-lco, and for >0, we define

»I(Sr o, T, Rze):(C(Rn), D((A)m))s,/zm.r

where m is any integer>s/2.

A(s, p, r; B") is Taibleson’s Lipschitz space [10]. A more conerete characteri-
zation can be obtained by Theorem 1.7. Taibleson obtained other concrete
characterizations, employing the fact that G(¢) is a holomorphic semigroup, or
considering the square root of A. Most of his characterizations are thus
explained by the theory of mean space (for this, consult Komatsu [6]). For
1<p<eo, D{(A)™)=WTP(R") by definition, and A(s,p, r; B") is usualy written as
B3"(R™). From our Theorem 2.2 and considerations in Example 2.2, we obtain
immediately

THEOREM 4.2. For 1. 1p<q-ioo, lir<ico, and s>-3;—)—~" —gl->0, we have

(s, p, 7; R")C:.‘1<sr~=vn~*§~- ﬁ,q, T; R")
P q
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with the continuous tnjection.

REMARK 4.3. The deduction of the above theorem is essentially in the same
spirit as the proof of Lemma 11 of Taibleson {10], but he used indispensably
the fact that the above semigroup G(¢) is a bounded holomorphic semigroup
in each space (see our Introduction). He went farther however. In fact, he
showed that the restriction mapping f—> flem (m<n) from A(s, p, 7; R*) into
/‘.(s-« ~;Z - ZZ—, q, 7} Rm) is well-defined and is continuous, if s>——:§~m‘>0,
1<Zpqos, 1<raoo, However, if 1<p<q-7cc, we can show the above rela-
tion by the method of the mean space (or rather the trace method of Lions.
See Lions-Peetre [7]) as the combination of our Theorem 4.1 and Grisvard’s
Theorem 5.1 [3].

REMARK 4.4, From our considerations in Example 2.2, we can easily extend

the previous theorem to functions with values in a Banach space.

Consider the operator A4 (;:>* -~x'~-<527;)2 in the space L?(T™)
with the domain D(A)=={fe L*(T"); 4f in the sense of distribution belongs to
L»(T™}. Then as seen in Example 2.2%, -~ A generates a semigroup G(t) of class

(CO) in L”(T"):

J@) if t=0,
4.5) G(t) f()=
! S1 gx—fipdy if >0
for fe L*(T"). Here

1\ 202
4.5 o ; - stk |4, ..t' >0 .
“5) g (VZ::t) kezm ¢ >
DEFINITION 4.2%, For 1.Ip<co, 1irlco, and for s>0, we define
.X(S, D, T, T“) ::(LP(T ")’ D((A)m))smm,r

where m is any integer>s/2.
N 3o\
Similarly, considering the operator —A:=— {(:’..) SRR (f) | in the
oxt dan ) |
space C(T"), which generates a semigroup G(¢) of class (Co) given by the formula
(4.5) and (4.6) (for fe C(T™), we have the following definition (see Example
2.2%).
DEFINITION 4.2%., For 1.{r:lc> and for s>0, we define

As, 00,75 Ty =(C(T™), DA)™)sizm.r

where m is any fixed integer>s/2.
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For more concrete characterizations of the above spaces, consult Taibleson
[10] (as before a characterization can be obtained by Theorem 1.7). From our
Theorems 2.2 and 2.2%, and from our Example 2.2*%, we immediately obtain

THEOREM 4.2*%, For 1-{p<g ‘oo, 1ir<oo, and for s> {:; — %;— >0 we have

A(s+3,p, 7; T")C,I(s«-‘ni%-—nnq,r; T“) , 350,
Y q
with the continuous injection if 6=0, and with the compact injection if >0
and if r<co.
4.3. In the space L?(R"), 1:Ip- oo, consider the operators A/ —, 71, -+, n,

ox?
with the domain D(A%) = { feLs(R"™; :%]: f in the sense of distribution belongs
[
to LT’(R")}. Each A7 is a closed linear operator of type (k) in LP(R") as is seen
in Example 4.3.
DEFINITION 4.3. For 1<p<oo, 1<r-Zco, §=(sy, -+, 8n), 820, 5=1, -+, n, we

define

BE7(R7) == 0 (LR, DAY Nsyim,.0

where each m; is any fixed number>s;.

From our Theorems 1.6 and 1.7 and Remark 2.3, we can give a more con-
crete characterization of the above introduced space. Denoting by s> the
greatest integer<s; (so {s;>=s;—1 if s; is an integer), we have

(i) if none of s, j=1,---,n are integers, then B (R" 3f if and only

o k
if (7)) Fe LAY, k0, -+, <53, and

ox?
4.7 { g? Fis j=a = [Xnn (»5(;;)(”/ flx) — (;;;)EJ fla-ttej)

for all j=:1, ---,n;
(ii) if for some j, s; is an integer, then for this j, (4.7) should be replaced
by

v {fe,

1

» “ip 1r
da:J dt} < oo

(55) " @2 ()" stastens

owd o’

7/ 1jr
pda::] /pdt} <o

v ((;;J) ! flat-2te;)

.

here ¢;=(, ---, 0, T, 0,---,0), and if r=co, then the integral norms in ¢t of (4.7)
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and (4.8) should be interpreted as ess. sup. in ¢t. Especially if
(4.9) ’S.f '(Sl, Tty Sn) f"(/}m], ity Omn)ro(Mh Tty mn), 0<0<1 s

with positive integers mj, j==1, ---, %, then we have, from Theorem 1.9 and our
considerations in Example 2.4, the following equality:

(4.10) B (B (LY (R, ﬁ, DUA)™))s .

and moreover from our Theorem 2.4, it follows immediately.
THEOREM 4.3. Let 1 'p<q<co,l<r-cc, and let §=(si, -, 8a) satisfy (4.9).

Then if
(LD 5,
p q ko1

we have
Bﬂg}r([{n)c:B‘}:,?‘(Rﬂ)’ £ (_t.l, ey tn), bimsi—ks;, =1, m
with the continuous injection.

REMARK 4.5. This is a partial result of the imbedding theorem of Nikol’skii-
Besov type ([2], [8]). In fact, their results hold without the supplementary
assumption (4.9). We note, however, if all s;<2, then we can eliminate the
assumption (4.9) by applying the theory of fractional powers of closed operators
and our Theorem 2.3. For this, consult Komatsu [5], [6]. We can also eliminate
the assumption (4.9) if 1<p-2<¢< oo, by the theory of fractional powers and
Mihlin’s theorem generalized to functions with values in a Hilbert space {(J.
Schwartz [9]). In this case, we must pay attention to the choice of the space
Ej: in Definition 2.4 for the applicability of the Mihlin-Schwartz theorem (the
actual choice of Ej in Example 2.4 should be changed). The proofs of these
remarks are not difficult, but quite lengthy, and since they do not give the
complete answer, we do not enter in their proofs here.

University of Tokyo
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