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In a paper of O.T. O’'Meara and B. Pollak [3] they extended the theory of
generation by symmetries of orthogonal groups over a field to orthogonal groups
over a ring of integers, especially in the case of a dyadic local field. The purpose
of this paper is to consider a similar problem for unitary groups.

In case of orthogonal groups the following results are known ({3]). Let L he
a lattice on a regular quadratic space over a local field F. O(L) denotes the group
of units of L. Let S(L)} be the subgroup of O(L) generated by symmetries in O(L).
If F is not a dyadic field then O{L)=S8(L). If F is an unramified dyadic field
which is different from Q. then O(L)=S(L). If F=Q, then there are cases where
O(L)#S(L). In these cases it is necessary to add additional generators E! in
order to generate O(L). Moreover complete list of (nine} exceptional lattices (in
modular cases) are given in [3]. Similar problems are studied in [1], §7 for unitary
groups, especially in non-dyadic local cases.

In this paper we shall consider following cases. Let E be a ramified extension
of degree two over an unramified dyadic local field F. Let L be a lattice on a
non-degenerate hermitian space V with respect to the non-trivial automorphism of
the extension E/F. U(L) denotes the group of units of L. We shall prove the
following theorem.

THEOREM. Let S(L) be the subgroup generated by symmetries in U(L). If
F£Q; then we have U(L)=S(L). If F=Q. we have two 4-dimensional modular
lattices for which U(L)#S(L). We have to add the generators T, . of [1]in order
to generate U(L).

As an application we calculate in §7 the number of proper genera in a genus
of a lattice in our cases.

§ 1. Preliminaries.

1.1. We shall explain here necessary notations and terminologies which are
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used in the following sections. For the complete definitions we refer to the paper [2].
Let F' be an unramified local field over Q.. Let E be a ramified quadratic
extension of F. The operation of the nontrivial automorphism of E over F is
denoted by —.
group of units; a prime element in E and F. We have two cases.
a) E=FWT), b) E=F(T1+7).
Case a) is called ‘ramified prime’ and case b) is called ‘ramified unit’. We
abbreviate them respectively to R. P. case and R. U. case.

Let ©,0; U, u; p, = denote respectively the ring of integers; the

1.2. Let V be a finite dimensional hermitian vector space over E with respect
to the involution —. Let (z,y) with z,% in V be the associated inner product.
U(V) denotes the unitary group of V. Let L= 3Oz, be a O-lattice on V. By
this base we associate the matrix ((z;, 2,)) to L. For example to hyperbolic plane
L we associate H(i):<?—?¢ %) We write L=H(7) in Qu-+Cv. 8L, nL, dL denote
respectively scale, norm, discriminant of L. Scaling by a ¢ F means the change
of inner product from (x, %) to a(z, ). A vector z in L which is not contained
in pL is called a maximal vector in L. By a p‘-modular lattice I we mean
(x, L)=p*O for every maximal vector x in L. By suitable scaling it suffices to
consider the modular lattice when =0 or 1.

For a vector sin V and an element ¢ in E with 0+0=(s, s), put Sz=2—(z, s)o~1s
for x€ V. Then we have S€ U(V). S is called symmetry and written by (s, o).

U(L) denotes the unit group of L and S(L) denotes its subgroup generated
by symmetries in U(L). Sp means Spur g r. @ is used always as a skew-symmetric
element in E. ¢ means orthogonal sum. Let L=K®M be a splitting of L. We
denote by U(L, K) the group of elements of U(L) which are identity on K. Then
we have U(L, K)=U(M).

§2. 2-dimensional modular lattices.

By the results in [2] we can write 2-dimensional modular lattices L in canoniecal
forms. This expression is not unigue but we collect the results in [2] in tables
for our later use.

From [2] p. 454 we have Table I

i ® ® ® ®
=0, R. P. t=1, R. P. +=0, R. U. i=1, R. U.
nH(1) 20 4D 20 20
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From [2] Props. 9.1, 9.2 and 10.4 we have Table 1I

I nL=nH{) | 1 wL=2"WwH{i)
I isotropic 1o anisotropic | Il isotropie ‘ 11> anisotropic
‘ e - [ e S
o HI0) 1 < 2 1 > ? ( 11 > { ( 1 1 >
1 2 , 10 1 4
® Hi l ? ( 2 7’) < 2 1’)
! p 0 P 4e
@ Hi0) I } ( 1 1 > < 11 >
| 1 0, 1 2 |
® H) | <2 2’)
i | P 2
REMARK. )

¢ is a unit except the case @Iz

In the case nL=D (i.e. ®1l, ®II cases} L splits.

In @I and @l: cases expressions are modulo scaling.

In the cases @Iz and @l., (x, 2)=2u for every maximal vector 2 in L. See {2] 9.2.

> 00 o

§3. Generation theorem, low dimensional cases.

3.0. For given two vectors 2, 2’ in L which satisfy (x, z) = (¢/, '), the symmetry
which transposes x to 2’ is given by St=t—(t,z—2'){z, 2—2 ) x—2') for tcV if
(x, x—z")#0. Sisin UL) if and only if (L, 2—2'){zx, z—2') H{xr—2a')C L.

3.1. If dim V=1 then every element of U(V) is symmetry, so we have
U{L)=S(L).

3.2. If L=H{7) in Qu+Dv then U(L)=S(L).

PrOOF. Take ¢¢ U(L) and write pu=au+pv, ¢v=yu+06v. Assume either §
or v to be unit, for example f€ U. By 3.0 there exists S in S(L) such that
Su=9u. Put¢’'=S"'¢ and write ¢'u=u, ¢’v=yu+v. Put o=p'r"'. Then @ is a
skew-symmetric element in E and we have ¢’ = (u, w) € S(L). Next we consider ¢ for
which p|8, pl7. All such ¢ ¢ U(L) make a subgroup H of U(L) and S(L)2U(L})—H.

So we are through if we can prove H=+U(L). Take for example, ¢, such that
pu=v, ¢yv=7o'p'y then ¢,&H and ¢ € U(L).

3.3, Let L=Ox®DM be a decomposition of L, where (x,z)=1 and 3MCO.
For ¢e U(L) put ex=ax+t with ¢ in M. If e@—~1¢€ [J then by 3.0 there exists
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Se S(L) such that ¢x=S8x. If pla—1 we replace ¢ by (iE, }zc?-)so and by appro-
priate choice of a skew symmetric element @ in E we can assume in R.P. case
la—112|2| and in R.U. case |@—1|Z[p|. So if ¢ is not maximal then there
exists S in S(L) such that ¢z=_Sz.

3.4. Suppose L=0ePOy in <(1) 2) Then we have U(L)=S(L).
ProOOF. Take ¢ € U(L) and write px=az+py. If p'le—1 with 1=1,2 then
pi| 8. We can apply 3.3 and the problem is reduced to 1-dimensional case.

3.5. In the cases DI, @I, @I in the Table II, write L=Cx+0y. Then
we have U(L)=S(L).

PROOF. Let ¢¢ U(L) and write gz=ax-+8y. If 8¢ U then by 3.0 the problem
is reduced to 1-dimensional case. If p |8 than ac U. Put §'=(y,0) with ¢=¢in
@L, c=2p+p with (y, ¥} =47, n€ o0 in @II, and c=ec+ev 1+7 in @I respectively.
Then the coefficient of y in S’¢x is a unit and the problem is reduced to the
ahove case.

3.6. Let L be a 3-dimensional unimodular lattice. Then U(L}=S(L}.

ProorF. By [2] Prop. 10.3 we may assume that L has a splitting L=2x+ H(0)
with (z,2)=1. By 3.0 and 3.3 we are through if we can prove that (i) ¢€ UL,
(ii) (x, x—¢x) € pO and (iii) g2~z is maximal in L, can not happen simultaneously.
Write ¢x=az+t with te H(0) maximal. Then there exists an isotropic vector
we H(0) such that (u,t)=1. Put w=u—¢x. We have (w,¢x)=0. Thus w is in
¢H(0) which is improper. Since (w, w)=1, we have a contradiction.

§4. UL)=X(L).

4.1. Let L be a lattice of scale p'D with 7=0,1 and dim L=3. We say «,v
to be hyperbolic pair (in L) if Du+Ov=H(i). For splitting L=H@)$M, #€ O and
wée M such that

SP (L2, 1)) = — (W, W) + e (1)
we put as in [1] p.102.
T, x=2+ @, 0o, w)w+ e, wiv, u) " —(c, win, v)"u .

Then, T...€ U(L) and det T,,,=1. We have

Tost=u%, Teow=putv+w, and
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T, = —(w, w){u, v)u+w.

X(L) is the subgroup of U(L} generated by T, . and S(L) where T, . is taken
for all pi-modular hyperbolie splitting of L and for all pairs w, # which satisfy (1).
When we fix H(i) we write X(L) by X,(L}.

4.2, Let w,v,j be isotropic vectors in L such that (u,?)=(j,v)=p' and
L={Du+Sv)EM. Then there exists T,.. in X(L) such that T, .u=j.

ProoF. We can write j=u+Bv+w, we M, and we have Sp(8(v, w)) = —(w, w).
Then 4.2 follows from 4.1. We remark T, .v=v.

4.3. Let u,v; 7,1 be hyperbolic pairs in L. Then there exists ¢ ¢ X(L) such
that pu=c¢j, with ec U.

PrOOF. Wehavesplitting L= (Cu+Cv)PM. Write j=au+Sv+w,l=ru+ov+w’,
with w, w' € M and @, 8,7,6€D. If B (or 6) € U then there exists S in S(L) such
that Su=j (or I) by 8.0. If either @ or 7 is a unit, say @€ U, then aj=y-+fo+w’.
By 4.2 there exists T€ X(L) such that Tu=a-1j. So we have to consider the
cases where all @, 8, 7,0 are divisible by ». Thus w, w’ are maximal in M and
we have (w', w’) € 40, (w, w) € 40 and (w, w’) € p*U. So Sw+Lw' is a hyperbolic
plane which splits M. So there exists an isotropic vector z€ M such that (w, 2)=p*.
Then we have (u, v+2)={((@+1)"1j, v+2z). Here v+z is isotropic and a+1¢e¢ U. We
can apply 4.1. When 7 (or d) is a unit, we have T e X(L) such that Tu=¢l. Put
T :5—pp 1,1l -3 Then T'¢ S(L) with T"T=¢j.

4.4. Let L=H.GM. with H.=Ou.+Ov.=H(i) for v=1,2. Then there exists
Te X(L) such that Tu,=wu. and Tvi=v..

PROOF. By 4.3 there exist a unit ¢ and ¢€ X(L) such that ¢u;=¢éus. Put
¢v,=&]. Then ¢H;=Ou,+Ol and (ue, I)={(us, v2). By 4.2 there exists 7" ¢ X(L)
such that T'us=us, T'l=v.. Thus we have T'¢H,=H, Put T"'=T'¢ and put
¢ T'u~> U and T"'v,— v,. Then o¢ S(H:) and we can take o7 for T.

4.5. Let L=H{HPM. Then UL)=X{LYU(L, H{i)).
PROOF. Take ¢ € UIL). Then ¢H(i)=Dpu-+O¢v. By 4.4 there exists T in
X(L) such that Tu=¢u and Tv=vv. Then T-¢ ¢ U(L, H{i)).

4.6. Suppose L=Cx®M where M is 2-dimensional p-modular lattice and
(z,z)€u. Then L=02'@H(1) with (z’,2') €u.
ProOOF. By a suitable scaling we can write L in R. P. case
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L;{l;@(f 7’) in S29(Tu+Dv). Then
P 47

~,‘,0p>-,~4_,;, o
L:(e;\g(ﬁ e in Ly (O{px+u)+ L)

where y can be chosen in L with (y, y)=¢¢u. Since (% f)zH(l} we are through

in R.U. case. We can do similarly in R. U. case.

4.7. Suppose L=JEHM where J is proper unimodular with dim 1 or 2 and
3MZpC. Then there exists xe L with (2, z) € u such that U(L)=S(L) UL, Ox).

PrOOF. (i) Suppose J=0Tx with (x,2)=1. Take ¢ ¢ U(L) and write ox=az+t.
By 3.3 we have to consider R.P. cases where 2||a—1. Let M=M®MDPM: be
a splitting of M where M, is p-modular, M is proper 2C-modular and M is the
remaining part of M.

(a) Case M.+ {0}. Take nye M. such that (y, )=2¢ with ecu., Write 7=2p
and put S=(px-tny, —o+er*+p). Choose 7€ u such that z%=pmod 20. Then S
is in S(L) and Sx=(1+pa’)x-+ya’y with a’€ U, Considering Svx the problem is
reduced to the case where pl|la—1.

(b) Case M>=1{0}. By 4.6 we may assume M,=DH;(1)=B(Qu;+Sv,) by
suitable choice of x. Put ¢x=ax+®Bu+rw)+vy, v € Ms. We are through if
we can prove pif;, plr:.. If not, we may assume for example ply,. Put
w=—~7pa x+u;. Then (pz, w)=0. Hence we ¢MD¢M,;. On the other hand
(w, w) € 24, which is a contradiction. X

(ii) Suppose J=Cx+ Ly with (z, 2)=1. Take ¢ ¢ U(L) and write ¢x=az+By+2
with z¢€ M.

{a) Suppose a=1+a’ with p?{«’. Then we can apply 3.0, 3.3.

(b) Suppose a=1+4+2a’ with «’¢ U. Then by 3.3 this is an R.P. case and
we can proceed as in {i).

4.8. Let L=PPM be a decomposition of L. Where P is of type @I, @l
and ®II. If SMCp3P. Then U(L)=S(L)U(L, P).

Proor. Take ¢ in U(L) and write ¢x=ax+Sy+2z with z in M.

(i) If ¢ U then by 3.0 there exists S in S(L) such that Sx=¢z. If 8 is
not a unit. Then put S'=(y,¢) with ¢ as in the proof of 8.5. Consider S'¢
instead of ¢. Then we are reduced to the case where 8 is a unit.

(i) Letvx=2 and ¢ey=yrz+dy+z with z in M. Since (¢z, y)=p*, we have
p{1—0)=2y. This shows (x, oy—¥)=0. Since (y, cy—y)=7 P +(0—~1){y, ), we are
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throughify€ U. Ifp|r. Weput S”=(x,1). Then §"¢x=—zxand §"¢y=r'z+dy+z.
Since 6 ¢ U we can assume ' }|7/. Write S”¢=¢’. Then we have ¢’z=—2 and
'y=yr'z+dy+z. Put St=t—{t, y+oyly, y+'y) " Hy+¢'y). By the remark about
7 and (¢'z, ¢'y)=p' we have 87 ¢ S{L)and § """x=x. We have §""’y=—¢'y. Thus
S7'7'¢’ induces an isometry on J and M. We have U(L)=S(L)U(L, P).

§5. Relation between X(L) and S(L).

Let u,v,w, # be as in 4.1. Put Si=(ru+w, —x{v, w)) and S:={(w, —plu, v)).
We have S;e¢ U{V) and T,,.=8.S.. Since T, ,€ UL) we have S;¢ U(L) if and
only if S:¢ U(L). We have

{u, @) Tw, ‘,Q):—_([,(_.(Z)—’a}‘l)u-}_ PAW ccverie i (2 )

5.1. In cases @, @ we have T, ,€ S(L) by (2) and 5.2 below. So X(L)=S(L).
(See also [1] Hilfssatz 7, p. 103.)

5.2. If one of the following conditions (i), (ii), (ili) is satisfied, then T, .¢ S(L).
(i) #e U, (ii) w is not maximal, (iii) (w, w) € 2u.

Proor. If pe U, then Si€ U{L). So we have T, .€ S(L}). If (ii) is satisfied,
by (2) we can assume p?} . Then we have Si€ U(L) by 3.0. If (iil) is satisfied,
by 5.1, we have to consider the cases @, @. Suppose p|#. Then (fu+u, fu+7v) € 4D,
This contradicts the hypothesis. So in this case (i) is satisfied.

5.3. Let F#@:, and let L bhe a 4-dimensional proper unimodular lattice of
type @©. Then U{L)=S(L}.

Proor. Suppose L=Cz+ K with {(z,2)=1 and write pz=ax+¢ with t¢ K for
¢ in U(L). By 3.3 we may assume a=1+pa’ with ¢’ €0 and ¢ is maximal. Then
there exists an isotropic vector « in K such that (¢, u)=1 and we have splitting
K=(Dt+Du)PHTvy with {v,v)=¢e¢cu. Since F+(Q: we can take 2 in u such that
A%~—1 is a unit. Put J=0x@(Ot+O(u+4v)). Then ¢xed. The orthogonal
complement of ¢z in J contains u+4v—¢x whose norm is a unit by the choice of
4. So it is isometric to Ot+O(uw+4v) by {2] Prop. 10.1. Hence the problem is
reduced to 3-dimensional cases.

5.4. For a fixed hyperbolic pair u, v we have the relation

Ty iy Typ s ™ T pbug. oty tuas =172 e s m s eneneseens (3)
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Similarly, we consider T, u T, o for the same vector w. By (1) we have p=#'+@(u, v)™.
Then by (2) we have T, u € S(L)T,, .. Since we consider T, . modulo S(L) we
may write T, instead of T,... By this notation (8) is written by T, T,,=T} +,

5.5. Let L be pi-modular lattice with dim L=5. Then X(L)=S(L).

Proor. Take T, . with splitting L=H{(i)@M. By 5.1 we may assume the
case (D or @, moreover, by 5.2 w is maximal with (w, w)€40D. Take te M such
that (w, t)=p' and split M=(Ow+Ot)PN. Since N+ {0} there exists w;: € N such
that {(w, w) € 2u. Then T,¢€ S(L) follows from 5.2 and 5.4.

5.6. Let F+Q; and let L be a 4-dimensional improper unimodular lattice.
Then X(L)}=S(L).

PROOF. As in 5.5 we split L=H{#®Dw+0t) with (w, w) €40, Then since
we are considering cases @, @, Ow-+Dt is a hyperbolic plane. Write it by Du+Ov
and w=u+1v. Then we have p|A. Take z€u such that #—1 is a unit and put
w,=pu+v. Then we have (i, w:)€2u and (w—w, w—w)€ 2u. Thus we have
T,¢ S(L) by 5.4.

57. Let L=H{#)@®M with sM<pi+'D. Then X(L)=S(L)X{M).
ProoF. Take T, .€ Xi(L). We may assume that ¢ is divisible at most by p.
Thus we have S:€ U{L).

58. Let L be a lattice whose modular components consist of modular lattices
to which 5.3, 5.5 and 5.6 are applicable. Then X(L)=S(L).

Proor. Let L=H{i)®M and let M have a splitting M=MD --- DM, where
M; is a pré-modular component such that ri<ry<--- <7 For r;>1 we have
T,,€ S(L) for w; in M; by 5.7. If ri=ti we can apply 5.3, 5.5 or 5.6 and we have
T, € S(L).

§6. Cases: F=Q, and 4-dimensional p'-modular L.
We have only to consider the cases @ and @.

6.1. Let F=Q.. Suppose L=H(0)®M where M is of type ®II. Then we
have X(L)=S(L).

PROOF. Let L=(Qu+Ov)®(Oz+Oy) where Ou+Ov=H(0) and the matrix of
Or+Dy is type of ®II. Suppose p&U, write 7=20 and put S={(u+px, —0).
Considering ST, , the problem is reduced to the case where pe U.
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6.2. In the cases @I: and @I, with L=H{®)D i‘. g:

from §2 remark 5 and 5.2 ii) and iii).

), X(L)=S(L) follows

6.3. Exceptional cases can be treated as in [3], §10. In this paragraph — is
used as in [3] §10 as the reduction mod »D and is not used as the conjugate
operation. Let L=H{#)@H({Z) in (Su+LOv)P(Cx+Ly). We have only to consider
the cases @, @. Here [2] Props. 10.1 and 10.2 are true when considered modulo

D and by choosing ¢ suitably. We remark in the case @ that (s, ¢) is written in

the form (s, 0)7=%+p '(y, )3 and if x—y€ pL then we have (x, 0)=(y, ¢') for our
choice of o,0’. Let f:U(L)—GL(V) be the canonical homomorphism. For
convenience’ sake we consider R. P. case when ¢=0. jf(S(L)) is generated from
following six elements. The left side of semicolon is defined as the image of f
of the right hand side.

(w,v); (u+v,1) (x,9); (e+y,1)
A (utv+y, 1), A (vt 1)
A (vdz+y, 1), A, (utzx+y, 1).

Following identities are easily proved.
(u, v)(x, ¥)=(x, ¥)(u, v), (%, v)*=(r,y)*=1

Let {u,v} 34 and {z,y} >¢ be generic elements of each set respectively. Then
we have relations

AA=A A, AA =AYy, Al=Ai=1
(w, VA, =A,(u,v), Az, y)=(x, y)Ar, Au(u, v)=(u, v)As.

Considering these relations every element of f(S(L)) can be reduced to one of the
following three forms: II, AIl, AiA.II. Here II is one of (u,v),(x,y) or the
produet of them and A is either A: or A.. As we can see easily from this there is
no ¢ € f(S(L)) such that pu=u, ev=v+y mod pO. Put ¢'u=wu, ¢'v=2u+v—2z+y.
By the cancellation law ([2] Prop. 9.3) ¢’ can be extended to an element of U(L).
Above consideration shows ¢’ e S(L).

6.4. We repeat here the theorem which is stated in the introduction.

THEOREM. Let E/F be a ramified quadratic extemsion over the umramified
dyadic local field F. Let L be a lattice on a vector space over E with non degenerate
hermitian form with respect to the mon-trivial automorphism of E/F. Let
U(L), S(L) denote respectively the group of units of L and the subgroup generated
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by symmetries in U(L). Then

(i) UL)y=X(L) {for X(L) see 4.1).

(ii) If F#Q, then X(L)=S(L}.

(iii) Let F=Q. and let L be a p'-modular lattice. Then we have X(L)=S(L)
except the case © with L=H{0)DH0) and the case @ with L=H1)GH).

PRrOOF. (i) follows from 4.5, 4.7, 4.8 and [2] Prop. 10.3.

(ii) follows from 5.5, 5.6 and 3.6.

(iit) follows from the eonsideration of §5.

§7. An application.

7.1. Let E,F be as in 6.4. Let W be the group of elements of unit norm
in E. Put Wi={60""6c U} and let W. be the subgroup of W generated by
—0o7'0 where ¢ is an element of E* such that (s,0)e S(L) for some maximal
vector s in L. W, is a subgroup of W of index 2. From [1] p. 89, U(L)=X(L)
and det T, .=1 it follows W.={det¢ |¢ e U(L)}. For c=a+bp in E with a,bec F
we put g(o)=0=1+4¢p or 2¢+p with e€ o according as |a|=|b| or |a|<|b].

Let us consider the inclusion relations among W, Wi, W.

7.2. R.P. cases,

{1) Suppose i=0,1and nL220. Take s¢ L such that (s, 8) € 2u. Then every
0=1+¢p and 2¢+p can be the image of ¢ for some ¢ with (s, gy € S(L).

(ii) Suppose 1=1 and nL=49. In this case d=g{s) with (s, o) € S(L) for some
maximal vector s in L is of the form 6=27'+p with 7/ €0. As p~'p=—1 we have
W"z2 Wi,

7.3. In R.U. cases we remark w=+"1+7, p=1+0 and —1=0ow

{1) Suppose 1=0 and nL=90. Then L splits and we have W= W,.

(ii) Suppose nL=20. In i=0 case there is no element ¢ such that (s, ¢) € S(L)
for which g(o)=2:+p with eco. In this case we have W,=W,. In case i=1
we have W= W..

7.4. Let E be a quadratic extension of algebraic number field . Let 2 be
unramified in F/Q. By K, we shall mean adelization of an algebraic set K. As
in the proof of [1] Satz 30 the number of proper genera in a genus of a modular
lattice L is the number of double cosets U+ (V) ,¢U(L), in U(V), where ¢ is an
element of U{V),. By determinantial map this number is the index of det U(L),
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in W,. Let r be the number of nondyadic prime spots p in F which is ramified
in E (i.e., p=%* such that Ly is improper. For ramified dyadic p put sp=1if in
R.P. case Lg has a splitting Ly= @ H(1) and in R. U. case Ly has a splitting
Lg= @ H(0). Put s;=0 otherwise. Put s=3Xs, where p is taken all ramified
dyadic spots. Then from [1] Satz 30 and 7.3 we have:

7.5. THEOREM. FEwuvery genus of L contains 27 proper genera.
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