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§1. Introduction.

This note is a continuation of our previous papers [1], [2]. In this paper we
will deseribe how to determine all subsets G of 2 X 2, where 2= (1,2, -- -, n}, satisfying
the following conditions {(ef. {1] and [2] for the definitions and notations):

I. There is a G-cycle with support 2 (consequently G is of Frobenius type).
II. For any G-cycle C, the associated G-eycle vector Vi is an extreme point of
the convex set 4, i.e. E;=EZ in the sense of [1].
III. The number of G-cveles is >2+t—n+2.
IV. There exists a G-cycle of length 1.

In order to state our main result, let us recall a particular subset Go of 2x 8
defined in [2]. Gy consists of the following ﬁ(ﬂ%” elements of 2x02: (1,1), (1,4
2<i<n), (1,1) (2<i<n), (4,7) (1<i<yj<n}. Our main results are the following
theorems A and B.

THEOREM A. Let G be a subset of xR satisfying the above conditions I, I
Then the number of G-cycles 1s of the form 27 '—3d, where 0 1s a non-negative
integer, called the defect of G. Suppose that G satisfies I, II, IITand IV. Then
there exists a permutation o of 2 and a subset I of X2 such that o(G)=Go—2.

The proof of Theorem A is divided into several steps. In 8§2 we will prove
that if G satisfies T and II, then the mapping ¢ from the set <{G) of all G-cycles
into the set 22 of all subsets of 2, defined by ¢(C)= Supp (C), is injective. Thus
we see that there is no eonfusion when we identify a G-cyele with its support.
In 83, we will compute the number of G-cycles when G is of the form G=G,— 2.
In 84, we give a criterion that & is isomorphic with a subset of the form Gy—2.
In §5, we will complete the proof of Theorem A. In 86, we will give as an application
of Theorem A the determination of all subsets G of 2x# satisfying I, 11, 1II and
of defect<3.

The precise result is the following:

THEOREM B. Let G be a subset of 2x2 satifying I, II, III.  Let & be the
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defect of G. Suppose that 3<3. Then there is a permutation ¢ of 2 and o subset

3 of Go such that o(G)=Go— 2. Furthermore

(1) 2f 6==0, then ¥=¢,

(i) if d=1, then Y= {(7,7})} where (z,7) € {(1,1),(2,1), (1, n), (2, n)},

(iii) if 6=2, then X 1s one of the following sets:
{1, 1,2, D}, {(1,1), 2, )}, {(1,1), 4,0}, {2,1),2, 7))}, {2, 1), (L, a)}, {1, n),
(2, n}, {38, 1}, {1, n—-1)}, {8, n)}, {(2, n—1}}.

{vi) if 6=3, then X i3 one of the following sets:
{1, D, 3,1, {1, 1), 1, n-1)}, {(1 1), 2, n-1}, {1, 1), 8, 0}, {(1,1), (2 1),
(1,7}, {1, 1), 2,1), 2, )}, {1 (1, n), (2, n)}, {2, 1), (1, n), (2, n)}, {2, 1),
(1, n=1)}, {(2 ) 2, n-1)}, {( 3 D}, {2, 1), 3, »), {(1,n), 8,1}, {(1, %),
1, n-1}, {1, n), 2, n—-1}, {Q4, n), 3, n)}, {2, n), 3, 1}, {(&, n) (2, n—1)},
{2, n), (1, n—~ 1)} {(2,n), (3, n)}.

§2. The uniqueness of a G-cycle with a given support.

LEMMA 2.1. Let G be a subset of @ x Q2 satisfying Iand II. Then the mapping
¢ from the set <G> of all G-cycles into the set 22 of all subsets of 2 defined by
©{C)=Supp (C) 1s injective.

This Lemma is obviously a corollary of the following:

LEMMA 2.2. Let G be a subset of 22 of Frobenius type. Suppose that there
are two distinct G-cyeles C, C' such that Supp (C)=Supp (C'). Then the associated
G-cyele vector Vi is mot an extreme point of 4.

ProoF. We may assume that £=Supp (C)=Supp (C’} and that
C=(1,2, -, m, C'={l, 12, ***, tw) -

Define two permutations o, 7 of 2 by

1,2, ---, n=1, n ) ~
0W<2, 3, M, 1> ice.  0=(L2 -, m) and

11y T2, "7y Ta-ls T . .o .
T:<.’ 2 y tn-ly n> i e. f:(h, 13, ...’gn).
12, T3, “"*, ’Ln, 1

Denote by 2, the subset of £ consisting of the fixed points of z'¢. Denote by
0, the complement of @, in 2: £2:=2-2,. Then obviously both 2o and 2. are
stable under 0.

Now for each 7 in ., we associate a G-cycle C* as follows:

C® = {4, (i), o7(d),- - -, o712 (2))
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where k is the smallest positive integer such that o*t(i)=7. We note that the
length k+1 of the G-cycle C is less than n. In fact, we have k+1<n. If we
had k+1=m, then i=¢*c(i)=0"'z(i); but this is impossible. Thus each C (i€ 2,) is
a proper sub-cycle of C. Furthermore it is easy to see that Supp (C*)«Supp (C9)
if 7+£7.

We claim now that &= {C; 1€ @)} is a covering of C of constant multiplicity.
Denote by &; the subset of & consisting of the C# with j¢ Supp (C®). For our
purpose it is enough to show that |&;|=1&,| for all je Q.

Suppose first that ¢(j)=<(j). Then one has immediately

©;=8;NCi;; =8;;;. Hence |B;|=8.;].
Suppose that o(j)#7{j). Then one ean check easily
&;—-8;N&s;, ={C¥} and
oy —8;NCoqyy = [Crrlotin} |
Thus we get |S;|=18,N&Gss]|+1=180:1 ], q.e. d.

For our later discussion, we introduce the following notation: Let G, ¢: (&>

—29 be as in Lemma 2.1. Then we dencte by {G} the image of <G> under ¢.

§3. The cardinality of {(Go—23).

Let Go be the subset of 2X2 given in §1. Let I be a non-empty subset of
2x2in Go. We compute the cardinality of (Gv—23>, where Go—2J satisfies the
conditions I, II.

To begin with, let us recall the main properties of G, (cf. [2]): Go satisfies
I, II and the number of Gy-cycles is 2*-%. Furthermore, for every subset
X= i, %2, -+, 5,} (h<do<<---<4,) of 20— {1}, {1,141, -+-,4,> i3 a Go-cycle and every
Ge-cycele is obtained in this manner.

LEMMA 3.1. Let X be a subset of Go and put G=G.~2. Then G satisfies the
conditions I, II, if and only if G contains {(1,2),(2,3),(3,4), ---, (n—1,n), (n, 1)}.

PROOF. Suppose that X contains (7, 1+1) for some 4. Then <G> does not contain
the eycle (1,2, ---,n). Now since this is the only cycle in <Gop with support
{1,2, ---,n}, G does not satisfy the condition I.

Suppose now that G contains 1(1,2),(2,3), -+, n—1,n), (n,1)}). Then {G>
contains the eycle (1,2, ---,n>. Hence G satisfies I. By Lemma 3 of [2], G
satisfies also II, since every G-cycle passes through the point 1, q.e.d.

DEFINITION. Let (i,7) be an element of G,. We denote by I(i, ) the subset
of 2 defined as follows:
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I .)_{ ke, i<k<g} if 7#1,
P ke @; i<k<n) if j=1.
We also denote by J(,5), L{Z,5) the subsets of 2 defined as follows:
J, 5y =104, ) U i, 5} ; L(i, ) =2~ {1} =J(, 5).

LEMMA 3.2. Let (i,5) be an element of Go. Denote by X,; the subset of {(Go>
consisting of all G-cycles of the form (x«--%,1,5,»---x>. Then we have |X;|=
21 Furthermore, we have

L3, 5] = (i~2)+ (n—3) if 2<i<i<n,
IL(L, 3)| =n—j if 2<j<n,
|L(z, 1) =12 if 2<i<n,
JL(1,1)|=0

PrOOF. We distinguish several cases.
Case (i). 2<i<j<n.

There is a bijection from 22¢" 9 onto X;; as follows: Let {11, 42, - -+, %, Ts41, * * +, 1.}
be a subset of L(%,7) such that 1<4< - <3, <1 1<t1<t42< - <1, <n. The
association

{’ilr “'?:ty iH»h ""i‘x} _)<1! ily "'y?:t’ irjy il+1) “'7’ia>

gives the desired bijection.
Case (ii). i=1, 2<j<n.

There is a bijection from 242 onto X,,; as follows: Let {41, %, ---, %, be a
subset of L(1,j) such that j<u < - <i,<n. The association

{’ily iZy Tty in} _—)<1) j; ?:17 Y i:>

gives the desired bijection.
Case (iii). 2<i<n, 7=1.

There is a bijection from 261 onto ¥;; as follows: Let {2,172, ---,%,} be a
subset of L(z, 1) such that 1<4;<4:<--.<4,<7. The association

{il, i?: Tty ?;,} _’<1) il: A in 1‘>

gives the desired bijection.
Case (iv). 1=1, j=1.

L{1,1) is empty and ¥ consists of (1,1) alone. Henc there is a bijection
from 2¢%: Y onto ¥, q.e.d.

LEMMA 3.3. Let X be a subset of Go such that
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n{1,2,2,8, -, (n=1,n), n,1}=¢.
Then G=Go—3 satisfies the condition I, IT and we have

@>=Gd~ U ;.

i, 4

a3}

ProoF. Obvious from the definition and Lemma 3.1.
LEMMA 3.4. Let (i,7) and (p, q) be two elements of Go. Then we have

X,;NX,,#6 if and only if I, 5)0J (w0, ) =J (&, N0 1(p, ¢)=¢.
Furthermore, when this is the case, we have
1X;;NX,, =29 m-Jin=dpaor,

PROOF. Let us consider the case where 2<i<j<n, 2<p<g<n. If X,;NX,# ¢,
then we must have either j<p or ¢<u.
Conversely, when this is the case, we have X;;NX,,#¢ since

(l*-"*i,j,*-“*p,(]*'“*> or <1*‘..*p’q*‘..*i’j*...*>

is in ¥;5N%,,, according to j<p or g¢<i. Furthermore the cardinality of ¥;;NX,,
is easily verified to be equal to the one given in the Lemma. The other cases
are treated similarly, g.e. d.

Ezample. Let G=Go— {(i, J)} (j1+1mod. n). Then

KGYl=201—1¢=(1, j) € {(1, 1), (2, 1), (1, n), (2, )}
|<G>I :2“-1—2@(’5’ j) ¢ {(3’ 1)) (1’ ,n_l)’ (2» /n..._]‘)’ (3’ ﬂ’)} .

§4. Frobenius sets with fixed points.

In this section we give a criterion for a subset G of Frobenius type to be
isomorphic with a subset of Go.

LEMMA 4.1. Let G be a subset of @XQ satisfying Iand II. Suppose that there
is an element p of £ such that no subset of 2—{p} s the support of a G-cycle.
Then there exists a permutation ¢ of 2 such that o(G)CGo. The converse 18 also
irue.

Proor. Let us define a binary relation in £— {p}. Let z,y€Q—{p}. We
write >y either if x=y or there exists distinct elements z, ---,z, of Q- {p}
such that z=2z1, y=2,, (2, 231) €G (=1, ---, r—1). This relation is clearly reflexive
and transitive. It is also symmetric: z>y and y>2 imply 2=y. In fact, if
z#y, we have elements zi, -++, 2, %, -+, %, in 2— {p} sueh that z=2, y==z,,
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oY, X, 2 2wt for 1A Ry, 2l € Gy 1), (wy, 1) € G 1T<{<Cs 1),

M o fze, oo 2,00 e, -, u,lil =@, put z.==2,, u,=u;. Now suppose that
ey - 20 00 {1e, -+ -, u, 1} %69, Let k be the smallest integer in {2, »] such that
20 {ue, -, 1,0 and put z,==4%,. Then we have a G-eyele <z, -+, 2y, Upsr, -7 ) Uyper )
not passing through p, contrary to our hypothesis. Thus > defines a structure of
a partially ordered set in 2— {p}.

Now let ¢, - - -, g, be Lthe totality of maximal elements of the partially ordered
set - {p} thus defined. Next let ¢,,,, ---, ¢, be the totality of maximal elements
of 2—{p}~1{q,, ---,q,). Thenlet ¢,.,, -+, q, be the totality of maximal elements
of 2—{p}—lm, ---,q.). Keep going in this manner, then finally we get a sequence
¢, -, 4, 1 consisting of elements of 2—{¢}. This sequence has the following
property: if (¢;,4;}¢ G, then i<j. Define a permutation ¢ of Q by

a(py=1,0{q) =2, -, 0lG._1) =1

It is then immediate to see that ¢{G)cG,. Conversely, if GG, every G-cyele
passes through 1, ¢q.e. d.

DEFINITION. Let (G, p) be a pair satisfying the hypotheses of Lemma 4.1. Then
we say that p is a fived point of G.

§5. The case where N, >0.

Let G he a subset of 2x 0 satisfying I, II. We denote by N, the number of
G-cyeles of length 4. Then as we know by Theorem 1 of 2], KGY]<2" 1, We
put 0=2""1—J{G>| and call d the defect of G.

We assume furthermore that Ni>0, i.e. {G) contains at least one (G-cycle of
length 1. Fix a G-cycle {p) of length 1. We denote by Z, the set of all G-eycles
bassing through the vertex p. We put Z;=(G>~Z,.

Now denote by D, the subset of 2°-# consisting of all subsets I of @— {p}
such that D« {G}, i.e. there is no G-cycle with support D.

Let us define a mapping ¢,: Z,-D, by ¢,(C)= Supp (C)— {p} for Ce Zp.
Note that ¢,(Cle {G} for every C¢ Z,. In fact, if ¢,(C)e G}, then we would
get a disjoint covering of 2 by (»> and ¢,(C) in the sense of [2], however this
is impossible because of the condition 1.

LEMMA 5.1. ¢,: Z,-D, is an injective mapping. Furthermore

1Dy (Zy)| =0 .

PRrOOF. ¢, is injective by Lemma 2.1. Now we have
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Zy=20-01 B, and Zi={G>-2Z,.

Hence |Z)i=2"1—|D,], |Z}|=2—0—|Z,]. Therefore |T,|=|Z,+d {0 (Z, )|+
which completes the proof.

DEFINITION. A subset E of 2—{p} is called p-exeeptional if Fc D, (7).
A subset N of 2— {p} is ealled p-normal if N¢ ¢, (Z,).

LEMMA 5.2. Let G be a subset of Q8 satisfying I, II, III, of defect 4.
Then 2¥1—N,—1<0.

Proor. Let (p> (i=1, ---, Ni) be the totality of G-cyeles of length 1. For
every subset X of {p., ---, px,} such that | X|>1 we have X& {G} and XU {py} & G}
Thus X is pj-exceptional.

Now put A=02—{p:, ---, px,}- Then for every subset ¥ of {p., --+, py,} such
that Y+ {ps---, Py}, we have AUYE{G) and {p UAU Y& (G, Hence AUY
is pr-exceptional.

We have thus obtained altogether (2¥:7'— N,)+(2¥17'—1) ps-exceptional sets.
Hence we get 2Mi— N, —1<4d, q.e. d.

COROLLARY 5.3. If 6<3, then N <2.

LEMMA 5.4. Let G be a subset of Qx8 satisfying I II, IIT of defect 0.
Suppose n>4. Then N <1.

PROOF. Let (p), ---, {pn,> be the set of all G-cycles of length 1 and put
{gi, s Guonid =2—{py, -, D}

We note first that n—N;>2. In faet, by the conditions II and III we have
n>N,. Suppose for a moment that n—Ni,=1. Then from n—2>d>2%-N,~1
we get n—2>2"1—n. Then we have n<3 which is impossible by our assumption.

Now let us derive a contradiction by assuming N,>2. Put F=2%¥:i--N,--1.
Then the following F' subsets

gy, o Qe UX (XS D2, -, D)
Y, (YTHpe, -+, pai}, 1Y]22)
are all pi-exceptional by Lemma 4.2. Hence the number ¢ of p-exceptional sulsels
among {q:}, -+, {q._~,} satisfies e+ F<0.
Put e=0—F—1(1>0).
Then the number v of py-normal subsets among {qi}, ---, {g.—~y} 18 given by
v=p-—N;—¢.
Putting n=246d+4p (p>0), we have

v=vy-+1, where vo=F+2+p—N; .
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We may assume that {q:}, - -, {g.} are pi-normal. Now let & be the number of
pi-exceptional subsets among {p., ¢}, - - -, {P2,q.}. Then, since we have F+e+k<3d,
k must satisfy k<4. Therefore among the sets {p., ¢:}, -+, {p2q.}, at least v—Fk
sets are not p-exceptional. So we may assume that {p., q:}, ---, {p2, ¢} are
either G-cycle of length 2 or p;-normal.

We note that v—k>3 if N\=3. In fact

Ve oyv—i=vy=(2¥1 2N, + 1)+ 0>3+p.

Also when N,=2, we have v—%k=2 if p>0.

Let us consider now the case where v—%k>2. Then at least one of the sets
2, o}y -+, 1p2, @op} 18 pi-normal. In fact, otherwise they are all G-cyecles.
Hence we have two distinet G-cycles (p1, ¢1, P2, ¢2> and (i, gz, P2, ¢»> with the
same support, which is impossible.

So we may assume that {p., .} is pi-normal. Then {p, P2, ¢:} is the support
of a G-cycle C. However this induces a disjoint covering of C by {(p:> and {(pi, q.>.
This is a contradiction.

Thus we have only to consider the case where v—%<2. Then, as we have
seen in the above, we have n=0+2, F=1. Also we have e=d—1—1% (i>0) and
v=pn—2—e=d—e¢,

We distinguish several cases.

Case (i), e=0-—1,
We may assume that the & pi-exceptional subsets are given by

{01, G2, -+, g0}, {ga}, -+, {qs}.

Suppose that {qi, po} & {G}. Then {pi, p2, ¢} is in {G} since {qi, ps} is pr-normal.
Then we get a disjoint covering of the G-eycle C with Supp (C)= {p, p2, ¢1}, by
{pzy and {(p1, q,y. This is absurd.

Suppose that {p., ¢:} € {G}. Then, since {gs, -+, gs} € {G} this is pi-normal:
{91, G2 -+, qs} € {G}. Then, we get a disjoint covering of 2 by {(p., ¢.> and by a
G-cyele C with Supp(C)={p, q», - -+, @s}. This is impossible.

Case (i), e=0—1-1% with 1>0.

We may assume that {¢}, ---, {gi+;} are py-normal and that {g..2}, -+ -, {gs} are
pi-exceptional. Now at least one of the sets {ps, ¢}, - - -, {p2, q14,} is not p;-exceptional.
So we may assume that {p., ¢} is not p,-exceptional. Thus {p:, ¢.} is either a G-
cycle or py-normal. If {p., ¢\} is pi-normal, then we get a contradiction as in the
above. Suppose that {p., ¢} is in {G}. If there is an index 7 such that 2<j<1+4
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and that {p., q;} € {G}, then we get a contradiction as in the above. So we may
assume that {p. q,;} € (G} for j=2,---,1+1. If one of these is pi-normal, then we
get a contradiction. Thus we may assume that {ps, g2}, -+, 192, 1as} are all pi-
exceptional. Then the  pi-exceptional sets are exhausted by {q, -+ -, s}, 1gi2), -+
{5}, {2, g2}, -+, {2y quni}.

Now suppose {g, g2, p2} is not in {G}. Then {g, ¢z, p:} must be pi-normal.
Therefore there is a G-cycle such that Supp{(C)= {p:, P1, ¢z, ¢2}. But then we get

¥

a disjoint covering of C by {m, ¢2> and {ps, q>.

Finally suppose that {q,qs, p.} € {G}. Then again we get a G-cycle € such
that Supp (C}= (P, Pe, ¢1, g2} . We get then a contradiction as in the aliove.

THEOREM 5.5. Let G be a subset of 2xQ satisfying the conditions I, II, IIT
and IV. Suppose n=4. Then G has a fized point.

PROOF. Let {(p) be the unique G-cycle of length 1. (Note that we have N,=1
by Lemma 5.4.) Now put

Q@=1{qc2-{}; v, gt & (G}}, r=1Q],

X={reQ—{p}; {p,2} € {G}}, m=| X]|.
We have then n=1+++m>5+2. Hence one has
m>(0—r)+1>1,

il

m

M

X

Furthermore, since {g} is p-exceptional for every ¢ in @, one has 6>r. Thus if
m=1, we have d=1.

We distinguish several cases.

Case {i). m=1.

The p-exceptional subsets are exhausted by {q}, ¢¢ Q. Therefore, for every
subset D of @ with | D[=>2, either D is in {G} or D is p-normal. But I) cannot
be in {G}. In fact, if De {G}, then 2— {p} —D is p-exceptional. However this
is impossible, since 2— {p} — D contains X. Thus we see that every subset D of
Q containing more than one element is p-normal.

Suppose now that §>3. Take 3 elements ¢, ¢z, g3 in Q. Then {q, ¢}, g2 ¢},
{¢s, ¢:} are all p-normal, so we may assume that (p, ¢, ¢:5 € <G> and {p, ¢s, =) € <G>.
Now since {p, 1, g5} € {G}, we have either <p, q, ¢:> € <G> or <P, gs, ;> € {3,

Suppose <p, ¢1, ¢s» € {G>. Then we have (g3, p) € G. On the other hand, since
{p, s, q2) € <G>, we have (p, ¢s) € G. Thus we get {p, g2y € {G>, which is impossible.
Similarly {p, g3, ¢ € {G) is also impossible. Hence we see that d<2. Consequently
n<4.

Now suppose that =1, Then n=3. We may put
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Q= {¢}, X= 1z}, 2={p, q, z}.

We have {q,x) ¢ (G}, because otherwise we get a disjoint covering of 2 by {(p>
and {y, 2>, then it is immediate to see that p is a fixed point of G.
Suppose that 6=2. Then n=4. We may put

Q= (g1, ¢z}, X={a}, 2= {p, q1, g2, 2} .

Let us show that p is a fixed point of G. Assume that there is a G-cycle C with
Supp{(CyO— {pj. We have Supp(C)% Q- {p}, because otherwise we would get a
disjoint covering of 2 by C and {(p). Thus C is of length 2, and Supp (€)= (g1, g2} .
So we may assume that C={q,, z>. Since @ is p-normal, we have either (p,g:)€G
or (. piC . In any case, we have a G-cycle C’ such that Supp(C)=p, z, ¢:i}.
But this is impossible since we get a disjoint covering of ¢V by () and {q:, 2).
Case (il}. m>2.

We claim that p is a fixed point of G. Let us derive a contradiction by
assuming that there is a G-evele C with Supp(C)c Q- {p}. Put C=0pn, ve, -+, ¥e).
We claim that no two consequent vertices of C ecan belong to X. In fact, if
#:i¢ X, ¥ C X, then we get a G-cyele C'= Y, P, Yisr, Yirzs 5 Yr Yy =0, Yam?
admitting a disjoint covering by <{p) and C. We claim next that Supp(C)>X. In
fact, assume that Supp(C)D>X. Take any two indices 7, 7 in {1.7] such that
y, € X, y;¢ X, j#1+1 (mod. 1), 1<J. Let us show that {y,, y;} is p-exceptional. In
fact, it is easy to see that {y;, v;} & {G}. Suppose that {y:, ¥;} is p-normal. Then
we get either (¥, ¥,)¢6G or (y;,,¥:)€G. I (¥, y)eG, we get a G-eycle C'=
P Yi, Yisn, -, Y5> admitting a disjoint covering by <(p> and (¥, ¥is1, * -, Y.
Similarly (¥, ¥;) € G is also impossible. Thus we have obtained <ZL> p-exceptional
subsets {o, 2’} (¢ X, 2’ ¢ X). Moreover, other than these, we have r+1 (resp. r)

p-exceptional subsets:

02— {p} — Supp (C), g} (ge @), if HCY=n—2 (resp. {C)=n—2).

Thus we have <7g>+'r+»1g6, if UC#n—-2,

(’;)wga, it 1C)=n~

Hence we have <gl>+n—nz,g6_<gz i.e. <7§>+2g~m, if HIC)#n—2. But this is
1
2

impossible, zince the quadratic polynomial - —1)4-2-1 is everywhere positive on
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. m . . .
the real line. Hence [{Cj=n—2 and we have <2>~1~11§m. It is then immediate

to get 1<m<2. So we have m=2, 6=
by X and {gl{gc@). Put

{qo} =2~ {p} — Supp (C}, X={a, 2'}.

r+1. The p-exceptional sets are exhausted

Because of (x,2")&G, {2/, 2)&G, we have {go, v, 2’} & (G}, so {qo, x, 2’} is p-normal.
Hence {p, qs, 2,2’} € {G} and there is a G-cyele C’ with Supp(C)={p, o, 2, 2'}.
Since > and x’ cannot be two consequent vertices in €/, we have either (/=
<Py, qo, YD, or C'={p,2’,qo, x>. Suppose C'=<{p,2,qsa’y. Put z=y, a’=vy,.
Then we get a G-cyele {qu, ', Y41, -+, ¥., ¥>. This G-cycle must be of length

—2 by what we have shown above. Thus s=3. Now {gs, ¥:} is not in (G},
since otherwise we get a disjoint covering of Q2 by {qs, 12p and (P, 27, Yu, - - -, Yr» TD.
Therefore {qy, ¥:} is p-normal. Hence we have either (D,90) € G or {go, p) € G. In any
case we get a G- cscle C* with Supp (C*)=0~ {y.} admitting a disjoint covering
by <(p> and {x, go, 27, Ys, ---, ¥,>. This is 1mp0331ble. Similarly C'={p, 2/, qo, 2>
is also impossible.

We have thus proved that Supp(C)>X for every G-cyele C contained in
2-{p}.

We claim next that Supp(C)nX=¢. In fact, assume that Supp (C)N X+#4.
Since Supp (C)2 X, there is an element x in X— Supp(C). Let y, be a vertex of
the G-cyele C=<y,, ---, %) such that y; € X.

Let us show that {2, .1} is p-exceptional. First we claim that {x,y;..] & {G}.
In fact, if {x,y,..} is in {G}, there is a G-cycle C* with Supp (C*) = {p, z, i1, ¥:}
admitting a disjoint covering by (=, ;.1 and {(p, %>, Next suppose that {z, ¥ :}
is p-normal. Then either (y;,, )€ G or (x, y:-1) €G.

If (y:.1, 2) € G, then we get a G-cyele {p, ¥, Yiris = > Yo Yia - - » Yio1, 2> admitting
a disjoint covering by C and <(p,a>. If (z,y;-1) ¢ G, then using (y,_1, p)c G, we
get a G-cycle (p, ¥i, - -+, ¥:1> admitting a disjoint covering by <p)> and C

Thus we have shown that {, y;_1} is p-exceptional for every z in X— Supp(C)
and for every y;., which is adjacent to a vertex y; of C belonging to X. Put
s={Supp (C)NX|. Then we get in this manner at least s{m—s) p-exceptional
sets. Moreover, we have p-exceptional sets £2— {p} — Supp(C), lg}(gc @). These
are mutually distinet since 2— {p} — Supp(Cj3z. So we have

sim—s)+r+l<i<n-2.

Hence we have sim—s)+n—-m<n—-2, i.e. sim—s)<m—2. On the other hand,
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since 1<s<m-—1, we have sim~-g)>1-(m—1). Hence m—1<m~2 which is impos-
sible. We have thus proved that Supp(C)N X=¢ for every G-cyele C contained
in - {p}.

Hence Supp(C) is contained in @. Put Z= Supp(C). Then we have that
Zi{a e (G for every z in X. In fact, ZU {z} is contained in £~ {p} and z¢ X,
which is impossible by what we have shown above. Now ZU {p, 2} is not in {G}.
In fact, if ZU {p, 2} € {G}, then we get a G-cycle C* with Supp (C*)=2ZU {p, x}
admitting a disjoint covering by {p, 2> and C.

Thus ZU {x} is p-exceptional for every x in X. In this manner we get m
p-exceptional sets. Moreover there are »+1 other p-exeeptional sets: 2-— {p}—
Supp(C), {g} (g @). Hence we get m+r+1<6, i.e. n<<d. But this is impossible
because of our assumption §+2<n, q.e. d.

§6. The case where the defect is <3.

The purpose of this section is to determine all subsets G of 2x 2, satisfying
1, I and of defect <3. Therefore throughout in this section, let G be such a
subset,

If G is of defect 0, then by [ 2] there exists a permutation ¢ of £ such that
o(G)=G,. Hence we may assume that the defect § of G satisfies 1<6<3. We
denote by N, the number of G-cycles of length p. Denote by P the set of all
partitions (A4, B) of 2. Note that we identify the partition (A4, B) with the
partition (B, A). Thus the cadinality |] of § is 201

We denote by f the mapping from <G into 5 defined by

S(CY= (Supp (C), 2— Supp (C)) for CeLG).

DEFINITION. A partition (4, B) of 2 is called G-regular (or simply regular
when there is no confusion) if (4, B) is in f{G>). A partition (4, B) of 2 is
called G-singular {or simply singular) if (4, B) is in $—FKG).

LEMMA 6.1. The mapping f: {G>—p defined above is injective. Furthermore
0= | P—~fG) | is equal to the defect of G. A partition (A, B) of 2 is G-singular
if A¢|G) and B&E{G}. A partition (A, B) of Q is G-regular if and only if
evactly one of A, B is in {G}.

ProoF. Let Cc<G) and put A= Supp(C), B=2~A. Then A¢ (G}, Bz {G}.
(If Be {G}, then we would get a disjoint covering of 2 by G-eycles which is
impossible by the conditions 1I, III.} Conversely, if {A4, B) is a partition of £ such
that A€ {G}, B& (G}, then there exists a G-cycle C such that A= Supp (C).
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Furthermore such a G-cyele C is unique by Lemma 2.2. Now

B =S =151~ 146 |
=201 <G |

is equal to the defect of 7, q.e.d.

Let p be an integer such that 0<p<n. We denote by <G>, the subset of
{G> consisting of G-cycles of length p. We denote by B, the subset of § consisting
of partitions (A4, B} of 2 such that |A|=p or | Bl =». Then the mapping f: (G
- considered above satisfies

JUEG UG ) TPy

LeEMMA 6.2. Suppose 0<p<n. If all the partitions in R, are G-regular,

thenw N,>0, N,_,>0. Furthermore N,,-%—N,l-,,:(;j’

Proor. By our assumption we have f{G»,)Uf({GD.p)=%, and this is a
partition of P, if p==n—~p. Hence we heve Ny+N,_,= |B,| (if p£n—p), N,=|%,|
. ) 1 . .
(if p=n—p). Now [R,|= 2<Z> (if ptn—p) and ]iﬁ,;[:(;:) (if p=n—p). Thus
we have always N,,+N,z_1,::<;’> .
We claim now N,>0 and N,.,>0. This is obvious if p=n~p. Assume

#n—p. If one of N, or N,_,, say N,, is zero, then we have Nnh,,x<z>=(nfp )
But then 2 has a covering by G-cycles of constant multiplicity by Lemma 2 of
[2], q.e.d.

THEOREM 6.3. Suppose that 6=1 and Ny=0. Then the unique G-singular
partition of 2 is of the form ({p}, 2—(p}). Furthermore p is a fixzed point of
G. Finally there is a permutation ¢ of Q such that ¢(G) coincides with Go— {(1, 1)} .

Proor. Since G is of defect 1, there exists exactly one G-singular partition
(A. B} by Lemma 6.1. This partition (4, B) is in B, by Lemma 6.2. Hence we
may put A= {p}, B=02— {p}. Now the mapping f: {G)> —$ defined above satisfies
JKGY) USfKGyuo1) =8 —{(4, B)}. Hence by N,=0, we have f(<G)o_1)=P1— (A, B)}.
Therefore N,,_1=< ?)~1:n~—1. Thus we have n—1 G-eyeles Cy, + -+, Coor in (GDuon;
obviously one has p¢ Supp (C)) for i=1, ---, n—1,

We claim now pe Supp(C) for every G-cycle C. In faet, put C=di, ---, 1,
Suppose p® Supp(C). Then we may assume that Supp (Ciy=02-1{i}, i=1, ---, 7.
We can then easily verify that (Cy, ---,C,, C) forms a covering of 2 of constant
multiplicity » which is impossible.
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Thus p is a fixed point of . Hence by Lemma 4.1, there is a permutation
6 of 0 such that 7(GicGe. Hence we may assume that GoGe. Put Y=G,~G.
Then {Gy=LGo- U V}'“-. By §3, we have then Y= {{1,1}] because of our as-
sumption N,=0, ch

THEOREM 6.4. Suppose that n-4, 6=1 and N,>0. Then we have N,=1.
Theve is ¢ permutation ¢ of £ such that o(GG) s of the form Go—X, where Y is

one of the following sets:
{2, U, {0 ), 12, .

Proor. G satisfies all the conditions I, 11, III, IV. Hence by Theorem 5.5,
¢ has a fixed point. Thus, by Lemm 4.1, there exists a permutation ¢ of £ such
that ¢{5} is of the form ¢(G)=G,—Y. Now by §3 and Ny=1, Y must be of
the form Y= {2 1)} or Y= {{1, n)} or 2=1{(2, n)}, q.e.d.

LEMMA 6.5. Let G be o subset of Q%8 satisfying I, IT and let ({pi}, 2— {p;})
(i==1, ----, v) be the totality of the G-singular pariitions in . Then for every

G-eyele C, we have
Supp (CYN {py, -, ) #G.

PRrROOF. Suppose G has a G-cyele C not passing through any pointin {p;, -+, p.}.
Put C=4qy, ---, 4> and A;=Q—{g;}(1<i<s). Then the A, are all in |G} and we
get a covering (A4, ---, 4,,C) of 2 of constant multiplicity s which is impossible,
q.e.d.

THEOREM 6.6. Suppose that n>4, 6=2 and N,>0. Then we have N,=1.
Furthermore G has a fived point and there is a permutation ¢ of £ such that
o((7) is of the form Go— DY, where 3 1s one of the following sets:

{2, D), (O, 2}, 12, 1), (2, 0}, {3, n), (2, 0}, {3, D}
{1, n—11, {2, n--1)}, {3, n)}. (The last two sets are valid for n=5.)

Proor. By Theorem 5.5, N;=1 and & has a fixed point. Hence by Lemma
4.1. there exists a permutation ¢ of 2 such that ¢(G) is of the form Gy—2X. By
§3. we see that Y must be one of the sets mentioned above, q.e.d.

THEOREM 6.7. Suppose that n>>4, 6=2and N,=0. Then G has a fixed point.
Furthermore theve is a permutation ¢ of Q such that o(G) is of the form Gy— 3,

where X 1s one of the following sets:
{3, 1,02, 1, {1, 1), 4, w}, {1, 1), (2, n)}.

Proor. Let » be the number of G-singular partitions in %,. Since N,=0,
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we have #>0 by Lemma 6.2, Also by Lemma 6.1. we have »< 2. If ¥, contains
only one single G-singular partition ({p}, 2— {p}}, then p is a fixed peint of G by
Lemma 6.5. Thus we may assunie that r=2. Let ({p}, 2— {p}}and ({g}. 2~ {g})
be the G-singular partitions in ;. We claim that either p or ¢ is a fixed point of
. Then we get the Theorem by §3 and §4.

In order to prove this, let us denote by Z, (vesp. by Z,) the set of all G-eveles
passing through p {resp. ¢i. Then by Lemma 6.5, we have {G)= Z,\}Z,. There-
fore it is enough to show that either Z,2Z, or Z,2Z,.

Suppose now Z,<Z, and Z,=Z, Then there exist G-eyeles €, €' such that
CeZ,~2, C'¢Z,~2Z, PutX=3Supp(C)USupp(C’). Then X is in 1G}. In faet,
since pQ—X, g» 2~ X we have 2— X (G} using the fact {G)=Z2,UZ,. Further-
more the partition (X, @— X) is distinet from the G-singular partitions {{p}. 2— {p}).
(ig}, 9— {q}). Hence (X, 2—X) is a G-regular partition. Therefore Xc |G}, i e
there exists uniguely a G-eycle C, such that Supp (Ci)=X== Supp (') U Supp ().
Now put Y= Supp(C)N Supp(C’). Then pe& Y, q&Y. Put Z=X-Y. Then, as
above (Z, 2—Z) is a G-regular partition since peQ—2, qzQ2—Z. Furthermore
Z¢ {G}. Therefore there exists uniquely a G-cycle Ce such that Supp (Ch)=2. Tt
is then easy to verify that (C, C’, C2) forms a covering of C; of constant multiplicity
2. This is absurd. Thus we have shown that <G>=Z, or (G)=1Z,, and the proof
is complete.

THEOREM 6.8. Suppose that n>5, 6=3 and N1>0. Then there isa permutation
o of @ such that o(G) is of the form Go—2X, where X s one of the following
sets:

2,0, (4, n), (2, w, 12,1, 1, n—1)}, {{2, 1), (2, n—1}}, {(2, 1), (3, D)},
{2, 1), % m}, {(1, n), ( U}, {1, n), (1, n=1)}, {1, n), (2, n—1},
{1, n), (3, n)}, 12, n), 1}, {2, n), 4, n—1}, {2, %), 2, n—1)],
{(

)
2, n) 3 n)}

Froor. By Theorem 5.5, we have N,=1 and G has a fixed point. Then hy
Lemma 4.1, there is a permutation ¢ of @ such that ¢(G)=G.—23. 2 must be of
the form mentioned above by §3, q.e.d.

LEMMA 6.9. Suppose that n>5, §=3, Ny=0. Then the number of G-singular
partitions i % is less than 3.

ProOF. Let us derive a econtradiction by assuming that there exist three
distinet G-singular partition ({p.}, 2— {p}) =1, 2, 8).

Firstly we consider the case where G has a fixed point. Then we may assume
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that G=Gy. By Lemma 6.2, we heve <;>zNg-+~A7,,,.g. On the other hand GCGe

n—1 n—1 7
Z\f,;.,gﬁ( 1 >, Nu~2£<n_‘3>w<2>.

Hence <Z>M N’H-N,;_2£<n;1>+<n;1>:(;>. Therefore we have Nz:<n—1~1 )

. n n—1 n—1\_/mn ) _/n~1
Similarly f1'0m<3>:fN3+Nn_3§< 9 >+< 3 >~<3> we have N3-< 9 )

Then we have easily that G=G,— {{1, 1)}. Therefore G is of defect 1 which is
impossible. Thus we have shown that G has no fixed points.

Since ({n}, 2— {p}) (i=1, 2, 3) exhaust all the G-singular partitions, we see
that (X, Q—X) is G-regular for every subset X of £ such that X {pi, ps, ps}.
Hence by Lemma 6.5, we have 2—X& (G} and X¢ {G}. In particular {p:, p2, D3}
¢ {Gh.

Put D= {pi, Pz, ps} — {ps} (3==1, 2, 3). If all the D/s are in {G}, we get a
covering of {pi, P2, ps} of constant multiplicity by D, D, D;, which is absurd.
Thus we may assume that Dse {G}. Then since (Ds, 2—D;) is G-regular, we
have @—Ds¢ (G}.

We claim next that @—D;& (G} for some jin {1,2}. In fact, if we have
Q—D, 2 (G} for j=1, 2, 3, then 2 has a covering of constant multiplicity by (2~ D,
D—D., Q—D,, D, D), where D= Ip, ps, ps} € {G}. Thus we may assume that
2-D¢{G}. Then Dyc (G}.

We distinguish two cases:

(o) Dhe (G}, (8) DG},
Suppose that (@) is the case. Because of the non-existence of fixed points of

implies that

G, there is a G-eycle C not passing through pi. We have Supp (C)N {1, pe} #94,
by Lemma 6.5.

Now suppose that {p:, p.} < Supp (C). Then 2 has a covering of constant multi-
plicity by C, 2—D,, 2 {a}(xe Supp (C)— {p1, ps}) which is impossible. Suppose
Supp ()N {py, pd = {m}. Then Supp{C)UD: is in {G} and has a disjoint covering
by C and D, which is absurd.

Suppose now Supp (C)N {p1, 2} == {p:}. Then Supp(C)UD: is in {G} and has
a disjoint eovering by C and D, which is impossible. Thus case (@) is impossible.

Suppose that (8) is the case, i.e. D€ (G}, 2—D.c (G}, 2—Ds€ {G}. Take
any point 7 in Q- lpy, pa, ps}. We claim now Q- {pi, pe, 3} € {G}. In fact, if
Q—{p, po. 1} &€ (G}, we have {m, pz 1} € {G} since ({pi, P2, 1}, 2~ {p1, P2, ¢}) s
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G-regular. Then we get a covering of 2 of constant multiplicity by {p.. pa. 1},
09— D;, 2— 11 which is impossible.

Thus there is a G-cycle C; such that Supp (C))=02— {p1, p=1}. Similarly there
is a G-cyele C: such that Supp (Co)=02- {p, ps, 1}.

We claim now, that in the G-regular partition ({p:, ¢}, Supp (Ci}U Supp (C:)),
{py, 1) & {G}. Infact, if {p;, 1} € {G} we get s disjoint covering of {pi, ps, v, i} €
IG} by {p1, 1} and D,. Thus we have Supp (Ci} U Supp (C2} € {G}. But then Supp ()
U Supp (C:) has a covering of constant multiplicity by Ci, Ce and D,. Therefore
case (3) is also impossible and this completes the proof of Lemma 6.9.

Remarl:. We can prove by a similar (but slightly involved) argument as in
Lemma 6.9, the following proposition. But we omit its proof since we don't use
it in this paper.

ProPOSITION. Let G be a subset of 2x 80 satisfying I, II, III. Suppose that
Ni=0 and that the defect § of G is >3. Then the number of G-singular partitions
in Pi s less than 6.

LeEmMMA 6.10. Suppose that Ni=0 and that there s a wveriex p wn Q such
that {p, 7} € (G} for all 1€ 2—{p}. Then p is a fixed point of G.

Proor. Suppose that there is a G-cycle C such that Supp(C)®»p. Put C=
{y, « -+, 1,>. Thenr>2since Ny=0. We have then two distinet G-cycles{p, i1, - -, 2,),
{iy, P, %2, -+, 1,y with the same support {p, %1, - -+, ¢,} which is impossible by the
condition II and Lemma 2.2, q.e. d.

THEOREM 6.11. Suppose that n>5, 6=38, Ni=0. Then G has a fixred point
and there is a permutation ¢ of 2 such that o(G) is of the form Go—23 where X
2s one of the following sets:

{L,1, 31}, {1, Y, 4, n=-1}, {1, 1), @ n-1)}, {1, 1,), B, )},
{1, 1,20, 4,1, {4, 1), 21), €}, {1, 1), 4, n), 2 )},

Proor. If we can prove the existence of a fixed point of G, the remaining
part of the Theorem is immediate by §3. So let us prove the existence of a fixed
point of G.

Since N,=0, R, contains at least one G-singular partition by Lemma 6.2
Hence let » be the number of G-singular partitions in ;. Then =2 or r=1 by
Lemma 6.9. Now suppose =1 and let {{p}, 2— {p}) be the unique G-singular
partition in R;. Then p is a fixed point of G by Lemma 6.5.

Suppose now that r=2. Let ({p:}, 2— {p}), ({2}, 2— {p2}) be the two singular
partitions in B,. We distinguish several cases.
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Case (Ij. The partition ({p, p:}, 2 {p1, po}) is G-singular.

The three G-singular partitions are exhausted by {{pi}, @— ()}, Uipa), O— 1p2}),
{{P1, P2}, 2= {ps, po}). Hence all the other partitions are G-regular. In particular
Up, 4}, 2 {py, 1)) Is Geregular for 1€ 2~ {pi, po}. Put Q— {py, po} = (1,2, -+, k}.
Now if Q05X 2 {p, ,p:}, then (X, 2— X} is a G-regular and 2—X& G} by Lemma
6.5. IHence X< {G}. Taking as X a subset of the form {p, ps, i}, we have either
{m, pJ 2 G or (p2, ;)€ G. Note that we cannot have simultaneously (p, ps) e G,
Pz, ;) C G sinee {p,p2} & {G). We may assume that {p., p) € G, (o, p2)=G. Then
by {m, p2, 4 € {G} we have (p1, 9) € G, 12, po) € G for i=1, --- k.

Now we claim the following:

LEMMA 6.12. Let G, pi, ps, 1, --+, k be as above. Then we have either

o, T CHGY, A, 2 € {GY, -+, i, k) C (G or
Q—1ip, ¢ (G}, 2—{pu, 24 ¢ (G}, -+, O~ {py, k} € {G}.

Therefore, in the first case py is a fixed point of G. In the second case, p- is a
Sized point of G.

PRrROOF. Suppose {p, j} ¢ {G}, {p, 7} & {G} for some %, je {1, ---, k}. Because
of the G-regularity of the partition ({pi, 7}, 2~ {p1,}), we have then 2— {p,, i} € {G}.
Thus there is a G-cyele C=<ay, -, x,> such that Supp(C)=0— {p:, i}. Since C
passes throught the vertex p., we may put z;=p,.

Let us consider to begin with the case where x.%j. Then, as we have noticed
above, {pi, p, j, ®2} € {G} which admits a disjoint covering by G-cycles ¢pi, 5>,
{pz, x>. This is impossible. Therefore we have j=2x.. Now consider the partition
Ums, 4,7}, 2 {pi, 4, 1), By what we have noticed above, this is G-regular. Hence
either {pi, 7,7} € {G} or Q—{p, 4,7} ¢ (G}. If Q—{py, 1,7} € {G}, then there is
a vertex a, with 2<I<m such that ix,, p2) ¢ G. Then we have {ps, 2 L6,
On the other hand {p, pe, 22, 23} € {G} which has a disjoint covering by G-eycles
{pr, x>, {ps, x,>. This is impossible. Thus we have shown {p, 4, j} € {G}. Hence
either (7, /)¢ G or (4, 1) € G.

Suppose (1, 7)€ G. Then {pi, ps, i, Jj} € {G}. Moreover there are two distinet
G-eyeles {ps, ;v, 4, >, <P, %, P2, J» having the same support {pi, ps, i, 5}. This is
impossible by Lemma 2.2.

Suppose now {J, 7) € G. Then {p, pe, 1, j} is in {G} and there are two distinet
G-eycles {pu, J, %, p=>, {P2, J, p1, ) having the same support {pi, D3, %, 7}, This is
again impossible.

Thus we have shown that if {pi, j} € (G} for some j€ {1, ---, k}, then {p, i}
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c {G} forall ¢in {1, - -, k).

Conversely, If @—{py, i} T {G} for some i< {1, --- &}, then because of the
G-regularity of the partition ({p,, ji, @~ {p:, I}, we have Q- {p,, 5! ¢ (G} for all
7in {1, ---, k}. This completes the proof of Lemma 6.12.

Now let us return to the proof of Theorem 6.11. Suppose that the first
alternative is the case in Lemma 6.12. Then we claim that p is a fised point of
G. Infactlet C be a G-cycle not passing through pi. Then C passes through p
by Lemma 6.5. So we may put C={y, -+, y.>, yi=p.. Then (p., 12 ¢ G. Morcover
{(y2, P2} € G as we have seen above. Hence (2, 2> ¢ <{G>. Sinee n=>5, there is a
point 1€ 2~ {p\, ps, ¥2}. Then {p), i} € |G} and also {p:, po, 7, y2} € {G} which has
a disjoint covering by G-cycles {(pi, i>, (p», ¥2>. This is impossible. Thus p, is
a fixed point of G.

Next suppose that the second alternative is the case, i.e. £~ {p., i} € !G} for
all 7¢ {1, ---, &}. We claim then that p. is a fixed point of G.

In fact suppose that there is a G-cycle C not passing through p.. Then C
passes through p;. Hence there is a point 1€ 2— {py, p.} such that (¢, p) ¢ G. Then,
since (ps, ¢) € G, we have (g, e (GY, i.e. [m, i} € {G}. This is impossible.

Case (II}. The partition ({p, p=}, 2— {p1, p:}) is G-reguar.

We note first that {p:, p.} € {G} by Lemma 6.5. In this case we hegin with
the following:

LEMMA 6.13. There exists a point ¢ tn Q- {p:, p:} such that either {{p, i},
Q—{py, 3}) or ({pe, 1}, 2— {ps, i}) i3 G-singular.

PROOF. Suppose that the partitions ({pi, i}, 2~ {p, 1}), ({pe, 5}, 2~ {p2, 5})
(1, 7€ 2—{pr, p2}) are all G-regular and let us derive a contradiction.

We claim first that there does not exist a pair (4, j) of points 7,7 in Q- {p,, P2}
such that {p;, 4} € {G}, {p= J} € 1G).

In faet, suppose that such a pair (i, j) exists. If ¢=7, then {p, ps, i} is in
{G} and has a covering of constant multiplicity 2 by <{pi, p2>, {p, 9, {ps, >, which
is impossible. Hence 1%j.

If ({py, po 4, 3), @~ {p1, P2, 1, 7)) is G-regular, then {pi, p., i, 5} is in {G} and
has a disjoint covering by <{p, i) and {p», 7> which is also impossible. Thus
Upr, 22, 4, 9), 2—A{py, 2, 4, j}) is G-singular. Hence the three partitions ({p.},
2—ipd), Upad, 2= {p:}), Upy 02 4, 5}, Q— {p1, P2, 4, 7)) exhaust all the G-singular
partitions.

Now since n>5, there is a point k in 2~ {py, ps, 7, j}. The partition ({p:, k),
L—{p:, h}) being G-regular, we have either {pi, h} € {G} or 2—{py, h} € Gy, If
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{m, B} € {G}, we have {m, Pz, h, 3} € {G} becuase of the G-regularity of the par-
tition ({p1, pu, b, 3}, 2~ {pr, P2, b, J}). Moreover {ps, 2, I, 7} has a disjoint covering
by {(m, h>, {2, 5> which is absurd.

Suppose {p1, h} @ {G}. Then we have 2- {p:, h} € {G}. Moreover 2-— 14, b} is
in {G}. Now £—1(h} is in {G} and has a covering of constant multiplicity by
Q—1{p, b}, {m, i}, 2—1{i, k. Thus we get a contradiction.

We claim next that there does not exist a pair (7, J) of points 7, j in 2— {p, P2}
such that 2— {p;, i} € [G}, £~ {p2, 7} € {G}.

In fact, suppose that such a pair (i, j) exists. If i=j, we get a covering of
constant multiplicity of 2- {5} by 2— (pi, i}, 2~ {p2, i}, {ps, p} which is absurd.
Hence ij. But then we get a covering of £ of constant multiplicity by 2- {p, i,
Q= {ps, 7} and £2— {2} for x¢ 2~ {p:, P2, 1, 5} which is impossible.

Thus we have shown that
G) if {p, 3} € {G} for some 1€ Q— {pi, P}, then {ps, j} & (G} for all j€ 2~ {p:, p3},
hence Q- {p:j} € {G} by the G-regularity of ({ps, 7}, @— {p2, 5}, (i) if 2~ {py, 7}
€ {G} for some i€ 2~ {p:, P2}, then {pe, ) € (G} for all 7€ 2— {p, po}.

Now let us introduce a structure of a partially ordered set in the set S=80-
{pi, pe}. Leti,jcS. We write i<j if either :=j or there is a sequence %, -+, 7,
of points in S such that =11, j=1,, (4,1, %) € G (2<t<s). The relation <is obviously
reflexive and transitive. Moreover < is symmetrie since S contains no G-eyele.

Let us prove now that S is linearly ordered. In fact let 7,7 be distinet
elements in S. By u>5, there is an element x€0Q—{p, p2, 1,7}, Suppose
{p1, 2} € {G}. Then Q— {ps, 2} € {G}. Hence there is a G-cycle containing »i, 7, J.
Therefore we have i<j or j<. Suppose {pi, 2} {G}. Then 2-{pi, 2} € (G}
and we have a G-cycle containing ps, 7, 5. Thus we have 1<j or j<i. Hence S
is linearly ordered. Put S={y;, -+, ¥u}, N<y2<---<Yn. Suppose {p, ¥} € {G}.
Then by what we have shown above, {pi, %} € (G} for 1<t<m. Hence {pi, ¥,
Yo, -y Yud €G>, Therefore Q— {p:} € {G} which is impossible since ({p:}, 2~ {p:})
is G-singular.

Thus we have {pi, 1} ¢ {G}. Then again by what we have shown above,
{p2, 1} € {G}. Hence we get a contradiction as above. This completes the proof
of Lemma 6.13.

Let us now return to the proof of Theorem 6.11, Case (II). By Lemma 6.12,
we may assume that the partitions ({p:}, 2— {p:}), ({pa}, 2 {p2}), ({p1, 1}, 2= {p1, 1})
exhaust all the G-singular partitions. Put 2—{py, 12, 1} =1{2, -+, k}. Then as in
the proof of Lemma 6.13, we have two alternatives:
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(@ {pi, i} € (G} 2<i<h), Q= {pe, 5}
(B) 2=l 4} € (G) @<i<h), (pes )

Suppose (@) is the case. Then as in the proof of Lemma 6.13, S=02- {p, p.}
is endowed with the structure of a linearly ordered set. Put

S={y, vy n<y< <y -

If y#1, then {p, w1, -+, ¥:> €<(G)>. Hence 2~ {p} ¢ {G} which iz impossible.
Hence y,=1. Now if (p, 1} € G, we get again (o1, 1, %, <+, ¥ € (&> which is
impossible. Thus (p;, 1]&G. On the other hand, by the G-regularity of {{p:, p., 11,
2—{p., ps, 11}, we have {pi, p2, 1} € {G} by Lemma 6.5. Thus we have (1, p) € G.
Therefore we have also (p:, 1) € G. We note also (1, p)&G. In fact, if (1, p) € G,
then (1, p2} € {G}. On the other hand we have {(pi, ¥, - -, ¥ € (G since {1, yo>
€G> and {p.,y.» €<{G>. Hence we get a disjoint covering of @ by (1, p.> and
(P, Yo+ o0y Yip, Which is absurd.

Let us now show that {(p., 9,)¢G, (4, p)&G (1<s<k) by induction on s.
This is true for s=1 above. Suppose it is valid for s. Since [pi, P2, ¥osi} € {G)
by the G-regularity of the partition ({p:, P2, Y1}, 2— {P1, D2, ¥,41)) and by Lemma
6.5, we have either (P2, ¥;1) €G OF (Y1, D) EG. I (Y11, 22) € G, then {p1, Yo11, Do,
¥} is in {G}. Moreover there are two distinct G-cycles {pi, %41, P2, ¥.> and
P2, Ys» You1, Py, Which is however impossible. Thus (y,.1, pd&G. Thus (2, ¥.e1)
€ G and our induction is complete.

It is easy then to see that every G-cycle C passes through the point p,. In
fact, otherwise C passes through p.. But since we have (z, p))&G for every
z € 2~ {ps, p2}, such a G-cycle C cannot exist. Thus, in case (@), p: is a fixed point
of G.

Next suppose that (8) is the case. Then p. is a fixed point by Lemma 6.10
since {ps, x) €{G) for every z&@—{p}. This completes the proof of Theorem
6.11.

Appendix

We give here the classifications of subsets G of 2x 2, 2=11,2, ---, n}, satisfying
the conditions I, II and such that of defect 6<3. Since we gave the classification
for the case n—2>6 already in §6, we consider here only the case where n—2
<6. Thus the following cases will be settled: (i) &=1, n=38, (i) §=2, n=3,
(i) 0=38, 3<n<4.

We deseribe G by means of the directed graph associated with G (ef. [1]).
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We use below the symbol @i to indicate the G-cycle (i) of length 1.

Case (i) 6=1, n=3.

1 1 1 1
2&3 2AD3 2&3 2A3

Case (ii) 6=22, n=3.

L 1
2&3 2&3

Case (iii} 0==3, n=3,

7, XX
oL L LR IS
B NN N
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