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PREFACE*

The main purpose of this paper is to establish a relation between the arith-
metic of Hermitian vector spaces and that of alternating vector spaces and to
give an application to the theory of automorphic functions, using the theory of
“symplectic representations” developed by 1. Satake {ef. [20] ete.).

Let k be an algebraic number field of finite degree and K a guadratic exten-
sion of k. Let (V,H) be a non-degenerate Hermitian vector space defined over
Kjk, and let L be a lattice in V. The first problem is to obtain a system of
invariants for the class of L with respect to the ‘ SU-equivalence relation’ (see
3.2, Chapter ). Using the results obtained by G. Shimura [24], and by R. Jacohowitz
[18], we get a solution for a * modular lattice >’ L, under some conditions (Theorem
6.9, Chapter I).

Incidentally, these considerations enable us to obtain some results ahout the
rational boundary components of the symmetric bounded domains of type (I)
{Theorems 1.9 and 1.12, Chapter III).

In Chapter II, we look at a functor 77k .>4” which sends the Hermitian vector
space (V, H) to an alternating vector space (V’, A’) defined over k; there exists
a lattice L’ in V' which corresponds naturally to L. Moreover, the functor gives
rise to the ‘‘symplectic representation’ o which maps G,=SU(V, H) into /=
Sp(V’, A’). The elementary divisors of the lattice L’ can be deseribed in terms
of the invariants of L, under certain conditions (Theorem 2.8, Chapter II}.

Again under some conditions, the algebraic groups G and G’ determine sym-
metric bounded domains D and D’, and G, and G- operate properly discon-
tinuously on D and D’ respectively (where, G, = {g€ G, gL=L} ete); the repre-
sentation p induces a ‘ holomorphic imbedding ** of D into D’ such that we have

* This paper has been submitted as dissertation for Ph. D. in the University of Chicago,
in Sept. 1967.
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PG, )< GL. This situation gives rise to a problem: under what condition is it
possible to ‘“‘extend”’ an automorphic form on D with respeet to G, to one on D’
with respect to GL 7

A partial answer to this problem is given in Theorem 2.10 and its Corollary
in Chapter III, which deals with the automorphic functions. To explain the result,
let F be the field of automorphic functions with respect to G, and let F/ be the
subfield of F consisting of those functions which ean be extended to automorphic
functions on I with respect to G7-. And now for the sake of simplicity, let us
assume that & is the field or rational numbers and K is an imaginary quadratic
number field. Then, under some conditions, the field F becomes a finite Abelian
extension of the field F’ and the Galois group of the extension F/F” is isomorphic
to a subgroup of the first Galois cohomology H!( % ({,)), where n=dim V, ({,) =the
group of nm-th roots of unity generated by ., and ¢ is the Galois group of the
extension K'/K, where K’ is a Kummer extension of K({,) determined by a certain
arithmetic group.

A similar problem was discussed by I. Sakata in [21] (for the case where G
is a certain orthogonal group and p is a spin representation). We also wish to
refer the reader to {9],[14].

I was able to prepare this paper under the guidance of Professor I. Satake
to whom I am most grateful. I should also like to express my gratitude to Pro-
fessors W. L. Baily, Jr., H. Hijikata, S. Iyanaga, S. MacLane and O.F.G. Schilling.
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NOTATION

rational integers.

rational numbers.

real numbers.

complex numbers.

the quotient field of a Dedekind domain (7, whose characteristic is not 2.
a semi-simple algebra over k such that [K:k]<2.

QT QARON

% the (j-integral elements of K.

K*: the invertible elements of K.

Ug: the group of units of k.

We have three possibilities for our K:

(1) K is equal to k. (This does not mean that we are going into the theory of
quadratic forms. It is only to get a unified description of the theory of /-
lattices that we include this case.)

(2) K is a separable quadratic extension of k.

(3) K is the direct sum of two copies of k. (So K is a commutative ring with

unity 1=e;+es;, where e;=(1,0) and e;=(0,1). We can identify an element

a of the field & with the element (@, a) of K.

For the cases (2} and (3), we denote by ¢ the non-trivial involution of K which
fixes the elements of k. For any element a in K, we put N{a)=a’ - a, and Trla)
=a° +a.

By V, W ete., we denote free K-modules of finite rank. By E(V), we mean
the ring of all K-endomorphisms of V, and by GL{V), the group of all invertible
elements in E(V). As usual, SL(V) is the subgroup of GL(V) formed hy the
elements with determinant equal to one. Sometimes, to emphasize K, we write
E(V)g, GL(V), ete., in stead of E(V}, GL(V) ete.
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For any set S, we denote by | S| the order of S.
Finally, for positive integers m and m, we denote by (n, m) the G.C.D. of n
and m.

CHAPTER I
PRELIMINARIES ON THE ARITHMETIC OF HERMITIAN VECTOR SPACES
1. -lattices

1.1, An -module L is an Jx-lattice in V if it is a finitely generated -
submodule of the free K-module V and KL=V. We define rk(L}=rank(V). A
lattice in the K-module K is a fractional ideal in K. It is well known that a
lattice L in V ean be written as

L=Av, @0 B/, (direct sum)
for suitable elements v,’s in V and fractional ideal ../{’s in K, and that the ideal
class of ﬁ;/’ is uniquely determined by L. Moreover, we can choose the system
of elements {vi, ---,v,} so that we have _/i= --- = /i1 ="% [8, §22, Chapter

II1].
An element v of a lattice L is primitive if it satisfies

fecK|lave L) =k .

1.2. PROPOSITION.'! If rk(L)>>2, then L is generated by its primitive elements.

PROOF. It is enough to consider the case where K is a field. We may also
assume that rk(L)=2 and that L= /0@ o/ v:, where ./ is a fractional ideal
generated by 1 and a. It is known that there exists an element ¢ in (% such
that ¢ (x+ o/ '= 7%

Put wi=v, we=v;-taves, and ws=cvi+vs. Then w,’s are primitive and they
generate L.

1.3. If G is a subgroup of GL{V), we put
GL={gcGlgL=L}.

1.4. LEMMA.' If rk(L)>2, then SL{V), acts transitively on the set of primi-
tive elements of L.

! These statements are well known. Here, for the sake of completeness, we sketch an
outline of proofs, which are due to 1. Satake. Also see {19].
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Proor. Let v and 2’ be primitive elements of L. Then we have
L=0xvi® - QCx0ami@or va=Cx0' D - D kvia® v,

where vi=v,v./=% and v is a fractional ideal. Hence we have an element g
in GL(V), sending v to v’. As det(g) belongs to Uy, we can define an element
g’ of GL(V), by putting

g'lv.) = detlg) v, g'Ww/)=v/ for all i#n.

Then g’g is an element of SL({V), sending v to v’ .

1.5. LEMMA.! Let L and L’ be lattices in V and G a subgroup of GL(V).
Suppose that for any fractional ideal 7" in K, G, acts transitively on the set
of primitive elements of 'L’ and that G- stabilizes L. Then there exists a
fractional ideal o7 in K such that L'=_o/ L.

PROOF. We may assume that rk(L)>2. Put

s ={ae KlaLc L'}
=(.,, where e runs over all the primitive elements

in L and s/;={a€ Klaec L'}. (Proposition 1.2.)
Suppose » is any primitive element in the lattice .-/,"1L’. Since e is primitive
in 7;7'L’, we have an element g of G;. sending e to ». But

G cGL{V), .

Therefore v € L, which implies that .-, 'L’ L. (Proposition 1.2.) Hence, L’ (N L
= o Lc I’, which completes the proof.

1.6. Let L and L’ be two lattices in V. We define d(L, L) to be the frac-
tional ideal generated by det{g) where g runs over the elements of E(V) sending
L into L’.

2. Arithmetic subgroups of linear groups

2.1. A subgroup I" of a group GCGL(V) is arithmetic (with respect to L) if
there exists a lattice L in V such that I” and G L are commensurable.

2.2. PROPOSITION.! SL(V), is a mazimal arithmetic subgroup of SL{V).
PROOF. Suppoese I” is an arithmetic subgroup of SL(V) containing SL(V),.
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Then there exists a lattice M such that SL(V)y>I'. Hence Lemma 1.5 implies
that M= /L. Hence SL{V),,=SL{V)., which completes the proof.

2.3. PROPosITION. Let K be an algebraic number field of finite degree.
Suppose L and M are lattices in the vector spaces V and W respectively. Let G
be an algebraic subgroup of GL(V)c defined over K such that (G, is a maximal
arithmetic subgroup of Gyx. Suppose that we are given a rational homoemorphism
o of G into GL(W)¢, defined over K, which salisfies:

(1) plGLICGL{W)yy,
(2} KerpcG,.
Then we have p(GL)=p(G)y.

Proor.? By a result of A. Borel-Harish-Chandra, (G} is arithmetic subgroup
of plG)x (cf. [31,[51). Hence we get

[2(Glar 2 PG L)< .
Then the condition (2) implies that
[ Ho(Gla) 1 G 1< .

Hence o~'p(G)y) is arithmetic, so by the maximality of G, is equal to &G,. This
completes the proof.

2.4. COROLLARY. Suppose p: SL{(V)c > GL(W); is a rational homomorphism
defined over K such that
(1) o(SL(V) )CGL(W)y ,
(2) Kerp is finite.
Then we have p(SL{V).)=p(SL{V))y.

Proor. This follows Proposition 2.3 immediately, since in this case, Ker o is
contained in the center of SL({V) which consists of all a-1, with ¢"=1and a€ K;
clearly we have a-1,¢ SL(V) ..

3. Lattices in a Hermitian vector space

3.1. From now on, whenever we consider a Hermitian vector space, we assume
that [K : k}=2.

A k-bilinear form H of VXV into K is Hermitian form over Kjk if
(1) Hlaz, by)=as-H(@, y)-b,

2 This proof is due to H. Hijikata.
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(2) Hiz,y)=H(y,z)°, for z,ye V and ¢,bc K.
H is non-degenerate if for any torsion free element = of V we have Hiz, Vi=K.
From now on we always assume that H is non-degenerate. The pair (V, H) is
Hermitian vector space over Kik.

{(V,H) and (V’, H') are isomorphic if there exists a K-isomorphism g of V
onto V' such that

Hzx,y)=H'(g{x), gly)), for =z,ycV.

The group of automorphism of the Hermitian vector space (V, H) is denoted by
UV, H). We put SU(V, H)=U(V, HiNn SL(V).

3.2. Suppose we are given Hermitian vector spaces (V, H) and (V’, H’) and
lattices L and L’ in V and V' respectively.

L and L' are unitary equivalent if there exists a K-isomorphism g of V onto
V’ inducing isomorphism of (V, H) and (V’, H’) and gL=1’/. And in this case we
write L~L’. If L and L’ are lattices in the same Hermitian vector space V and
there exists an element g of SU(V, H) sending L onto L/, then we say that L
and L/ are SU-equivalent and write L=1’.

3.3. Suppose we are given a Hermitian vector space (V, H) and a lattice L
in V. We put

ClKlk)= {det(g) | g€ UV, H)}
={a€ K| N{a)=1},
CL(Kjk)={det(g) | gc ULV, H),} .
If I’ is also a lattice in V, and we have L~L’ and C(Klk)=C _(K/k), then it is
clear that we have L=L’.
On the other hand, if we have
(1) C(Kik)c Uy,

(2) L= _o/v] L, (orthogonal sum),
then, clearly, C(K/k)=C(Kk).

3.4. From now on we assume that V is supplied with a non-degenerate
Hermitian form H. For a lattice L in V, we define

#(L)=the fractional ideal in X generated by H(z)=H(z,z),zc L,
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1ot L)=the fractional ideal in K generated by Hix, y), x, y¢€ L.

They are ¢ invariant ideals. We eall #(L) the norm of L. L is maximal if it is
maximal among the lattices with the same norm.
The different 6 of Kjk is defined by

0'={ae K| Tria k)< Ok} .
As in [26], we look at
H(z+ay)=H(z)+ Hlay) + TriaH(z, y)) ,
and get
rLycp(Lyc (L) .

We call L to be normal if we have p(L)=p,(L).

3.5, We define the dual of L to be
Léi={ze V| H(L,2)C %} -
If
L=c/i0@ - Qoiva,
then
Li= /7w ® -+ B.o/iou, , where Hv, uj)=6,;.

And we have
AL, L= 11 Nio/)-(det (Hlv, vl L)

Also it i3 clear that
Lop,(L)-1*.
ef. {16 § 82, Chapter VIII}.

4. Modular lattices

4.1. Let L be a lattice in V. The following conditions are equivalent.
(1) L=p(L)- L%
(2) dI, Ly=pn(L)*, (n=rk(L)).
L is (#,(L)-) modular if it satisfies either one of the above conditions. (Cf. [16,
ibid.]). And in this case, #4(L) is called the modulus of L.
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4.2. Suppose that ¢ x is a principal ideal ring (i.e. any ideal in (% is prin-
cipal). Then a lattice with  4-basis {vy, ---, v,} is modular if and only if the
matrix {(H{v;, v;}) has elementary divisor of the form {(a), ---,(a)). And again an
x-lattice L is modular if and only if we have H{x, L)=g,(L) for any primitive
element 2 in L. (Cf. {16, ibid.]).

4.3. Suppose now that (", is a discrete valuation ring. Then a lattice L can
be decomposed into orthogonal sum of sublattices L;’s such that L;’s are modular
and tk(L,)<2 for all 4. If, moreover, L is modular and rk (L;)=1 for some ¢,
then L is normal. On the other hand if L is normal then we can assume that
rk(Ly)=1.

Hence if L is normal and K is a quadratic extension of k, then by 1.3 we
have C{K/k)=C (K/k). (Cf. [13], [24).

4.4. REMARK. If Lis modular and g(L)=6-t(L), then L is maximal. But not
all the maximal lattices are modular. For example, if k= @. = 2-adic number
field, K=Q.(v =3}, and V is spanned by v, v2;

(Hiv o= g g )

then V has maximal lattices but it has no modular lattices.

5. Local theory of modular lattices

5.1. In this section, we let k& be a p-adic number field and | K : kj=2. So,
Kk is either unramified or ramified or split. (i.e. K=kxk).
The following Proposition follows immediately from [13], [24].

5.2. ProOPOSITION. Let L and L’ be modular lattices in V. Then

1) L~L' if and only if p(LYy=p(L") and pto(L)=p,(L/).
2) Suppose Klk does not split and L and L’ are normal. Then L~L/ implies
L=L’. Especially if Kk is unramified then L=L' if and only if to(L)=1,(L").
(38) Suppose Klk splits. Then L=L’ if and only if d(L, L')= k.

PROOF. For the sake of completeness, we sketch a proof.

Firstly, assume that K/k splits. Then, as the different of K/k is equal to <k,
3.4 and 4.3 imply that any lattice has an orthogonal basis. From this it is easy to
see that there exists a similitude g sending the modular lattice L onto L’ so that
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d(L, L") =d(L, gLy=(det (g)). (3) follows from this easily. Alsoin this case we can
see easily that L~L’ if and only if #,(L)=p(L’). Hence we can assume that K'k
does not split.

Now by a general result by Jacobowitz [13], L and L’ are unitary equivalent
if and only if p(L)==(L'), o(L)= r1(L’) and

det (Hiv,, v;)) = det (H{vy’, v;/)) mod. N(Ux]) ,

where {1, -+, v.} and {v’, -+, v,/} are the basis for L and L’ respectively. But

now we have (by 4.2)
det (Hw,, v;)i=au= det (H{v/, v/))(=a™u’) mod. N(K*),

where u, w' € Ug.
(1) follows from this, because now we have N(K*)N Ux=N(U).
(2) follows immediately from 3.3 and 4.3.

5.3. PROPOSITION. Suppose that Kjk is ramified and p does wmot divide 2.
If we are given modular lattices L and L’ in V which are not normal, then
(1) Ind (H)=Witt index of H= dim V/2, po(L)=%*, for an odd s. (p x=%°).
(2) L~L' if and only 1f po{L)=L(L").
(8) If g belongs to U(V, H) then det (g) is a unit and congruent to *1 mod. B.
(4) Suppose L~L' and g is any element of U(V, H) sending L onto L'. Then
det (g)=1mod. P if and only if L=L’.

PrOOF. (1) and (2} are shown in [13].

To show (3), take an element g of U(V, H). Nidet (g9))=1 therefore det(g) is
a unit. As usual we write

det (¢) =g+ wJT +ufI?+ - -+,

where I7 is a generator of $ such that //2€k, and u,€ (x; representatives of
xiB. Then

Nidet (9))=u*+ --- =1,
therefore
det (g)=u,=+t1mod. P .

To show (4), we take a basis of L such that the matrix of the form H is

3

T

< 0 i,

{0 2 = i
~I. 0 > where ==17I%, 2m=dim V.
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Then it is known that the group U(V, H), is generated by the matrices of the

( A0 > ( 1 B> ( 01 )

0tA~ /J°\ 0 1/°\ =1 0/’

where Ac¢GL{m, (%), BE Mim, %) such that *B°=B. (Cf. [24],]26, Satz C]).
Hence, if g belongs to U(V, H), then det(g) is congruent to 1 mod. .

form

Now suppose that L=L’ and let ¢ be as in {4). There exists an element I of
SU(V, H} sending L onto L', so that h™'g belongs to U{V, H),. Hence detg:-1
mod. P.

To show the converse, let {v,, ---,v,.; v/, --+, v’} be the basis of L mentioned
above. Suppose g is as in (4) and let det (g) be congruent to 1 mod.®. Then it
is easy to see that there exists an element u of Uy which is also congruent {o
1 mod. , and w®= det(g). We define an element h of U(V, H}, by

hlv)=w""v1, Rlod)=w"'v", hlv)=v,, hv)=v," (i222) .

By our choice of u, we have N{u)=1, which implies that h belongs to U{V, H},.
Thus we get the element g-h of SU{V, H) sending L onto L’.

6. Global theory of modular lattices

6.1. In this section, we let k¥ be an algebraic number field of finite degree
and K be a quadratic extension of k. V is a finite dimensional vector space over
K supplied with a non-degenerate Hermitian form H.

For any valuation v of k, we put K,=K®K,, V,=V®Rk, V,issupplied with
a non-degenerate Hermitian form H, which is the natural extension of the form
H to V. If in particular, v is determined by a prime ideal p (resp. an infinite
place .. 1, 1<i<d) of k, we write K,=Kp (resp. K,=K)

For an (Fy-lattice L in V, we put Lp=L® ). We have p{Lp)=rx(L)y, /t,(Ly)
=pgo(L)p, (Lp)*={L*#p, and for any other Ji-lattice L’ in V, we have d(Ly, Ly')
=d(L, L')».

Hence L is /“modualar if and only if Lp is g/f-moduar for all the prime
ideals p in k.

Finally we put

a
LAZIngXzI;I‘Vz .
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6.2. Let G be a linear algebraic group defirel over k, whose k-rational points
coincide with U(V, H). Then we can consider the adélized group G,, where A
denotes the adéle ring of k.

We say that the lattices L and L’ belong to the same genus (with respect to
G) if there exists an element g of G, sending L, onto L,’. In other words, L
and L’ belong to the same genus if and only if Ly~Iyp" for all the prime ideals
pin k.

6.3. PROPOSITION. The number of genera among the . /-modular lattices 1s
JSinite. Denoting by 9./, V) such a number, we have g(.-; V)<1 if either dim V
18 odd or Kk 13 unramified.

Proor. By 3.4, 5.2 and 5.3, we have

Ly~Ly if polLy)=p,(Ly'),
except for the primes p which ramify and divide 2. Suppose q is one of such ex-
ceptional primes. Then, again by 5.2 we have
Lo~Lg if po(Lla)=p(La’) and p{Lq)=p(Ly).

But 3.4 implies that there are only finite number of posibilities for r(Lq)'s if #y{Lq)
is fixed. Thus g{ ., V) is finite. The last statement is clear from the above
argument.

6.4. Let G be as in 6.2. For a lattice L in V, we put
~ d
GarL= g ((Tkp)Lp X JI‘ G;,—/1 .

Clearly, there exists a bijective correspondence between the double coset space
GG/ G 4.1 and the set of unitary equivalence class of lattices belonging to the
same genus as L. By a well-known result by A. Borel-Harish-Chandra [5], the
number of classes is finite. We denote such a number by ¢((L), V), where (L)
means the genus of L.

6.5. Let us denote by h{ o, V) the number of unitary equivalence classes
among the .o/ ~modular lattices in V. By 6.3 and 6.4, h( /] V) is finite. In par-
ticular, if ¢{.«; V)=1, then we can write h{ v, V)i=c{ o] V).

6.6. The Hermitian from H is definite if Ki=C and Ind (H)=0, for all the
infinite places p..2 of k. Otherwise, H is indefinite.
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6.7. It has been shown by Shimura [24] that if our non-degenrate Hermitian
form is indefinite and dim V>1, then for a lattice L in V,

e{L), V)=IC: C"1 or [C:C1ICLY: UL

according as dimV is odd or even, where C is the group of ideal classes in K and
C’ is the subgroup of C consisting of the classes containig ideals which are o-
invariant; and
CIL)= T1 CKafka)/C g Ku'ka)
q

where q runs over the ramifying prime ideals in %:
U(L)= () € C(L) | aa=w-C o[ Kutka) , for ue Uy, Nw)=1} .

(The groups C(L) and U(L) depend only on the genus of L.)
Moreover, under the above conditions, two lattices L and L are S U-equivalent
if and only if Ly=Lyp’ for every prime ideal pin k.

6.8. Suppose dimV is even and p is a prime ideal in % which ramifies in X
and does not divide 2. We put p/7 =92 Assume that Hyis of maximal index.
Then for any odd s, we have exactly two SU-equivalence classes among the modular
lattices with the same modulus $¢(5.3). Let L,'(p) and L,%(p) be their representatives.

Now suppose that we are given a modular lattice L in V such that L is normal
for every prime ideal q which ramifies and divides 2. For such a lattice we define

0 if Lp is normal,
L) = 1 if Lp is not normal and Ly=L,'(p),
~1 if Lp is not normal and Lyp=L,2(p),

where p runs over all the prime ideals in &, and r¢(Lp)=%, for the latter two
cases. (If p does not ramify, then Lp is normal; so the above definition makes
sense.)

6.9. THEOREM. Let (V, H) be a non-degenerate Hermitiaun vector space with
dim V>1. Suppose H is indefinite. Let L and L’ be modular lattices in V. Then
(1) If dim V s odd then L=L' if and only if ty(L)=1to(L’) and d(L, L')= /7.
(2) If dimV 1s even then there are I(f(L)! SU-equivalence classes among the
modular lattices L’ such that p(L)=p(L"), n,(L)=p(L"} and d(L, L')= k.

In particular, +f La and Ly are normal for every prime ideal q in k which
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devides 2, then we have L==L’ if and only if v(Ly=p(L"), d(L, L = and is(L}
=13p{L’} for all the prime ideals p in k.

Proor. If dim V is odd then by 4.3 any modular lattice in V is normal.
Hence (1) follows from 5.2 and 6.7. (2} follows easily from the definitions.

CHAPTER 11

MODULAR LATTICES AND SYMPLECTIC REPRESENTATIONS
OF SPECIAL UNITARY GROUPS

1. Functors &, A7

1.1. Let V; be free K-modules of finite rank supplied with non-degenerate
Hermitian forms H; (i=1,2). We define a non-degenerate Hermitian form H,&0H,
on Vi®V, by putting

Hi @ H (1@, ur@ue) = Hi(vi, ui)- Ho(ve, u2) for u;, u; €V, .

Now take a lattice L;= 3 @ wiw,;; in V.. Then we get a lattice: LiQL.
= 2 @i 0@ in Vi@Ve.

And it is easy to see that: (LiQL:f=L3QLo*, #o(InQLs)=t1s(L1)2(Ls), and
A L1QL2, Li'Q@Ly'y=d(Ly, Ly} d(La, L), (n;= dim V).

In particular, if L; is .o/-modular, then L:&®L; is an 71 o/s-modular lattice.

If Li~L; (resp. L;=L;)} then LiQLo~L\"QLy" (resp. LiQL:=LRQL>’).

Also if & is an algebraic number field of finite degree and K is a quadratic ex-
tension of k, then we have Ly@Ly =(L&L')p for any prime ideal p in k.

1.2. Let V be a free K-module of finite rank supplied with a non-degenerate
Hermitian form H. We define a non-degenerate Hermitian form A"H on the ex-
terior product space A"V by putting

A H(in -+ AUy Wan = Al = det (H(v,, w5)), for v, u;e V.

(r<n. A'=id.)

1.3. Let ge GL{V), n=dim V, 1<r<n. Then using

(22 )m=(7 )
r—1 A r ’
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we get
{n-«])
det (47g)=(det (g))'"",
Also if 1<r<m, and | K |>3, then using the simplicity of PSL(n, K), we get

Ker Ar(\l SL(V): {a'l,‘ | ac K*’ a(n,r)____l} .

1.4. If we take a lattice L=3D o/v; in V, we get a lattice

AL= 21

1<H <L i <

r
D I o7, a0 avi
ve1 » H r

in AV,
We have

A (L= (AL}, d{AL, A°L’)=d(L, L) (=) , (n=dim V).

This implies that if L is .o/-modular then A7L is o/ "-modular in A7V, (In fact, if

L is modular then, d(A"L, ALY =u,(L)" ) cpn(arL) 0 e L)) =y 1y ),
Also we have in general,

Arizzl@LiE Z @(A”I”@ e ®AsmLm> >

81+ . + B =7

where we put A°L,= 7% .

2. The functor &

2.1. In this section, we let (V, H) to be a non-degenerate Hermitian vector
space over K/k. We put K=k-+kw, for a fixed element w such that wr=-—w.

We denote by &7 or %%, the functor of restriction of the ground ring from
K to k. Let f be the canonical k-linear isomorphism of V=V, onto V=@V
=( % Vigk. .97 defines canonieally an isomorphism f* of E(V) into E(V’), and
we have det (f*(g))=N(det (g)) for an element g of E(V).

If L is an Jk-lattice in V then f(L) is an -lattice in V', which we also call

PL).

2.2. Now we have a natural way to assign an alternating vector space (V’, 4’)
to (V, H). Namely, we put V= &V, and

A'(f(x), fy)=(Hx, y)—Hy, z)/2w, for z,ycV.
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(The definition of A’ depends on the choice of w, but is unique up to a multipli-
cation by a secalar in k.)

We put .2V, H)=(V’, A’). We now have f*(U(V, H))c Sp(V’, A").

More explicitly, suppose {vi, ---,v,} is a basis of V over K. Then {v, -+- ..
Wy, -, wu =, -+, Ui} is a basis of V7 over k and

(A, v/))ﬂ( )f* (Ve v1))

‘“"]-n

Hence the alternating form A’ is non-degenerate.

2.3. Let us recall some of the basic facts concerning a lattice L’ in a non-
degenerate alternating vector space V’. (Cf. [23]).
(1) There exists a basis {v/, ---, vs,} of V’ and a uniquely determined system
of fractional ideals /1D --- D of k such that

n n
- o
L'= ‘El i@ §1 L iUnrai
A,('U,", 'Uj/):Al(?):HH, 1+J) 0 fOr 1<1’9 J<n ’
Ay, ’U;H):Bei .

We put e(L)={ /%, -+, .7} and call it the elementary divisors of L’. Also
we put n(l’)=_o/ and call it the norm of L’.
(2) L/ is called (n(L')—) mazximal if it is maximal among the lattices with the
same norm.

L’ is maximal if and only if e(L')={ o/ -+, &}
(3) Let L’ and M’ be two lattices in V’. There exists an element g of Sp(}’, A')
sending L’ onto M’ if and only if e(L’)=elM’).
(4) For a prime ideal p of k, we consider the non-degenerate alternating vector
space (Vy, Av'). Then Ly is a lattice in V3 and e(Ly')= {1y, - -+ .}~

In particular, L’ is maximal if and only if Ly is for all the prime ideals p.

We have

Ay Vo) =Zxil Vs Pryplipllr) = el -

2.4. LrMMA. Suppose 7 and &, are principal ideal rings and that Tk
= (G4 ow, (w=-—w). Let Lbe an a- Tx-modular lattice in (V, H), where a 18
an element of k*. Then <P(L) is @ maximal lattice in PV, H), and n({ P(L))
=a- -
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PrROOF. By 4.2, Chapter I, L has a basis {w, ---, 2.} such that (H{v, v;)) has
elementary divisor of the form {{a), :--, (q.)). Hence by 2.2 of this Chapter, we

yem——

get the desired results. »

2.5. LEMMA. Let k be an algehbraic number field of pinite degree and K a
quadratic extension of k. Suppose that we are given a prime ideal p of k which
does not divide 2. Then there exists an element w such fthat Crp=("p+ 0w,
and w=-—w, ((,’zu:(f;.p:the ring of p-adic integers).

Proor. If p is unramified, then there exists a unit w such that w=—w. K
is spanned by 1 and w. But as 1/2 is a unit, a+bu ¢ ¢ kyp 0, b¢ kyp) implies that a
and b belong to (v and vice-versa.

If p splits, then we ecan put w={(1, —1).

If p ramifies, then we have p=(z), p7x =% R={7), I*=x. We can put
w=/I.

2.6. LEMMA. The situation being the same as above, asswme that b is a prime
ideal of k which ramifies in K and does not divide 2. Let p/7 =%, and suppose
Ly is @ P*-modular lattice in {Vy, Hp) where s=2t+1. Then dim V=2m, & (Ly)
is not mazximal in 7 (Vy, Hy) end its elementary divisors are

{pt9 tot 2 l‘)g’ l‘)t+19 e 2 ¥)!‘71} M
DRI NS S

ProoF. Let 2(Ve, Hi={(Vy, Av'). In virtue of the theory of classification
of the modular lattices, we may assume that s=1, m=1. (It was shown in 5.3,
Chapter I that dimV becomes even.) Now by Lemmas 2.5 and 2.2, there exists a
basis {w/, -+, v} of V' such that

(det (A'{v/, v/ ) = (NP =p* .

On the other hand, it is clear that the elementary divisors of  /(Lp) are of
the form {p71, p2} where 0<{ry<r.. We have 2(r,+72) =2, hence r1=0, =1 This
proves the Lemma.

2.7. The situation being the same as in 2.5, suppose that .o is a fractional
ideal of K which is o-invariant. Then we can write .o/ = /1% where v/}
=%, --- R,, B, running over all prime ideals in K which ramify in Kik, and the
9;-exponent of ./ is odd. Hence /% is the extension of an ideal in [k, with which
it shall be identified.

Combining 2.3, 2.4, 2.5 and 2.6 we get immediately the following:
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2.8. THEOREM. Let kbe an algebraic number field of finite degree and K a quad-
ratic extension of k. Let (V, H) be a non-degenerate Hermitian vector space over Kk,
and L an o/ -modular lattice in V. Assume that for any prime ideal q of k
dividing 2 we have (“xq=/("q+ (“qwq, for an element wq such that wye=—w, and
Lg is mormal. Then we have
(1) If .o/ is an ideal of k, then P(L) is .7/ -maximal in PV, H).

(2) If o/ is not an ideal of k, and /"= /- /% (/1% 0)), then, dim V=2m,
ALY 18 not maximal in o7 (V, H), and
el L)y={ " o/ e AT, N, e A)

m m

2.9. REMARK. If k=@, and K=Q(v/—1), then we get the above statements
(1) and (2) for a modular lattice L without any further requirements (as in the
Theorem) concerning the ramifying prime 2.

CHAPTER III

APPLICATIONS

1. G NG,/ Gy and rational boundary components of the domains of type (I)

1.1. Let k be an algebraic number field of finite degree and K a quadratic
extension of k. Let (V, H) be a non-degenerate Hermitian vector space over K/k,
and L an /x-lattice in V.

Let W, be the set of all totally isotropic subspaces of V with dimension s.
Let G,=SU(V, H), and for an element W of W, we put

Gw=geGlgW=W}.

For elements W and W’ of W,, we set W~W’ if and only if there exists an
element gin U(V, H), sending W onto W'; W=W if and only if there exists
an element ¢ in G, sending W onto W'.

Then it is easy to see that there exists a bijection between the double coset
space G\ G Gy and the set W,/=, (We W,).

1.2. For any subset S of V, we set
St={re V| Hx,s)=0 for all seS}.
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If We W,, then the vector space W-/W has a structure of a non-degenerate
Hermitian vector space which is isomorphic to a subspace of V, and the isomorphic
class of W+/W is uniquely determined by s {Witt’s Theorem).

For convenience, we shall fix once for all a subspace V, of V' which is isomor-
phic to W+/W, (W< W,).

The module Wi NL/WNL is a lattice in veetor space W</ W, so by the above
we get a lattice L,(W) in V,. If W~W' then L,(W}~L, (W),

1.3. In the following in this section, we assume that K/k satisfies
h{K)=the class number of K=1,
[ Trick)I<e.
The condition (B) is satisfied if, for example, k=@. Also, if Kjk is unramified,
then we have (/.= Tr (/).

The condition (A) implies that h{k)=the class number of k=1 or 2, and in
the latter case K is the absolute class field of & (ef. (25, §12.4)).

1.4. LeEMMA. Let L be an la)-modular lattice in V, and W an element of W,.
Then there exvists a basis f{wy, ---,w,} of W and elements {w/,---,w,} in V
such that

L=23 B xw+ Jew/ )DL,

i=1
Huw/,w/)=0,  Hw;,w/)=0;a,
L/:Ln {101, cee L0, wl’, s, 705/} i ,
L' is an (a)-modular lattice.
If in particular, L' is normal and a € k*, then we may asswme that H{w;) =0,
for all 3's.
Proor. We take a basis {uy, ---,u,} of W where u; is a primitive element

in L. Put wiy=wu;. Then in view of 4.2, Chapter I, we have an element w,/ in L
such that H{(w,, w1')=a. Then it is easy to see that we have

L-——([}{wﬁr (};101’)6’}111' y Ly =Ln {wl, ’U)\'} 1

Now, we have for 122, w;=2a+rtaw’ +u (4, ;€ K, and u/ € Ly, w'} ),
and Hiwi, u)=a-¢;=0. Hence w;=Aw+u/ and we get a new basis {w;, w.', -,
u,’} of W. Now we can use the induction on s to get the desired decomposition.
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(Again in virtue of 4.2, Chapter I, it is clear that L’ is an {aj-modular lattice.)

Now suppose that L’ is normal and a€k*. We look at the following:

(1) H{—vw;+w; +o;=Hw,)— Hax)—a- Tr (v}, (xe L.

We have H{w,)=a-t for t¢ (. 1If t¢ Tr{/ %), then the statement is obvious,
so we assume otherwise (hence, in particular, {7 : Tr {£%)1=2). It is enough to
show that there exists an element 2 in L’ such that Hiz)=a-t/, for /& Tr (k).
(Because in that case, t+t'€ Tr(/7%), so there exists an element v in i such
that the right side of the equation (1) becomes equal to 0; then we replace w,
by —vw;+w, +a).

But by our assumption, the /,-ideal generated by Hix) for x € L’ is a- 3, and
a-hz2a- Tr (/7). This implies the existence of the desired element z.

1.5. REMARK. In the ahove, if h(k)=1, then the normality of L’ implies that
a € k*,

1.6. In Lemma 1.4, we have L'~L,(W)}. Now, let L be an (a)-modular lattice
in V for a € k*, and assume that either dim V is odd or K/k is unramified (so that
I/ is always normal !). Then, for elements W and W’ of W,, we have W~ W' if
and only if L {W)~L,(W).

On the other hand, suppose in general that W~W'’ with respect to a modular
lattice L, with an element g of UV, H), sending W onto W’. If moreover, there
exists an element u in U’y such that det (g) =u*"?, then W=W",

In fact, taking the decomposition of L with respect to W as in 1.4, we define
an element g’ of U(V, H) by

g’ (w) =u"tw, g’ (') =wew,’ , g | {w, w' A =1id .

Then g-¢’ belongs to G, sending W onto W',

1.7. Generally, for a finite Galois extension K of k, we let G(I?fk) be the
Galois group of K/k. Then it is known that the group H'GIK/k), Uz) is isomor-
phic to the factor group of the group of ambigous principal ideals of K modulo
the group of principal ideals of k [12], (25, §13.2]. We denote by h(K/k) the order
of the above cohomology group.

In particular, if Kk is a eyclic extension of degree m, then

(1) hEKIK) = (h (k) IpI ea))/a,
(2) =m[U, : NUR))2",
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where in (1), q runs over the ramifying prime ideals of k, e{1) is the ramification
exponent of g, and a, is the number of ideal classes in K repesented by ambigous
ideals: while in (2), = is the number of real conjugates of k which are contained
in complex conjugates of K.

As a consequence, we get the following Lemma.

1.8. LEMMA. Suppose K is a quadratic extension of k, and hiK)=1. Then
we have

2, if hik)=2,
r(K/k) :i on  if hiky=1, and m is the number of the
ramifying prime ideals of k. {(m>0)
If moreover, k is totally real and K is totally imaginary, then h{Kfk)=2.
ProoF. The first half of the statement follows at once from the formula (1)
of 1.7, in view of 1.3. (Also, if h{k)=1, then the absolute class field of k is k itself.
Hence m>0.)

So, let k be totally real of degree d over @, K totally imaginary. Then, by
the formula (2) of 1.7, we have

hKlk)={U : N(Ug)1/2: .,
Let {e, ---, €41} be a system of fundamental units of k. Then
Ue={x1l-eft--- e?7} = {£1} xZ¢L,

As NUx)D U [U, : N(Ug)] divides 2¢, therefore h(KJk)=2'", (d=d"). h(K/k)
being an integer, this completes the proof.

1.9. THEOREM. Let k be an algebraic number field of finite degree and K a
quadratic extension of k satisfying the conditions (A) and (B) of 1.8. Let (V, H)
be a non-degenerate Hermitian vector space over Kjk, G,=SU(V,H), L an (a)-
modular lattice in V with ack*, and We W,. Then,

(1) If Klk is unramifield or dim V is odd (>1), then
ri(e), V) <IG L \Gi./ Gw|< RK[k)h{(a), V,) .
(2) If dim V=2s+1, and U,NN(K)=N{Ux), then,
[GL\Gk/GW |=1.

PrROOF. (The first inequality of (1)):— Take a decomposition of L with respect

to W:
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L= ;l (Cxwi+ Cxw!/)BL
as in 1.4. Let M’ be any (aj-modular lattice in V, (=KL’), and put

M= 2 (xwi+ Cxwi)OM'

il

M is an (a)-modular lattice in V. But now, our assumptions imply that hk{(a), V)=1.
So, L~M; which in virtue of 1.1, and 1.6, implies the desired inequality.

(The seeond inequality of (1)):— We decompose the set W, into ~ -classes and
choose one representative W. from each class. Let W be any element of W, such
that W~W., with an element g of U(V, H), sending W onto W.. Consider the
correspondence: W — ({L,(W)), (det (g))), where (L,(W)) is the unitary equivalence
class of L,(W), and (det (g)) is the cohomology class of det(g) (€ Uk, Nidet (g))=1).
{This correspondence may depend on the choice of g: here, we fix such an element
g for each W, such that det(g) is determined by the = -class of W.) Then, in
virtue of 1.6, this correspondence gives a one to one mapping of W,/ = into a
finite set whose order is equal to hM(K/kh({(a), V.).

(2):— Let We W, and take the decomposition of L with respect to W:

L= g1 (xwit+ Cxw!/ )DL, L= /v .

L’ is {a)-modular lattice of rank 1. But our assumptions imply that any two (a)-
modular lattices of rank 1 are wunitary equivalent, therefore, in virture of 1.6
again, any two elements W and W’ of W, are ~-equivalent, say via the element
g of U(V, H},. We define an element g’ of U(V, H), by

gl=uv, g |llt=id. (u=detlg).
Then g-g’ belongs to G, sending W onto W’.

1.10. REMARK. (1) In the above, if V, is indefinite then h((a), V,) =1, and if
V. is definite, then h{{a), V,)=c{(a), V,). (cf. 6.3, 6.5 and 6.7 of Chapter I).
(2) If k=@, K=imaginary quadratic number field, then

U:NN(K)= {1} =N{Uk).

1.11. Let & be totally real and K totally imaginary. If & is a maximal
compact subgroup of the Lie group .97,/ ¢ (G)) r, then the coset space D={( 7,/ o (G)) =] .5
has the structure of a bounded symmetric domain of type (I) [1], [7], [18]. For a
boundary component F of D, the group N(F)={g€ (Do) | gF)=F} is a
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maximal parabolic subgroup of (47./o(G)}z, and conversely, for any such subgroup
P there exists 2 boundary component F such that NIF =P [1]. We call F rational
if N{(Fjcisdefined over @. There exists a bijection of the set of rational boundary
components onto the set of proper maximal parabolic k-subgroup of G, [1], [6].

A proper maximal parabolic k-subgroup of G is the stabilizer of a totally
isotropic subspace of V which is uniquely determined by the subgroup.

Given a lattice L in V, there exists a bijection of the set of G ,-equivalence
classes of rational boundary components of D onto the set U (W =), {i=Ind (H)).

We put b(L)=| W./= ], and biL)=X b,L).

As a consequence of Theorem 1.9, we obtain the following:

1.12. Situations being the same as in 1.11, we further more assume that
hiK)=1. Let i=1Ind (H) (>1), L an (a)-modular lattice in V with a ¢ k*. Then,
(1) If dim V=38, and U,NN{K)=N{(Uy), and Kk satisfies (B), then

biLy=1.
(2) In general, if K/k satisfies {(B), and if either K7k is unramified or dim V is
odd (>1), then

1<h(LiNEi—14¢lla), V) <2.

2. A symplectic representation of special unitary groups and automorphic functions

2.1. Let k be an algebraic number field of finite degree, and G a connected, )
ahsolutely simple algebraic group defined over k, I" an arithmetic subgroup of G,.
I' may be identified with a discrete subgroup of the Lie group (/. 0(G))x. Sup-
pose that we are given a maximal compact subgroup . % of (4o (@) such that
D=(%.10(G) 2] % has the structure of a symmetric bounded domain. Let D*
=DU {rational boundary components of D} supplied with a suitable topology, and
put Z7*=I'\D*. "* has the structure of a projective variety {1].

Now let G’ be another algebraic group defined over k satisfying the above
requirements for G. Let I'V, % etc. be the corresponding notions for G.

Suppose that we are given a rational representation p of G into G’ defined
over k such that o{I"\c I, ((Fue)( F ). %, and . 0p induces a holomorphic
imbedding ¢ of Dinto D’ [18]. It has been shown by 1. Satake that this p induces
a rational mapping of ¥7* into ¥7/*. (See [19].) Hence the field Clp( 77*)) of
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rational functions on p{ 77"*¥) can be identified with a subfield of C{ % "*.

If dim G>3, then the field C({ % "*} can be identified with the field of automorphic
functions on D with respect to I, and under the above identification, C{p{ 7 %))
is the subfield of C({ #"*) consisting of those functions which can be extended to
automorphic functions on D’ with respect to I''.

Let us put

ZpoD)i=1{g' € (FuaelG'Nr | g'lp@)=plz), for all zecD},
Nip(Dj}=1g' € (Hu oG | g'{p(D))=p(D)} .
It has been shown by I. Satake {21], that
[C(#*) : Clol 7 ™NI=II" O Nlp(DNIT' N Zip(D) : o(I) eI N Z(p(D))] ,

and it is finite. We denote such a number by d,.
Now

ol e(D)YN Z(p(D)) =p(I")- (I N Z(0(D))T" 0 Z(p(D)) .
Hence,
de=[T"NN{p(D}) : p(I")- ("N Z{0{D))] .

Moreover, if o(I’}- (I N Z(p(D)) is a normal subgroup of 1" N N(p(D)) then C( 7™
is a Galois extension of Cle{ ¥™*)) of degree d,, with Galois group isomorphic to
"N N{pDY)/ el - (' 0 Zip(D))).

2.2. The situation being the same as in 1.11, we put G,=SU(V,H) and D
=( oGl 7" Let us put (V,A)=YxnoA(V,H), G/=8p(V', A) (I<r
< dim V, and if we have Ind (H»>1 for any one of infinite places po, 1 of k, we
put r=1).

The functor 4/x04" determines in a natural way, a rational homomorphism p
of G into G, and o induces a holomorphic imbedding of the domain D into the
domain D' =( 4 olG' el %", for a suitable maximal compact subgroup % of
(FeelGYr such that (Pyep)( A )C 7. As in 2.1, we again use p to denote
this holomorphic imbedding. (See [18], [20].)

We have a commutative diagram:
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For a lattice L in V, we put L=.L, L’:‘;ﬁf',;;k{i). Hence 2(G.)cGr,

plGLicGL .
Let ki (resp. K7} be the conjugates of k (resp. K} over @ (I<i<<d). i ol®
=G X - xXG, ete. p ete. induce homomorphisms sending G X -+« X (G into

G713 -+ X(G’7a ete which will again be denoted by g ete. p induces a homomorphism
of i-th component G- into G’ which we denote by p;. We define p;, and p;’

similarly.

Let us also put Z'V =Z(p(DI)NGFi, N9 =N{p(D))NGy:, and Z =p[Z7),
N® =g"N®) for i=1,---,d.

Now we arrange the order of o¢,’s so that G, ---, G¥ are non-compact and
the rest are compact 1<¢<d).

2.3. PROPOSITION. Suppose dimV>2 and that we have the following condition:

(C) Zi: is Zariski dense in Z, for 1<i<e.

Then,

(1) Z¥={o/laly)]aclC, |al=1}, N=dim V=<Z>, 1<i<e, (n=dim V),
(2) Z9=Ni= 7/ (= F"NG¥), c<y<d .

PRrOOF. (2} is obvious. To show (1), it is enough to show that Z{J; is con-
tained in {p/{aly) |a€C,}a|=1}.

Suppose g;’ € Zi:. There exists an element g’ of Z(p(D}))o whose i-th com-
ponent is equal to g;/. Consider the set S={p(y)"'g'p(r) |7€G.}. S is a discrete
set contained in %, hence finite. G, operates on S by inner automorphism, so
that there exists a subgroup /") of finite index in G, which stabilizes every element
of the set S. By the density theorm of A. Borel [2], it follows that g’ commutes
with every element of the image ¢(G). In particular, g,/ commutes with every
element of the image p,(G#/).?

Hence it is enough to show that the linear closure T of p,(Gi'}) contains the
linear transformation o,/ (we:-1y}, where K=k{w), w*=u€k. (Because in that case
A7 being an absolutely irreducible representation, we can use Schur’s lemma to
prove the desired result.)

Let us look at a specific case where r=1, dim V°=3. Let [, v2,vs} be an
orthogonal basis for V°¢, and we take {v;, w"*vj} jo1,2.5 for a basis of V% over k'
There exists a pair of real numbers z and ¥ such that

3 The essential point in the above argument is due to M. Kuga.
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Nyopal@+yw™) =1, 2a%1, y%0.
We put O0=z+yw's. Then g= diag (0,0°, 1) ¢ G%¢, and

z Luliy

pig) = e

As diag (0°,0,1) is also contained in G#, we have the element (1, —1,0) in T,
where, by definition,

ta, b, c)::< (;( u(;X > s X = diag (@, b, ¢ {a,b,ce R} .

Similarly, we get t(1,0, —1) and £(0, 1, —1) in T. Our purpose is to find the element
$(1,1,1) in 7. But now the element diag (02, 0°,0°) is contained in G' which
implies that #(2xy, —¥, —¥) is contained in 7. Hence,

yit2z, ~1, ~1)+80,1, ~1)—t(2,0, —2) =2(z—-1)y-£(1,0,00¢ T".

This implies the existence of t(1,1,1) as desired.
The general case can be easily reduced to the above special case.

2.4. REMARK. Let us give an example for which the condition (C) holds.
Let k=Q, K=Q+v —1). Assume that V has a fixed basis {v1, -+, 7.} (n>2) with
respect to which the form H has the matrix equal to diag (1,, —1,). For the re-
presentation we take p=p’|G. For the basis of V’, we take

{1, ~ oy Vs =101, * =+ 5 —Way Wapty =+ 5 W0} &
And we put

j [= — - —ll
l( >|XE Ulaj, Yec Upb), det (X)=det (Y) [
| X X - Q. ]
Ve {< ) € Spin, R) f .

In this case, the condition (C) holds. (To see this, we take an explicit realization
of D and D’ as bounded domains using the Harish-Chandra imbedding. And by
an easy calculation, we can show directly that

ZoD) = {0'(al) 1a€C, |a|=1}
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which of course implies (C).)

2.5. REMARK. If dim V=2, then the situation is different. For example, in
the above if a=b=1, the

( X Y x oz 1
; i f Yy t
(DY) =+ X = =
Zle\D)) i(~YX ,Y<z x)’YK—-t —y)’

z,Y,2,t€ER
LYt =1
xz+yt=0

and it is not contained in the image o' (U(2).

2.6. Generally, for a bounded domain D, we set A(D)=the group of all
holomorphie automorphisms of D. Especially, if D=SUla, b)/ %% where

F=8Ula,byn Uta+b) ,

then A(D) is connected except when a=b>1. If a=b>1, then the connected
component of the identity A{D)° forms a subgroup of index 2 in A(D), and D is
realized as a bounded domain in the complex vector space formed by complex a xa
matrices; the transformation

Ma,¢)3 X —tX€ Ma,C),

gives rise to an element of A(D) which is not contained in A(D)° ({11, (7}, [15)).

2.7. Coming back to the situation in 2.2, let us put N°=N(p(D)NA(D)°.
Then N°c Z{p(D)) - 0{(, #u1a(G))r). Therefore, if dim V>2, 1<1<¢, and (C) holds,
then there exists a subgroup N;° of G5 such that p/(N:°) =N.°=N°nNGy:.

In view of 2.6, we have [N(p(D)) : N°]<2¢, V:/here d’ is the number of infinite
valuations P,z for which Ind (H) = dim V/2>1.

We put No =N°NGL, Z, =Z(p(DNNGL, NE=p"Y(N2), Zi=p""1Z,").

2.8. LEMMA. The situation being the same as above, we have
(1) 2G.)=pG) .
(2) If dim V>2, 1<i<¢, and (C) holds, then
Z:NpdlGR) = Bilaly) lan=1}, m=dim V).

Proor. (2) follows from Proposition 2.3.
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To show (1), we firstly notice that
(PG L) =)A"(SUV, H) ) =A"(SUV, H)yn A7 (SL(V) ) .

Obviously, the left side is contained in the right side. To see the converse, let us
suppose that A7(g)=A"(y), yc SU(V, H), r¢ SL(V},. Then in virtue of 1.3, Chapter
I, y=ag,a™" =1. Therefore y¢ SU{V, H},.

Now we use 2.4, Chapter T to get

A SULV, H) )y =ASULV, H)y N ASL(V) )
=ASUV, H) N ASLIV)NSLIAV ) arg,
=A(SUV, H) N SL(A V) 4y,
SASUWV, H)YNSUAY, ATH) ary,
DATSUV, Hyy) .

This proves the Lemma.

2.9. Let k be an algebraic number field of finite degree. We put K™ =K(,),
where {, =e?*i/n,

As before, (1.7), if K is a Galois extension of K, we put G(K/K)=Galois group
of K/K.

We denote by () the group of n-th roots of unity.

2.10. THEOREM. Let k be a totally real algebraic number field and K a totally
imagingry quadratic extension of k. Let (V,H) be a non-degenerate indefinite
Hermitian vector space over Kik, G,=SU{(V, H). Situation being the same as in
2.2, we assume that dim V=n>2, and {C) holds (2.8). Let L be a lattice in V,
and PrpoA(L)=L'. Then
(1) For any i such that 1<i<{e, there exists a Kummer extension K;' of K%(,)
which s uniguely determined by Ni., and we have the following exact sequence:

V=2 0(G) Zy —> NE = L HUGIKYIK™), (5) -

(2) If k=Q, and {r, n)=1, then we have the following exact sequence:

11— p{Gy)- Zy —> N1 — H g, (£.)),
where =GRS D)V K), c=|Usl(=2,4 or 6), €a=c)n K0,
If moreover, the discriminant of K 1s equal to —~4 or —p (p 1s an odd prime),
and {n,¢e =1, then we have
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N =N{pD)nGL, aend H'(Z, C))=1{1}.

2.11. COROLLARY. d, is a divisor of 2¢'J1 | HMG(K//K"), L] ef. 27T). In
EES
particular, if d' =0 then C{7""*%) is a finite Abelian extension of Cip{ /%) and

Galotis group of the extension is isomorphic to a subgroup of
]}lH‘(G(K;-’/’If“‘), (Sa) -

If moreover k=Q and the discriminant of K s equal to —4 or —p, and
(r,n)=(n, & =1, then C{ 7 *)=Clo{ 7*)).

2.12. PRrROOF oF 2.10. In virtue of Proposition 2.3, we may assume that ¢c=d,
and also in view of 2.7, we may replace ¢ by 5, Z, by Z[, Ni by N7 in the
above sequences.

Suppose §€ Nf. Then by 2.3 and 2.7, §=(3,) = (a:5:(g:), for a scalar a; and
an element g; of G3* (1=1,---, ¢). ﬁiGGLz;i, so taking the determinant, we have
a,»(,’l) € Ux®. Hence we may assume that g;€ G¢f in the above.

Especially if k=@, then g=ap(g) and aamzl. So, if moreover (r,n)=1, i.e.
7 is one to one, then g belongs to K (E("‘))-rational points of the special unitary
group G {(with respect to the usual representation; G.c Mn, ().

Now, since Ni is an arithmetic group, it has a finite number of generators
Gw, -, Put F9=(a:y Pilge) for i=1,---,c¢; j=1,---,t.  Suppose
K, is a finite Galois extension of K"({.) such that gi,»GG;fj (with respect to the
usual representation} for all j=, .-, ¢.

If 7 GUK/K) then a%;7:(gi) =a,,7:lg.,), hence gij' € (C,) and it gives rise to an
element of Z'(G(K.JK"), K*). Soby “ Theorem 90" of Hilbert, gi;'=¢i;'-1,, for
Ci; € K:*. Here, we have (¢i;).=1, so ¢i;€ K. We put K/=K""{,,ca, ---, i),
i=1,---,c. Then g;€Gxi,, whenever (@;pilg)) € N for a suitable system of
sealars {a,). This implies that K/ is independent of the choice of the generators
of N§.

Let (a:2:(g))€ N£, (r.) € f[ G(K//K’). Then as above, g, ¢ ({,) and it gives
rise to an element of Z‘(G(I(;’}}%”‘), Z.)). Inthis way we get a map ¥ of N7 into
11 H'(K/K°9, (¢9), which is obviously well-defined.
™ Suppose j=(a:7:(g) € Ker (F). Then gi€ SU(V®, H’), so a;c K. But as
a‘;(”l) € Uges, it follows that a; itself is a unit of K’*; which implies that g ¢ p(G)f,
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Thus the exactness of the sequence is reduced to Lemma 2.8.

The exactness of the squence in (2) is proved similarly.

And if (n,€)=1, then d’=0 because in that case n is odd.

The vanishing of the cohomology group in (2) requires more detailed considera-
tion and will be proved in the Appendix.

APPENDIX
STRUCTURE OF THE GROUP HY( ", L)

1. Let us recall some of the notations which will be used here. If K is an
algebraic number field of finite degree, we put K™ =K({,) where {,=e?*/*. And
if K’ is a Galois extension of K, we put G{K’/K)=Galois group of K'/K.

Also we denote by d(K) the discriminant of K, and by Uk the roots of unity
contained in K.

If in particular, K is an imaginary quadratic number field, then we denote by
¢ the order of the group of untis Uk.

Finally, (£.)=the group of #n-th roots of unity.

2. QW a1, QP 342 V2, Qw 9\/(;1)p, for an odd prime p.

P=1 7/ ne 2 -
In fact (E ('af")C,,’) =(“~}~>p . (GauBian sum !)
=i\ P »

3. If K is a quadratic number field then
Q™ DK if and only if d(K) divides n.

“Only if " part is obvious. (Look at the ramifying primes!)
“If” part follows directly from 2.

{€.) if n is even,
(C20) if m is odd.

In fact, let Ugm=(,,). Then Q™ =Qu", and ¢(n)=¢(sn). The statement
follows from this easily.

4. Uy -‘:«{

5. Suppose K is a quadratic number field with the disecriminant equal to —4
or —p (pis an odd prime). The Ukm=Ug - Uym.

Moreover, if d(K)=-—p, p>3, then Ukm=Ugm.

In fact suppose there exists an element {,, in Ukm which does not belong to



Arithmetic of special unitary groups 63

Ugy=. Then we have K =Q"" and [K™ :QM™1=2. By 3, we have d{K)in,
d{K) | sn, and also ¢(sn)=2-¢(n).
There are just four possibilities for such s and #n:

{i}] s=2, n,2)=2,
(i) $=3, (n, 3 =1,
(iii) s=4, (n, 2)=1,
(iv) =6, (n,6)=1

Now we use the assumption for the discriminant.

If d(K)z—%, then the only possible cases are (i) and (iii). And in the case (i,
the exponent of 2 in n is equal to 1.

If d(K)=—p, then the only possible cases are p=3, and (ii} or (iv).

From these, we can get the statement easily.

6. REMARK. If we do not have the assumption for the discriminant, the
above statement does not always hold. For example, take K=Q(+ —5). Then
K9 =Q® 3¢, and s, is not contained in Uk- Uguo:.

From now on we shall fix the field X to be an imaginary quadratic number
field with the discriminant d=—4 or ~» (p is an odd prime). Also we put @&’ ™
=G(K™/K).

7. Let A be a subgroup of Ukm. Then there exists a subgroup A’ of (&)
and a subgroup A’ of Ug!, such that

A=A'X A, H(Z™, A)=H{ G ™, A)xH 7™, A",  (direct).

Moreover, HY( & ™, A”)= Hom (77", A"').
In fact, firstly suppose that Ukm=Ug4m. Then in view of 4, A=A’ if n is
even, and if » is odd, we can put A'=4N{,), A’ =AN {+1}.
So, in virtue of 5, we may assume that d=—4 or —3, and Ukm xUjom.
If d=—4, we put

{ A'=ANK,), A7=AnUk if n is odd,
A'=AN (L2, AV=ANU} if n is even, (hence(n,4)=2) .

If d=—38, we put

A =AnK,), A’=4ANUL if n is odd, (hence {n, 6)=1),
{ A'=ANnEK,), A"=AN) if n is even, (hence (n, 3)=1),

Thus we get A=A'X A", A’, A” are %/ -invariant; % ™ operates trivially
on A’/. This proves the statement.
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8. Suppose (ni, me)=1, and A is a subgroup of ({»,) such that ({4}, ¢)=1.
Then
H' gy Ay=HY (0 "0, Af) xHY % "2, A},
Ai=ANK,), (1=1, 2).
Firstly, let us show that
G X Gy, Gimlre G [T K== g0, (4j=8) .
In fact, if @"v, @™ 2K, then using the condition on the discriminant (see 6},
Q™2 pK., Therefore
[ r Kl=¢(n) =[K™" : K" . [K®™ : K|,
therefore
[Kmm2 : K™ )=¢(n,) ,
which implies that
GK™Mm [K™)=G@"Q), GK™/K)=GR™/Q),
GK™M™ [K)=GR™ Q)X G(RQ"2/Q) .
If Qv DK, then as @0 NQ" =@, we have Q"2 DK, Q™ »DK. Using an

argument similar to the above, we get the desired decomposition of the Galois
group.
Now we have
A7i={ac A;lat=a,7€ Ti=4,
AFi= ({1}, (i+5=3) .

Hence we have the following exact sequences:

1 H'( 53 A% 2 HY(g) A) 250 HY (75, A))

HU T, A)
1— HY( G5, A& ) =5 HY( T, A) - HV( %, A ,
]
{1

(Cf. [22, §6, Chapter VII].)
From these it follows that

HY(¢, A)=H'(Z, A .
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Hence we have
HY G, A=HY T, A)XHN G, A)=H (0, Ay xH' (G2, As) .
9. The structure of the group G(Q®"/Q) is well-know {10]. To describe them,

let us put (n),=the congruence class of n mod.m, for n,meZ. GQ™/Q) is
isomorphic to the multiplicative group formed by

()| nEZ, (n,m=1}.

(1) 2=G@"/Q), p is an odd prime:—

Moreover, % is generated by (p+1),¢ and
37‘2: {(m),e | m=1mod. p} .
Also if 7€ ¢4, tx1, then we have
(Cpe) = {1} .
(2) T=GQ=/Q), e>3:—
D= X Gy Gr={(=1)2d}, C2=Co-2,

and . is generated by (5).

10. LEMMA. Suppose ¢ is a finite group of order ¢, and A is @ ¥ -module,
such that ¢ : Ada——c-a=a+a+ --- +a€ A is o bijective endomorphism. Then
i i et

for g=1, we have HYW( 4, A)= {0}-C
PROOF. If f€ ZG( Z, A)’ we put h(gl, cee, gq_l):C~l &E f(glg Tt gll~l! g)- Then
v
d{(—1)h)=f.

11. PROPOSITION. Suppose A 18 a finite group of roots of unity such that
(| Al, &=1, and on which ™ operates. Then for any n, we have H'(, ™, A)
={1}.

Proor. By 7, 8 and 10, we may assume that n=¢* for odd prime ¢, and the
that Ac(C,).

(1) Suppose d(K) | q*:—
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By 3, 7™ =G(@Q™/Q) canonically. So, T "= 71X %, o/ %1={1}. And we
have the following exact sequence:

Inf

1— HY( G2 A%y 20 HY( 7™, A) 25 HY (G, A)
i
{1}

And moreover ©1=C,.,. Hence, by Lemma 10, HY{( "™, A)={1}.

(it} Suppose d(K) | q*:—

Under our assumption, we many assume that g=3. Because if ¢g=3, then
d(K)= -3, therefore ¢=6, which contradicts with our assumption (n,¢)=1. By 3
we now have

e o oo
AR R S fxchz“ ’ ezl .

As ¢>3, %) is non-trivial. This makes it possible to repeat the same argument
as above and we can get the desired result.

12. REMARK. The above proposition completes the proof for the Theorem
2.10 of the last chapter. But using the same method, we can get further infor-
mation about the structure of H'(©”%", 4), where ¢ isa prime and 4 isa subgroup
of (), of course different from {1}.

We put d=d(K)(=—4 or —p), | A|=¢/ (0<f<e). Then we get the following
table:
dtq
gx2

dlg |
3 (d=—4,0=2,¢2>3 |d=—3,¢=3,¢>2

W o= W =
i Ci (e—f.f=22 i Cs  (e>f)
| C: (otherwise) |

!
i

q%x

| !
B A L
(g, A {1} | € (e=2 | |
5 |
| i
| |

CoxC; (e28)

An explanation may be in order the case where d=—p, ¢=2, and ¢>3. In
this case, we can identify %'?* with G(Q2/Q)= ¢ X {;ﬁz, where ¢, &7 are
generated by (—1)s, (5)20 respectively. And we get the exact sequence

1— HY T AV 25 (e 4) (<, A),
and
H({g ,A% )-—Hl( A =C, .

{es=—1,c.1=4} and {es=1, c.y=—1} give rise to two 1-cocycles which become the
generators of HY{ '@ A)=C:xC..
University of Tokyo
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