On the Alternating Groups

Dedicated to Prof. Shékichi Ivanaga on his 60th birthday

By Takeshi KoNDO

Introduction. Let A, be the alternating group on m letters {1,2,---,m}.
Put m=4n+7, where n and 7 are non-negative rational integers and 0<r<3.
Define n elements «a, (1<k<n) of A, as follows:

a,={1,2)(3,4) - (4k—3, 4k -2)(4k -1, 4K) .

In the present paper, we shall prove the following result.

THEOREM. Let @G be a finite group satisfying the following conditions:

There exist n involutions &, &, ---, &, in G and a one-to-one mapping ¢ from
‘Ql Culo) to QCG(&;) such that ¢ induces an isomorphism between C, (¢) and
EG(&;) 1 gign;T Here ‘};Jl Ca,lay) (resp. ‘01 Cs (&) denotes the set-theoretic union in
A, (resp. G). ) )

Then +f m>8, G is isomorphic to A,.

This is a generalization of W.J. Wong [6]. The idea of the proof is due to
D. Held [4]. Further, in our proof, we shall use the results of W.J. Wong [6]
and D. Held [3], which imply our theorem for m=8,9 and 10.

The author wishes to express his hearty thanks to Professor H. Nagao, who
proves a lemma (1.8).

Throughout the present paper, m, n, r, ¢, (1 <k<n), ¢ and G will be used in
the same meaning as above. S, (resp. 4,) denote the symmetric group (resp. the
alternating group) on [ letters. For a set 2, So (resp. Ao} denote the symmetric
group (resp. the alternating group) on the set 2. If z,%, --- are elements of a
group H, <z, ¥y, --> denotes a subgroup of H generated by z,¥, ---. Moreover,
[z, yYl=2"'y 2y and zv=y izy.

§1. Preliminaries

1.1, We shall define some elements in A4, as follows:

my=(4k -8, 4k—2)(dk—1, 4k) 1<k<n),
n =4k -3, 4k)(4k—-2, 4k-1) 1<k<n),
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=1, 2) (4141, 40+2) 1<i<n—1),

1, if r=0or1l
1, 2i{4n+1,4n+2), if r=2o0r 3,

T;=4i~38,45-3){4i~-2, 47-2)(4i—1, 45~1) (41, 47)
(1<i, j<n and i#j),
;= {413, 412, 4i-1) (1<i<n),

{1, if r=0,1or 2,
| dn+1,4n+2,4n+83), if »r=3.

Uns1 ==

We note that a,=mm; -+~ 7, {1<k<n). We have
(1) Ca, o) =W, x Xt A<k<n) .
Here, W, is the centralizer of a, in Ao, W, (&> is isomorphie to the centralizer of

@, in Sy, Xp=Ao and X,{#,> is isomorphic to So:» where 2'=1{1,2,-.-, 4k} and
2= 14k+1, - ,m}.

1.2. LEMMA. Put S8={m,n/, -, %, 7> Then we have C4 (S)=SxX.,.
Proor. From (1), it follows that

Ca (my, may - @) =(m, ®y oo, Ty 7D XX, By o005 P
In particular, we have
Ca, (Kmy, Ty - oo, Ty = (SXX) M, o, 00y Bu)
Since [7hi1, ti)=m; (1<i<n—1), we get
CusS)=SxX, .

1.3. LEMMA. The representatives of congugacy classes of involutions of C 4, (@,)
are as follows: (i) .mms--- mmhyy -+ Ty, 0<s+t<n) and m'm’ -+ 7,'7,, when
r=0 or 1, and () mmp- - 7,70 - 7oy (0<s+E<n) and My o v Ty Tagr s
Thpilacitle (0L8En~1, 0<E<n—~1~38), when r=2 or 3.

ProoF. The fusion of a 2-Sylow-group of C, (@) is the same as that of
W.>. The conjugacy classes of W,{#¢,> are known (e.g. see W. Specht[5]). From
this our lemma follows. The details are omitted.

1.4. LEMMA. For a group H, let 2'%) be the largest of the order of elementary
abelian 2-subgroups of H. Then we have
(1) r{HWXH)=rH)+r(H)
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. l
3y ,.{ } e
(ll/ (2 ‘Sx, < 2

PrOOF. Let A be a maximal elementary abelian 2-subgroup of H, x H.. Take
a non-identity element ®z, of A, where z;¢ H; (i=1,2). If A3y=iuy: we have,
L= (1, @) V=2%12.2. This implies that n/?=xm=x and 2:Y=a22=2.. By the
maximality of A4, ;€ A4 (i=1,2). Hence we get A=A4,XA4,, where A;=H,NA
(¢t=1,2). This proves {i). Let B be a maximal elementary abelian 2-subgroup of
S,. Assume that any element of B has no fixed letter. Then we have | B|<l.
Since [<2!2, we get r(B)</2. Hence we may assume that an element x of B has
at least one fixed letter. Obviously, we may assume that [ is even. If 2 has 2&
fixed letters (k>1), we have BCCjs (x)=UXS, s, where U has a 2-Sylow-group
isomorphic to that of S;;. By induction on [, we get »(U)<k and #(S,_.) < (I —2k)/2.
From (), if follows that r(B)<+{U)+7(S,_2)<l/2. This proves {ii}.

1.5. Let H be a subgroup of S; which is of the form ST XS®x ... xS
XS¢+Y - where S =8, 1<i<l’) and S¥"*H=S,. If the length of the orbits of
SHA<i<ly (resp. S¥*V) is 1 or 4 (resp. 1 or &) and S (1<i<l’) (resp. Si+h)
has precisely one orbit of length 4 (resp. k), we say that H is naturally imbedded
in §,.

1.6. LEMMA. Let H be as wn (1.5). Then we have 1>4l'. Further, if k=2
or 3, we have =>4l +2.

PrOOF. Since #(S,)<1/2 and »(H)>2I', we get I>4l’. If k=2 or 3, we have
r(H)=2l'+1. Hence, we get [>4l'+2.

1.7. LEMMA. Let H be as in (1.5). If k=0 or 3 and N is normal subgroup
of H, we have H' N\ N+1, where H' 13 the commutator subgroup of H.

PrOOF. Take an element xxe -+« 250 of H (x;€ S%). If 2,1, there exists an
element x;’ of S such that [x;, z:/1#%1. Then 1#[x;, z/1={t1%: - - - 241, 2/ H O N.

1.8. LEMMA. Let H be as in (1.5). Assume that

(i) l=1=4V+k (0<k<3) and 1+6,7,

(ii) S% i3 congugate in S, to SV (1<4,5<l) and S¥*Y 45 contained in a
subgroup conjugate in S, to 8% for every 1 (1<igl),

{iii) SWgA, 1<i<l’+1).
Then H is naturally imbedded in S,.
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Proor. Let 2 be a set of [ letters on which S, operates. S has at least
one orbit 4, on which S operates faithfully. Let 4, 4., ---, 4, be all distinct
orbits of S, each of which affords a permutation representation of S equivalent
to that of S on 4,. Put !)—i&ldiz {1, 42, -+ + ,%s}. Define a set

2= {-413427 e ,Zj,o,’l.x,'l:z, coe 17;‘7}

of p+o elements. Put K=S®x ... xS, K induces a permutation respresen-

tation on &. Let N be the kernel of this representation. If SONN=%=1 (2<i<7)
and SUNN=1 (t+1<i<l), it is easy to see that

(2) NO(SiEth o x§)=1

and | NNSW |24 (2<1<7). If ¢ is the order of the centralizer in Ss; of the re-
presentation of S™ on 4;, we have

(3) sz!Nl222(z—l) .

We remark that | 4,]1=4,6,8,12 or 24. Put 2=|4, ).

Case (@), 2=4. Since ¢=1 in this case, we have N=1. Hence K operates
faithfully on 2. By (1.6), we have 4/ -1)<p+o. Sinee l=4p+0, we obtain
I-4l'>3p—4. If p=3, we get [-5>4l’, which is impossible on account of the as-
sumption (i).

Subcase (), p=2. First, we assume k>2. Since K ig generated by elements
of order 3 and p=2, K’ leaves J; invariant (i=1,2). From this and ¢=1, it follows
that every element of K’ fixes any element of 4; (i=1,2). On the other hand, K
operates on {iy, @, - -+, 7,.¢}. If the kernel N, of this representation is non-trivial,
it follows from (1.7) that K"N N,+1. This is impossible since K operates faithfully
on £. Hence K operates faithfully on (i), 1s, - »i-8).  From (1.8), we get
4’ ~1) = 1—~8. This is imposible if k<2 Next, we assume k=3. Put

Ki=8S%% ... xS x§u+n ,

where S'*b=S,. By the same argument as above, K: operates faithfully on
{1, 72, - -+ , 48} . From (1.6) we get 4(I' —1)+2<1—8, which is impossible on account
¢f the assumption (i).

Subcase (az), p=1. From the assumption (i), it follows that S® {1<i<l) has
unique faithful orbit 4% of length 4 and 49 N49=¢ (i%j). By the assumption
(ii)), S (1<iLl) fixes any element in Q-—i{ileJ‘“. This implies our lemma in the

case A=4.
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Case {3}, 4=6. Since ¢=2, from (3) we get (0/2)+1>7. Then it follows from
(2) and (1.6} that 4('—7)<po+0. Since I=6p+0, we get [—-4l'>30~4. If p>3,
we have I—~524l’, which is impossible.

Subcase (3,), p=2. By the same argument as in the subcase (a,), K operates
faithfully on {7, 4.+ ,%,_12}. Then (1.6) yields that 4(’'—1)<1-12, which is
impossible.

Subcase (52}, o=1. By the assumption (i), S® (1<i<l’) has unique faithful
orbit 4 of length 6 and we have S9N 49 =¢ (ix5). This implies that l=] Q |>6l".
If k<2, it follows that =6 or 7, which is impossible on account of the assump-
tion (i}. If k=3, S+ has a faithful orbit 4 such that |4|>3 and 4Nd¥=¢
(1<i<l’). Hence we have [=|2|>6l'+3. This is impossible since [=40/ +4.

Case (7}, #=8. Since ¢=2, we obtain (0/2)+1>7 from (3). By (2) and (1.6)
we have 4{l’—7i<p+o. Since !=8p+0, we have [~4l'>50—4. If 0>2, we get
[-6>4l" which is impossible. If o=1, K operates faithfully on (i, 1, - - Ty_s} .
(1.6} yields that 4'<[—4. Then k=3 and K;=8" X ... xS¥'*1 gperates faithfully
on {i, %, -+, %-¢}. (1.6} yields that 4’ ~1)+2<{~8, which is impossible.

Case (6) 2=12. In this case, we have ¢<4." By (2) and (3) we obtain 4/’ <50
+0+4. Since I=12p00, we get [—4I'>Tp—~4. If p>2, we have 1--10>41’, which
is impossible. If p=1, K operates faithfully on {i\, 4z, -+ ,%,1s). (1.6) yields
4(I' -1y <112, which is impossible.

Case (), 4=24. Since c=24, we get 2%>24,>2'¢"b from (3). Hence 50/2
+1=7. Then we have [—4l'>130~4. This yields [—9>4l’, which is impossible.
This completes the proof of our lemma.

§2. Conjugacy classes of involutions of G.

2.1. Let & and ¢ be as in the introduction. For a subset X of ktj Cu e, X
=]
denotes the image of X by o.

2.2, LEMMA. Any involution of Cgl&,) is conjugate in G to one of &, &,

* ? a"'
PrROOF. We shall show that #, - -+ #,7.,, --- #1,, (resp. %,/ - --%,/%,) is conjugate
to &,,, (resp. &,) in G. Suppose that s=0. Since 7,/ is conjugate to 7,” in W,{u,>

and '—"'-nm":'frn and [:i/y un]zl in CAm(au—l) (1$?u_<_nm1)’ ﬁl’ﬁ2/ tot ﬁt’ iS conjugate to

b S: has two inequivalent faithful transitive representation of degree 12, one of which
has ¢=2 and the other has ¢=4.
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#/ ... #_,%, which is conjugate to #/%’ --- %/ in Cs(&@,}. Hence we may assume
that s>1. Since 7/%==; and [z;/, ud=11in C, (a,) (s+1<¢, j<s+t and 1), we
get that #, ... #,7,, .-+ #,, is conjugate to &, in G. Since 7 *n=7.7,/ and
[z, wal=1 1<i<n~1) in C, (e, 1), it follows that 7 --- /%, is conjugate to &,
in G.

Futhermore, %y --- F,&i1 - -« Thyila_illa is conjugate to =y -+ 7,7y - Tpay X
Tywrnr in Cy (@), From this and the fact obtained above, follows that #, -+ &5 X

o &, fia i, is conjugate to &, in G. Then (1, 3) implies our lemma.

2.3. LeEMMA. A 2 Sylow-subgroup of Cyld,) is that of G.

PrOOF. Let D be a 2-Sylow-subgroup of Cg(&,) and F be that of G contain-
ing D. Then we have D=FNCq(@,). If zis in the center of F, [z, D]=1 and in
particular, [z, @,]=1. Hence we get z€ Z(D). By (2.2), there exists an element z
of G such that z2=4&, for some k. Since C;(z)*=C¢(&,) and

[ Col@)le=] Cy ()< Cy (@) e=1C6 @)1,

we have | C;(2)|:<| Cs(@,)|:=| D|. This yields F=D.

2.4. LEMMA. G has n conjugacy classes of involutions whose representatives
are &, &, -+, &,.

?

ProoF. By (2.2) and (2.3, it is sufficient to see that & is not conjugate to
&; (i%j). This follows from the fact that C, () is not isomorphic to C,,(@;).

§3. The proof of the Theorem.

3.1. We shall prove our theorem by induction on m. First, we note that our
theorem holds good for m=8,9, or 10. By W.J. Wong’s theorem [6], our theorem
is true for m=8. D. Held [3] proved that, if Gy is a finite group satisfying the
condition that (i) G, has no normal subgroup of index 2 and (ii) G, has an involu-
tion @ such that Cg,la) is isomorphic to C44las), then G, is isomorphic to As, A, or
a semidirect product of L and E, where L=PSL(2,7), E is an elementary abelian
group of order 8 and Go>E. It is easy to see that the last group does not satisfy
the assumption of our theorem. If m=9, our assumption yields that G has no
normal subgroup of index 2. This turns out by examining fusion of involutions

2 For a set X, if | X|=2% and (2b)=1, [ X|e=22.
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of G and applying the focal subgroup theorem. From this it follows that our
theorem is true for m=9. Similarly, D. Held’s theorem [4] yields that if m=10,
G is isomorphic to A;. Hence we shall assume that m211.

3.2, LEMMA. Cgla,) =X U, Usz=A, s and U, contains #; and 5 (1<i<
n-1).

PrOOF. Put Q={i]1<i<m) — {dn—3,4n—2,4n—1} or {{|1<i<<m} ~ {dn+1,
4n+2,4n+3} according to whether r<2 or r=3. Then we have | Q|=m~3.

Case r<2. Ao contains a; (1<k<n-1). For 1<k<n—1, we have by (1),

Canlua NC 4, @) =u,) XCAQ(“k) .
Hence we get
Co ) N Co ) =<,y X Cr g ) -
Put g=C¢in,)/{@,>. Denote by ¢ the canonical homomorphism from Cs{@,) to g.
Involutions ¢{&}, O{&), -, d(@_,) of ¢ and a mapping ¢¢ from C.yla) into g
satisfy the condition of the theorem with m—3 in place of m. By induction as-
sumption, ¢ is isomorphic to A,.s. Since the order of the Schur multipliers of
A (mz11} is prime to 3, we have Cy{ft,)={@#.>xU,, Uv=Ans Since u,, =,
and =/ (1<i<n—1) are contained in C,_(&,_1)} and [u,, #;]={u,, #/']=1 (1<i<n—1),
Us contains #; and 7,/ (1<i<n—1).
Case v=3. Put q=Cg¢(@,41)/{8ns1p. If ¢ is the canonical homomorphism from
Ce{ft,1) to g, involutions (&), --- ¢(@,) of ¢ and a mapping ¢¢ from Caplay)
into g satisfy the condition of the theorem. In the same way as ahove, we get

Collini) =1y X U,, where Uiz==A, ;.
Since u, is conjugate to %, in Cg4, (@,.1), 4, is conjugate to 4,4 in G. Hence
we get
Colltn) =<{t,> X Us, where Up=A,3.
3.3, Put @, =4,"". (Note that 4, has not been defined, since u:& Ay Ca, )
~

For 2<i<n—1, we have %;=1,%n, since u,=u,"i» in C, leiy). In the ecase r=2
or 3, we define an element z of C,, (@,.,) as follows:

{ @Un~3, dn+1)4n-2, 4n+2), if r=2

21 n+1, 4n-3, dn+2, 4n—2)dn—1, dn+3) if r=3.

3.4. LEMMA. We have
(i} [, #]=[d, £/]=1 2<ign),
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(i} [y, Ti50=1 (2<1,5<n),

(i) by, fafi]=1 of r>2, and

{iv) [a,, z]=1.

ProOF. Since 7" =7, 2<i<n~1) and 7, "*=7%, in C, (a,), we have &, 1"=7,
@<i<n—-1) and #7"=%, This yields that [, 7,]=[f, Z/]=1 (2<i<n) by (3.2)
and (3.3}, This proves {i). 7; (1<4, j<n—1) is contained in C,,lo,) and [o5, u,]
=1 (1214, 7<n~1). Futher we have

5, Isi<i<n-1,

- 5
Ti%in = . . .
U v, if 1=i<j<n—1.

From this and (3.8), it follows that [@, 7,;]=1 (2<4, j<n). If r>2. we have
[Tr, i }=1 in C, (2,) and [w,, i1, ]=1 in Ca,la,_1). From this and (3.3), (iii)
follows. We have [u., z71s]=1 in Ca,la, ). Then we get [, ¥l=[iL,, ¥ 1]=1.

3.5. LEMMA. [17,1, Xdzl
PROOF. Since u, normalizes {z,, 7,’>, 4, normalizes (%, #>. By (1), we have

ColFy, B0y =(F,, 7> X, where Xi=A....

Hence @; normalizes X, and induces an inner automorphism of X;. From (1.2)
and (i) and (iiij of (3.4), it follows that %, must centralize X,

3.6, LEMMA. Colth)=<@>X U, where U=A,, and UD X, .
Proor. The first statement follows from (3.2) and (3.3). The second state-
ment follows from (3.5) and the fact that Xv'=X, and U'=U/.

3.7. LEMMA. Ng(i)) =) X U)fip-1), fafn1=0"1 and U, 1> =S, _s.

Proor. Sinee u,’n-1==9,"! in C,, (@) and [7y,, £, 41=1 in Cy, la,), we get
fv-1=4,"Y From (1) and {2.4), any involution of G does not centralize a subgroup
of G isomorphic to A,_s. If U{f,..) is not isomorphic to S._., we have Ulf, >
={y>x U, where ¥ is an involution of U{#, ,>. This is impossible.

3.8. LEMMA. N(;th})ﬂcu(f;):f(!(ﬁ,,,_l) and X1<‘[1',,_.1>Esm_4.
Proor. By (1) and (3.5), X, is contained in C,(%). #, does not centralize U,
since U=A,-;. Hence we have Cy(%1)=2X,, since X, is a maximal subgroup of U.

From (3.7), we get Ng((i))NCe(F)=X{fi,_s>. The second statement follows from
(1).
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3.9. Let H be a group isomorphic to S;. Then H is generated by [~1 element
2y, T2, + -+, X1 satisfying the following relations:

= e =0a= (3E) 3= (2502 =1 (1<i, 4, k<l-1 and |-k |>1)

(cf. [2; p. 287)). We call an ordered set of such generators of H a set of canonical
genmerators of H. If an involution ¢t of H is a member of a set of canonical
generators of H, we say that ¢ is a transposition of H. Remark that, if I=6, this
terminology is slightly vague because of the existence of an outer automorphism
of order 2 of S;. However, in the subsequent lemmas, this will cause no troubles.
Let H; be a group isomorphic to A,-H, is generated by [—2 elements 1, ¥2, <+ +
Y,-» satisfying the following relations:

h= - =YY= YY) = Y1) =1 (1<d, 5, k<l—2 and |j—k[>1).

We call an ordered set of such generators of Hy a set of canonical generators of
H,.

3.10. LEMMA. Let H and H, be as in (3.9). Assume that Hy is a subgroup
of H. Lett, and t2 be transpositions in H such that [ty t:1=1 and if 1=86, t: is
conjugate to t» in H. Then we have (i) Cylty=<{ ) XK, where HyDK=S,», and
(ii) tit2 18 a transposition of K.

PrOOF. Sinee H=H,{t:>, we have Cy(t)) =<{t:)> X Cuyltr). Put K=Cpy,lt)). Wecan
find a set of canonical generators t./,ts, - ,ti.1 of H with &,'=1, and ty'=t..
Then it is clear that t/ty, ---, ti/ti_1 are contained in K and they are a set of
canonical generators of X. This implies our lemma.

3.11 LEMMA. [, fdig, and B,;7 o (1<i<n~1) are transpositions in U{fi,-1).
If r=2, s0 18 fi,. Further, if r=38, so are £, and f,@np.

Proor. Put SO ={i;, iy, Ay (1<i<n~—1). Then it is easy to see that
S% is isomorphic to S; and #;, Zfi and £, are a set of canonical generators
of S%. Put

1 if r=0 orl,
St = <ﬁn>y Zf 7':2,
<ﬂn J&nﬂn+1>, if 7‘=3.

Then we have [S®, S®]=1 (1<i<j<n). From (3.4) we know that %, . (1<4,
j<n—1) and 7 are contained in U. Since (S©)%+1 M=80 1<i<jn—1), fiaa=/i,
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and 4l=1,.1, a subgroup SH XS x ... xS™ of U{f,_\» satisfies the assumption
of (1.8). Then (1.8) vields our lemma.

3.12 LEMMA. G contains a subgroup @ isomorphic to A,. @Q hasa property
that, for any involution t of Q, Cylt) is contained in Q.

PrROOF. X\ {fi,_;> is a subgroup isomorphic to S,-: of U{E,..>, which is
isomorphic to S._s. Since, by [1, section 161], S, contains exactly one conjugate
class of subgroups isomorphic to S,-_s, Xi{f._1> is naturally imbedded in U<#,.,>
in the same meaning as in (1.5). Then (3.11) yields that there exist an invelution
8y in Ufi,y —(UUXi{f, 5>} and n—1 involutions 8, -- -, 8, in X1¢(F,..>—~ X% such
that
(1) C=Afiy, fifle, s, B,y -y ey Ayflesr, Bifipts Op = oy Fucty Forin, frncin, Ba,y fiy,

Fulin) isaset of canonical generator of X1/, 1>, where the last 8- elements of

C do not appear.
{(il) (@0,)%=1, (0:/)*=1, and every element of C— {¢,} commutes with d,.
Let @ be a subgroup of G generated by a set Ci= {#&, %, 6;} UC. We shall show
that #.% is of order 3. This implies that @ is isomopphic to A, and C; is a set
of canonical generators of Q. Put y=7/%, Co=C—{f} and Cy=C-— {f, AUz,
flls, 653, Then we have
(i) <(F1,00cCelCh),
iv) (Biv=g, and (£:7,)v=F, and
(v) 2v=fv for any element v of C;.
If faet, (iii) follows from (i) and (i). We have (#,%.)¥= (i @l2)F12=f1, %, and (#,7s)¥=
Fyvtwe=fi;, This proves (iv). We shall verify (v). If Cid>v+0d,, we get vv=,v by
using the isomorphism ¢ from C, (a,) to Cy(&,) and computing directly. Suppose
that v=0, (¢=8). In order to verify (v} in this case, firstly we shall show that
X. is generated by the totality of produets of any two elements of Cia. We denote
by C; the totality of products of any two elements of C,. By (i), every elements
of C: commutes with #,, %, #»' and every elements of C; commutes with #,. Since
Fyii=7%, we get CicCg(7y, 7Y/, fs, ). By (i), the group generated by the set
Cs is isomorphic to An-s. Since Ci(Fi, 71/, %o, F)=(F, 7/, %2, #Ox X, and
Xo=A,.s by the equality (1) in (1.1), X, must be the group generated by Ci,.
Since [Fi1z, X:]=1, any element of C, commutes with .. In particular, we have
[f1e, 8,170, )=1 (k=38). Hence we have i, %0, = (1, ,7.0,)7 2=/, _,7:672 because
of @4 =fhfi,., and %,92=%,. Then we get 6,y=0,12=/,8, since 0,"2=46,. Thus
we have proved (v). By (iv), we have (Co(f12) N Cg (f172))V=Cg (frin) N Ce (1) =
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Cola)NCsléy). Put Z=CiaiNCe{fy). By (3,6, 3,7 and (3, 11}, we have
Colag)NUGEY={i>xZ and UDZ=8,._s. Put W={mv|leeCs). By (v}, we have
ZoW. From {) it follows that W is isomorphic to S,.s and the set {#v|vc(Cy
is a set of canonical generators of W. Then by applying (3.10) with UK#)>, U,
Z, @ty and v (vECy) in place of H, Hy, K, t, and t. respectively, we get that W
is naturally imbedded in Z in the same meaning as in (1.5). Hence we get
C,(W)=8;. Since C,{W)>C{C:)¥ and [%1,0,]%1 by (3.8), (i) yields that %6,
must be of order 8. Thus we have proved that @ is isomorphic to 4,.. Obviously,
there exists an isomorphism ¢ from A, to @ such that ¢(®)=7%; 1<t<n). From
this, it follows that &,, &, ..., &, are representatives of conjugacy classes of
involutions in @ and C;{@) is contained in @ because of |Cu(@) | = |{C,, ()|
= [Cel@)]. From these facts and (2.4), the second statement follows.

3.13 LemMa. G=Q.

ProoF. By way of contradiction assume that @ is a proper subgroup of G.
If any involution is not contained in G~@, @ is a normal subgroup of G. Then
Frattini argument yields that G=C;(@,)-Q. This contradicts (3.12). Take an
involution z in G—@. If y is an involution of @, z is conjugate to y in G.
Otherwise, there would exist an involution z such that [z, z]J=ly, z]=1. Then
(3.12) would imply that 2 is contained in @, a contradiction. Hence G has one
class of involutions. This contradicts (2.4) Hence we get G=0Q.

This completes the proof the theorem.

College of General Education, University of Tokyo.
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