On the Alternating Groups

Dedicated to Prof. Shôkichi Iyanaga on his 60th birthday

By Takeshi KONDO

Introduction. Let A_m be the alternating group on m letters $\{1, 2, \dots, m\}$. Put m=4n+r, where n and r are non-negative rational integers and $0 \le r \le 3$. Define n elements α_k $(1 \le k \le n)$ of A_m as follows:

$$\alpha_k = (1, 2)(3, 4) \cdot \cdot \cdot (4k-3, 4k-2)(4k-1, 4k)$$
.

In the present paper, we shall prove the following result.

THEOREM. Let G be a finite group satisfying the following conditions:

There exist n involutions $\tilde{\alpha}_1, \tilde{\alpha}_2, \dots, \tilde{\alpha}_n$ in G and a one-to-one mapping φ from $\bigcup_{i=1}^n C_{A_m}(\alpha_i)$ to $\bigcup_{i=1}^n C_G(\tilde{\alpha}_i)$ such that φ induces an isomorphism between $C_{A_m}(\alpha_i)$ and $C_G(\tilde{\alpha}_i)(1 \le i \le n)$. Here $\bigcup_{i=1}^n C_{A_m}(\alpha_i)$ (resp. $\bigcup_{i=1}^n C_G(\tilde{\alpha}_i)$) denotes the set-theoretic union in A_m (resp. G).

Then if $m \ge 8$, G is isomorphic to A_m .

This is a generalization of W. J. Wong [6]. The idea of the proof is due to D. Held [4]. Further, in our proof, we shall use the results of W. J. Wong [6] and D. Held [3], which imply our theorem for m=8, 9 and 10.

The author wishes to express his hearty thanks to Professor H. Nagao, who proves a lemma (1.8).

Throughout the present paper, $m, n, r, \alpha_k (1 \le k \le n)$, φ and G will be used in the same meaning as above. S_l (resp. A_l) denote the symmetric group (resp. the alternating group) on l letters. For a set Ω , S_{Ω} (resp. A_{Ω}) denote the symmetric group (resp. the alternating group) on the set Ω . If x, y, \cdots are elements of a group H, $\langle x, y, \cdots \rangle$ denotes a subgroup of H generated by x, y, \cdots . Moreover, $[x, y] = x^{-1}y^{-1}xy$ and $x^y = y^{-1}xy$.

§ 1. Preliminaries

1.1. We shall define some elements in A_m as follows:

$$\pi_k = (4k-3, 4k-2)(4k-1, 4k)$$
 $(1 \le k \le n),$
 $\pi_k' = (4k-3, 4k)(4k-2, 4k-1)$ $(1 \le k \le n),$

$$\begin{split} \mu_i &= (1,2)(4i+1,4i+2) & (1 \! \leq \! i \! \leq \! n-1) \; , \\ \mu_n &= \left\{ \begin{array}{ll} 1, & \text{if} \quad r \! = \! 0 \text{ or } 1 \\ (1,2)(4n+1,4n+2), & \text{if} \quad r \! = \! 2 \text{ or } 3 \; , \\ \tau_{ij} &= (4i-3,4j-3)(4i-2,4j-2)(4i-1,4j-1)(4i,4j) \\ & (1 \! \leq \! i, j \! \leq \! n \; \text{ and } \; i \! \neq \! j) \; , \\ u_i &= (4i-3,4i-2,4i-1) & (1 \! \leq \! i \! \leq \! n) \; , \\ u_{n+1} &= \left\{ \begin{array}{ll} 1, & \text{if} \quad r \! = \! 0,1 \text{ or } 2 \; , \\ (4n+1,4n+2,4n+3) \; , & \text{if} \quad r \! = \! 3 \; . \end{array} \right. \end{split}$$

We note that $\alpha_k = \pi_1 \pi_2 \cdots \pi_k$ $(1 \le k \le n)$. We have

(1)
$$C_{A_m}(\alpha_k) = (\mathbf{W}_k \times X_k) \langle \mu_k \rangle \qquad (1 \le k \le n) .$$

Here, W_k is the centralizer of α_k in $A_{\Omega'}$, $W_k\langle \mu_k \rangle$ is isomorphic to the centralizer of α_k in $S_{\Omega'}$, $X_k = A_{\Omega''}$ and $X_k\langle \mu_k \rangle$ is isomorphic to $S_{\Omega''}$ where $\Omega' = \{1, 2, \dots, 4k\}$ and $\Omega'' = \{4k+1, \dots, m\}$.

1.2. LEMMA. Put $S = \langle \pi_1, \pi_1', \dots, \pi_n, \pi_n' \rangle$. Then we have $C_{A_m}(S) = S \times X_n$. PROOF. From (1), it follows that

$$C_{A_m}(\langle \pi_1, \pi_2, \cdots, \pi_k \rangle) = (\langle \pi_1, \pi_1', \cdots, \pi_k, \pi_k' \rangle \times X_k) \langle \mu_1, \mu_2, \cdots, \mu_k \rangle$$

In particular, we have

$$C_{A_m}(\langle \pi_1, \pi_2, \cdots, \pi_n \rangle) = (S \times X_n) \langle \mu_1, \mu_2, \cdots, \mu_n \rangle$$
.

Since $[\pi'_{i+1}, \mu_i] = \pi_i$ $(1 \le i \le n-1)$, we get

$$C_{A_n}(S) = S \times X_n$$
.

1.3. LEMMA. The representatives of conjugacy classes of involutions of $C_{A_m}(\alpha_n)$ are as follows: (i) $\pi_1\pi_2\cdots\pi_s\pi'_{s+1}\cdots\pi'_{s+t}$ $(0 < s+t \le n)$ and $\pi_1'\pi_2'\cdots\pi_n'\pi_n$, when r=0 or 1, and (ii) $\pi_1\pi_2\cdots\pi_s\pi'_{s+1}\cdots\pi'_{s+t}$ $(0 < s+t \le n)$ and $\pi_1\pi_2\cdots\pi_s\pi'_{s+1}\cdots\pi'_{s+t}\mu_{n-1}\mu_n$ $(0 \le s \le n-1, 0 \le t \le n-1-s)$, when r=2 or 3.

PROOF. The fusion of a 2-Sylow-group of $C_{A_m}(\alpha_n)$ is the same as that of $W_n\langle\mu_n\rangle$. The conjugacy classes of $W_n\langle\mu_n\rangle$ are known (e.g. see W. Specht [5]). From this our lemma follows. The details are omitted.

- 1.4. LEMMA. For a group H, let $2^{r(H)}$ be the largest of the order of elementary abelian 2-subgroups of H. Then we have
 - (i) $r(H_1 \times H_2) = r(H_1) + r(H_2)$

(ii)
$$r(S_i) \leq \frac{l}{2}$$
.

PROOF. Let A be a maximal elementary abelian 2-subgroup of $H_1 \times H_2$. Take a non-identity element x_1x_2 of A, where $x_i \in H_i$ (i=1, 2). If $A \ni y = y_1y_2$, we have, $x_1x_2 = (x_1x_2)^y = x_1^{y_1}x_2^{y_2}$. This implies that $x_1^y = x_1^{y_1} = x_1$ and $x_2^y = x_2^{y_2} = x_2$. By the maximality of A, $x_i \in A$ (i=1, 2). Hence we get $A = A_1 \times A_2$, where $A_i = H_i \cap A$ (i=1, 2). This proves (i). Let B be a maximal elementary abelian 2-subgroup of S_l . Assume that any element of B has no fixed letter. Then we have $|B| \le l$. Since $l \le 2^{l/2}$, we get $r(B) \le l/2$. Hence we may assume that an element x of B has at least one fixed letter. Obviously, we may assume that l is even. If x has 2k fixed letters $(k \ge 1)$, we have $B \subseteq C_{S_l}(x) \cong U \times S_{l-2k}$, where U has a 2-Sylow-group isomorphic to that of S_{2k} . By induction on l, we get $r(U) \le k$ and $r(S_{l-2k}) \le (l-2k)/2$. From (i), if follows that $r(B) \le r(U) + r(S_{l-2k}) \le l/2$. This proves (ii).

- 1.5. Let H be a subgroup of S_i which is of the form $S^{(i)} \times S^{(2)} \times \cdots \times S^{(l')} \times S^{(l'+1)}$, where $S^{(i)} \cong S_4$ $(1 \leq i \leq l')$ and $S^{(l'+1)} \cong S_k$. If the length of the orbits of $S^{(i)} (1 \leq i \leq l')$ (resp. $S^{(l'+1)}$) is 1 or 4 (resp. 1 or k) and $S^{(i)} (1 \leq i \leq l')$ (resp. $S^{(l'+1)}$) has precisely one orbit of length 4 (resp. k), we say that H is naturally imbedded in S_l .
- 1.6. LEMMA. Let H be as in (1.5). Then we have $l \ge 4l'$. Further, if k=2 or 3, we have $l \ge 4l'+2$.

PROOF. Since $r(S_l) \le l/2$ and $r(H) \ge 2l'$, we get $l \ge 4l'$. If k=2 or 3, we have r(H) = 2l' + 1. Hence, we get $l \ge 4l' + 2$.

1.7. LEMMA. Let H be as in (1.5). If k=0 or 3 and N is normal subgroup of H, we have $H' \cap N \neq 1$, where H' is the commutator subgroup of H.

PROOF. Take an element $x_1x_2 \cdots x_{l'+1}$ of $H(x_i \in S^{(i)})$. If $x_i \neq 1$, there exists an element $x_{i'}$ of $S^{(i)}$ such that $[x_i, x_{i'}] \neq 1$. Then $1 \neq [x_i, x_{i'}] = [x_1x_2 \cdots x_{l'+1}, x_{i'}] \in H' \cap N$.

- 1.8. LEMMA. Let H be as in (1.5). Assume that
- (i) l-1=4l'+k $(0 \le k \le 3)$ and $l \ne 6, 7,$
- (ii) $S^{(i)}$ is conjugate in S_l to $S^{(j)}$ $(1 \le i, j \le l')$ and $S^{(l'+1)}$ is contained in a subgroup conjugate in S_l to $S^{(i)}$ for every i $(1 \le i \le l')$,
 - (iii) $S^{(i)} \not\subseteq A_l$ $(1 \le i \le l'+1)$.

Then H is naturally imbedded in S_i .

PROOF. Let Ω be a set of l letters on which S_l operates. $S^{(1)}$ has at least one orbit Δ_1 on which $S^{(1)}$ operates faithfully. Let $\Delta_1, \Delta_2, \dots, \Delta_{\rho}$ be all distinct orbits of $S^{(1)}$, each of which affords a permutation representation of $S^{(1)}$ equivalent to that of $S^{(1)}$ on Δ_1 . Put $\Omega - \bigcup_{i=1}^{\rho} \Delta_i = \{i_1, i_2, \dots, i_{\sigma}\}$. Define a set

$$\bar{\Omega} = \{ \Delta_1, \Delta_2, \cdots, \Delta_{\rho}, i_1, i_2, \cdots, i_{\sigma} \}$$

of $\rho+\sigma$ elements. Put $K=S^{(2)}\times\cdots\times S^{(l')}$. K induces a permutation respresentation on $\overline{\Omega}$. Let N be the kernel of this representation. If $S^{(i)}\cap N\neq 1$ $(2\leq i\leq \tau)$ and $S^{(i)}\cap N=1$ $(\tau+1\leq i\leq l')$, it is easy to see that

$$(2) N \cap (S^{(c+1)} \times \cdots \times S^{(l')}) = 1$$

and $|N \cap S^{(i)}| \ge 4$ ($2 \le i \le \tau$). If c is the order of the centralizer in S_{d_i} of the representation of $S^{(1)}$ on A_i , we have

(3)
$$c^{\rho} \ge |N| \ge 2^{2(\varepsilon-1)}$$
.

We remark that $|\Delta_1|=4, 6, 8, 12$ or 24. Put $\lambda=|\Delta_1|$.

Case (α) , $\lambda=4$. Since c=1 in this case, we have N=1. Hence K operates faithfully on $\overline{\Omega}$. By (1.6), we have $4(l'-1) \le \rho + \sigma$. Since $l=4\rho + \sigma$, we obtain $l-4l' \ge 3\rho -4$. If $\rho \ge 3$, we get $l-5 \ge 4l'$, which is impossible on account of the assumption (i).

Subcase (α_1) , $\rho=2$. First, we assume $k\geq 2$. Since K' is generated by elements of order 3 and $\rho=2$, K' leaves J_i invariant (i=1,2). From this and c=1, it follows that every element of K' fixes any element of J_i (i=1,2). On the other hand, K operates on $\{i_1,i_2,\cdots,i_{l-8}\}$. If the kernel N_0 of this representation is non-trivial, it follows from (1.7) that $K'\cap N_0\neq 1$. This is impossible since K operates faithfully on Q. Hence K operates faithfully on $\{i_1,i_2,\cdots,i_{l-8}\}$. From (1.6), we get $4(l'-1)\leq l-8$. This is imposible if $k\leq 2$. Next, we assume k=3. Put

$$K_1 = S^{(2)} \times \cdots \times S^{(l')} \times S^{(l'+1)}$$

where $S^{(l'+1)} \cong S_3$. By the same argument as above, K_1 operates faithfully on $\{i_1, i_2, \dots, i_{l-8}\}$. From (1.6) we get $4(l'-1)+2 \le l-8$, which is impossible on account cf the assumption (i).

Subcase (α_2) , $\rho=1$. From the assumption (ii), it follows that $S^{(i)}$ $(1 \le i \le l')$ has unique faithful orbit $\Delta^{(i)}$ of length 4 and $\Delta^{(i)} \cap \Delta^{(j)} = \phi$ $(i \ne j)$. By the assumption (iii), $S^{(i)}$ $(1 \le i \le l')$ fixes any element in $\Omega - \bigcup_{i=1}^{l'} \Delta^{(i)}$. This implies our lemma in the case $\lambda=4$.

Case (β) , $\lambda=6$. Since c=2, from (3) we get $(\rho/2)+1\geq \tau$. Then it follows from (2) and (1.6) that $4(l'-\tau)\leq \rho+\sigma$. Since $l=6\rho+\sigma$, we get $l-4l'\geq 3\rho-4$. If $\rho\geq 3$, we have $l-5\geq 4l'$, which is impossible.

Subcase (β_1) , $\rho=2$. By the same argument as in the subcase (α_1) , K operates faithfully on $\{i_1,i_2,\dots,i_{l-12}\}$. Then (1.6) yields that $4(l'-1) \le l-12$, which is impossible.

Subcase (β_2) , $\rho=1$. By the assumption (ii), $S^{(i)}$ $(1 \le i \le l')$ has unique faithful orbit $\Delta^{(i)}$ of length 6 and we have $\Delta^{(i)} \cap \Delta^{(j)} = \phi$ $(i \ne j)$. This implies that $l=|\Omega| \ge 6l'$. If $k \le 2$, it follows that l=6 or 7, which is impossible on account of the assumption (i). If k=3, $S^{(l'+1)}$ has a faithful orbit Δ such that $|\Delta| \ge 3$ and $\Delta \cap \Delta^{(i)} = \phi$ $(1 \le i \le l')$. Hence we have $l=|\Omega| \ge 6l'+3$. This is impossible since l=4l'+4.

Case (7), $\lambda=8$. Since c=2, we obtain $(\rho/2)+1\geq \tau$ from (3). By (2) and (1.6) we have $4(l'-\tau)\leq \rho+\sigma$. Since $l=8\rho+\sigma$, we have $l-4l'\geq 5\rho-4$. If $\rho\geq 2$, we get $l-6\geq 4l'$ which is impossible. If $\rho=1$, K operates faithfully on $\{i_1,i_2,\cdots i_{l-8}\}$. (1.6) yields that $4l'\leq l-4$. Then k=3 and $K_1=S^{(1)}\times\cdots\times S^{(l'+1)}$ operates faithfully on $\{i_1,i_2,\cdots,i_{l-8}\}$. (1.6) yields that $4(l'-1)+2\leq l-8$, which is impossible.

Case (\hat{o}) $\lambda=12$. In this case, we have $c \leq 4$. By (2) and (3) we obtain $4l' \leq 5\rho + \sigma + 4$. Since $l=12\rho + \sigma$, we get $l-4l' \geq 7\rho - 4$. If $\rho \geq 2$, we have $l-10 \geq 4l'$, which is impossible. If $\rho=1$, K operates faithfully on $\{i_1,i_2,\cdots,i_{l-12}\}$. (1.6) yields $4(l'-1) \leq l-12$, which is impossible.

Case (ε) , $\lambda=24$. Since c=24, we get $2^{5\rho} \ge 24^{\rho} \ge 2^{2(\tau-1)}$ from (3). Hence $5\rho/2+1 \ge \tau$. Then we have $l-4l' \ge 13\rho-4$. This yields $l-9 \ge 4l'$, which is impossible. This completes the proof of our lemma.

§ 2. Conjugacy classes of involutions of G.

- **2.1.** Let G and φ be as in the introduction. For a subset X of $\bigcup_{k=1}^{n} C_{A_m}(\alpha_k)$, \bar{X} denotes the image of X by φ .
- **2.2.** LEMMA. Any involution of $C_G(\tilde{\alpha}_n)$ is conjugate in G to one of $\tilde{\alpha}_1, \tilde{\alpha}_2, \dots, \tilde{\alpha}_n$.

PROOF. We shall show that $\tilde{\pi}_1 \cdots \tilde{\pi}_s \tilde{\pi}'_{s+1} \cdots \tilde{\pi}'_{s+t}$ (resp. $\tilde{\pi}_1' \cdots \tilde{\pi}_n' \tilde{\pi}_n$) is conjugate to $\tilde{\alpha}_{s+t}$ (resp. $\tilde{\alpha}_n$) in G. Suppose that s=0. Since $\pi_{t'}$ is conjugate to $\pi_{n'}$ in $W_n \langle \mu_n \rangle$ and $\pi_{n'} u_n = \pi_n$ and $[\pi_{t'}, u_n] = 1$ in $C_{A_m}(\alpha_{n-1})$ ($1 \le i \le n-1$), $\tilde{\pi}_1' \tilde{\pi}_2' \cdots \tilde{\pi}_{t'}$ is conjugate to

¹⁾ S_4 has two inequivalent faithful transitive representation of degree 12, one of which has c=2 and the other has c=4.

 $\tilde{\pi}_1' \cdots \tilde{\pi}'_{t-1}\tilde{\pi}_n$ which is conjugate to $\tilde{\pi}_1'\tilde{\pi}_2' \cdots \tilde{\pi}_{t'}$ in $C_G(\tilde{\alpha}_n)$. Hence we may assume that $s \ge 1$. Since $\pi_i'^u = \pi_i$ and $[\pi_j', u_i] = 1$ in $C_{A_m}(\alpha_s)$ $(s+1 \le i, j \le s+t \text{ and } i \ne j)$, we get that $\tilde{\pi}_1 \cdots \tilde{\pi}_s \tilde{\pi}'_{s+1} \cdots \tilde{\pi}'_{s+t}$ is conjugate to $\tilde{\alpha}_{s+t}$ in G. Since $\pi_n^{u_n} = \pi_n \pi_n'$ and $[\pi_i', u_n] = 1$ $(1 \le i \le n-1)$ in $C_{A_m}(\alpha_{n-1})$, it follows that $\tilde{\pi}_1' \cdots \tilde{\pi}_n' \tilde{\pi}_n$ is conjugate to $\tilde{\alpha}_n$ in G.

Futhermore, $\pi_1\pi_2 \cdots \pi_s\pi'_{s+1} \cdots \pi'_{s+t}\mu_{n-1}\mu_n$ is conjugate to $\pi_1 \cdots \pi_s\pi'_{s+1} \cdots \pi'_{s+t} \times \pi_{s+t+1}$ in $C_{A_m}(\alpha_1)$. From this and the fact obtained above, follows that $\tilde{\pi}_1 \cdots \tilde{\pi}_s\tilde{\pi}'_{s+1} \times \cdots \tilde{\pi}'_{s+t}\tilde{\mu}_{n-1}\tilde{\mu}_n$ is conjugate to $\tilde{\alpha}_{s+t+1}$ in G. Then (1, 3) implies our lemma.

2.3. LEMMA. A 2 Sylow-subgroup of $C_G(\tilde{\alpha}_n)$ is that of G.

PROOF. Let D be a 2-Sylow-subgroup of $C_G(\tilde{\alpha}_n)$ and F be that of G containing D. Then we have $D=F\cap C_G(\tilde{\alpha}_n)$. If z is in the center of F, [z,D]=1 and in particular, $[z,\tilde{\alpha}_n]=1$. Hence we get $z\in Z(D)$. By (2.2), there exists an element x of G such that $z^z=\tilde{\alpha}_k$ for some k. Since $C_G(z)^z=C_G(\tilde{\alpha}_k)$ and

$$|C_G(\tilde{\alpha}_k)|_2 = |C_{A_m}(\alpha)|_2 \le |C_{A_m}(\alpha_n)|_2 = |C_G(\tilde{\alpha}_n)|_2^{2}$$
,

we have $|C_G(z)|_2 \le |C_G(\tilde{\alpha}_n)|_2 = |D|$. This yields F = D.

2.4. LEMMA. G has n conjugacy classes of involutions whose representatives are $\tilde{\alpha}_1, \tilde{\alpha}_2, \dots, \tilde{\alpha}_n$.

PROOF. By (2.2) and (2.3), it is sufficient to see that $\tilde{\alpha}_i$ is not conjugate to $\tilde{\alpha}_j$ $(i \neq j)$. This follows from the fact that $C_{A_m}(\alpha_i)$ is not isomorphic to $C_{A_m}(\alpha_j)$.

§ 3. The proof of the Theorem.

3.1. We shall prove our theorem by induction on m. First, we note that our theorem holds good for m=8, 9, or 10. By W. J. Wong's theorem [6], our theorem is true for m=8. D. Held [3] proved that, if G_0 is a finite group satisfying the condition that (i) G_0 has no normal subgroup of index 2 and (ii) G_0 has an involution a such that $C_{G_0}(a)$ is isomorphic to $C_{A_8}(\alpha_2)$, then G_0 is isomorphic to A_8 , A_9 or a semidirect product of L and E, where $L\cong PSL(2,7)$, E is an elementary abelian group of order 8 and $G_0\triangleright E$. It is easy to see that the last group does not satisfy the assumption of our theorem. If m=9, our assumption yields that G has no normal subgroup of index 2. This turns out by examining fusion of involutions

²⁾ For a set X, if |X| = 2ab and (2b) = 1, $|X|_2 = 2a$.

of G and applying the focal subgroup theorem. From this it follows that our theorem is true for m=9. Similarly, D. Held's theorem [4] yields that if m=10, G is isomorphic to A_{10} . Hence we shall assume that $m \ge 11$.

3.2. LEMMA. $C_G(\bar{u}_n) = \langle \bar{u}_n \rangle \times U_0$, $U_0 \cong A_{m-3}$ and U_0 contains $\bar{\pi}_i$ and $\bar{\pi}_i$ $(1 \le i \le n-1)$.

PROOF. Put $Q = \{i \mid 1 \le i \le m\} - \{4n-3, 4n-2, 4n-1\}$ or $\{i \mid 1 \le i \le m\} - \{4n+1, 4n+2, 4n+3\}$ according to whether $r \le 2$ or r=3. Then we have |Q| = m-3.

Case $r \le 2$. As contains α_k $(1 \le k \le n-1)$. For $1 \le k \le n-1$, we have by (1),

$$C_{A_m}(u_n) \cap C_{A_m}(\alpha_k) = \langle u_n \rangle \times C_{A_n}(\alpha_k)$$
.

Hence we get

$$C_G(\tilde{u}_n) \cap C_G(\tilde{\alpha}_k) = \langle \tilde{u}_n \rangle \times \widetilde{C_{AO}(\alpha_k)}$$
.

Put $\mathfrak{g}=C_G(\tilde{u}_n)/\langle \tilde{u}_n\rangle$. Denote by ϕ the canonical homomorphism from $C_G(\tilde{u}_n)$ to \mathfrak{g} . Involutions $\phi(\tilde{\alpha}_1)$, $\phi(\tilde{\alpha}_2)$, \cdots , $\phi(\tilde{\alpha}_{n-1})$ of \mathfrak{g} and a mapping $\phi\varphi$ from $C_{A_D}(\alpha_k)$ into \mathfrak{g} satisfy the condition of the theorem with m-3 in place of m. By induction assumption, \mathfrak{g} is isomorphic to A_{m-3} . Since the order of the Schur multipliers of A_{m-3} ($m\geq 11$) is prime to 3, we have $C_G(\tilde{u}_n)=\langle \tilde{u}_n\rangle \times U_0$, $U_0\cong A_{m-3}$. Since u_n , π_i and π_i' ($1\leq i\leq n-1$) are contained in $C_{A_m}(\alpha_{n-1})$ and $[u_n,\pi_i]=[u_n,\pi_i']=1$ ($1\leq i\leq n-1$), U_0 contains $\tilde{\pi}_i$ and $\tilde{\pi}_i'$ ($1\leq i\leq n-1$).

Case r=3. Put $\mathfrak{g}=C_G(\tilde{u}_{n+1})/\langle \tilde{u}_{n+1}\rangle$. If ϕ is the canonical homomorphism from $C_G(\tilde{u}_{n+1})$ to \mathfrak{g} , involutions $\phi(\tilde{\alpha}_1), \cdots \phi(\tilde{\alpha}_n)$ of \mathfrak{g} and a mapping $\phi \varphi$ from $C_{A_G}(\alpha_k)$ into \mathfrak{g} satisfy the condition of the theorem. In the same way as above, we get

$$C_G(\tilde{u}_{n+1}) = \langle \tilde{u}_{n+1} \rangle \times U_1$$
, where $U_1 \cong A_{m-3}$.

Since u_n is conjugate to u_{n+1} in $C_{A_m}(\alpha_{n-1})$, \bar{u}_n is conjugate to \bar{u}_{n+1} in G. Hence we get

$$C_G(\bar{u}_n) = \langle \bar{u}_n \rangle \times U_0$$
, where $U_0 \cong A_{m-3}$.

3.3. Put $\tilde{u}_1 = \tilde{u}_n^{\tau_{1n}}$. (Note that \tilde{u}_1 has not been defined, since $u_1 \in \bigcup_{k=1}^n C_{A_m}(\alpha_k)$.) For $2 \le i \le n-1$, we have $\tilde{u}_i = \tilde{u}_n^{\tau_{in}}$, since $u_i = u_n^{\tau_{in}}$ in $C_{A_m}(\alpha_{i-1})$. In the case r=2 or 3, we define an element x of $C_{A_m}(\alpha_{n-1})$ as follows:

$$x = \left\{ \begin{array}{ll} (4n-3,\ 4n+1)(4n-2,\ 4n+2), & \text{if} \quad r = 2 \\ (4n+1,\ 4n-3,\ 4n+2,\ 4n-2)(4n-1,\ 4n+3) & \text{if} \quad r = 3. \end{array} \right.$$

- 3.4. LEMMA. We have
- (i) $[\tilde{u}_1, \tilde{\pi}_i] = [\tilde{u}_1, \tilde{\pi}_i'] = 1$ $(2 \le i \le n)$,

- (ii) $[\tilde{u}_1, \tilde{\tau}_{ij}] = 1$ $(2 \leq i, j \leq n)$,
- (iii) $[\tilde{u}_1, \tilde{\mu}_1\tilde{\mu}_n]=1$ if $r\geq 2$, and
- (iv) $[\tilde{u}_1, \tilde{x}] = 1$.

PROOF. Since $\pi_i^{\tau_{1n}} = \pi_i$ $(2 \le i \le n-1)$ and $\pi_1^{\tau_{1n}} = \pi_n$ in $C_{A_m}(\alpha_n)$, we have $\tilde{\pi}_i^{\tau_{1n}} = \tilde{\pi}_i$ $(2 \le i \le n-1)$ and $\tilde{\pi}_1^{\tau_{1n}} = \tilde{\pi}_n$. This yields that $[\tilde{u}_1, \tilde{\pi}_i] = [\tilde{u}_1, \tilde{\pi}_i'] = 1$ $(2 \le i \le n)$ by (3.2) and (3.3). This proves (i). τ_{ij} $(1 \le i, j \le n-1)$ is contained in $C_{A_m}(\alpha_{n-1})$ and $[\tau_{ij}, u_n] = 1$ $(1 \le i, j \le n-1)$. Futher we have

$$\tau_{ij1n}^{\tau_{ij1n}} = \left\{ \begin{array}{ll} \tau_{ij}, & \text{if} \quad 1 \! + \! i \! < \! j \! \leqslant \! n \! - \! 1 \text{ ,} \\ \tau_{in}, & \text{if} \quad 1 \! = \! i \! < \! j \! \leqslant \! n \! - \! 1 \text{ .} \end{array} \right.$$

From this and (3.3), it follows that $[\tilde{u}_1, \tilde{\tau}_{ij}] = 1$ ($2 \le i, j \le n$). If $r \ge 2$, we have $[\tau_{1n}, \mu_1 \mu_n] = 1$ in $C_{A_m}(\alpha_n)$ and $[u_n, \mu_1 \mu_n] = 1$ in $C_{A_m}(\alpha_{n-1})$. From this and (3.3), (iii) follows. We have $[u_n, x^{\epsilon_{1n}}] = 1$ in $C_{A_m}(\alpha_{n-1})$. Then we get $[\tilde{u}_1, \tilde{x}] = [\tilde{u}_n, \tilde{x}^{\epsilon_{1n}}] = 1$.

3.5. LEMMA. $[\bar{u}_1, \bar{X}_1] = 1$.

PROOF. Since u_n normalizes $\langle \pi_n, \pi_n' \rangle$, \tilde{u}_1 normalizes $\langle \tilde{\pi}_1, \tilde{\pi}_1' \rangle$. By (1), we have

$$C_G(\langle \tilde{\pi}_1, \tilde{\pi}_1' \rangle) = \langle \tilde{\pi}_1, \tilde{\pi}_1' \rangle \times \tilde{X}_1, \text{ where } \tilde{X}_1 \cong A_{m-4}.$$

Hence \tilde{u}_1 normalizes \tilde{X}_1 and induces an inner automorphism of \tilde{X}_1 . From (1.2) and (i) and (iii) of (3.4), it follows that \tilde{u}_1 must centralize \tilde{X}_1

3.6. Lemma. $C_G(\tilde{u}_1) = \langle \tilde{u}_1 \rangle \times U$, where $U \cong A_{m-3}$, and $U \supset \tilde{X}_1$.

PROOF. The first statement follows from (3.2) and (3.3). The second statement follows from (3.5) and the fact that $X_1' = X_1$ and U' = U.

3.7. LEMMA. $N_G(\langle \tilde{u}_1 \rangle) = (\langle \tilde{u}_1 \rangle \times U) \langle \tilde{\mu}_{n-1} \rangle$, $\tilde{u}_1^{\tilde{\mu}_{n-1}} = \tilde{u}_1^{-1}$ and $U(\mu_{n-1}) \cong S_{m-3}$.

PROOF. Since $u_n^{\mu_{n-1}} = u_n^{-1}$ in $C_{A_m}(\alpha_{n-1})$ and $[\tau_{1n}, \mu_{n-1}] = 1$ in $C_{A_m}(\alpha_n)$, we get $\tilde{u}_1^{\mu_{n-1}} = \tilde{u}_1^{-1}$. From (1) and (2.4), any involution of G does not centralize a subgroup of G isomorphic to A_{m-3} . If $U\langle \tilde{\mu}_{n-1} \rangle$ is not isomorphic to S_{m-3} , we have $U\langle \tilde{\mu}_{n-1} \rangle = \langle y \rangle \times U$, where y is an involution of $U\langle \tilde{\mu}_{n-1} \rangle$. This is impossible.

3.8. LEMMA. $N_G(\langle \tilde{u}_1 \rangle) \cap C_G(\tilde{\pi}_1) = \tilde{X}_1 \langle \tilde{\mu}_{n-1} \rangle \text{ and } \tilde{X}_1 \langle \tilde{\mu}_{n-1} \rangle \cong S_{m-4}$.

PROOF. By (1) and (3.5), \tilde{X}_1 is contained in $C_U(\tilde{\pi}_1)$. $\tilde{\pi}_1$ does not centralize U, since $U \cong A_{m-3}$. Hence we have $C_U(\tilde{\pi}_1) = \tilde{X}_1$, since \tilde{X}_1 is a maximal subgroup of U. From (3.7), we get $N_G(\langle \tilde{u}_1 \rangle) \cap C_G(\tilde{\pi}_1) = \tilde{X}(\tilde{\mu}_{n-1})$. The second statement follows from (1).

3.9. Let H be a group isomorphic to S_l . Then H is generated by l-1 element x_1, x_2, \dots, x_{l-1} satisfying the following relations:

$$x_1^2 = \cdots = x_{l-1}^2 = (x_i x_{i+1})^3 = (x_j x_k)^2 = 1$$
 $(1 \le i, j, k \le l-1 \text{ and } |j-k| > 1)$

(cf. [2; p. 287]). We call an ordered set of such generators of H a set of canonical generators of H. If an involution t of H is a member of a set of canonical generators of H, we say that t is a transposition of H. Remark that, if l=6, this terminology is slightly vague because of the existence of an outer automorphism of order 2 of S_6 . However, in the subsequent lemmas, this will cause no troubles. Let H_0 be a group isomorphic to $A_l \cdot H_0$ is generated by l-2 elements y_1, y_2, \cdots , y_{l-2} satisfying the following relations:

$$y_1 = \cdots = y_{l-2} = (y_i y_{i+1})^3 = (y_j y_k)^2 = 1$$
 $(1 \le i, j, k \le l-2 \text{ and } |j-k| > 1).$

We call an ordered set of such generators of H_0 a set of canonical generators of H_0 .

3.10. LEMMA. Let H and H_0 be as in (3.9). Assume that H_0 is a subgroup of H. Let t_1 and t_2 be transpositions in H such that $[t_1, t_2] = 1$ and if l = 6, t_1 is conjugate to t_2 in H. Then we have (i) $C_H(t_1) = \langle t_1 \rangle \times K$, where $H_0 \supset K \cong S_{l-2}$, and (ii) t_1t_2 is a transposition of K.

PROOF. Since $H=H_0\langle t_1\rangle$, we have $C_H(t_1)=\langle t_1\rangle\times C_{H_0}(t_1)$. Put $K=C_{H_0}(t_1)$. We can find a set of canonical generators $t_1', t_2', \cdots, t'_{l-1}$ of H with $t_1'=t_1$ and $t_3'=t_2$. Then it is clear that $t_1't_3', \cdots, t_1't'_{l-1}$ are contained in K and they are a set of canonical generators of K. This implies our lemma.

3.11 LEMMA. $\tilde{\mu}_i$, $\tilde{\mu}_i\tilde{u}_{i+1}$ and $\tilde{\mu}_i\tilde{\pi}_{i+1}$ $(1 \le i \le n-1)$ are transpositions in $U\langle \tilde{\mu}_{n-1} \rangle$. If r=2, so is $\tilde{\mu}_n$. Further, if r=3, so are $\tilde{\mu}_n$ and $\tilde{\mu}_n\tilde{u}_{n+1}$.

PROOF. Put $S^{(i)} = \langle \tilde{\mu}_i, \tilde{\mu}_i \tilde{u}_{i+1}, \tilde{\mu}_i \tilde{\pi}_{i+1} \rangle$ $(1 \leq i \leq n-1)$. Then it is easy to see that $S^{(i)}$ is isomorphic to S_4 and $\tilde{\mu}_i, \tilde{\mu}_i \tilde{u}_{i+1}$ and $\tilde{\mu}_i \tilde{\pi}_{i+1}$ are a set of canonical generators of $S^{(i)}$. Put

$$S^{(n)} = \begin{cases} 1 & \text{if } r = 0 \text{ or } 1, \\ \langle \tilde{\mu}_n \rangle, & \text{if } r = 2, \\ \langle \tilde{\mu}_n & \tilde{\mu}_n \tilde{u}_{n+1} \rangle, & \text{if } r = 3. \end{cases}$$

Then we have $[S^{(i)}, S^{(j)}] = 1$ $(1 \le i < j \le n)$. From (3.4) we know that $\tilde{\tau}_{i+1, j+1}$ $(1 \le i, j \le n-1)$ and \tilde{x} are contained in U. Since $(S^{(i)})^{\tilde{\tau}_{i+1, j+1}} = S^{(j)}$ $(1 \le i < j \le n-1)$, $\tilde{\mu}_{n-1}^{\tilde{x}} = \tilde{\mu}_n$

and $\tilde{u}_n^{\tilde{s}} = \tilde{u}_{n+1}$, a subgroup $S^{(1)} \times S^{(2)} \times \cdots \times S^{(n)}$ of $U(\tilde{\mu}_{n-1})$ satisfies the assumption of (1.8). Then (1.8) yields our lemma.

3.12 LEMMA. G contains a subgroup Q isomorphic to A_m . Q has a property that, for any involution t of Q, $C_G(t)$ is contained in Q.

PROOF. $\tilde{X}_1\langle \tilde{\mu}_{n-1} \rangle$ is a subgroup isomorphic to S_{m-4} of $U\langle \tilde{\mu}_{n-1} \rangle$, which is isomorphic to S_{m-3} . Since, by [1, section 161], S_{m-3} contains exactly one conjugate class of subgroups isomorphic to S_{m-4} , $\tilde{X}_1\langle \tilde{\mu}_{n-1} \rangle$ is naturally imbedded in $U\langle \tilde{\mu}_{n-1} \rangle$ in the same meaning as in (1.5). Then (3.11) yields that there exist an involution δ_1 in $U\langle \tilde{\mu}_{n-1} \rangle - (U \cup \tilde{X}_1\langle \tilde{\mu}_{n-1} \rangle)$ and n-1 involutions $\delta_2, \dots, \delta_n$ in $\tilde{X}_1\langle \tilde{\mu}_{n-1} \rangle - \tilde{X}_1$ such that

- (i) $C = \{\tilde{\mu}_1, \, \tilde{\mu}_1 \tilde{u}_2, \, \tilde{\rho}_1 \tilde{\pi}_2, \, \tilde{\delta}_2, \, \cdots, \, \tilde{\mu}_k, \, \tilde{\mu}_k \bar{u}_{k+1}, \, \tilde{\rho}_k \tilde{\pi}_{k+1}, \, \tilde{\delta}_k, \, \cdots, \, \tilde{\mu}_{n-1}, \, \tilde{\mu}_{n-1} \tilde{u}_n, \, \tilde{\mu}_{n-1} \tilde{\pi}_n, \, \tilde{\delta}_n, \, \tilde{\mu}_n, \, \tilde{\mu}_n \tilde{u}_{n+1} \}$ is a set of canonical generator of $\tilde{X}_1 \langle \tilde{\mu}_{n-1} \rangle$, where the last 3-r elements of C do not appear.
- (ii) $(\tilde{u}_1\delta_1)^2=1$, $(\delta_1\tilde{\mu}_1)^3=1$, and every element of $C-\{\mu_1\}$ commutes with δ_1 . Let Q be a subgroup of G generated by a set $C_1=\{\tilde{u}_1,\ \tilde{\pi}_1,\ \delta_1\}\cup C$. We shall show that $\tilde{\pi}_1^{\delta_1}$ is of order 3. This implies that Q is isomorphic to A_m and C_1 is a set of canonical generators of Q. Put $y=\tilde{\pi}_2'\tilde{\tau}_{12}$, $C_2=C-\{\tilde{\mu}_1\}$ and $C_3=C-\{\tilde{\mu}_1,\ \tilde{\mu}_1u_2,\ \tilde{\mu}_1H_2,\ \delta_2\}$. Then we have
- (iii) $\langle \tilde{\pi}_1, \delta_1 \rangle \subset C_G(C_2)$,

96

- (iv) $(\tilde{\mu}_1\tilde{u}_2)^y = \tilde{\mu}_1\tilde{u}_1$ and $(\tilde{\mu}_1\tilde{\pi}_2)^y = \tilde{\mu}_1$ and
- (v) $v^y = \tilde{\mu}_1 v$ for any element v of C_3 .

If fact, (iii) follows from (i) and (ii). We have $(\tilde{\mu}_1\tilde{u}_2)^v = (\tilde{\mu}_1\tilde{u}_2)^{\epsilon_12} = \tilde{\mu}_1\tilde{u}_1$ and $(\mu_1\tilde{\pi}_2)^v = \tilde{\mu}_1^{\epsilon_12} = \tilde{\mu}_1$. This proves (iv). We shall verify (v). If $C_3 \ni v \neq \delta_k$, we get $v^v = \tilde{\mu}_1 v$ by using the isomorphism φ from $C_{A_m}(\alpha_n)$ to $C_G(\tilde{\alpha}_n)$ and computing directly. Suppose that $v = \delta_k$ $(k \geq 3)$. In order to verify (v) in this case, firstly we shall show that \tilde{X}_2 is generated by the totality of products of any two elements of C_3 . We denote by C_4 the totality of products of any two elements of C_4 commutes with \tilde{u}_1 . Since $\tilde{u}_1 = \tilde{u}_1 = \tilde{u}_1 = \tilde{u}_1$, we get $C_4 \subset C_G(\tilde{\pi}_1, \tilde{\pi}_1', \tilde{\pi}_2, \tilde{\pi}_2')$. By (i), the group generated by the set C_4 is isomorphic to A_{m-8} . Since $C_G(\tilde{\pi}_1, \tilde{\pi}_1', \tilde{\pi}_2, \tilde{\pi}_2') = \langle \tilde{\pi}_1, \tilde{\pi}_1', \tilde{\pi}_2, \tilde{\pi}_2' \rangle \times \tilde{X}_2$ and $\tilde{X}_2 \cong A_{m-8}$ by the equality (1) in (1.1), \tilde{X}_2 must be the group generated by C_4 . Since $[\tilde{\tau}_{12}, \tilde{X}_2] = 1$, any element of C_4 commutes with $\tilde{\tau}_{12}$. In particular, we have $[\tilde{\tau}_{12}, \tilde{\mu}_{k-1}\tilde{\pi}_k\delta_k] = 1$ $(k \geq 3)$. Hence we have $\tilde{\mu}_{k-1}\tilde{\pi}_k\delta_k = (\tilde{\mu}_{k-1}\tilde{\pi}_k\delta_k)^{\epsilon_{12}} = \tilde{\mu}_1\tilde{\mu}_{k-1}\tilde{\pi}_k\delta^{\epsilon_{12}} = \delta_k$. Thus we have proved (v). By (iv), we have $(C_G(\tilde{\mu}_1\tilde{u}_2) \cap C_G(\tilde{\mu}_1\tilde{\pi}_2))^v = C_G(\tilde{\mu}_1\tilde{u}_1) \cap C_G(\tilde{\mu}_1) =$

 $C_G(\tilde{u}_1)\cap C_G(\tilde{\mu}_1)$. Put $Z=C_G(\tilde{u}_1)\cap C_G(\tilde{\mu}_1)$. By (3,6), (3,7) and (3,11), we have $C_G(\tilde{\mu}_1)\cap U\langle \tilde{\mu}_1\rangle = \langle \tilde{\mu}_1\rangle \times Z$ and $U\supset Z\cong S_{m-5}$. Put $W=\langle \tilde{\mu}_1v\mid v\in C_3\rangle$. By (v), we have $Z\supset W$. From (i) it follows that W is isomorphic to S_{m-8} and the set $\{\mu_1v\mid v\in C_3\}$ is a set of canonical generators of W. Then by applying (3.10) with $U\langle \tilde{\mu}_1\rangle$, U, Z, $\tilde{\mu}_1$ and $\tilde{\mu}_1v$ $(v\in C_3)$ in place of H, H_0 , K, H_1 and H_2 respectively, we get that H_2 is naturally imbedded in H_2 in the same meaning as in (1.5). Hence we get $H_2(W)\cong S_3$. Since $H_2(W)\supset C_G(C_2)^v$ and $H_3(\tilde{\mu}_1,\tilde{\mu}_1)\neq 1$ by (3.8), (iii) yields that $\tilde{\mu}_1\tilde{\mu}_1$ must be of order $H_1(W)\supset C_G(C_2)^v$ and $H_2(W)\supset C_G(C_2)^v$ and $H_3(W)\supset C_G(C_2)^v$

3.13 LEMMA. G=Q.

PROOF. By way of contradiction assume that Q is a proper subgroup of G. If any involution is not contained in G-Q, Q is a normal subgroup of G. Then Frattini argument yields that $G=C_G(\tilde{\alpha}_n)\cdot Q$. This contradicts (3.12). Take an involution x in G-Q. If y is an involution of Q, x is conjugate to y in G. Otherwise, there would exist an involution z such that [x,z]=[y,z]=1. Then (3.12) would imply that x is contained in Q, a contradiction. Hence G has one class of involutions. This contradicts (2.4) Hence we get G=Q.

This completes the proof the theorem.

College of General Education, University of Tokyo.

References

- [1] W. Burnside, Theory of groups of finite order, Dover, 1955, 2nd edition.
- [2] L. E. Dickson, Linear groups with an exposition of the Galois field theory, Dover, 1958.
- [3] D. Held, A characterization of the alternating groups of degree eight and nine, J. Algebra, 7 (1967), 218-237.
- [4] _____, A characterization of some multiply transitive permutation groups I, Illinois J. Math. (to appear).
- [5] W. Specht, Eine Verallgemeinerung der symmetrischen Gruppe, Schr. Math. Sem. Berlin 1 (1932), 1-32.
- [6] W. J. Wong, A characterization of the alternating group of degree eight, Proc. London Math. Soc. (3), 13 (1963), 359-383.

(Received November 15, 1967)