On a special class of pseudo-differential operators

By Daisuke FUJIWARA

Introduction. The theory of pseudo-differential operators on R^* was first discussed in Kohn-Nirenberg [4] and in Unterberger and Bakobza [5]. Then Hörmander [6] treated pseudo-differential operators on differentiable manifold M in more intrinsic manner.

In this note a special subclass of pseudo-differential operators on $M \times \mathbb{R}^1$ is treated, where M is a differentiable σ -compact manifold and \mathbb{R}^1 is the real line. Operators in this class are called β -pseudo-differential operators for the time being.

Briefly speaking, a β -pseudo-differential operator is a pseudo-differential operator on $M \times R^1$ which has constant coefficients in the direction of R^1 . Some global properties of β -pseudo-differential operators are required by the theory of elliptic operators on M.

The aim of this note is to establish these properties by slightly modifying the discussions in Hörmander [6]. Applications of the theory of β -pseudo-differential operators will appear in the immediately following paper in this volume.

§ 1. β -pseudo-differential operators.

Let M be a σ -compact differentiable manifold of dimension n. We denote by $\mathscr{D}(M)$ the function space of complex valued C^{∞} functions on M with compact support. The space of C^{∞} functions on M is denoted by $\mathscr{E}(M)$. If M is an open set in \mathbb{R}^n and $x=(x_1,\dots,x_n)$ is in M, we denote by D^{α} with multi-index $\alpha=(\alpha_1,\dots,\alpha_n)$ of non negative integers and $D_j=\frac{1}{i}\frac{\partial}{\partial x_j}$ the differential operator $D_1^{\alpha_1}D_2^{\alpha_2}\cdots D_n^{\alpha_n}$. For the other notations for various distribution spaces, we follow the notations in \mathbb{L} . Schwartz [1] and \mathbb{A} . Grothendieck [2].

DEFINITION 1. A continuous linear mapping P from $\mathscr{O}(M) \widehat{\otimes} \mathscr{T}'(R^1)$ into $\mathscr{E}(M) \widehat{\otimes} \mathscr{T}'(R^1)$ will be called a β -pseudo-differential operator if there exists a sequence $\{z_j = s_j + it_j\}_{j=0,1,2,3,\ldots}$ of complex numbers with decreasing real parts $s_0 > s_1 > s_2 > \to -\infty$ such that, for all $f \in \mathscr{D}(M)$ and $g \in \mathscr{E}(M)$ which is real valued with $dg \neq 0$ on supp f, there is an asymptotic expansion

(1)
$$e^{-i\lambda(\rho g+s\sigma)}P(fe^{i\lambda(\rho g+s\sigma)}) \sim \sum_{j=0}^{N-1} p_j(f; \rho g, x, \sigma)\hat{\lambda}^{ij}$$

which has the following property:

 $e^{-i\lambda(\rho g+\sigma s)}P(fe^{i\lambda(\rho g+\sigma s)})$ is independent of s and, for any integer N>0 and compact set \mathcal{K} of real functions g in $\mathcal{E}(M)$ with $dg\neq 0$ on supp f,

(2)
$$\lambda^{-s_N}(e^{-i\lambda(\rho g+s\sigma)}P(fe^{i\lambda(\rho g+s\sigma)}) - \sum_{j=0}^{N-1}p_j(f; \rho g, x, \sigma)\lambda^{ij})$$

remains bounded in $\mathscr{E}(M\times S)$ with $S=\{(\rho,\sigma)\in R^2\mid 1/2\leq \rho^2+\sigma^2\leq 2\}$. We call the formal sum

$$\sigma_P(f,g) = \sum_{j=0}^{\infty} p_j(f; \rho g, x, \sigma) \lambda^{z_j}$$

the symbol of P.

PROPOSITION 2. Put

$$p(f; \rho g; x, \sigma, \lambda) \otimes 1 = e^{-i\lambda(\rho g + \sigma s)} P(f e^{i\lambda(\rho g + \sigma s)})$$
.

Then, $P(f, \rho g; x, \sigma, \lambda)$ is an $\mathcal{E}(M \times S)$ valued C^{∞} function in λ .

PROOF. Since $fe^{i\lambda(\rho g + \sigma s)}$ is a $\mathscr{D}(M) \widehat{\otimes} \mathscr{S}'(R^1)$ valued C^{∞} function of λ , ρ and σ in $R^1 \times S$, $P(fe^{i\lambda(\rho g + \sigma s)})$ is an $\mathscr{E}(M) \widehat{\otimes} \mathscr{S}'(R^1)$ valued C^{∞} function of λ , ρ and σ . $e^{-i\lambda(\rho g + \sigma s)}$ is also an $\mathscr{E}(M) \widehat{\otimes} \mathscr{C}_M$ valued C^{∞} function of λ , ρ , and σ . The multiplication of functions is a hypocontinuous bilinear mapping from $(\mathscr{E}(M) \widehat{\otimes} \mathscr{C}_M) \times (\mathscr{E}(M) \widehat{\otimes} \mathscr{S}'(R^1))$ to $\mathscr{E}(M) \widehat{\otimes} \mathscr{S}'(R^1)$. Thus $p(f, \rho g; x, \sigma, \lambda) \otimes 1_s = e^{-i\lambda(\rho g + \sigma s)} P(fe^{i\lambda(\rho g + \sigma s)})$ is an $\mathscr{E}(M) \widehat{\otimes} \mathscr{S}'(R^1)$ valued C^{∞} function of λ , ρ and σ . For any $\varphi \in \mathscr{F}(R^1)$ with $\int_{\mathbb{R}^1} \varphi(s) ds = 1$,

$$p(f; \rho g, x, \sigma, \lambda) = \langle e^{-i\lambda(\rho g + \sigma s)} P(f e^{i\lambda(\rho g + \sigma s)}), \varphi \rangle$$

is an $\mathcal{E}(M)$ valued C^{∞} function of λ , ρ and σ . This proves Proposition 2.

REMARK 3. If f runs in a bounded set of $\mathscr{D}(M)$, the asymptotic expansion is uniform in f. In fact, the mappings $\Psi_{N,\theta,g,g,\delta,\lambda}$ defined by

$$\varPsi_{N,\rho,g,\sigma,\lambda}(f) = \lambda^{-s_N}(e^{-i\lambda(\rho g + \sigma s)}P(fe^{i\lambda(g\rho + s\sigma)}) - \sum_{j=0}^{N-1} p_j(f; \rho g, x, \sigma)\lambda^{ij})$$

are continuous linear mappings from $\mathscr{D}(M)$ into $\mathscr{E}(M\times S)$. These mappings constitute a bounded set in $L_{\mathfrak{s}}(\mathscr{D}(M), \mathscr{E}(M\times S))$. Since $\mathscr{D}(M)$ is a barrelled space, this set is equi-continuous.

In the following we shall treat the case that M is an open subset Ω (not necessarily connected) of \mathbb{R}^n . In this case, for any f in $\mathcal{D}(\Omega)$, we shall define

$$p(f, x, \xi, \sigma) = e^{-i(x \cdot \xi + s\sigma)} P(f e^{i(x \cdot \xi + s\sigma)})$$

and

$$p_{j}(f, x, \xi, \sigma) = p_{j}(f, x \cdot \xi; x, \sigma), \quad j = 0, 1, 2, \dots$$

PROPOSITION 4.

 $p(f, x, \xi, \sigma)$ is in $\mathcal{E}(\Omega) \widehat{\otimes}_{\mathcal{L}_M}(\mathbf{R}^{n+1})$.

 $p_j(f, x, \xi, \sigma) \in \mathcal{E}(\Omega) \hat{\otimes} \mathcal{E}(\mathbf{R}^{n+1} - \{0\})$ and p_j is homogeneous in (ξ, σ) of degree z_j . Moreover, for arbitrary multi-index α_1 and any integer α_2 , the set

$$(3) \qquad (|\xi|+|\sigma|)^{-\epsilon_N+|\alpha_1|+\alpha_2}D_{\xi}^{\alpha_1}D_{\sigma}^{\alpha_2}(p(f,x,\xi,\sigma)-\sum_{j=0}^{N-1}p_j(f,x,\xi,\sigma))$$

is bounded in $\mathcal{E}(\Omega)$, when $|\xi| + |\sigma| \to \infty$.

PROOF. The fact that $p(f, x, \xi, \sigma)$ is in $\mathscr{E}(\Omega) \widehat{\otimes} \mathscr{E}(\mathbf{R}^{n+1})$ can be proved in the same way as in Proposition 1. Let ξ satisfy $1/2 \le |\xi| \le 2$, then

$$\lambda^{-s_N} \left[p(f, x, \lambda \rho \xi, \lambda \sigma) - \sum_{j=0}^{N-1} p_j(f, x, \rho \xi, \sigma) \lambda^{z_j} \right]$$

remains bounded in $\mathscr{E}(\Omega \times S)$ uniformly in λ and ξ . Therefore for any $\alpha \geq 0$, the set

$$\lambda^{-s_N} \left[D_\sigma^\alpha p(f, x, \lambda \rho \xi, \lambda \sigma) - \sum_{j=0}^{N-1} D_\sigma^\alpha p_j(f, x, \rho \xi, \sigma) \lambda^{s_j} \right]$$

is bounded in $\mathcal{E}(\Omega \times S)$ uniformly in λ and ξ . Thus $D_{\sigma}^{\alpha}p_{j}(f, x, \rho \xi, \sigma)$ is an $\mathcal{E}(\Omega \times S)$ -valued continuous function in ξ .

Differentiability of $p(f, x, \rho \xi, \sigma)$ gives

(4)
$$-i\frac{\partial p(f,x,\rho\xi,\sigma)}{\partial \rho\xi_i} = -x_j p(f,x,\rho\xi,\sigma) + p(x_j f,x,\rho\xi,\sigma) .$$

Both $x_j p(f, x, \lambda \rho \xi, \lambda \sigma)$ and $p(x_j f, x, \lambda \rho \xi, \lambda \sigma)$ admit asymptotic expansion in λ in $\mathcal{E}(\Omega \times S)$, uniformly in ξ . So that,

(5)
$$\lambda^{-s_N} \left(D_{\rho\xi}^{\beta} p(f, \lambda \rho \xi, \lambda \sigma) - \sum_{0}^{N-1} p_j(f, x, \lambda \rho \xi, \lambda \sigma) \right)$$

also admits asymptotic expansion in $\mathscr{E}(M\times S)$ uniformly in ξ . We show that the expansion of (5) does not contain any term of positive power in λ . If $\beta=0$, this is assumed. So, considered as a $\mathscr{D}'(M\times S\times \{1/2\leq |\xi|^2\leq 1\})$ -valued function in λ , (5) is bounded. Therefore, it does not contain any term of positive power in λ . This implies that (5) is bounded in $\mathscr{E}(M\times S)$ uniformly in ξ . Thus $D^\beta_{\rho\xi}p_N(f,x,\rho\xi,\sigma)$ is a $\mathscr{E}(M\times S)$ valued continuous function in ξ . This implies that $p_j(f,x,\rho\xi,\sigma)$ is in $\mathscr{E}(M\times S\times \{1/2\leq |\xi|^2\leq 2\})$ thus $p_j(f,x,\xi,\rho)$ is in $\mathscr{E}(M\times \{|\xi|^2+|\sigma|^2=1\})$. Since (5) is bounded in $\mathscr{E}(M\times S)$ uniformly in ξ,λ,f ,

$$\lambda^{-s} {\rm N} \bigg(D_{\sigma}^{\sigma 2} D_{\rho \xi}^{\sigma 1} p(f, \lambda \xi \rho, \lambda \sigma) - \sum\limits_{0}^{N-1} D_{\rho \xi}^{\sigma 1} D_{\sigma}^{\sigma 2} p_{j}(f, x, \lambda \rho \xi, \lambda \sigma) \bigg)$$

is bounded uniformly in ξ , λ .

Introducing $\lambda \xi \rho$ and $\lambda \sigma$ as new variables instead of $\rho \xi$, σ , we have the desired estimate.

Now we can prove that

$$p(f, x, \xi, \sigma) \in \mathcal{E}(\Omega) \widehat{\otimes}_{C_M}(\mathbf{R}^{n+1})$$
.

Let $\varphi \in \mathscr{E}(\mathbf{R}^{n+1})$ and $\varphi \equiv 1$ if $|\xi|^2 + |\sigma|^2 > 1$, $\varphi \equiv 0$ in some neighbourhood of 0. Then

$$\varphi(\xi,\sigma)p_{\theta}(f,x,\xi,\sigma)\in\mathscr{E}(\Omega)\widehat{\otimes}\mathscr{O}_{M}(\mathbf{R}^{n+1})$$
.

On the other hand the estimate proved above implies that

$$p(f, x, \xi, \sigma) - \varphi(\xi, \sigma) p_0(f, x, \xi, \sigma) \in \mathcal{E}(\Omega) \widehat{\otimes}_{\mathcal{O}_M}(\mathbf{R}^{n+1})$$
.

Thus we have

$$p(f, x, \xi, \sigma) \in \mathscr{C}(\Omega) \widehat{\otimes} \mathscr{C}_{M}(\mathbf{R}^{n+1})$$
.

LEMMA 5. If φ is in $\mathscr{D}_{\mathscr{F}}(\Omega) \hat{\otimes} \mathscr{F}'(\mathbf{R}^1)$ and \mathscr{F} is compact in Ω , we have

$$P(\varphi) = (2\pi)^{-n-1} \int_{\mathbb{R}^{n+1}} p(f, x, \xi, \sigma) \hat{\varphi}(\xi, \sigma) e^{i(x\xi + s\sigma)} d\xi d\sigma ,$$

where $f \in \mathcal{D}(\Omega)$ with $f \equiv 1$ on \mathcal{F} . Here the integral is only the symbolic expression of the following fact:

$$\varphi(x,s) \in \mathscr{S}(\mathbf{R}^n) \widehat{\otimes} \mathscr{S}'(\mathbf{R}^1)$$
 so that $\widehat{\varphi}(\xi,\sigma) \in \mathscr{S}(\mathbf{R}^n) \widehat{\otimes} \mathscr{S}'(\mathbf{R}^1)$.

Since $p(f, x, \xi, \sigma) \in \mathcal{E}(\Omega) \widehat{\otimes}_{\mathcal{C}_M}(\mathbf{R}^{n+1})$, (see Proposition 4) and

$$C_M(\mathbf{R}^{n+1}) = C_M(\mathbf{R}^n) \widehat{\otimes} C_M(\mathbf{R}^1)$$
,

we have

$$p(f, x, \xi, \sigma)\hat{\varphi}(\xi, \sigma) \in \mathcal{E}(Q) \widehat{\otimes} \mathcal{F}(\mathbf{R}^n) \widehat{\otimes} \mathcal{F}'(\mathbf{R}^1)$$
.

In fact, the multiplication mapping

$$\begin{array}{c} (\mathscr{S}'(R^n) \otimes \mathscr{F}'(R^1)) \times (\mathscr{C}_M(R^n) \otimes \mathscr{C}_M(R^1)) \\ \downarrow \\ \mathscr{S}'(R^n) \otimes \mathscr{S}''(R^1) \end{array}$$

is a separately continuous bilinear mapping, where topologies in tensor products are projective topologies. Since $\mathcal{S}(\mathbf{R}^n) \otimes \mathcal{S}'(\mathbf{R}^1)$ and $\mathcal{O}_{\mathbf{M}}(\mathbf{R}^n) \otimes \mathcal{O}_{\mathbf{M}}(\mathbf{R}^1)$ are barrelled spaces (A. Grothendieck [2], Chap. I p. 44 cor.) this bilinear mapping is hypocontinuous. Therefore, we can prolong this and obtain a hypocontinuous bilinear

mapping,

$$(\mathscr{F}(R^n) \widehat{\otimes} \mathscr{F}'(R^1)) \times (\mathscr{C}_{\mathcal{M}}(R^n) \widehat{\otimes} \mathscr{C}_{\mathcal{M}}(R^1)) \to \mathscr{F}(R^n) \widehat{\otimes} \mathscr{F}'(R^1).$$

This proves

$$p(f, x, \xi, \sigma)\hat{\varphi}(\xi, \sigma) \in \mathscr{E}(\Omega) \widehat{\otimes} \mathscr{F}(\mathbf{R}^n) \widehat{\otimes} \mathscr{F}'(\mathbf{R}^1)$$
.

Expressing symbolically the Fourier inverse transform by integration, we have

$$(7) \qquad (2\pi)^{-n-1} \int_{\mathbb{R}^{n+1}} e^{i\langle x\cdot\xi+s\sigma\rangle} p(f,x,\xi,\sigma) \hat{\varphi}(\xi,\sigma) d\xi d\sigma$$

 $in \mathscr{E}(\Omega) \widehat{\otimes} \mathscr{F}(\mathbf{R}^n) \widehat{\otimes} \mathscr{F}'(\mathbf{R}^1).$

The bilinear mapping $\mathcal{E}(\Omega) \times \mathcal{F}(\mathbf{R}^n) \to \mathcal{E}(\Omega)$ defined by multiplication of functions induces a linear map from $\mathcal{E}(\Omega) \hat{\otimes} \mathcal{F}'(\mathbf{R}^n) \hat{\otimes} \mathcal{F}'(\mathbf{R}^1)$ into $\mathcal{E}(\Omega) \hat{\otimes} \mathcal{F}'(\mathbf{R}^1)$. The image of (7) by this map is what we express by the symbol

$$(2\pi)^{-n-1}\!\!\int_{\mathbb{R}^{n+1}}\!\!p(f,\,x,\,\xi,\,\sigma)\hat{\varphi}(\xi,\,\sigma)e^{i\,\langle x\cdot\xi+s\sigma\rangle}d\xi d\sigma\;.$$

PROOF OF THE LEMMA 5. We have only to prove the formula (6) when $\varphi = \phi_1(x) \otimes \phi_2(s)$ with $\phi_1 \in \mathcal{L}(\Omega)$, $\phi_2 \in \mathcal{L}(R^1)$. In this case,

$$\varphi = f \cdot \varphi = (2\pi)^{-n-1} \int_{\mathbb{R}^{n+1}} f(x) e^{i(z \cdot \xi + s\sigma)} \hat{\phi}_1(\xi) \otimes \hat{\phi}_2(\sigma) d\xi d\sigma \ .$$

This integral converges in $\mathscr{G}(\Omega) \widehat{\otimes} \mathscr{S}'(R^1)$, because this converges even in $\mathscr{G}(\Omega) \widehat{\otimes} L^{\infty}(R^1)$. Thus

$$P(\varphi) = P(f\varphi) = (2\pi)^{-n-1} \!\! \int_{\mathbb{R}^{n+1}} \!\! P(fe^{i\,(\mathbf{x}\cdot\boldsymbol{\xi}+\mathbf{s}\sigma)}) \hat{\phi}_1(\boldsymbol{\xi}) \otimes \hat{\phi}_2(\sigma) d\boldsymbol{\xi} d\sigma \ .$$

This, together with the definition of $p(f, x, \xi, \sigma)$, gives (6).

COROLLARY. If $\varphi = \phi_1 \otimes \phi_2$, $\phi_1 \in \mathcal{Q}(\Omega)$, $\phi_2 \in \mathcal{O}_M(\mathbf{R}^1)$, then we have

$$(8) \hspace{1cm} P(\varphi) = (2\pi)^{-n-1} \! \int_{\mathbb{R}^n} \! \hat{\phi}_1(\xi) e^{ix\cdot \xi} \! d\xi \! \int_{\mathbb{R}^1} \! p(f,\,x,\,\xi,\,\sigma) \hat{\phi}_2(\sigma) e^{i\,s\sigma} d\sigma \; ,$$

where the integral over R^1 means the coupling of functions $(1+\sigma^2)^{-l}e^{i\sigma s}$ in the space \mathscr{D}_{L^1} and distribution

$$p(f, x, \xi, \sigma)\hat{\phi}_2(\sigma)(1+\sigma^2)^l$$
 in the space \mathscr{B}' .

Especially,

$$(9) P(\phi \otimes e^{is\sigma}) = (2\pi)^{-n} \int_{\mathbb{R}^n} \hat{\phi}_1 e^{ix\cdot\xi} d\xi \int_{\mathbb{R}^1} p(f, x, \xi, \tau) \hat{\sigma}_{\sigma} e^{is\tau} d\tau$$

$$= (2\pi)^{-n} e^{is\sigma} \int_{\mathbb{R}^n} \hat{\phi}_1(\xi) p(f, x, \xi, \sigma) e^{ix\cdot\xi} d\xi.$$

COROLLARY. A β -pseudo-differential operator P maps $\mathcal{L}(M) \hat{\otimes} \mathcal{L}(R^1)$ into $\mathcal{E}(M) \hat{\otimes} \mathcal{L}(R^1)$ continuously.

§2. Fourier integral operators

Let $\Omega \subset \mathbb{R}^n$ be an open set. We denote by K a function in $\mathscr{E}(\Omega) \hat{\otimes} \mathscr{O}_M(\mathbb{R}^{n+1})$ such that there are functions $K_j(x, \xi, \sigma)$ in $\mathscr{E}(\Omega) \hat{\otimes} \mathscr{E}(\mathbb{R}^{n+1} - \{0\})$ which are positively homogeneous of degree $z_j = s_j + it_j$ in ξ, σ , with $s_j \to -\infty$ and that have the following property: for any multi-index α_i and non negative integers α_2 and N,

(10)
$$(|\xi| + |\sigma|)^{-sN + |\alpha_1| + \alpha_2} D_{\xi}^{\alpha_1} D_{\sigma}^{\alpha_2} \Big(K(x, \xi, \sigma) - \sum_{0}^{N-1} K_j(x, \xi, \sigma) \Big)$$

is bounded in $\mathscr{E}(\Omega)$, when $|\xi|+|\sigma|\to\infty$.

If $\varphi \in \mathscr{D}(\Omega) \widehat{\otimes} \mathscr{S}'(\mathbf{R}^1)$, we define

(11)
$$(K\varphi) = (2\pi)^{-n-1} \int_{\mathbb{R}^{n+1}} K(x,\xi,\sigma) \hat{\varphi}(\xi,\sigma) e^{i(x\cdot\xi+s\sigma)} d\xi d\sigma ,$$

where the integral has the same symbolic meaning as in Lemma 5. As stated in Lemma 5, K maps $\mathscr{Q}(\Omega) \widehat{\otimes} \mathscr{S}'(\mathbf{R}^1)$ continuously into $\mathscr{E}(\Omega) \widehat{\otimes} \mathscr{S}'(\mathbf{R}^1)$.

LEMMA 6. For any $f \in \mathcal{G}(\Omega)$, we have,

$$e^{-i\lambda(x\cdot\xi+s\sigma)}K(f(x)e^{i\lambda(x\cdot\xi+s\sigma)}) \sim \sum_{\alpha,i} \frac{1}{\alpha!} D^{\alpha}_{\xi\lambda}K_{i}(x,\,\xi\cdot\lambda,\,\sigma\cdot\lambda)D^{\alpha}_{x}f$$
.

More precisely

(12)
$$(|\lambda|^{-s_0+N} + |\lambda|^{-s_J}) \left(e^{-i\lambda(x\cdot\xi+s\sigma)} K(fe^{i\lambda(x\cdot\xi+s\sigma)}) - \sum_{|\alpha|\leq N} \sum_{j\in J} \frac{1}{|\alpha|} D^{\alpha}_{\xi\lambda} K_j(x,\lambda\xi,\lambda\sigma) D^{\alpha} f \right)$$

is bounded in $\mathscr{E}(\Omega \times S_2)$ with $S_2 = \{(\xi, \sigma) \in \mathbb{R}^{n+1}, 1/2 \le |\xi|^2 + \sigma^2 \le 2\}$. Moreover, the expansion is uniform if f remains bounded in $\mathscr{D}(\Omega)$.

PROOF. Since
$$e^{is\sigma\lambda} = 2\pi\delta(\tau - \lambda\sigma)$$
, we have

(13)
$$e^{-i\lambda(x\cdot\xi+s\sigma)}K(fe^{i\lambda(x\cdot\xi+s\sigma)})$$

$$=e^{-i\lambda x\cdot\xi}\int_{R^n}K(x,\,\eta,\,\lambda\sigma)\hat{f}(\eta-\lambda\xi)e^{ix\cdot\eta}d\eta$$

$$=\int_{R^n}K(x,\,\eta+\lambda\xi,\,\lambda\sigma)e^{ix\cdot\eta}\hat{f}(\eta)d\eta.$$

Let $x \in \Omega$ remain in a fixed compact set F. Then we have for any multiindex β ,

$$\begin{split} \left| D_x^{\beta} K(x, \, \eta + \lambda \xi, \, \lambda \sigma) - \sum_{|\alpha| < N} \frac{1}{\alpha!} D_{\xi \lambda}^{\alpha} D_x^{\beta} K(x, \, \lambda \xi, \, \lambda \sigma) \eta^{\alpha} \right| \\ \leq C |\eta|^N (1 + \lambda)^{s_0 - N}, \text{ if } |\eta| < \frac{\lambda}{4}, \end{split}$$

and $\leq C |\eta|^N$, for any η . Thus,

$$\begin{split} &\left| D_x^\beta(e^{-i\lambda(x\cdot\xi+s\sigma)}K(fe^{i\lambda(x\cdot\xi+s\sigma)})) - \sum_{|\alpha|\leq N} \frac{1}{\alpha!} D_{\lambda\xi}^\alpha D_x^\beta K(x,\lambda\xi,\lambda\sigma) D^\alpha f \right| \\ &\leq & C(1+\lambda)^{s_0-N} \!\! \int_{|\tau|<\lambda/4} \!\! |\hat{f}(\eta)| |\eta|^N d\eta + C \int_{|\tau|>\lambda/4} \!\! |\eta|^N \hat{f}(\eta) d\eta \\ &\leq & C(1+\lambda)^{s_0-N} \!\! \int_{\mathbb{R}^n} \!\! |\hat{f}(\eta)| |\eta|^N d\eta + C \int_{|\tau|>\lambda/4} \!\! |\eta|^{s_0-2N-n} |\eta|^N d\eta \\ &\leq & C(1+\lambda)^{s_0-N} \!\! \int_{\mathbb{R}^n} \!\! |\hat{f}(\eta)| |\eta|^N d\eta + C \int_{|\tau|>\lambda/4} \!\! (1+|\eta|)^{s_0-2N-n} |\eta|^N d\eta \\ &\leq & C(1+\lambda)^{s_0-N} \; . \end{split}$$

On the other hand, we have

(15)
$$\left| \sum_{|\alpha| < N} \frac{1}{\alpha!} D_x^{\beta} D_{\lambda\xi}^{\alpha} K(x, \lambda\xi, \lambda\sigma) D^{\alpha} f - \sum_{j < J} \sum_{\alpha} \frac{1}{\alpha!} D_{\lambda\xi}^{\alpha} D_x^{\beta} K_j(x, \lambda\xi, \lambda\sigma) D^{\alpha} f \right| \\ \leq C(1+\lambda)^{s_J}.$$

So that we have the expansion in the topology of $\mathscr{E}(\Omega) \widehat{\otimes} \mathscr{C}(S_2)$. To obtain expansion in $\mathscr{E}(\Omega) \widehat{\otimes} \mathscr{E}(S_2)$, note that

The kernel $D_{\hat{\epsilon}_j}K$ has the similar property to that of K. Therefore repeating these processes, we see that

$$\begin{split} (\lambda^{-s_0+N} + \lambda^{-s_J}) & \bigg[D_{\xi}^{\alpha_1} D_{\sigma}^{\alpha_2} e^{-i\lambda(x\cdot\xi+s\sigma)} K(f e^{i\lambda(x\cdot\xi+s\sigma)}) \\ & - \sum_{|\alpha| < N} \sum_{j \in J} \frac{1}{\alpha!} D_{\xi}^{\alpha_1} D_{\sigma}^{\alpha_2} D_{\lambda\xi}^{\alpha} K_j(x, \lambda\xi, \lambda\sigma) D^{\alpha} f \bigg] \end{split}$$

admits an asymptotic expansion in $\mathscr{E}(\Omega)$ which is uniform in $\xi, \sigma \in S_2$. We can prove that this doesn't contain any term of positive power in λ by the same method used in the proof of Proposition 4. Therefore, we can prove that

$$\begin{split} (\lambda^{-s_0+N} + \lambda^{-s_J}) & \bigg[D_{\xi}^{\alpha_1} D_{\sigma}^{\alpha_2} (e^{-i\lambda(x \cdot \xi + s\sigma)} K(f e^{i\lambda(x \cdot \xi + s\sigma)}) \\ & - \sum_{|\alpha| < N} \sum_{j \in J} \frac{1}{\alpha!} D_{\lambda \xi}^{\alpha} K_j(x, \lambda | \xi, \lambda \sigma) D^{\alpha} f) \bigg] \end{split}$$

is uniformly bounded in $\mathscr{C}(\Omega)$. This completes the proof.

The following lemma is due to Hörmander [3].

LEMMA 7. Let B_0 be a bounded subset of $\mathcal{G}(\Omega)$, and let B be a bounded set of $\mathcal{E}(\Omega)$ with only real elements. If c is an upper bound for $|\operatorname{grad} h|$ in $\operatorname{supp} f$ when $f \in B_0$ and $h \in B$, then, for every positive integers N and k, there is a constant C such that

(16)
$$\left| \int_{\mathbb{R}^n} f\left(e^{i\lambda h} - \sum_{0}^{k-1} \frac{1}{j!} (i\lambda h)^j\right) (i\lambda h)^{-k} e^{-ix\cdot\xi} dx \right| \leq C|\xi|^{-N},$$

if $|\xi| > 2\lambda c$. When N=0, the estimate holds for all $\xi \in \mathbb{R}^n$.

Using this, we can prove

THEOREM 8. If K satisfies (10), the operator K defined by (11) is a β -pseudo-differential operator of order s_0 . The symbol of K is given by

(17)
$$\sigma_K(f,g) = \sum_{\alpha,i} \frac{1}{\alpha!} D^{\alpha}_{\lambda\rho\xi} K_j(x,\lambda\rho\xi_z,\lambda\sigma) D^{\alpha}(fe^{ih_z\rho\lambda}) ,$$

where

$$\xi_x = \operatorname{grad} g(x)$$
. $h_x(y) = g(y) - g(x) - \langle y - x, \xi_x \rangle$.

PROOF. Let $F \subset \Omega$ be compact, B and B_0 be bounded sets of $\mathscr{C}(\Omega)$ and $\mathscr{T}(\Omega)$, respectively, such that, when $g \in B$ and $f \in B_0$, we have $|dg| \ge c > 0$ which is independent of f and g. We wish to study

$$e^{-i\lambda(
ho g+s\sigma)}K(fe^{i\lambda(
ho g+s\sigma)})$$
 , $(
ho,\sigma)\in S$

$$S = \left\{ (\rho, \sigma) \in \mathbf{R}^2 \colon \frac{1}{2} \leq \rho^2 + \sigma^2 \leq 2 \right\} .$$

We may assume that for any f in B_0 support f is contained in F.

At first we also require that

(18)
$$|\operatorname{grad} g(x) - \operatorname{grad} g(y)| \le \frac{1}{4} |\operatorname{grad} g(x)|$$

for any $x, y \in F$, $g \in B$. This hypothesis will be removed at the end of the proof. Let $x \in F$, $\xi_x = \operatorname{grad} g(x)$ and $h_x(y) = g(y) - g(x) - \langle y - x, \xi_x \rangle$, then $h_x(y)$ vanishes to the second order at x. The function $u_\lambda = f e^{i\lambda(\rho g + t\sigma)}$ can be written as

(19)
$$u_{\lambda}(y, t, \rho, \sigma) = \left[f(y) e^{i\lambda(\rho g(x) + \epsilon y - x, \rho \xi_{x})} \sum_{0}^{k-1} \frac{1}{j!} (i\lambda \rho h_{x}(y))^{j} + e^{i\lambda\rho g(x)} R_{\lambda}(y) \right] e^{i\lambda\sigma t}.$$

Where $R_{\lambda}(y) = R_{\lambda}(y, \rho)$ is the remainder term which we shall study later. Hence

(20)
$$e^{-i\lambda(g\rho+s\sigma)}K(u_{\lambda})(x, \rho, \sigma, \lambda) = \sum_{j=0}^{k-1} \frac{1}{j!} e^{-i\lambda(\rho x \cdot \xi+s\sigma)}K(f \cdot (i\lambda\rho h_{x}(y))^{j}e^{i(\psi\rho\xi+\sigma t)}) + e^{-i\lambda\sigma s}K(R_{\lambda}(y, \rho))e^{i\lambda\sigma t},$$

 $(1/2)C\lambda \le \lambda(|\rho\xi|+|\sigma|)\le 2(C+1)\lambda$, $f(\rho h_z)^j$ remains bounded uniformly in ρ . So, by Lemma 6, the sum in (20) admits an asymptotic expansion in $\mathscr{E}(\Omega \times S)$ which is given by

$$\sum_{l=0}^{k-1} \frac{1}{l!} \sum_{j,\alpha} \frac{1}{\alpha!} D_{\lambda\rho\xi}^{\alpha} K_{j}(x,\lambda\rho\xi,\lambda\sigma) D^{\alpha}(f(i\lambda\rho h_{x})^{l}) \ .$$

Since $D^{\alpha}(f(i\lambda\rho h_x))$ vanishes for $\alpha < 2l$, if k is sufficiently large the terms in this sum involving λ to a power larger than any given number will be the same as those in the formal sum

$$\sum_{\alpha, b} \frac{1}{\alpha!} D^{\alpha}_{\lambda \rho \xi} K_j(x, \lambda \rho \xi, \lambda \sigma) D^{\alpha}(f e^{i \lambda \rho h_x})$$
.

Hence to prove the theorem we have only to estimate the error term $e^{-i\lambda\sigma s}K(R_{\lambda}e^{i\lambda\sigma t})$ with

(21)
$$R_{\lambda}(y) = e^{i\lambda(\rho\sigma(y) - \rho\sigma(x))} f(y) - f(y) e^{i\lambda \cdot y - x, \rho \xi_{x}} \sum_{j=0}^{k-1} \frac{1}{j!} (i\lambda \rho h_{x}(y))^{j}$$
$$= e^{i\lambda\rho(y-x,\xi)} f(y) F_{\lambda}(y,\rho) (i\lambda \rho h_{x})^{k},$$

where

(22)
$$F_{\lambda}(y,\rho) = \left[e^{i\lambda\rho h_x} - \sum_{j=0}^{k-1} \frac{1}{j!} (i\lambda\rho h_x)^j\right] (i\lambda\rho h_x)^{-k}.$$

Note that $(h_x)^k$ vanishes to the order 2k at x. So we have

$$f(y)(ih_x)^k = \sum_{|\alpha|=2k} H_{\alpha}(y)(y-x)^{\alpha}$$

for suitable H_{α} which can be chosen in a bounded set in $\mathscr{G}(\Omega)$ for all x in F and all $f \in B_0$ and $g \in B$.

Let
$$G_{\alpha}(y; \lambda, \rho) = F_{\lambda}(y, \rho) H_{\alpha}(y)$$
, then

(23)
$$|\hat{G}_{\alpha}(\xi; \lambda, \rho)| \leq C|\xi|^{-N}, \text{ if } |\xi| \geq \frac{1}{2} \lambda \rho |\xi_x|.$$

In fact, if $|\xi| \ge (1/2)\lambda \rho |\xi_x|$, then by (18)

$$|\operatorname{grad} h_x| = |\operatorname{grad} g(y) - \xi_x| \le \frac{1}{4} |\xi_x|.$$

By Lemma 7 we have (23). When N=0, (23) holds for any ξ .

$$\hat{R}_{\lambda}(\xi,\,\rho) = (2\pi)^n (\lambda\rho)^k e^{-i\,\lambda\rho\,(x\,\cdot\,\xi)} \sum_{|\alpha|=2k} (-D_{\xi} - x)^\alpha \hat{G}_{\alpha}(\xi - \lambda\rho\xi_x;\,\,\lambda,\,\rho) \ .$$

Therefore we have

$$e^{-i\lambda\sigma s}K(R_{\lambda}(y)e^{i\lambda\sigma s})$$

$$=e^{-i\lambda\sigma s}(\lambda\rho)^{k}\int_{R^{n+1}}K(x,\xi,\tau)e^{-i\lambda\rho z\cdot\xi}\sum_{|\alpha|=2k}(-D_{\xi}-x)^{\alpha}\hat{G}_{\alpha}(\xi-\lambda\xi_{x}\rho;\lambda,\rho)$$

$$(24) \qquad \otimes\delta(\tau-\lambda\sigma)e^{i(x\cdot\xi+s\tau)}d\xi d\tau$$

$$=(\lambda\rho)^{k}\int_{R^{n}}K(x,\xi,\lambda\sigma)e^{ix\cdot(\xi-\lambda\rho\xi_{x})}\sum_{|\alpha|=2k}(-D_{\xi}-x)^{\alpha}\hat{G}_{\alpha}(\xi-\lambda\xi_{x}\rho;\lambda,\rho)d\xi$$

$$=(\lambda\rho)^{k}\int_{R^{n}}K(x,\xi+\lambda\rho\xi_{x},\lambda\sigma)e^{ix\cdot\xi}\sum_{|\alpha|=2k}(-D_{\xi}-x)^{\alpha}\hat{G}_{\alpha}(\xi;\lambda,\rho)d\xi$$

$$=(\lambda\rho)^{k}\int_{R^{n}}\sum_{|\alpha|=2k}(D_{\xi}^{\alpha}K(x,\xi+\lambda\rho\xi_{x},\lambda\sigma))e^{ix\cdot\xi}\hat{G}_{\alpha}(\xi;\lambda,\rho)d\xi.$$

If $\rho \ge 1/4$, using (23) and (24), we have

$$(25) \quad e^{-i\lambda\sigma s}K(R_{\lambda}(y,\rho)e^{i\lambda\sigma s})(x,\lambda,\rho,\sigma)$$

$$\leq C(\lambda\rho)^{k}\int_{|\xi|\geq (1/2)\lambda\rho|\xi_{x}|} |\xi|^{-N}d\xi + C(\lambda\rho)^{k}\int_{|\xi|< (1/2)\lambda\rho|\xi_{x}|} (|\xi_{x}\lambda\rho| + |\lambda\sigma|)^{s_{0}-2k}d\xi$$

$$\leq C(\lambda\rho)^{k}[(\lambda\rho|\xi_{x}|)^{-N+n} + (|\xi_{x}|\lambda\rho)^{s_{0}+n-2k}]$$

$$\leq C\left(\left(\frac{\lambda c}{4}\right)^{-N+n+k} + \left(\frac{\lambda c}{4}\right)^{n-k}\right) \quad \text{uniformly in } \rho,\sigma.$$

And if $\rho < 1/4$, then $\sigma > 1/4$ and we have for large k,

$$\sum_{|\alpha|=2k} |D_{\xi}^{\alpha} K(x, \xi + \lambda \rho \xi_{x}, \lambda \sigma)| \leq C(1 + |\xi + \lambda \rho \xi_{x}| + |\lambda \sigma|)^{s_{0}-2k}$$

$$\leq C(|\xi + \lambda \rho \xi_{x}| + |\lambda \sigma|)^{s_{0}-2k}.$$

So that

(26)
$$e^{-i\lambda\sigma s}K(R_{\lambda}(y,\rho)e^{i\lambda\sigma t})$$

$$\leq C(\lambda\rho)^{k}\int_{R^{n}}(|\xi+\lambda\rho\xi_{x}|+|\lambda\sigma|)^{s_{0}-2k}d\xi$$

$$\leq C(\lambda\rho)^{k}\int_{R^{n}}(|\xi|+|\lambda\sigma|)^{s_{0}-2k}d\xi$$

$$\leq C(\lambda\rho)^{k}(\lambda\sigma)^{s_{0}-2k+n}\int_{R^{n}}(1+|\xi|)^{s_{0}-2k}d\xi$$

$$\leq C(\lambda\sigma)^{s_{0}-k+n}$$

$$\leq C(2\lambda)^{s_{0}-k+n} \qquad \text{uniformly in } \rho, \sigma.$$

(25) and (26) imply that the asymptotic expansion holds in $\mathcal{E}(\Omega \times S)$ topology. Next we shall prove that the expansion holds in $\mathcal{E}(\Omega \times S)$ topology. From (11) we have

(27)
$$D_j K(\varphi) = K_{(j)}(\varphi) + K(D_j \varphi) ,$$

where $K_{(j)}$ is the operator with the kernel $D_jK(x,\xi,\sigma)$. Hence we have

$$\begin{split} D_{j}(e^{-i\lambda(\varrho g+s\sigma)}K(fe^{i\lambda(\varrho \rho+s\sigma)})) \\ &= -\lambda \rho \frac{\partial g}{\partial x_{j}} \, e^{-i\lambda(\varrho \rho+s\sigma)}K(fe^{i\lambda(\varrho \rho+s\sigma)}) \\ &+ e^{-i\lambda(\varrho \rho+s\sigma)} \bigg[(K(D_{j}f)e^{i\lambda(\varrho \rho+s\sigma)}) + \lambda \rho K \bigg(f \, \frac{\partial g}{\partial x_{j}} \, e^{i\lambda(\varrho \rho+s\sigma)} \bigg) \\ &+ K_{(j)}(fe^{i\lambda(\varrho \rho+s\sigma)}) \, \bigg] \, . \end{split}$$

Therefore, $D_j(e^{-i\lambda(g\rho+s\sigma)}K(fe^{i\lambda(g\rho+s\sigma)}))$ admits an asymptotic expansion in $\mathscr{C}^*(\Omega\times S)$ topology. Since the differentiation is continuous in $\mathscr{C}'(\Omega\times S)$ this is the formal differentiation of $e^{-i\lambda(g\rho+s\sigma)}K(fe^{i\lambda(g\sigma+s\sigma)})$.

(29)
$$D_{\rho}e^{-i\lambda(g\rho+s\sigma)}K(fe^{i\lambda(g\rho+t\sigma)}) = -\lambda ge^{-i\lambda(g\rho+s\sigma)}K(fe^{i(\rho g+s\sigma)}) + \lambda e^{i\lambda(g\rho+s\sigma)}K(fge^{i\lambda(\rho g+s\sigma)}).$$

Therefore similar argument is valid for

$$D_{\rho}e^{-i\lambda(g\rho+s\sigma)}K(fe^{i\lambda(g\rho+s\sigma)})$$
 .

If $\varphi \in \mathcal{D}(\Omega)$, there holds

(30)
$$K(\varphi \otimes e^{is\sigma}) = (2\pi)^{-n-1} \int_{\mathbb{R}^{n+1}} e^{i(x\cdot\xi+s\tau)} K(x,\xi,\tau) \hat{\varphi}(\xi) 2\pi \hat{\sigma}(\tau-\sigma) d\tau d\xi$$
$$= (2\pi)^{-n} e^{is\sigma} \int_{\mathbb{R}^n} e^{ix\cdot\xi} K(x,\xi,\sigma) \hat{\varphi}(\xi) d\xi .$$

So we have

$$\begin{split} D_{\sigma}[e^{-is\sigma}K(\varphi \otimes e^{is\sigma})] &= (2\pi)^{-n} \int_{\mathbb{R}^n} e^{iz\xi} D_{\sigma}K(x,\xi,\sigma) \hat{\varphi}(\xi) d\xi \\ &= e^{-is\sigma}(D_{\sigma}K) (\varphi \otimes e^{is\sigma}) \; . \end{split}$$

Here $(D_{\sigma}K)$ is the operator with the Kernel $D_{\sigma}K(x,\xi,\sigma)$. Hence we have

$$D_{\sigma}e^{-i\lambda(g\rho+s\sigma)}K(fe^{i\lambda(g\rho+s\sigma)})=e^{-i\lambda(g\rho+s\sigma)}(D_{\sigma}K)(fe^{i\lambda(g\rho+s\sigma)}).$$

Therefore we can apply to this case the argument used in treating (28) and (29). Repeating this process, we can prove Theorem 8 under the hypothesis (18).

Finally we must remove the hypothesis (18). At any point x_0 in F, there exists a relatively compact open neighbourhood U_z , with the following properties:

- (31) For any $g \in B$, there is a function $g_{x_0} \in C^{\infty}(\Omega)$ such that
- (32) $g_{x_0} = g + \text{const. on } U_{x_0}$, $| \text{grad } g_{x_0}(x) \text{grad } g_{x_0}(y) | < \frac{1}{4} | \text{grad } g_{x_0}(x) |$, for any x, y in F.

To prove this, we shall introduce a function $\varphi_n(x) = \varphi(n(x-x_0))$ where $\varphi(z)$ is a C_0^{∞} function which is identically one in some neighbourhood of the origin and has its support in the unit ball. We have the estimate

(33)
$$|\operatorname{grad} \varphi_n(x)| \leq C \cdot n$$
.

Now define a function

$$g_n(x) = \varphi_n(x) (g(x) - g(x_0)) + (1 - \varphi_n(x)) \langle \xi_{x_0}, x - x_0 \rangle$$

where $\xi_{x_0} = \operatorname{grad} g(x_0)$. Then

$$\begin{aligned} \operatorname{grad} g_n(x) = & \varphi_n(x) \operatorname{grad} g(x) + (1 - \varphi_n(x)) \xi_{x_0} \\ & + (g(x) - g(x_0)) \operatorname{grad} \varphi_n(x) - \langle \xi_{x_0}, x - x_0 \rangle \operatorname{grad} \varphi_n(x) \\ & | \xi_{x_0} - \operatorname{grad} g_n(x) | \leq | \varphi_n(x) (\operatorname{grad} g(x) - \xi_{x_0}) \end{aligned}$$

$$= \operatorname{grad} g_n(x) \mid \leq \mid \varphi_n(x) | \operatorname{grad} g(x) - \langle \varepsilon_{x_0} \rangle + \langle g(x) - g(x_0) - \langle \varepsilon_{x_0} \rangle - \langle \varepsilon_{x_0} \rangle \right) \operatorname{grad} \varphi_n(x) \mid .$$

Since the support of φ_n is contained in the sphere $|x-x_0| \le 1/n$, we have

$$\mid \xi_{x_0} - \operatorname{grad} g_n(x) \mid \leq 0 \left(\frac{1}{n} \right)$$
 uniformly for $g \in B$ and for $x \in F$.

Therefore for our purpose we have only to choose large n and define $g_{z_0}=g_n$. Because F is compact, we can choose a finite open covering $\{U_j\}_{j=1}^J$, functions $g_j \in \mathcal{E}(\Omega)$ and constants a_j such that $|dg_j| > C$ and $g_j = g + a_j$ on U_j and g_j satisfies hypothesis (18), that is,

$$(18)' \qquad |\operatorname{grad} g_j(x) - \operatorname{grad} g_j(y)| \leq \frac{1}{4} |\operatorname{grad} g_j(x)|, \quad \forall x, y \in F.$$

Let $\{\phi_i\}$ be a C_i^{∞} partition of unity subordinate to the covering $\{V_i\}$ which is a star refinement of $\{U_i\}$. Then,

$$(34) \qquad e^{-i\lambda(g\rho+s\sigma)}K(fe^{i\lambda(g\rho+s\sigma)}) = \sum_{j,k}^{J} e^{-i\lambda(g\rho+s\sigma)}\phi_kK(\phi_jfe^{i\lambda(g\rho+s\sigma)}) \ .$$

If $\operatorname{supp} \phi_j \cap \operatorname{supp} \phi_k \neq \phi$, then both $\operatorname{supp} \phi_j$ and $\operatorname{supp} \phi_k$ are contained in an open set U_t . Therefore

(35)
$$e^{-i\lambda \cdot g\rho + s\sigma} \phi_k K(\phi_i f e^{i\lambda (g\rho + s\sigma)}) = e^{-i\lambda (g\rho + s\sigma)} \phi_\nu K(\phi_i f e^{i\lambda \cdot g\rho + s\sigma}).$$

Since g_i satisfies (18)', (35) admits an asymptotic expansion in λ in $\mathscr{E}(Q \times S)$. If $\operatorname{supp} \phi_j \cap \operatorname{supp} \phi_k = \phi$, then we have

$$(36) \qquad e^{-i\lambda(\rho g+s\sigma)}\phi_{k}K(\phi_{j}fe^{i\lambda(\rho g+s\sigma)}) = e^{-i\lambda\rho(g-g_{j}+s_{j})}\phi_{k}e^{-i\lambda(g_{j}\rho+s\sigma)}K(\phi_{j}fe^{i\lambda(\rho g_{j}+s\sigma)}) \ .$$

Since g_1 satisfies (18)

$$\phi_k e^{-i\lambda(g_j\rho_j+s\sigma)}K(\phi_i f e^{i\lambda(g\rho+s\sigma)})$$

admits the asymptotic expansion (17) with $K_j = \phi_k K_j$ and $f = \phi_j f$. Therefore for any integer $N \ge 0$,

(37)
$$\lambda^{-N}(e^{-i\lambda\rho(g-g_j+a_j)}\phi_k e^{-i\lambda(g_j\rho+s\rho)}K(\phi_j f e^{i\lambda(g_j\rho+s\rho)})$$

is bounded in $\mathscr{E}(\Omega \times S)$. This, together with (34), (35) and (36) completes our proof. If $u \in \mathscr{S}(\mathbb{R}^k)$, we introduce for any real s, the norm

(38)
$$||u||_{s} = ||u||_{H^{s}(\mathbb{R}^{k})} = (2\pi)^{-n/2} \left[\int |\hat{u}(\eta)|^{2} (1+|\eta|)^{2s} d\eta \right]^{1/2}.$$

THEOREM 9. If K is the operator given by (11), then for any fixed $\varphi \in \mathcal{D}(\Omega)$ and $a \in \mathbb{R}$, there exists a constant C such that for any $u \in \mathcal{D}(\Omega) \widehat{\otimes} \mathcal{S}(\mathbb{R}^1)$,

$$(39) \qquad ||e^{-i(z\cdot\xi+s\sigma)}\varphi K(e^{i(x\cdot\xi+s\sigma)}u)||_{H^{a-s_0}(\mathbb{R}^{n+1})} \leq C(1+|\xi|+|\sigma|)^{+s_0}||u||_{H^{a}(\mathbb{R}^{n+1})}.$$

Besides this, if $s_0 \le 0$, there holds for $\forall b \in [s_0, -s_0]$

(40)
$$||e^{-i(x+\xi+s\sigma)}\varphi K(e^{i(x+\xi+s\sigma)}u)||_{H^{a+b}(\mathbb{R}^{n+1})} \leq C(1+|\xi|+|\sigma|)^{b}||u||_{H^{a}(\mathbb{R}^{n+1})} .$$

PROOF. First we shall prove with $a_1+b_1=s_0$ the inequality

$$(41) \qquad |\langle e^{-i\langle x,\xi+s\sigma\rangle}K(e^{i\langle x,\xi+s\sigma\rangle}u),\varphi v\rangle| \leq C(1+|\xi|+|\sigma|)^{s}||u||_{H^{\alpha}(\mathbb{R}^{n+1})}||v||_{H^{b}(\mathbb{R}^{n+1})}$$

holds for any $v \in \mathscr{S}(\mathbb{R}^{n+1})$. We have

(42)
$$\langle e^{-i(x\cdot\xi+s\sigma)}K(e^{i(x\cdot\xi+s\sigma)}u), \varphi v \rangle$$

$$= (2\pi)^{-n-1} \int_{\mathbb{R}^{n+1}} v(x,s)\varphi(x)dxds \int_{\mathbb{R}^{n+1}} e^{i(x\cdot\xi+s\sigma)}K(x,\zeta+\hat{\xi},\rho+\sigma)\hat{u}(\zeta,\rho)d\zeta d\rho .$$

To compute this we introduce the Fourier transform

$$h(\eta, \tau; \zeta, \rho; \xi, \sigma) = \int_{\mathbb{R}^{n+1}} e^{-i(x\cdot \eta + s\tau)} \varphi(x) K(x, \zeta + \xi, \rho + \sigma) dx ds$$
$$= h_1(\eta; \zeta, \rho; \xi, \sigma) \otimes \delta(\tau).$$

By partial integration, from (10), we have for any N,

(43)
$$|h_1(\eta; \zeta, \rho; \xi, \sigma)(1+|\eta|)^N (1+|\zeta+\xi|+|\rho+\sigma|)^{-s_0}| < c.$$

Now we have

$$(44) \qquad \langle e^{-i \langle x \cdot \xi + s\sigma \rangle} K(e^{i \langle x \cdot \xi + s\sigma \rangle} u), \varphi v \rangle$$

$$= \int_{\mathbb{R}^{n+1}} \int_{\mathbb{R}^{n+1}} \hat{v}(\eta, \tau) h(-\eta - \zeta, -\tau - \rho; \zeta, \rho; \xi, \sigma) \hat{u}(\zeta, \rho) d\zeta d\rho d\eta d\tau$$

$$= \int_{\mathbb{R}^{n+1}} \hat{v}(\eta, -\rho) h_1(-\eta - \zeta; \zeta, \rho; \xi, \sigma) \hat{u}(\zeta, -\rho) d\zeta d\rho d\eta.$$

Setting

$$\begin{split} V(\eta,\,\rho) &= \hat{v}(\eta,\,-\rho)\,(1+|\,\eta\,|^2+\rho^2)^{b_1/2} \\ U(\zeta,\,\rho) &= \hat{u}(\zeta,\,-\rho)\,(1+|\,\zeta\,|^2+\rho^2)^{a_1/2} \\ H(\eta;\,\zeta,\,\rho;\,\xi,\,\sigma) &= (1+|\,\eta\,|^2+\rho^2)^{-b_1/2}(1+|\,\zeta\,|^2+\rho^2)^{-a_1/2}\!\times\!h_1(-\eta-\zeta;\,\zeta,\,l;\,\xi,\,\sigma) \;, \end{split}$$

we write (44) as

(45)
$$\langle e^{-i(x+\xi+s\sigma)}K(e^{i(x+\xi+s\sigma)}u), \varphi v \rangle$$

$$= \int_{\mathbf{R}^{n+1}} \int_{\mathbf{R}^{n}} H(\gamma; \zeta, \rho; \xi, \sigma) V(\gamma, \rho) \cdot U(\zeta, \rho) d\zeta d\rho d\gamma .$$

From (43) follows

(46)
$$|H(\eta; \zeta, \rho; \xi, \sigma)| \leq C(1+|-\eta-\zeta|)^{-N} (1+|\zeta+\xi|+|\rho+\sigma|)^{s_0} \times (1+|\eta|^2+\rho^2)^{-b_1/2} (1+|\zeta|^2+\rho^2)^{-a_1/2} .$$

For any $b_1 \in \mathbf{R}$, there holds

$$(47) \qquad (1+|\gamma|^2+\rho^2)^{-b_1/2} \leq (1+|-\gamma-\zeta|)^{|b_1|}(1+|\zeta|^2+\rho^2)^{-b_1/2} ,$$

because $(1+|\tau|+|\rho|) \le (1+|-\tau-\zeta|)(1+|\zeta|+|\rho|)$ and $(1+|-\tau-\zeta|)^{-1}(1+|\eta|+|\rho|)^{-1} \le (1+|\zeta|+|\rho|)^{-1}$ hold. Thus we have

(48)
$$|H(\eta; \zeta, \rho, \xi, \sigma)| \leq C(1+|-\zeta-\eta|)^{-N+b_1}(1+|\zeta|^2+\rho^2)^{-(a_1+b_1)/2} \times (1+|\zeta+\xi|+|\rho+\sigma|)^{s_0}.$$

If $a_1+b_1=s_0$, then the estimate

$$(1+|\zeta+\xi|+|\rho+\sigma|)^{\bullet}0 \le (1+|\zeta|^2+\rho^2)^{\bullet/2}(1+|\xi|+|\sigma|)^{[\bullet,0]}$$

holds, so that

$$|H(\eta; \zeta, \rho, \xi, \sigma)| \le C(1+|-\zeta-\eta|)^{-N+|b_1|}(1+|\xi|+|\sigma|)^{|s_0|}$$

Since
$$\int_{\mathbb{R}^n} (1+|\zeta|)^{-N+b_1} d\zeta < \infty$$
, from (45) we have

$$\begin{split} | & \langle e^{-i \, (x \cdot \xi + s \sigma)} \, K(e^{i \, (x \cdot \xi + s \sigma)} \, u), \, \varphi v \rangle \, | \\ & \leq C (1 + |\, \xi \, | + |\, \sigma \, |)^{\lfloor s_0 \rfloor} \int_{R^1} \!\! d\rho \int_{R^n} \!\! \int_{R^n} (1 + |\, -\zeta - \eta \, |\,)^{-N + \lfloor b_1 \rfloor} |\, V(\eta, \, \rho) \, U(\zeta, \, \rho) |\, d\zeta d\eta \\ & \leq C (1 + |\, \xi \, |\, + |\, \sigma \, |\,)^{\lfloor s_0 \rfloor} \int_{R^1} \!\! \left[\int_{R^n} \!\! |\, U(\zeta, \, \rho) \, |^2 d\zeta \right]^{1/2} \!\! \left[\int_{R^n} \!\! |\, V(\eta, \, \rho) \, |^2 d\eta \right]^{1/2} \!\! d\rho \\ & \leq C (1 + |\, \xi \, |\, + |\, \sigma \, |\,)^{\lfloor s_0 \rfloor} \!\! \left[\int_{R^n} \!\! |\, U(\zeta, \, \rho) \, |^2 d\zeta d\rho \right]^{1/2} \!\! \left[\int_{R^n} \!\! |\, V(\eta, \, \rho) \, |^2 d\eta d\rho \right]^{1/2} \\ & \leq C (1 + |\, \xi \, |\, + |\, \sigma \, |\,)^{\lfloor s_0 \rfloor} |\, |\, u \, |\, |_{g_0} |\, |\, v \, |\, |_{b_0} \, . \end{split}$$

Thus we have proved (41). From (41), (39) follows easily. If $s_0 \le 0$, we shall prove, with $a_1 + b_1 = -s_0$

$$(49) \qquad |\langle e^{-i\langle x\cdot\xi+s\sigma\rangle}K(e^{i\langle x\cdot\xi+s\sigma\rangle}u),\varphi v\rangle| \leq C(1+|\xi|+|\sigma|)^{s_0}||u||_{a_*}||v||_{b_*}.$$

In fact, then we have from (48),

(50)
$$| (1+|\xi|+|\sigma|)^{-s_0}H(\eta; \zeta, \rho; \xi, \sigma) |$$

$$\leq C(1+|-\zeta-\eta|)^{-N+|b_1|}(1+|\zeta|^2+\rho^2)^{s_0/2}(1+|\zeta+\xi|+|\rho+\sigma|)^{s_0}(1+|\xi|+|\sigma|)^{-s_0}$$

$$\leq C(1+|-\zeta-\eta|)^{-N+|b_1|}(1+|\xi|+|\sigma|)^{s_0}(1+|\xi|+|\sigma|)^{-s_0}$$

$$\leq C(1+|-\zeta-\eta|)^{-N+|b_1|}.$$

Since $\int (1+|-\zeta-\tau|)^{-N+|b_1|}d\zeta = \int (1+|-\xi-\tau|)^{-N+|b_1|}d\tau < \infty$, we have, from (45) and (50),

$$\begin{split} &|\; \langle e^{-i\; (x\cdot\xi+s\sigma)} K(e^{i\; (x\cdot\xi+s\sigma)} u),\, \varphi v \rangle \, |\; (1+|\;\xi\;|+|\;\sigma\;|)^{-s_0} \\ &\leq & \int_{R^1} \!\! d\rho \! \int_{K^n} \!\! \int_{K^n} \!\! (1+|-\eta-\zeta\;|)^{-N+|b_1|} |\; V(\eta,\, \rho) \, U(\zeta,\, \rho) \, |d\zeta d\eta \! \leq \! C \! |\; \! |\; \! u\; |\; \! |_{a_1} \! |\; \! |\; \! v\; |\; \! |_{b_1} \; . \end{split}$$

This proves (49), the estimate (40) is a direct consequence of (49), if $b=s_0$.

By the theory of interpolation (see J.L. Lions and J. Peetre [3] and E. Magenes [7]), (40), for general b, follows easily from (49) and (50).

REMARK. Similar estimate holds for usual Fourier integral operator K. Namely, let Ω be an open set in \mathbb{R}^n , and K be a function in $\mathscr{E}(\Omega \times \mathbb{R}^n)$ such that, there

exist functions $K_j(x,\xi) \in \mathcal{E}(\Omega \times (\mathbb{R}^n - \{0\}))$ which are positively homogeneous of degree $z_j = s_j + it_j$ with $s_j \to -\infty$ and for all N, α, β ,

(51)
$$(1+|\xi|)^{-(\beta+a_N)} D_{\xi}^{\beta} \left(K(x,\xi) - \sum_{0}^{N-1} K_j(x,\xi) \right)$$

remains bounded in $\mathscr{E}(\Omega)$, when $|\xi| \to \infty$. Then for any fixed $\varphi \in \mathscr{L}(\Omega)$, $\alpha \in R$, there is a constant C such that for any $u \in \mathscr{L}(\Omega)$

(52)
$$|| \varphi e^{-ix \cdot \xi} K(e^{ix \cdot \xi} u) ||_{a=s_h} \le C(1+|\xi|)^{|s_0|} ||u||_a.$$

If $s_0 \leq 0$, we have, for any $b \in [s_0, -s_0]$,

(53)
$$|| \varphi e^{-ix \cdot \xi} K(e^{ix \cdot \xi} u) ||_{a+b} \leq C(1+|\xi|)^{b} ||u||_{a}.$$

The proof is quite similar to the proof of Theorem 9.

THEOREM 10. If K is the operator given by (11) with $s_0 \le 0$, then for any fixed $\varphi \in \mathscr{D}(\Omega)$ and $a \in \mathbf{R}$ there exists a constant C such that for any $b, |b| \le |s_0|$ and for any $u \in \mathscr{D}(\Omega)$, we have

(54)
$$||e^{-i(x\cdot\xi+s\sigma)}K(ue^{i(x\cdot\xi+s\sigma)})||_{H^{a+b}(\mathbb{R}^n)} \leq C(1+|\xi|+|\sigma|)^{b}||u||_{H^{a}(\mathbb{R}^n)} .$$

PROOF.

For any $v \in \mathcal{D}(M)$, we have

(55)
$$\langle \varphi e^{-i (x \cdot \xi + s\sigma)} K(u e^{i (x \cdot \xi + s\sigma)}), v \rangle$$

$$= (2\pi)^{-n} \int_{\mathbb{R}^n} v(x) \varphi(x) dx \cdot \int_{\mathbb{R}^n} K(x, \zeta + \xi, \sigma) \hat{u}(\zeta) e^{ix \cdot \zeta} d\zeta .$$

Introducing Fourier transform

$$h(\eta, \zeta, \xi, \sigma) = \int_{\mathbf{R}^n} e^{-ix \cdot \eta} \varphi(x) K(x, \zeta + \xi, \sigma) dx.$$

We can write this as

(56)
$$\langle \varphi e^{-i(x\cdot\xi+s\sigma)}K(ue^{i(x\cdot\xi+s\sigma)}), v \rangle = \int_{\mathbb{R}^n} \hat{v}(\eta)h(-\eta-\zeta, \zeta; \xi, \sigma)\hat{u}(\zeta)d\zeta d\eta.$$

By partial integration we obtain from (10), for any N>0,

(57)
$$|h(\eta, \zeta; \xi, \sigma)| (1+|\eta|)^{N} (1+|\zeta+\xi|+|\sigma|)^{-s_0} | < C.$$

Setting

$$\begin{split} V(\gamma) &= (1+\|\gamma\|^2)^{b_1/2} \hat{v}(\gamma) \\ U(\zeta) &= (1+\|\zeta\|^2)^{a_1/2} \hat{u}(\zeta) \\ H(\gamma,\,\zeta\colon\,\hat{\varsigma},\,\sigma) &= h(-\gamma-\zeta,\,\zeta,\,\hat{\varsigma},\,\sigma)\,(1+\|\gamma\|^2)^{-b_1/2} (1+\|\zeta\|^2)^{-a_1/2} \;, \end{split}$$

we have

$$(58) \qquad |H(\eta, \zeta; \xi, \sigma)| \leq C(1+|\eta+\zeta|)^{-N} (1+|\zeta|^2)^{-\sigma_1/2} (1+|\zeta+\xi|+|\sigma|)^{s_0} (1+|\eta|^2)^{-b_1/2}$$

and

(59)
$$\langle \varphi e^{-i \langle x \cdot \xi + s\sigma \rangle} K(u e^{i \langle x \cdot \xi + s\sigma \rangle}), v \rangle = \int_{R_n} \int_{R_n} H(\eta, \zeta, \xi, \sigma) V(\eta) U(\zeta) d\eta d\zeta .$$

If $a_1 + b_1 = s_0 < 0$

$$\begin{split} &(1+|\zeta+\xi|+|\sigma|)^{s_1} {\leq} (1+|\zeta|)^{s_0} (1+|\xi|+|\sigma|)^{-s_0} \\ &(1+|\gamma|)^{-b_1/2} {\leq} (1+|-\gamma-\zeta|)^{b_1/2} (1+|\zeta|^2)^{-b_1/2} \; . \end{split}$$

Thus

$$|H(\eta,\zeta;\xi,\sigma)| \leq C(1+|\eta+\zeta|)^{-N+|b_1|}(1+|\zeta|^2)^{-(a_1+b_1)/2+s_0}(1+|\xi|+|\sigma|)^{-s_0},$$

so that

$$\begin{split} &\int \mid H(\eta,\,\zeta\colon\,\xi,\,\sigma)\mid \!d\eta\!\leq\!C(1+\mid\xi\mid+\mid\sigma\mid)^{-s_0}\;,\\ &\int \mid H(\eta,\,\zeta\colon\,\xi,\,\sigma)\mid \!d\zeta\!\leq\!C(1+\mid\xi\mid+\mid\sigma\mid)^{-s_0}\;. \end{split}$$

Therefore from (59),

$$|\langle \varphi e^{-i(x\cdot\xi+s\sigma)}K(e^{i(x\cdot\xi+s\sigma)}u),v\rangle| \leq C||V(\eta)||_{L^{2}}||U(\zeta)||_{L^{2}}(1+|\xi|+|\sigma|)^{-s_{0}}$$

$$=C||u||_{a}||v||_{b}(1+|\xi|+|\sigma|)^{-s_{0}},$$

so that,

(60)
$$||\varphi e^{-i(x\cdot\xi+s\sigma)}K(e^{i(x\cdot\xi+s\sigma)}u)||_{H^{a-s_0}(M)} \le C||u||_{H^{a}(M)}(1+|\xi|+|\sigma|)^{-s_0}.$$

Next, $a_1+b_1=-s_0\ge 0$, then by (58)

$$\begin{split} &|\; (1+|\,\xi\,|+|\,\sigma\,|)^{-s_0}H(\eta,\,\zeta,\,\xi,\,\sigma)\,\,|\\ &\leq C(1+|\,\xi\,|+|\,\sigma\,|)^{-s_0}(1+|\,\eta+\zeta\,|)^{-N}(1+|\,\zeta\,|^2)^{-a_1/2}(1+|\,\zeta+\xi\,|+|\,\eta\,|)^{s_0}(1+|\,\eta\,|^2)^{-b_1/2}\\ &\leq C(1+|\,\xi\,|+|\,\sigma\,|)^{-s_0}(1+|\,\eta+\zeta\,|)^{-N}(1+|\,\zeta\,|^2)^{-a_1/2}(1+|\,\zeta\,|)^{-s_0}(1+|\,\xi\,|+|\,\sigma\,|)^{s_0}(1+|\,\eta\,|^2)^{-b_1/2}\\ &\leq C(1+|\,\eta+\zeta\,|)^{-N}(1+|\,\zeta\,|^2)^{-a_1/2}(1+|\,\zeta\,|)^{-s_0}(1+|\,\eta\,|^2)^{-b_1/2}\\ &\leq C(1+|\,\eta+\zeta\,|)^{-N}(1+|\,\zeta\,|^2)^{-a_1/2-s_0-b_1/2}(1+|\,\zeta+\eta\,|)^{b_1/2} \leq C(1+|\,\eta+\zeta\,|)^{-N+|\,b_1/2}\,\,. \end{split}$$

Thus

$$\begin{split} &\int \mid H(\eta,\,\zeta,\,\xi,\,\sigma) \mid \! d\eta \! \leq \! C(1+\mid \xi\mid +\mid \sigma\mid)^{s_0} \;, \\ &\int \mid H(\eta,\,\zeta,\,\xi,\,\sigma) \mid \! d\zeta \! \leq \! C(1+\mid \xi\mid +\mid \rho\mid)^{s_0} \;, \end{split}$$

Hence, from (59),

(61)
$$|\langle \varphi e^{-i\langle x\cdot\xi+s\sigma\rangle}K(e^{i\langle x\cdot\xi+s\sigma\rangle}u),v\rangle| \leq C||u||_{H^a(\mathbb{R}^n)}||v||_{H^b(\mathbb{R}^n)}(1+|\xi|+|\sigma|)^{s_0}.$$

This implies

(62)
$$||\varphi e^{-i(x\cdot\xi+s\sigma)}K(ue^{i(x\cdot\xi+s\sigma)})||_{H^{a+s}(\mathbb{R}^n)} \leq C(1+|\xi|+|\sigma|)^{s_0}||u||_{H^{a}(M)} .$$

Interpolating (60) and (62), we have

$$||\varphi e^{-i(x\cdot\xi+s\sigma)}K(ue^{i(x\cdot\xi+s\sigma)})||_{H^{a+b}(\mathbb{R}^n)} \leq C(1+|\xi|+|\sigma|)^{b}||u||_{H^{a}(M)}$$

for $s_0 \leq b \leq -s_0$.

THEOREM 11. If K is the operator given by (11) with $s_0 \le 0$, then for any fixed $\varphi \in \mathscr{T}(\Omega)$, there exists a constant C such that for any $u \in \mathscr{D}(\Omega)$, $0 \le b \le -s_0$,

(63)
$$||\varphi e^{-is\sigma} K(ue^{is\sigma})||_{H^{a+b}(\mathbb{R}^n)} \leq C(1+|\sigma|)^{b+s_0} ||u||_{H^a(\mathbb{R}^n)} .$$

PROOF. For any $v \in \mathcal{S}'(\mathbf{R}^n)$, by (59),

$$\langle \varphi e^{-is\sigma} K(ue^{is\sigma}), v \rangle = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} H(\eta, \zeta; 0, \sigma) V(\eta) U(\zeta) d\eta d\zeta.$$

And for $\forall N > 0$,

(65)
$$|H(\eta, \zeta; 0, \sigma)| \le C(1+|\eta+\zeta|)^{-N}(1+|\zeta|^2)^{-a_1/2}(1+|\eta|^2)^{-b_1/2}(1+|\zeta|+|\sigma|)^{a_0}$$
.

If $a_1+b_1=0$, then

$$|H(\eta, \zeta, 0, \sigma)| \le C(1+|\eta+\zeta|)^{-N+|b_1|}(1+|\zeta|)^{-(a_1+b_1)/2}(1+|\sigma|)^{*0}$$

$$= C(1+|\eta+\zeta|)^{-N+b_1}(1+|\sigma|)^{*0}$$

and

(66)
$$\int_{\mathbb{R}^n} H(\eta, \zeta, 0, \sigma) d\eta \leq C(1+|\sigma|)^{s_0}$$
$$\int_{\mathbb{R}^n} H(\eta, \zeta; 0, \sigma) d\zeta \leq C(1+|\sigma|)^{s_0}.$$

By (64), (66), we have, if a+b=0,

$$|\langle \varphi e^{-is\sigma}K(ue^{is\sigma}), v\rangle| \leq C(1+|\sigma|)^{s_0}||u||_a||v||_b$$
.

From this

(67)
$$||\varphi e^{-is\sigma} K(ue^{is\sigma})||_{\sigma} \leq C(1+|\sigma|)^{s_0}||u||_{\sigma}.$$

If $a+b=s_0$, from (65) we have

(68)
$$|H(\eta, \zeta, 0, \sigma)| \le C(1+|\eta+\zeta|)^{-N+|\delta|} (1+|\zeta|+|\sigma|)^{*0} \le C(1+|\eta+\zeta|)^{-N+|\delta|} .$$

So that we have

(69)
$$\int_{\mathbb{R}^n} |H(\eta, \zeta, 0, \sigma)| d\eta < C. \quad \int_{\mathbb{R}^n} |H(\eta, \zeta, 0, \sigma)| d\zeta < C.$$

From (64) and (69), we have

(70)
$$|\langle \varphi e^{-is\sigma} K(ue^{is\sigma}), v \rangle| \leq C||u||_{\mathfrak{a}}||v||_{\mathfrak{b}}.$$

Therefore we have proved

(71)
$$|| \varphi e^{-is\sigma} K(ue^{is\sigma}) ||_{a-s_0} \leq C||u||_a .$$

Interpolating (67) and (71), we obtain the estimate (63).

THEOREM 12. If K is the operator given by (11) satisfying (10), with $s_0 = -\infty$, the mapping K has the unique continuous extension from $\mathscr{E}'(\Omega) \hat{\otimes} \mathscr{F}'(\mathbf{R}^1)$ to $\mathscr{E}(\Omega) \hat{\otimes} \mathscr{C}_{\mathbf{M}}(\mathbf{R}^1)$.

We call these operators K operators of order $-\infty$.

PROOF. Let $\varphi \in \mathscr{Z}(\Omega)$, $\phi \in \mathscr{F}'(\mathbf{R}^1)$, then

(72)
$$K(\varphi \otimes \phi)(x,s) = (2\pi)^{-n-1} \int_{\mathbb{R}^{n+1}} K(x;\xi,\sigma) \hat{\varphi}(\xi) \otimes \hat{\phi}(\sigma) e^{i(x-\xi+s\sigma)} d\xi d\sigma.$$

Since $s_0 = -\infty$,

(73)
$$K(x, \hat{\xi}, \sigma) \in \mathscr{E}(\Omega) \hat{\otimes} \mathscr{S}(\mathbf{R}^{n+1}) = \mathscr{E}(\Omega) \hat{\otimes} \mathscr{S}(\mathbf{R}^n) \hat{\otimes} \mathscr{S}(\mathbf{R}^1) .$$

Therefore we can define the bilinear mapping

$$B: \qquad \mathcal{J}'(\mathbf{R}^{n}) \times \mathcal{J}'(\mathbf{R}^{1}) \to \mathcal{E}(\Omega) \widehat{\otimes}_{\mathcal{C}_{\sigma}'}(\mathbf{R}^{n}) \widehat{\otimes}_{\mathcal{C}_{\sigma}'}(\mathbf{R}^{1})$$

$$(\varphi, \phi) \qquad \to \qquad K(x, \xi, \sigma) \widehat{\varphi}(\xi) \widehat{\phi}(\sigma) ,$$

which is separately continuous. Since $\mathscr{S}'(R^n)$, $\mathscr{S}'(R^1)$ are barrelled (\mathscr{GF}) spaces, this mapping B is continuous. The Fourier inverse transformation induces a continuous linear mapping from $\mathscr{E}(\Omega) \widehat{\otimes} \mathscr{C}'(R^n) \widehat{\otimes} \mathscr{C}'(R^1)$ to $\mathscr{E}(\Omega) \widehat{\otimes} \mathscr{C}_M(R^n) \widehat{\otimes} \mathscr{C}_M(R^1)$, defined by

$$\Psi: \qquad g(x,\,\xi,\,\sigma) \to (2\pi)^{-n-1} \int_{\mathbb{R}^{n+1}} g(x,\,\xi,\,\sigma) e^{i\,(x\cdot\xi+s\sigma)} d\xi d\sigma \ .$$

The following mapping Φ induced by multiplication of functions in $\mathscr{E}(\Omega)$ and in $\mathscr{O}_{\mathbb{M}}(R^n)$ is continuous

$$\phi: \qquad \mathscr{E}(\Omega) \hat{\otimes} \, \mathscr{C}_M(\mathbf{R}^n) \hat{\otimes} \, \mathscr{C}_M(\mathbf{R}^1) \to \mathscr{E}(\Omega) \hat{\otimes} \, \mathscr{C}_M(\mathbf{R}^1) \ ,$$

because the mapping $\mathscr{E}(\Omega) \times \mathscr{C}_M(\mathbf{R}^n) \to \mathscr{E}(\Omega)$ is the composition of two continuous mappings $\mathscr{E}(\Omega) \times \mathscr{C}_M(\mathbf{R}^n) \to \mathscr{E}(\Omega) \otimes \mathscr{E}(\Omega)$ and $\mathscr{E}(\Omega) \times \mathscr{E}(\Omega) \to \mathscr{E}(\Omega)$. Composing B, Ψ and Φ , we obtain a bilinear continuous mapping from $\mathscr{F}'(\mathbf{R}^n) \times \mathscr{F}'(\mathbf{R}^1)$ to $\mathscr{E}(\Omega) \hat{\otimes} \mathscr{C}_M(\mathbf{R}^1)$ which can symbolically be written as

$$(\varphi,\phi) \to (2\pi)^{-1} \! \int_{R^{n+1}} \! K(x,\xi,\sigma) \hat{\varphi}(\xi) \hat{\phi}(\sigma) e^{i(z\cdot\xi+s\sigma)} d\xi d\sigma \ .$$

This last mapping induces the continuous linear mapping

$$\mathcal{E}'(\Omega) \underset{\cup}{\hat{\otimes}} \mathcal{F}'(\mathbf{R}^1) \to \mathcal{E}(\Omega) \underset{\cup}{\hat{\otimes}} \mathcal{C}_{\mathbf{M}}(\mathbf{R}^1)$$

$$\varphi \otimes \dot{\varphi} \longrightarrow (2\pi)^{-1} \int_{\mathbf{R}^{n+1}} K(x, \, \xi, \, \sigma) \dot{\varphi}(\xi) \dot{\phi}(\sigma) e^{i \, (x \cdot \xi + s \sigma)} d\xi d\sigma .$$

Since $\mathscr{G}(\Omega) \widehat{\otimes} \mathscr{J}(\mathbf{R}^1)$ is dense in $\mathscr{E}'(\Omega) \widehat{\otimes} \mathscr{J}'(\mathbf{R}^1)$ and the mapping \tilde{K} that we have just defined is identical with the mapping K on $\mathscr{G}(\Omega) \widehat{\otimes} \mathscr{J}(\mathbf{R}^1)$, \tilde{K} is the unique extension of K to $\mathscr{E}'(\Omega) \widehat{\otimes} \mathscr{J}'(\mathbf{R}^1)$.

§ 3. Calculus of β -pseudo-differential operators

We have proved in Lemma 5 that if P is a β -pseudo-differential operator on $\Omega \subset \mathbb{R}^n$ and if f is in $\mathscr{F}(\Omega)$, the map $\mathscr{F}(\Omega) \widehat{\otimes} \mathscr{F}'(\mathbb{R}^1) \ni u \to P(f \cdot u)$ is of the form (11) with $K = p(f, x, \xi, \sigma)$. Therefore Lemma 6 implies

(74)
$$\sum_{j} p_{j}(uf, x, \xi, \sigma) \sim \sum_{\alpha, j} \frac{1}{\alpha!} D^{\alpha} p_{j}(f, x, \xi, \sigma) D^{\alpha}_{x} u(x) .$$

THEOREM 13. Let P be a β -pseudo-differential operator on $\Omega \subset \mathbb{R}^n$ and $f_1, f_2 \in \mathcal{D}(\Omega), f_1 = f_2$ in some neighbourhood of $x \in \Omega$, then

(75)
$$p_{j}(f_{1}, x, \xi, \sigma) = p_{j}(f_{2}, x, \xi, \sigma) .$$

PROOF. If $u \in \mathcal{N}(\Omega)$ and $u \equiv 1$ in some open neighbourhood of x where $f_1 = f_2$, then $uf_1 = uf_2$. So that we have

$$\sum_{j} p_{j}(f_{1}; x, \xi, \sigma) = \sum_{j,\alpha} \frac{1}{\alpha!} D_{\xi}^{\alpha} p_{j}(f_{1}; x, \xi, \sigma) D_{x}^{\alpha} u(x)$$

$$= \sum_{j} p_{j}(uf_{1}; x, \xi, \sigma)$$

$$= \sum_{j} p_{j}(uf_{2}; x, \xi, \sigma)$$

$$= \sum_{j,\alpha} \frac{1}{\alpha!} D_{\xi}^{\alpha} p_{j}(f_{2}, x, \xi, \sigma) D_{x}^{\alpha} u(x)$$

$$= \sum_{j} p_{j}(f_{2}; x, \xi, \sigma) .$$

From Theorem 13, it is possible to adopt the following

DEFINITION 14. If P is a β -pseudo-differential operator, we define $p_j(x, \xi, \sigma)$, $x \in \Omega$ as $p_j(f; x, \xi, \sigma)$, where $f \in \mathcal{Q}(\Omega)$ with $f \equiv 1$ in some neighbourhood of x.

Theorem 15. If P is a β -pseudo-differential operator,

(76)
$$\sum_{j} p_{j}(u; x, \xi, \sigma) = \sum_{\alpha, j} \frac{1}{\alpha!} D_{\xi}^{\alpha} p_{j}(x, \xi, \sigma) D_{x}^{\alpha} u(x) .$$

PROOF. With a function $f \in \mathcal{F}(\Omega), f \equiv 1$ in some neighbourhood of x, we have

$$\begin{split} \sum_{\mathbf{j}} p_j(u,x,\xi,\sigma) &= \sum_{\mathbf{j}} p_j(fu;x,\xi,\sigma) \\ &= \sum_{j,\alpha} \frac{1}{\alpha!} D_{\xi}^{\alpha} p_j(f;x,\xi,\sigma) D_{x}^{\alpha} u \\ &= \sum_{j,\alpha} \frac{1}{\alpha!} D_{\xi}^{\alpha} p_j(x,\xi,\sigma) D_{x}^{\alpha} u \;. \end{split}$$

THEOREM 16. Let p be a continuous linear map from $\mathcal{O}(\Omega) \widehat{\otimes} \mathcal{F}'(\mathbf{R}^1)$ to $\mathcal{E}(\Omega) \widehat{\otimes} \mathcal{F}'(\mathbf{R}^1)$ such that $e^{-i\lambda(x+\xi+s\sigma)}P(fe^{i(x+\xi+s\sigma)})$ is independent of s and an asymptotic expansion

$$e^{-i\lambda(x\cdot\xi+s\sigma)}P(fe^{i\lambda(x\cdot\xi+s\sigma)}){\sim}\sum_0^\infty p_j(f;\,x,\,\xi,\,\sigma)\lambda^{\varepsilon_j}$$

holds in $\mathcal{E}(\Omega \times S_1)$, $S_1 = \{1/2 \le |\xi|^2 + \sigma^2 \le 2\}$. Then P is a β -pseudo-differential operator, and the symbol of P at the point x is given by

(77)
$$\sigma_p(f,g) = \sum_{\alpha} \frac{1}{\alpha!} D^{\alpha}_{\xi} p_j(\xi_x,\sigma) D^{\alpha}(fe^{ihx})$$

where

(78)
$$\xi_x = \operatorname{grad} g(x), \quad h_x(y) = g(y) - g(x) - \langle y - x, \xi_x \rangle.$$

If $f \in \mathcal{J}(\Omega)$, the operator $u \to P(fu)$ is, by Lemma 5, of the form (11). Hence from Theorem 8, it follows that this is a β -pseudo-differential operator and that

$$\sum_{j} p_{j}(uf, g, x, \sigma) = \sum_{\alpha, j} \frac{1}{\alpha!} D_{\xi}^{\alpha} p_{j}(f, \xi_{x}, \sigma) D_{x}^{\alpha}(ue^{ih_{x}}) .$$

Taking $f \equiv 1$ in some neighbourhood of x, we obtain (77).

REMARK 17. It is obvious that a β -pseudo-differential operator on $\Omega \times \mathbb{R}^1$ is a pseudo-differential operator on $\Omega \times \mathbb{R}^1$ in the sense of Hörmander [3].

THEOREM 18. Let P, Q be β -pseudo-differential operators on $\Omega \times \mathbb{R}^1$, Ω is open in \mathbb{R}^n and let $f \in \mathcal{J}(\Omega)$. Then R = QfP is also a β -pseudo-differential operator and we have

(79)
$$\sum_{i} r_{i}(x,\xi,\sigma) = \sum_{\alpha,j,k} \frac{1}{\alpha!} D_{\xi}^{\alpha} q_{k}(x,\xi,\sigma) D_{x}^{\alpha}(fp_{j}(x,\xi,\sigma)) .$$

PROOF. Let $u \in \mathcal{D}(\Omega)$, and let $g \in \mathcal{E}(\Omega)$ be real valued and $dg \neq 0$ in supp u. Then for any ρ , σ in $S = \{(\rho, \sigma) \in \mathbb{R}^2, 1/2 \leq \rho^2 + \sigma^2 \leq 2\}$

(80)
$$e^{i\lambda(g\rho+s\sigma)}fP(e^{i\lambda(g\rho+s\sigma)}u) \sim \sum_{n=0}^{\infty}fp_{j}(u,g;x,\sigma,\rho)\lambda^{z_{j}}$$

in $\mathscr{E}(\Omega \times S_i)$. Thus

$$\begin{split} e^{-i\lambda(g\rho+s\sigma)}R(ue^{i\lambda(g\rho+s\sigma)}) &= e^{-i\lambda(g\rho+s\sigma)}Q(e^{i\lambda(g\rho+s\sigma)}e^{-i\lambda(g\rho+s\sigma)}f\,P(ue^{i\lambda(g\rho+s\sigma)})) \\ &\sim \sum\limits_{i,k=0}^{\infty}Q_k(fp_j(u,g;x,\sigma,\rho))\lambda^{z_j+z_k'} \quad \text{in } \mathscr{E}(\Omega\times S_1) \ . \end{split}$$

Therefore R is a β -pseudo-differential operator. Setting $g = \langle x, \xi \rangle$, we obtain (79). Theorem 19. To every β -pseudo-differential operator P there is one and only one β -pseudo-differential operator $^{\iota}P$, called its formal adjoint, such that

$$\langle Pu, v \rangle = \langle u, {}^{t}Pv \rangle$$

for any $u \in \mathcal{D}(\Omega) \otimes \mathcal{F}(\mathbf{R}^1)$ and $v \in \mathcal{D}(\Omega) \otimes \mathcal{F}'(\mathbf{R}^1)$. The symbol of 'P is given by

(82)
$$\sum_{i} {}^{t} p_{i}(x, \xi, \sigma) = \sum_{\alpha, i} \frac{1}{\alpha!} (-D_{z})^{\alpha} p_{i}^{(\alpha)}(x, -\xi, -\sigma) .$$

PROOF. It is obvious that the operator P is uniquely determined and maps $\mathscr{D}(\Omega) \widehat{\otimes} \mathscr{S}(\mathbf{R}^1)$ into $\mathscr{D}'(\Omega \times \mathbf{R}^1)$. To prove the existence of P, it suffices to show that for every $f \in \mathscr{D}(\Omega)$ there is a β -pseudo-differential operator Q_f such that

$$\langle P(fu), v \rangle = \langle u, Q_f v \rangle \text{ if } u, v \in \mathscr{D}(\Omega) \widehat{\otimes} \mathscr{S}(\mathbf{R}^1) .$$

For then, we obtain $gQ_f = fQ_g$ for all $f, g \in \mathcal{L}(\Omega)$. So that there is an operator tP satisfying

$$Q_f = f'P$$
, for all f .

Obviously ${}^{t}P$ is a β -pseudo-differential operator if and only if all Q_{f} are, and ${}^{t}P$ satisfies (81).

Set $K(x, \xi, \sigma) = P(f; x, \xi, \sigma)$, which satisfies condition (10), then we have by Lemma 5

$$\begin{split} \langle P(uf), \varphi \otimes \phi \rangle &= (2\pi)^{-n-1} \!\! \int_{R^{n+1}} \!\! \int_{R^{n+1}} \!\! K(x, \xi, \sigma) \hat{u}(\xi, \sigma) e^{i \cdot (x \cdot \xi + s\sigma)} \varphi(x) \phi(s) d\xi d\sigma dx ds \\ &= \!\! \langle u, Q(\varphi \otimes \phi) \rangle , \end{split}$$

 $Q(\varphi \otimes \phi)$ is the Fourier transform of the function of ξ , σ .

(83)
$$q(\varphi \otimes \phi)(\xi, \sigma) = (2\pi)^{-n-1} \int_{\Omega} \int_{\mathbb{R}^{1}} K(x, \xi, \sigma) \varphi(x) \phi(s) e^{i(x \cdot \xi + s\sigma)} dx ds$$
$$= (2\pi)^{-n} \widetilde{\phi}(\sigma) \int_{\Omega} K(x, \xi, \sigma) \varphi(x) e^{ix \cdot \xi} dx$$

where $\widetilde{\phi}$ is the inverse Fourier transform of ϕ . By integration by part.

$$\xi^{a}q(\varphi\otimes\phi)(\xi,\sigma)=(2\pi)^{-n}\hat{\phi}(\sigma)\int_{\Omega}(-D_{z})^{a}(K(x,\xi,\sigma)\varphi(x))e^{ix\cdot\xi}dx$$

so that by (10), we have

$$|D_x^{\alpha}K(x,\xi,\sigma)| \leq C(|\xi|+|\sigma|)^{s_0}$$
.

Since α is arbitrary, $\int_{\mathbf{R}^n} D_x^\alpha K(x, \xi, \sigma) \varphi(x) e^{ix\cdot \xi} dx$ belongs to $\mathscr{S}(\mathbf{R}^n) \widehat{\otimes}_{\mathscr{C}_M}(\mathbf{R}^1)$. The map $\phi \to q(\varphi \otimes \phi)$ can be extended continuously from $\mathscr{S}'(\mathbf{R}^1)$ to $\mathscr{S}(\mathbf{R}^n) \widehat{\otimes}_{\mathscr{S}'}(\mathbf{R}^1)$.

Now we shall seek asymptotic expansion of

$$e^{-i(x\cdot\eta+s\sigma)}Q(\varphi e^{i(x\cdot\eta+s\tau)}), \qquad |\tau|+|\eta|\to\infty.$$

This is the Fourier transform of the function

$$(\xi, \sigma) \rightarrow q(\varphi e^{i(x\cdot\xi+s\sigma)})(\xi-\eta, \sigma-\tau)$$
.

By (83), this is equal to

$$(2\pi)^{-n}\delta(\sigma-\tau+\tau)\int_{\Omega}K(x,\,\xi-\eta,\,\sigma-\tau)\varphi(x)e^{i\,(x\cdot\,(\xi-\eta+\eta))}\,dx$$
$$=(2\pi)^{-n}\delta(\sigma)\otimes\int_{\Omega}K(x,\,\xi-\eta,\,-\tau)\varphi(x)e^{ix\cdot\xi}dx\;.$$

Therefore $e^{-i(x\cdot\eta+s\tau)}Q(\varphi e^{i(x\cdot\eta+s\tau)})$ is independent of s. We now study the Taylor expansion of $K(x,\xi-\eta,-\tau)$ at $(-\eta,-\tau)$. The partial sum is

$$(2\pi)^{-n} \sum_{|\alpha| < N} \int \frac{\xi^{\alpha}}{\alpha!} D_{\xi}^{\alpha} K(x, -\eta, -\tau) \varphi(x) e^{ix \cdot \xi} dx.$$

At the point x, the Fourier transform of this is

$$\sum_{|\alpha| \leq N} \frac{1}{\alpha!} (-D_z)^{\alpha} (D_{\eta}^{\alpha} K(x, -\eta, -\tau)) \varphi(x) .$$

This has the asymptotic expansion by Lemma 6.

The remainder term $R_{\eta}^{N}(\xi)$ can be written as

$$R_{\eta}^{N}(\xi) = (2\pi)^{-n} \left(\left(K(x, \xi - \eta, -\tau) - \sum_{|\alpha| < N} \frac{\xi^{\alpha}}{\alpha!} D_{\eta}^{\alpha} K(x, -\eta, -\tau) \right) \varphi(x) e^{ix \cdot \xi} dx \right).$$

To estimate R_{η}^{N} we again integrate by parts, then, we have

$$(-\xi)^{\beta}R_{\eta,\tau}^{N}(\xi) = (2\pi)^{-n}\int_{\Omega}e^{ix\cdot\xi}D_{\tau}^{\beta}\left(K(x,\xi-\eta,-\tau) - \sum_{|\alpha|< N}\frac{\xi^{\alpha}}{\alpha!}D_{\tau}^{\alpha}K(x,-\eta,-\tau)\right)\varphi(x)e^{ix\cdot\xi}dx,$$

and

(84)
$$|(-\xi)^{\beta} R_{\eta,\tau}^{N}(\xi)| \leq \begin{cases} C|\xi|^{N} (|\eta| + |\tau|)^{s_{0}-N}; & \text{if } |\xi| < \frac{1}{4} (|\eta| + |\tau|) \\ C(|\xi|^{N} + |\xi|^{s_{0}}) & \text{if } |\xi| \geq \frac{1}{2} (|\eta| + |\tau|). \end{cases}$$

If $|\xi| < 1/2(|\eta| + |\tau|)$, taking $\beta = N$, then we have

$$|R_{\eta,\tau}^N(\xi)| \leq C(|\eta| + |\tau|)^{s_0-N}$$
.

If $(|\tau|+|\eta|) \le 2|\xi|$ choosing $|\beta|$ large, we have

$$|R_{\eta,\varepsilon}^N(\xi)| \leq C(|\xi|+|\tau|)^M \leq C(|\eta|+|\tau|)^{-M}.$$

Therefore

$$\widehat{R}_{\tau,\varepsilon}^N(x)\!\leq\!\int\!\mid R_{\tau}^N(\xi)\mid\! d\xi\!=\!0(\mid\eta\mid\!+\mid\tau\mid)^{-s_0-N+n},\qquad \mid\eta\mid\!+\mid\tau\mid\to\infty$$

so that

$$e^{-i(x+\eta+\kappa\sigma)}Q(ve^{i(x+\xi+s\sigma)}) \sim \sum_{\alpha,j} \frac{1}{\alpha!} (-D_s)^{\alpha}K_j^{(\alpha)}(x,\eta)$$
.

Where the series is asymptotic in $\mathscr{C}(\Omega)$ topology. By the same argument used in the proof of Theorem 7 we can prove that this expansion holds in $\mathscr{E}(\Omega)$ topology. It is easy to prove that the operator K is defined on $\mathscr{L}(\Omega) \otimes \mathscr{L}'(R^1)$ by the formula (11) with kernel of type (10), therefore K can easily be extended to a continuous mapping from $\mathscr{L}(\Omega) \otimes \mathscr{L}'(R^1)$ to $\mathscr{E}(\Omega) \otimes \mathscr{L}'(R^1)$. Thus Q is a β -pseudo-differential operator.

DEFINITION 20. A β -pseudo-differential operator P of order s_0 is called elliptic if the principal part $p_0(x,\xi)$ of degree s_0 of the symbol is $\neq 0$ for every real $\xi \neq 0$ and $x \in \Omega$.

THEOREM 21. If P is an elliptic β -pseudo-differential operator of order s_0 on $\Omega \times \mathbb{R}^1$, then one can find a β -pseudo-differential operator E of order $-s_0$, such that for every $f \in C_0^\infty(\Omega)$, the symbols of the operators EfP and PfE are identically one on any open set when f=1. The symbol of E is uniquely determined.

We omit the proof, but note that symbol $e = \sum_{j} e_{j}(x, \xi, \sigma)$ of E is determined uniquely by

(85)
$$\sum_{\alpha,j,k} \frac{1}{\alpha!} D_z^{\alpha} e_j(x,\xi,\sigma) D_z^{\alpha} e_j(x,\xi,\sigma) = 1$$

or

(86)
$$\sum_{\alpha,j,k} \frac{1}{\alpha!} D_{\xi}^{\alpha} p_k(x,\xi,\sigma) D_x^{\alpha} e_j(x,\xi,\sigma) = 1.$$

$\S 4$. The case M is a manifold.

In this section, we again assume that M is a σ -compact differentiable n-manifold. In this case we shall restate the results corresponding to those which were obtained in the preceding sections.

Let $\{\varphi_j\}_{j\in J}$ be a smooth partition of unity on M then an operator P is a β -pseudo-differential operator if and only if every $\varphi_j P \varphi_k$, $j,k\in J$, is a β -pseudo-differential operator. Therefore corresponding to Theorem 16, we have

THEOREM 22. Let P be a continuous linear map from $\mathscr{D}(M) \hat{\otimes} \mathscr{F}'(R^1)$ to $\mathscr{E}(M) \hat{\otimes} \mathscr{F}'(R^1)$. P is a β -pseudo-differential operator if and only if for any $\varphi_1, \varphi_2 \in \mathscr{D}(M)$ whose supports are both contained in a coordinate neighbourhood U (not necessarily connected) and for any linear function $x \cdot \xi$ of coordinate functions x_1, \dots, x_n in U, an asymptotic expansion

$$e^{-i\lambda(x\cdot\xi+s\sigma)}\varphi_iP(\varphi_2e^{i\lambda(x\cdot\xi+s\sigma)})$$
 $\sim \sum_{i=0}^{\infty}p_i(x;\,\xi,\,\sigma)\lambda^{ij}$

holds in $\mathscr{E}(M \times S_1)$, where $S_1 = \{(\xi, \sigma) \in \mathbb{R}^{n+1}, 1/2 \le \sigma^2 + |\xi|^2 \le 2\}$. Then the symbol of $\varphi_1 P \varphi_2$ is given by

(87)
$$\sigma_{\varphi_j P \varphi_k}(f, \rho g) = \sum_{\alpha, i} \frac{1}{\alpha!} D_{\lambda \xi \rho}^{\alpha} p_j(x, \lambda \rho \xi_x, \lambda \sigma) D_x^{\alpha} (f e^{i\lambda \rho h_x}).$$

where $\xi_x = \operatorname{grad} g(x)$, $h_x = g(y) - g(x) - \langle y - x, \xi_x \rangle$.

COROLLARY 1. If P is a β -pseudo-differential operator and if $\varphi_1, \varphi_2 \in \mathcal{D}(M)$ with supp $\varphi_1 \cap \text{supp } \varphi_2 = \phi$ then, $\varphi_1 P \varphi_2$ is of order $-\infty$.

PROOF OF COROLLARY 1. We may assume that there is a coordinate neighbourhood U (not necessarily connected) containing $\sup \varphi_1 \cup \sup \varphi_2$. Let ψ_1 (resp. ψ_2) be in $\mathcal{D}(U)$ satisfying $\psi_1 \equiv 1$ (resp. $\psi_2 \equiv 1$) some neighbourhood of $\sup \varphi_1$ (resp. $\sup \varphi_2$). Using the asymptotic expansion

$$e^{-i\lambda(x\cdot\xi+s\sigma)}\phi_1P(\phi_2e^{i\lambda(x\cdot\xi+s\sigma)}) \!\sim\! \sum_{i=0}^\infty p_i(x,\,\xi,\,\sigma)\lambda^{ij}$$

we can write as

$$\begin{split} e^{-i\lambda(g\rho+s\sigma)}\varphi_1P(\varphi_2e^{i\lambda(g\sigma+s\sigma)}) = & e^{-i\lambda(g\rho+s\sigma)}\varphi_1\cdot\psi_1P(\varphi_2\psi_2e^{i\lambda(g\rho+s\sigma)}) \\ \sim & \varphi_1\sum_{\alpha,j}\frac{1}{\alpha!}\,D^\alpha_{\lambda\rho\xi}p_j(x,\,\lambda\rho\xi_x,\,\lambda,\,\sigma)D_x(\varphi_2e^{ik_x\log}) \;. \end{split}$$

Since supp $\varphi_1 \cap \text{supp } \varphi_2 = \phi$, the right hand side of (88) is equal to 0.

COROLLARY 2. (i) If $\varphi_3, \varphi_4 \in \mathcal{G}(M)$ with $\varphi_3 = \varphi_1, \varphi_4 = \varphi_2$ in a neighbourhood V of x,

(89)
$$\sigma_{\varphi_1,p_{\varphi_2}}(f,g) = \sigma_{\varphi_2,p_{\varphi_3}}(f,g) \quad in \quad V \times \mathbb{R}^1 \times \mathbb{S}^1$$

(ii) if $\varphi_1 = \varphi_2 = 1$ in a neighbourhood V of x, then

(90)
$$\sigma_P(f, g) = \sigma_{\varphi_1 P \varphi_2}(f, g) \text{ in } V$$

(iii) if $f_1 \equiv f_2 \equiv 1$ in some neighbourhood of x,

(91)
$$\sigma_P(f_1, g) = \sigma_P(f_2, g) \ in \ x$$
.

These are direct consequences of Theorem 21 and Corollary 1.

We can define $\sigma_P(g)(x, \rho, \sigma, \lambda)$ as $\sigma_P(f, g)(x; \rho, \sigma, \lambda)$, where $f \in \mathscr{D}(M)$ and $f \equiv 1$ in some neighbourhood of x. We don't use the following theorem, however it will not be of no use to state it here.

THEOREM 23. Let P be a β -pseudo-differential operator. Let $J^{\mu}(M)$ be the μ -jet bundle of M. Then for any k there are integers l>0 and function Φ_l from $J^{l_k}(M)\times S_1$ to complex number field C such that

$$p_i(q, x, \rho, \sigma) \hat{\lambda}^{z_i} = \Phi_i(\eta_i(q), \rho, \sigma) \hat{\lambda}^{z_i}, \quad 0 \le i \le k$$

where $\tau_t(g)$ is the section of $J^1(M)$ defined by g. For this it is sufficient to choose $l \leq 2(k-s_0)$.

PROOF. $p_j(g, x, \rho, \sigma)$ has an intrinsic meaning by definition. On the other hand, (87) implies that for fixed k, $p_j(g, x, \rho, \sigma)$, $0 \le j \le k$ are determined completely by $\eta_l(g)$ with sufficiently large l. (It is sufficient to choose as $l \le 2(k-s_0)$.) Since the fibre of $J^1(M)$ over x is generated by the Image $\eta_l(g)(x)$, $g \in \mathcal{D}(M)$, this implies our theorem.

REMARK 24. It is possible to state corresponding result for symbols of usual pseudo-differential operator in the sense of Hörmander [3].

In the rest of this section we assume that M is compact. Let $\{U_j\}_{j\in J}$ be a finite coordinate covering of M and we denote the diffeomorphism from U_j to an open subset Ω_j in \mathbb{R}^n by Φ_j . Φ_j^* is the corresponding isomorphism from $\mathcal{E}(\Omega_j)$ to $\mathcal{E}(U_j), j \in J$. We can choose and fix a partition of unity $\{\varphi_j\}$ such that if

 $\operatorname{supp} \varphi_j \cap \operatorname{supp} \varphi_k \neq \phi, \text{ then there is an index } l(i,j) \in J \text{ satisfying } \operatorname{supp} \varphi_j \cup \operatorname{supp} \varphi_k \subset U_{l(i,j)}.$

DEFINITION 25. We say

(i) a distribution $T \in \mathcal{J}'(M) \widehat{\otimes} \mathcal{J}'(R^1)$ belongs to $H^0(M \times R^1)$ $a \in R$, if

(92)
$$||T||_{H^{a}(M\times\mathbb{R}^{1})}^{2} = \sum_{j\in J} ||\varphi_{j}T\circ \Phi_{j}^{*}\otimes I||_{H^{a}(\mathbb{R}^{n}\times\mathbb{R}^{1})} < \infty .$$

(ii) A distribution $S \in \mathcal{G}'(M)$ belongs to $H^a(M)$, $a \in R$, if

(93)
$$||S||_{H^{\alpha}(M)}^{2} = \sum_{j \in J} ||\varphi_{j} S \Phi_{j}^{*}||_{H^{\alpha}(\mathbb{R}^{k})}^{2} < \infty .$$

We can easily prove the following theorems.

THEOREM 28. Let Q be an elliptic β -pseudo-differential operator of order s_0 on $M \times \mathbb{R}^1$. Then one can find a β -pseudo-differential operator F of order $-s_0$ such that symbols of $F \cdot Q$ and $Q \cdot F$ are identically 1 on $M \times \mathbb{R}^1$.

PROOF of THEOREM 28. Choose a coordinate patches $\{U_i\}$ and partition of unity as above and consider the mapping

$$(95) P_{I} = (\Phi^{*-1} \otimes I) \circ Q \circ (\Phi_{I}^{*} \otimes I) : \mathscr{F}(\Omega_{I}) \widehat{\otimes} \mathscr{F}'(R^{I}) \to \mathscr{E}(\Omega_{I}) \widehat{\otimes} \mathscr{F}'(R^{I}) .$$

This is, by definition, an elliptic β -pseudo-differential operator of order s_0 on $\Omega_t \times \mathbf{R}^1$. Therefore, there is an β -pseudo-differential operator E_t of order $-s_0$ on $\Omega \times \mathbf{R}^1$ with the properties stated in Theorem 21.

With

(96)
$$F_{I} = (\phi_{I}^{*} \otimes I) \circ E_{I} \circ (\phi_{I}^{*-1} \otimes I) .$$

we define F as

(97)
$$Fu = \sum_{i,j} \varphi_i \cdot F_{l(i,j)} \cdot \varphi_j u.$$

Now we shall prove the symbol $Q \cdot F$ is identically one. To do this, fix a point x in M. Let I be the subset of the index set J such that for any $i \in I$, $x \in \operatorname{supp} \varphi_i$ and let $U = \bigcap_{i,j \in I} U_{l(i,j)}$. We note that, if $i,j,i',j' \in I$, then the symbols of mappings $u \to F_{l(i,j)}(u)$ and $u \to F_{l(i',j')}(u)$ is the same. In fact for any $\phi \in D(U)$ the symbols of $F_{l(i,j)}\phi P$ and $F_{l(i',j')}\phi P$ are equal in some neighbourhood of x. This is a relation invariant by coordinate transformation. Therefore we can represent this relation in terms of coordinate function. Since R is elliptic, Theorem 21 implies that the symbols of $F_{l(i,j)}$ and $F_{l(i',j')}$ are the same on U. We call this $\sigma(F)$. Then for any $\phi \in \mathcal{D}(U)$ with $\phi=1$ in some neighbourhood of x, the symbol of F

at
$$x=$$
 the symbol of $F \cdot \phi = \sum\limits_{i,j} \varphi_j \cdot ($ the symbol of $(F_{I(i,j)} \circ \varphi_j \cdot \phi)$ at $x)$
$$= \sum\limits_{i,j} \varphi_j \cdot ($$
the symbol of $(F_{I(i,j)} \phi)$ at $x)$
$$= \sum\limits_{i,j} \varphi_j \sigma(F)$$

$$= \sigma(F)$$

$$= the symbol of $F_{I(i,j)}$ for $\forall i,j \in I$.$$

Therefore, the symbol of $P \cdot F$ at x= the symbol of $P \cdot F_{t(i,j)}$ at x=1. This completes the proof.

THEOREM 29. Let Q be a β -pseudo-differential operator of order $s_0 \leq 0$, then for any fixed $\varphi_1, \varphi_2 \in \mathcal{F}(M)$, whose supports are both contained in a coordinate neighbourhood U (not necessarily connected) and for any $a \in \mathbb{R}$ and $b \in [s_0, -s_0]$, there is a constant C such that for any $\varphi \in \mathcal{F}(M) \otimes \mathcal{F}(\mathbb{R}^1)$,

(98)
$$||e^{-i(x+\xi+s\sigma)}\varphi_1Q(\varphi_2\varphi e^{i(x+\xi+s\sigma)})||_{H^{a+b}(M\times\mathbb{R}^1)}$$

$$\leq C(1+|\xi|+|\sigma|)^{b}||\varphi||_{H^{a}(M\times\mathbb{R}^1)} .$$

where $x \cdot \xi$ is a linear function of local coordinate function x_1, \dots, x_n in U.

This is a simple consequence of Theorem 9.

COROLLARY 1. Under the same hypothesis of Theorem 29,

$$(99) || Q(\varphi_2 e^{i(z \cdot \xi + u\sigma)} \varphi) ||_{L^2(M \times \mathbb{R}^1)} \le C(1 + |\xi| + |\sigma|)^b || \varphi ||_{H^{-b}(M \times \mathbb{R}^1)}.$$

THEOREM 30. Let Q, φ_1 , φ_2 , and $x \cdot \xi$ be as in Theorem 29, there is a constant C > 0 such that for any $b \in [+s_0, -s_0]$ and $u \in \mathscr{D}(M)$, we have

$$(100) \qquad || (e^{-i(x+\zeta+a\sigma)}\varphi_1 Q(\varphi_2 e^{i(x+\xi+a\sigma)}u)||_{H^{a+b}(M)} \leq C(1+|\xi|+|\sigma|)^b ||u||_{H^{a}(M)}.$$

This follows from Theorem 10.

COROLLARY 1. Under the same hypothesis as in Theorem 30

$$(101) ||Q(\varphi_2 e^{i(x+\xi+s\sigma)}u)||_{L^2(M)} \le C(1+|\xi|+|\sigma|)^b||u||_{H^{-b}(M)}.$$

Finally, we have

THEOREM 31. Let Q be a β -pseudo-differential operator of order $s_0 \leq 0$ and let a be an arbitrary real number, then there exists a constant C such that for any b in $[0, -s_0]$ and u in $\mathcal{D}(M)$, we have

$$(102) ||e^{-is\sigma}Q(e^{is\sigma}u)||_{H^{a+b}(M)} \leq C(1+|\sigma|)^{b+s_0}||u||_{H^{a}(M)}.$$

This follows from Theorem 11.

PROOF. Consider a finite smooth partition of unity $\{\varphi_j\}_{j\in J}$ such that for any $j,k\in J$, there exists a coordinate neighbourhood U (not necessarily connected)

which contains both supp φ_j and supp φ_k . Then from Theorem 11,

(103)
$$||e^{-is\sigma}\varphi_{j}Q\varphi_{k}(e^{is\sigma}u)||_{H^{a+b}(M)}^{2} \leq C(1+|\sigma|)^{b+s_{0}}||u||_{H^{a}(M)}^{2}.$$

Summing these by j and k, we obtain (102).

University of Tokyo

References

- [1] L. Schwartz, Théorie des distributions. IIIe ed. Hermann, Paris (1966).
- [2] A. Grothendieck, Produit tensoriels topologiques et espaces nucléaires, Memoirs of the A.M.S. (1955).
- [3] J. L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation. Publication de l'Institut des Hautes Etudes (1963).
- [4] J. J. Kohn and L. Nirenberg, An algebra of pseudo-differential operators. Comm. Pure Appl. Math., 18 (1965), 269-305.
- [5] A. Unterberger, and J. Bokobza, Sur une généralisation des opérateurs de Calderón Zygmund et des espaces H^s, C.R.A.S. Paris, 260 (1965), 3265-3267.
- [6] L. Hörmander, Pseudo-differential operators. Comm. Pure Appl. Math. 18 (1965), 501-517.
- [7] E. Magenes, Spazi di interpolazione ed equazioni a derivate parziali. Atti del VII congresso dell'Unione Matematica Italiana, Geneva (1963), 134-197.

(Received August 31, 1967)