On a special class of pseudo-differential operators

By Daisuke FUJIWARA

Introduction. The theory of pseudo-differential operators on R* was first
discussed in Kohn-Nirenberg [4] and in Unterberger and Bakobza |5|. Then
Hérmander [6] treated pseudo-differential operators on differentiable manifold M
in more intrinsic manner.

In this note a special subeclass of pseudo-differential operators on MxR! is
treated, where M is a differentiable ¢-compact manifold and R! is the real line.
Operators in this class are called $-pseudo-differential operators for the time being.

Briefly speaking, a 3-pseudo-differential operator is a pseudo-differential oper-
ator on M xR' which has constant coefficients in the direction of R'. Some global
properties of S-pseudo-differential operators are required by the theory of elliptie
operators on M.

The aim of this nots is to establish these properties by slightly modifying the
discussions in Hérmander [6]. Applications of the theory of F-pseudo-differential
operators will appear in the immediately following paper in this volume.

§1. S-pseudo-differential operators.

Let M be a o-compact differentiable manifold of dimension n. We denote by
/(M) the function space of complex valued C= functions on M with compact
support. The space of C= functions on M is denoted by ;< (M). If M is an open
set in R* and x=(xy, ---,2,) is in M, we denote by D¢ with multi-index a=

{ay, ---, @,) of non negative integers and I)jzi Oz

y the differential operator
DYD3t. .. D%, For the other notations for various distribution spaces, we follow
the notations in L. Schwartz {1] and A. Grothendieck [2].

DEFINITION 1. A continuous linear mapping P from fff(M)Cf%;)y (R} into
Z(MYE (R will be called a p-pseudo-differential operator if there exists a
sequence {z;=8;-+1t;} j-012s... of complex numbers with decreasing real parts
So>>8 >8> — —oo such that, for all f¢ % (M) and ge¢ (M) which is real valued
with dg+0 on supp/f, there is an asymptotic expansion

N1
(1) Tt et P(feitinntan)~ 33 pi(f pg, x, 0)4%)
P

which has the following property:
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giAivoteny P feizipateny) ig independent of s and, for any integer N>0 and com-
pact set 4" of real functions g in & (M) with dg+0 on suppf,

N-1
(2) A= (gmidieatrn P feitioaten) — 53 pi(f; pg, x, 0)4%)

=0

.

remains bounded in 7/ {(MxS) with S={(p,0)e R?[1/12<p*+0*<2}. We call the
formal sum

ap(f,9)= go P f; pg, x, o) A%

2

the symbol of P.
ProposiTioN 2. Put

plfi pg; 2,0, Q) 1,=e irwaton P(feittorton)

Then, P(f, pg; x,0,3) 158 an F (MxS) valued C* function in 2.

Proor. Since felttraton jg g A{Z(M)@j’”(R‘) valued C*» funection of 4,0 and ¢
in R'x S, P(feitroten) i an gf’(M)@f/”(R‘) valued C* function of 4, p and o.
g-ittontos) g also an ;(’(M)@/M valued C= function of 2, p, and ¢. The multiplica-
tion of functions is a hypoecontinuous bilinear mapping from (Z(M)@(ﬁ,)X(&}f’(M)
&R to X (M. (R). Thus plf, eg; a, 0, HR1,=e 11wrton P feizivston) g
an H"(M)@)y"(R‘) valued C* function of 4, p and ¢. For any ¢¢ 7 (R') with

j elaids=1,
Rl

(S pg, x, 0, Q)= e itienton P( feitteatoan) o)

is an (M) valued C=* function of 4, o and ¢. This proves Proposition 2.
REMARK 8. If f runs in a bounded set of ¢/ (M), the asymptotic expansion
is uniform in f. In fact, the mappings ¥~ o 4.0 1 defined by

N1
Uk 00,1 f) = AN (0200000 P festarven) — 83 py(f; pg, 3, 0)2%)
=0

are continuous linear mappings from /(M) into £ (MxS). These mappings
constitute a bounded set in L,(/ (M), #(MxS)). Since (M) is a barrelled
space, this set is equi-continuous.

In the following we shall treat the case that M is an open subset @ (not
necessarily connected) of R*. In this case, for any f in < (2), we shall define

p(f’ 2, s’ 0-) :e—i(x-5+oo) P(fei(x-5+w)]

and
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pilf, 2, ¢, 0)=p;(f,2-&; 2,0), j=0,1,2, ---.
PROPOSITION 4.
p(f,x, &, 0) is in (0) (R

S . . . .
pilf 2. 8,00 FOQF (R~ {0}) and p; 18 homogeneous in (£,0) of degree
2;. Moreover, for arbitrary multi-index a, and any integer ., the set

{(3) (1fi+]o hﬂNH“Ha?D?ID:z(p(f, x, &, 0)— E_‘ pj.(f, X, §, 6

s bounded in 712}, when |2 |+ 0] — co.
ProoF. The fact that pif, , &, ¢} is in '((‘{Q}@X‘{R"”j can be proved in the
same way as in Proposition 1. Let ¢ satisfy 1/2<|£|<2, then

- a5 ‘\i_l - Py
o Bl 303, o) = B (0,
X

remains hounded in £ {2 xS) uniformly in 4 and &. Therefore for any a0, the

set
- el - - A -
A”{DWVJMﬁJW~SLu%fQPQ)W]
=

is bounded in F(2xS) uniformly in Z and & Thus Dip;if,x, p8,6) is an
&2 x S)-valued continuous function in &.
Differentiability of p(f, x, 08, ¢) gives

Lapif, x, pE, 0 P .
(4) ~11f £ )=~QMﬁmpgm+M%ﬁapaﬂ.

At
905

Both z;p(f, 2, 465, 40) and pla, f, z, 2p§, 20) admit asymptotic expansion in 4 in
& (2 x8), uniformly in £. So that,

(5) #on( Dzl f, 205, 20) =3 il m, 205, 4o

also admits asymptotic expansion in #(MxS) uniformly in & We show that the
expansion of (5) does not contain any term of positive power in 4. If f=0, this
is assumed. So, considered as a &/(MxSx {1/2<|£2<1})-valued function in 4,
(5) is bounded. Therefore, it does not contain any term of positive power in 4.
This implies that (5) is bounded in (M x S) uniformly in £&. Thus Dipxlf, , pS, 0)
is a & {MxS) valued continuous function in & This implies that p;(f, x, p&, 0) is
in F(MxSx{1/2<|8]?<2}) thus p,(f, 3, & p) is in F{Mx {512+ 2=1}). Since
5) is bounded in # (M S) uniformly in &, 2, £,
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- az il - - Nt @ ag o)
A“N(D,;“Dfiw(f, 3p,40) = 33 DD pi\f, @, 20, Jo) )
i

is bounded uniformly in &, 4.

Introducing i£p and ¢ as new variables instead of p§, o, we have the desired
estimate.

Now we can prove that

f X, §, 0‘“ ( (Q (ZJ/ M(Rn+1) .

Let oc 2(R*Y and ¢=1 if |§{2+]0]2>]1, =0 in some neighbourhood of 0.
Then

;g

& oDl fr 2, &, 0V € SRS (R
On the other hand the estimate proved above implies that

LS 2, 55 0) ¢ (E, Ol 7, &, 0) € QAR Cu (R .
Thus we have

pUfs e, &, 0)C SRS (R
LEMMA 5. If ¢ is in ‘5;2/-_‘,.,»(.(2)@?/ RY and 7 18 compact in 2, we have
(6) Ppi=t | pig 6 0)pts, olervivodsds,
Faa!
where fé 7(0Q) with f=1 on . »7 Here the integral is only the symbolic expres-
ston of the following fact:
¢, s} ¢ 7 (RNQ.F(RY) so that $(3,0)¢ T (RVD. 7 (RY .
Since p(f, x, &, 0)C ¢ ‘(-2)@/“;-,,(R"“), (see Proposition 4) and
CulRV) =y (RIQ U (RY

we have plf, @, & 0)QiE, )¢ D TRV TRY
In fact, the multiplication mapping

(/RN 77 (RY)) X (" (R ¢ “n (RY))
}
SRS R
18 @ separately continuous bilinear mapping, where topologies in tensor products
are projective topologies. Since (R (R and Jy(RNVQu(RY) are barrelled
spaces (A. Grothendieck |2}, Chap. I p. 44 cor.) this bilinear mapping s hypo-
continuous. Therefore, we can prolong this and obtain a hypocontinuous bilinear
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mapping,
(/R VRN Xy (RS R — 7 (R / 'iRY .

This proves
pUfs 2, &, 0000, o) ¢ (DR (RID. /(R .

Expressing symbolically the Fourier inverse transform by integration, we have
(7) (2:)—11—1{ ei{x.;:4'517)p(f’ 1‘, ;: ) ) E’ g)dsda
Rn+1

in (207 RO 7 RY.

The bilinear mapping (C(Q)x 7 (R") - (0) deﬁned by multiplication of
Sfunctions induces a linear map from & (,-)@J (R"™) ® v (RY) tato S (.Q)@J’ (R).
The image of (T) by this map is what we express by the symbol

(27)7 ( DU, 2, €, O)P(E, o)eixé+ o0 dids .

Rn+1

PrROOF OF THE LEMMA 5. We have only to prove the formula (6) when

e=0:(2)0d2(s) with &€ £/7(0), d:¢€ F(RY). In this case,
sc=f-¢=<2x>-ﬂ-'j Fl@)ei =50 (2 Qbalo)dEdo .
En+l
This integral converges in QA” ‘(RY, because this converges even in

T(Q)EL=(RY). Thus

P(eo):P(fm:(-%)""‘] P{fei=0) 5, (8)@(o)d3do .
Rl

This, together with the definition of p(/f, x, &, 0), gives (6).
COROLLARY. If ¢=6:®¢s, ¢1€ T (), =€ (Tu{RY), then we have

-

(8) P<¢>=<2ﬂ>‘”“§ él(s)e""’d‘fj s 3,8, a)alojetdo

R

where the integral over R' means the coupling of functions (1-+0%~leis {n the
space /1 and distribution

ol f, x, §, 0)¢e(o) (1 +0%! in the space ' .

Especially,
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(9) Plo@eins) = <2z>-ﬂj pedﬁg plf, 7, &, T)ducisds

R rt

=(esmen| Buepls, a4 ooz
Japn

COROLLARY. A S-pseudo-differential operator P maps /s (M}@j’(kl) into
SMYE 7 (RY continuously.

§2. Fourier integral operators

Let QR be an open set. We denote by K a function in /,W,/’{Q‘;@cfg,(}?"“)
such that there are funetions K(z, ¢, 0) in g’(.())@ri?’(R”“~{0}) which are posi-
tively homogeneous of degree z,=s;+1t; in £, 0, with 8; — —co and that have
the following property: for any multi-index «; and non negative integrers a; and N,

(10) (1&1+]o nﬂN‘”“*'-“'2D‘£*D?2(K<x, g0 % K, &, o>>
0
is bounded in 7(2), when |&|+]|o|— co,
If o¢ SSZ(Q)@,‘,;’/”(R‘), we define
(11) (K(‘ﬁ) — (2,;)—n—1§ I{(l‘, f, 0-)(2,(5, g)ei(l:é%’ﬂ(’}dsdg ,
R+l

where the integral has the same symbolic meaning as in Lemma 5. As stated in
Lemma 5, K maps j/‘,'?’(Q)@ﬂ”(R‘) continuously into ;j”(!))@j"’(R‘).
LEMMA 6. For any f¢ & (2), we have,

gt K( fla)eiteitn) ~ ) L DL (@, 64, 0.5 DS .
w3 .
More precisely
(12) (l 2 [—so+2\’+ ] pi l-s_;)<e~i2(x-5+sa)K(fei£(r-§+nuf)

_— B 1 Dg;lfj(l,zé., XG)D“f)

dd
TN jeu «al
is bounded in Z(QxSs) with S:={(&, 0)¢ R™, 1/2<| € [24+0°<2}. Moreover, the
expansion s uniform if f remains bounded in 7 (0Q).
PROOY. Since e**7*=2zd(r— 40}, we have
e»ix(r-5+ao)K(fei3(r-§+m))

13) =eies| Kia, v, io)fln— 20 ndy
RS

zS Kz, 7+ ¢, Jo)ei=nfim)dy .
Rﬂ
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Let ¢ Q remain in a fixed compact set F. Then we have for any multi-

index B,
! - ~a s 1 @ 3y - -
| D:Klx, p+ 48, lo)— 5 DD K, A8, Joyype
; jat<N !
<Clp ¥+, if <t
4’
and <Cl7|¥, for any 7. Thus,
| . 3 a o !
[ D=+ PK (felrimetm)) - 1‘ D5:D:K{x, 28, do)Df
i laj N Q] i

<C{l+ ZJ’O'Nj

fnf<a/s

|F)l ¥+ C j 7 1% o

ini>a/4

<on+ o[ 1flinlanec| g
R’l

171>2/4

<CA+ A%
On the other hand, we have

15 | S o DIDEKw i 0Dy~ s L

aj<n al i<J

D5:DEK;(x, 28, m}D“fi
<CQ+ 4

N

So that we have the expansion in the topology of #(2)& ¢ (S:). To obtain ex-
pansion in Z(Q) @r S2), note that

Déje—-i/i?x';—'rsa,\K(fei“z-;‘9~ua))
:A‘S Dy, Klz, 7+ 8, ojei=sfindy
:A‘efzu.5+aa) (DéjK)(feeuz.gha)) .
The kernel D; K has the similar property to that of K. Therefore repeating these
processes, we see that
et M.{ D DS%g-ts-coan K foiat-toem)

1 al py a2 T {
_ - £ T AL 1 2 "
la|z<]N J'EZJ al De Do "Dk, 46, 201D f]
admits an asymptotic expansion in &(2) which is uniform in &, 0¢S.. We can
prove that this doesn’t contain any term of positive power in 4 by the same

method used in the proof of Proposition 4. Therefore, we can prove that
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(/.--EOJ‘AN+iw”)’:Dg‘D‘;z(e'“{”‘5+’“*K(fe"1"z“f"i 50)

&10'52<N jgf a:'l' D(;‘K’(I’z 55 }U)DUf):]
is uniformly bounded in ;2(9). This completes the proof.

The following lemma is due to Hérmander [3].

LEMMA 7. Let By be a bounded subset of 72, and let B be a bounded set
of (8} with only real elements. If ¢ is an upper bound for |grad h| in suppf
when fe By and ¢ B, then, for every positive integers N and k, there is a con-
stant C such that

ke i
(16 [ A(en=s ), ampYiameside| <cre -,
R¥ v 73
if 1&1>24c. When N=0, the estimate holds for all &< R*.

Using this, we can prove

THEOREM 8. If K satisfies (10), the operator K defined by (11) is a S-pseudo-
differential operator of order so. The symbol of K is given by

(17} axlfg)=2

] (3‘ D?pgK_,-(x, /2[)5“ ZO‘)D“(fe“‘;”i) ,

.

where
§.=grad glz). h.y)=gly)—gle)—{y—=x, & .

Proor. Let Fc be compact, B and B, be bounded sets of ,(f) and
<78, respectively, such that, when g¢ B and f¢ By, we have |dg|>¢>0 which
is independent of f and g. We wish to study

e-itinaten K feiltontsn) | (p )¢ S

S:-{ {p,0) ¢ R ;'£p9+02£2} .

We may assume that for any f in B, support f is contained in F.
At first we also require that

(18) [grad g(x) —grad g{y) |< }1 |grad g(x)]

for any x,y¢ F,gc¢ B. This hypothesis will be removed at the end of the proof.
Let e F, §,=grad g{x) and h.(y)=g{y) —gla)—<{y—=, >, then h,(y) vanishes
to the second order at x. The function ui=fe**®?*t9 can he written as
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k-1
19 uily, t, 0, 0) :[f (y)ettivsinrazoip) 33 1, (tdph ty))
¢ 7!

-
‘i"‘eii!)g{liRi(’y)J@‘i“ .

Where R:(y)=R:(y, p) is the remainder term which we shall study later. Hence

e~tiiorten K, o, 0, 4)
e T et
(20) =X, e KU Gehfy) et v
= M

+e K (Rily, o)

(1/2CA< A & |+ ) <2(C+1)4, fleh,)? remains bounded uniformly in p. So, by
Lemma 6, the sum in (20) admits an asymptotic expansion in #(QxS) which is
given by

k-1
5 1

2
o I

L DK, 0, 7o) Do fidpha))

<,

Since D<(f(idph,)) vanishes for a<(2[, if % is sufficiently large the terms in this
sum involving 2 to a power larger than any given number will be the same as
those in the formal sum

2 (3! D(;a}ij(iF, 2,05, ZO‘)Du(. e“r*’u-) ]
L !
Hence to prove the theorem we have only to estimate the error term e¢~*#* K(R:e'?’")

with

[P
B Rdymetten ) ~flyes e S o)
3 .

=gt e D fly) Faly, o) (i2ph.)*

where
N S ..
(22) Fily, P)r[e“”"f— = it (ziph;)'](tlﬁh,)“k .
P .

Note that (h,)* vanishes to the order 2k at x. So we have

St = 3 Hulyjly—a)"

fee] =2k

for suitable H. which can be chosen in a bounded set in 7 {2) for all 2 in F'
and all f¢ B, and g€ B.
Let Galy; 4, p)=Fily, p) Huly), then
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(23) |Galg: 5, 01 |<CIE ™Y, 3 1812 ) 2018,
In fact, if |&]>(1/2)2p]¢,], then by (18)

lgrad b, |=]|grad g{y) —£, |< /11 P€.1.

By Lemma 7 we have (23). When N=0, (23) holds for any &

A

B)(E, 0)= 27" (Apjke st Sy (—Di—2)9GalE— 08,5 4, ) .

jee) =2k
Therefore we have
6—:‘101K(R/‘(y)eilva)

=e'“”'(1p)"g Kz, &, r)e“\'ﬁ.pz-éi &Eu (~D5-x)“éu(§"25=ﬂ; i, 0)
Rntl al=2k

(24) ®d(r — Ag)ei = iromigede

j (z, §, do)gi= itntn 51 (—De——:’c)“é (6—-4g,p; 2, p)dE

faj=2%

Kz, 84206, 0)ei=¢ 33 (—Di—2)eGul€; 2, p)d&

lai=2k

z_._—,

S E (D{K(w, §+ 204,, A0))ei=¢Gu(&; 2, p)de

If p>1/4, using (23) and (24), we have
(25) e K(Raly, p)e*)(z, 4, p, 0)

<Cliol| e |~Nds+c<xp)'~'j (18,30 |+ do )o-2ids

1§ia/8 218, 181/ Ap| £yl

SCUAOM (2] &, )TN 2 (1§, |Ro)o*n=2]

~N+n+k 7 n~k
_<_C<< 140) * +< 20) ) uniformly in p, o

And if p<1/4, then ¢>1/4 and we have for large £k,
e | DiK(x, §+205,, 20) | SC(L+ | &+ 208, |+ 40 |)re-2
ap=

SO E+208, | +] Ao |)ro=2

So that
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(26) e KRy, piet?)

dop| (1 1o as
R»

gc<2p>kuo>ﬂn-“ﬂj (L4121 00-2d3
R®
éC(ZO-)eoAkl.—u

<C(24) 0 k4n uniformly in p, 0.

25) and (26) imply that the asymptotic expansion holds in (2% S) topology.
Next we shall prove that the expansion holds in 7 (2xS) topology.
From (11) we have

27 D;Klo)=K; (9)+ K(D¢)

where K, is the operator with the kernel D;Kix, §,7}. Hence we have

(28) Dj(e—i/‘.’py+so}K{:fei2(ap+sq)))

N
= ip :’g e~ iA o+ [({ fgitiontao)
axr

'3

.
—‘re"'“‘”’“"”[(K(Djf)em”“"?‘)-%“2.0K< F ok girarten)

X

+ K (fem"‘"““)] .

Therefore, D;{g="9r+es K{ fei*eetee)) admits an asymptotic expansion in ¢ (£xS)
topology. Sinece the differentiation is continuous in //(2xS8) this is the formal
differentiation of e~i2‘etsa [( feittootsar),
(29) Dpe—ilw(ﬁ'sr;,‘K(fengptlui): ngen‘;:fwﬁw;,l((fei (py+nul)

+ /'_eikl'g.m»s(:i K(‘j‘geiﬂﬂa'Ho}) .
Therefore similar argument is valid for

Dﬂe—ix(wﬂ»sg)K(fei“gﬂ-‘rsq)) .
If ¢¢ 57 (Q), there holds
(30) K{oGe?)= (27:)‘"“15 gileéve Kip & 7)(5276(t ~0)drdé
Ratl

— (e oK, & i

Rn

So we have
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DiemKigzel= e e DK, &, oié a3
R2
=e (D, K} (0Zete?) .
Here (D,K) is the operator with the Kernel D;K(z, £,0). Hence we have
Dge-ik"g{)'l‘sui K{feiifgp*‘rev)) ze—iiag[H'so\ {DﬂK‘){feii y(;+ae;‘) .

Therefore we can apply to this case the argument used in treating (28; and (29).
Repeating this process, we ean prove Theorem 8 under the hypothesis (18).
Finally we must remove the hypothesis (18). At any point xo in F, there

exists a relatively compact open neighbourhoed U,, with the following properties:

(313 For any ¢ ¢ B, there is a function g, € C~({®2) such that

(32) go=g-+const. on U,, |gradg, (v)—gradg, (¥ < i tgrad g, () ],
for any x, ¥ in IF.

To prove this, we shall introduce a function ¢.(x)=c(nix—xs) where ¢z} is a
Cy funetion which is identieally one in some neighbourhood of the origin and has
its support in the unit ball. We have the estimate

(33) terad ¢, () |<C-n .
Now define a function

9.(@) =0, () gla) — g(xo)) + (1 —¢u (@) ]<E sy, & — 20
where S,Oz:gmd glze). Then

grad g2} =¢,(x) grad g(@) + 1 -, )&,

+{g (@) —glxe) grad ¢, (2) - (£, ¥ — 2oy grad ¢, {x)
| &, —urad g, (2) [<] ¢, (2) (grad gla) —$.)

+{gla) —glae) — <&, x—ao) grad ¢, {a) | .

Since the support of ¢, is contained in the sphere |a—a[{<1/n, we have
| €., —grad g.(%) |g0( 11) uniformly for g€ B and for ¢ F .
n

Therefore for our purpose we have only to chocse large n and define g, =g¢,.
Beecause F' is ecompact, we can choose a finite open covering {U}} 1.1, functions
g;€ #(0) and constants a; such that |dg,|>C and g;=g-+a; on U; and g;
satisfies hypothesis (18), that is,
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(18}’ lgrad g;iv) —grad g,(y) | < i fgrad g;{x) |, Vo, y< F .

Let {¢;} be a CI” partition of unity subordinate to the covering {V,} which is a
star refinement of {U,}. Then,

J
(34) e—iz yod-sa;K(feixingrw‘,) =% e~£3;yy+sa)ék}'{{dj f‘Gz‘/‘,:y_g-&-so,,) .
= 29 (*H)
If supp ¢;0supp 9, ¢, then both supp ¢; and supp ¢, are contained in an open
set U;. Therefore
(35) e-i);‘D!H—sa\giji’gsj‘feikZaph:a‘f} :e—ii{g!p-(»sa)(Iij(fjjj.eiie()w*um)) .

Since g, satisfies {18)’, (35) admits an asymptotic expansion in 2 in #(QxS).
If supp ¢, Nsupp é,=0, then we have

(36) e“i‘{'og*sl::‘fjklfé\‘éj‘f"ei}‘gpgi-s;)) :e—ii.,c- {g“‘gj+a]«3sﬁke—i}i\yjp‘vsd A—(t}sjj‘eiiiﬂgj""")) .
Since g, satisfies {18)
Q';;e“i’.‘ .g}';'!j-é‘sniI{('gij-fei?liag‘/'*:m‘)

admits the asymptotic expansion (17) with K;=¢,K; and f=¢,;f. Therefore for
any integer N>0,

(37) j‘—.V(e—i,?p(ﬂ—gj'Faj)éke—ik(ajp+3()) K({jjfeiixqu*‘sal)
is bounded in {2xS). This, together with (34), (35) and (36) completes our proof.
I we Z7(R"), we introduce for any real s, the norm
: : .,P‘~ A D ’—‘1’2
(38) Hull,={1w s mm :<2r)‘"”~U [aln) 21417 i)"’va
THEOREM 9. Tf K is the operator givewm by (11), then for any fixed ¢ C 7y (@)
and a € R, there exists a constant C such that for any u< / (Q)@E_V’(Rl),
B9 et Klet =iy || pacso guey SCLHE 1o 0wl pagnen .
Besides this, if s:<0, there holds for ¥b€ [so, —s0]
(40) Jfemi=steme Kl =iyl || pasbipurn, SCOLH1E 4+ o 18wl pasgneny -
PrOOF. First we shall prove with ai+b:=sy the inequality
(41) Heminitsm Klgia i) o) | <SCA+TE 1o ) ullyegninl] v ubgnen

holds for any v& (R, We have
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42) Comit-tte0 Klgi1r-i77 u, ¢

:(27:)‘""5 vlx, s}(,-c(:c}d:cdsg gt Ky, C+ &, ptayill, p)dCdp .

Rnt1 Rn+l

To compute this we introduce the Fourier transform

Br, i s dyop=| oo Kie, Cre, o oldads
:i:(v‘: L, p:8,0)0() .

By partial integration, from (10}, we have for any N,

(43) Thalp: &, pr &, 001+ )Y A+ C+E I+l p+o |0l <e .

Now we have

(44) <G~i(x.,§4>aq) K(Gi (z.:;ua,u), {:9'U>

i

3 S B, DR~ =L, —t—p: &, p: &, OV(E, p)didpdrde
RnilJ Rutl

i

S g B0, — ol —7—C; €, p: &, 0)ill, —p)dedodn .
Ro+1J Rn

Setting
V(’?, p)z‘i‘{ﬁ, ’*“()){1»{‘»! i lz+p?)bli2
U, o) =a(s, —o)(L+[ 12 4pY)ml
Hp: €, o £, 0)=(1+4] 72400 2L+ | L2+ ) 12 X (=7 =L 11 4, 0)

we write {44) as
(45) <e—ilx-f+w)}'{(ei (:‘géao!u)’ («"7)>

:S S Hip: €, 02 &, 0\ Vin, o) U, pid<dodr,
ani—l R#

From (43) follows

(46) [ H(n: ¢, p: &, 0) | CllA4 =78 )"V A+ C+E |+ o+al)*
X (L4 n 248214 P77
For any b ¢ R, there holds
(47) A7 eyt (L | ==L N A+ L4050
beeause (14| 714+ p <1+ —5=ChA+1¢1+[o]) and A+]-72-CD A+ 7l+1eD™
<Q+]g+] e} hold. Thus we have
(48) VHp: S, 0,8, 00 | <CUL+|=8—n )™Vl 4+ |24 %)@ty i
X (1+][E+E I+ o+a ).
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If ay+b,=80, then the estimate
A+ S48+ oo o1+ L1 +Hp%2 21+ § [+ a ])!%!
holds, so that
[Hin: 8, p, 8, 0) |<CO+| =L —p ¥+ £ 4o )%l |
Since S (A+1L 1~ dl < oo, from (45) we have
R»

I <e~i{z-5+sa\K{:e‘( (x~§+sa‘vu), QU) l

-

<ci+igi+lop d,og 3 (L[ =S g =¥ 2| Vi, ) UG, o)) dedr
Rl Rnd Rn

<curigirions| (| wieora] [ v nrdar s
R Rn R»

<C+]&]+]0 zwaﬂa Ui, o) l2dCdp]”2BI Vi, o) lzdndp]“z
<CL+1 [+ o) a0 1], -

Thus we have proved (41). From (41), (39) follows easily. If 8,<0, we shall prove,
with ai1+bi=—s

(49) [ <e-i(::-§+30)K(ei(:-541.;},“)’ @L) '£C{1+[ ¢ , -+ [ T l)aoH % ”aIH v ”"1 .

In fact, then we have from (48},

(50) A&+l )7 eH{: §, p: €, 0) |

CA+|=C—n )Mot I+ | L2400 (14 [ L+ & |+ oo [)o{l+] &+ ]a )™

ClL+| =L )M L+ € [+]0 )o(L+] & [+] o]}
Cll+|—L—n])=*+ml

NN A

124
=
a
[¢)
[S——

(1+l*§~ﬂ)"”"”l?d£zS(1+i—$u77[)‘“’**"15d77<00, we have, from (45) and

l <e‘i {z-€+aﬂ)K(ei(:-§+aa} u)’ ¢v> “1 + l 5 ! _;_! a ;)-so

- -

Sj clpf s (L+] ==L )=+ 0 Viy, o) UL, plididn<Cllulle vl .
Rl KnJ kn

This proves (49), the estimate (40} is a direct consequence of (49), if b=s..

By the theory of interpolation {see J.L. Lions and J. Peetre [3] and E. Magenes
[T, (40), for general b, follows easily from (49) and (50).

REMARK. Similar estimate holds for usual Fourier integral operator K. Namely,
let £ be an open set in R*, and K be a funection in (2 xR") such that, there
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exist functions Kz, §) € (Z {2 x(R"~{0}})) which are positively homogeneous of
degree z,=s;-1t; with 5, - —oo and for all N, a, §,

(51) kgl DY(Kie, 8= 3 Kite 8))

remains bounded in /7(£2), when |£|-—>co. Then for any fixed ¢¢ 77(9),acR,
there is a constant C such that for any u¢ 7/ (2)

(62) e = <Kle™ fu) lame S CO+TE Nl ul, .

If 8,<<0, we have, for any b¢ (30, —So),

(63) Hee i tKlefu) ||, <CO+1EN ulle .

The proof is quite similar to the proof of Theorem 9.

THEOREM 10. If K is the operator given by (11) with $.<0, then for any
Jized 9 ¢ 7 (Q) and aC R there exisis a constant C such that for any b, | 6| <] s0|
and for any uc 25 (2), we have

(54) [lemiteiron Kluet =520 ) || yarogm SCL+ €[+ o ) wllnagm -
ProOOF.
e—é(x~£+sa\K(uei\'r-E+so})

= (23)‘”5 o) Kz, £, 0)u(l—&jei= -0 dl

Rn

:(27")_"5 ¢la) Kz, {+§, o)al)e=dS .
Kn

For any v ¢ <7/ (M), we have
(55) <9¢7€—i(1‘-5+3{7) I{'(uei (1—54‘50\)’ 'U>

:{27:)“"S v(x)gﬁ(:r)da:-S Kz, {+8&, o)a(l)et=dl .
R® R®
Introducing Fourier transform
kin, £, &, U)ﬁj e"=ro(ry Kz, {48, oida .
Rn
We can write this as
(56) pg=ilitan Kyetsatsn) gy

- S S D —n—C, C: £, O0ded .
ReJ En

By partial integration we obtain from (10), for any N>0,
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(57) TR, S0 &, o) HLH{ 7 NV C+E | H ol i<C.
Setting

Vig)=(1+]7{%)% %)

Ul =1+ HmaK)

Hip, 2: &, 0)=h(~7~{, 5,5, a1+ 71501+ S0

we have
(58) H, $0 5, o) | <CA+ 7+ N1+ CP) 20+ | S+ 3 H o ool [0
and

{59) <gfe“i~'='3+5”3’K(ue"*"~f*””>},v):S ‘ Hin, & &, 0y Vi U)dnd?
RnJ R

If a,+b,=8,<0

e EA DI AR |es+!ozrao
S A L E P A T (A R Ll
Thus -
[Hn, $: 5, o) [<CA+{74+ LDV 0IL+] L1~ mtbo 21+ S 4]o )
so that

LH(n, C: &, 0) ldn<CL+| &+ o)),

N S

j!H(rz,c: &, 0) [dC<CL+|E|+] o))"

Therefore from (59),

[ {pemtiitsn Klgitmsrenq) o3 {<CHV I L2l | U@ 2141 & 4]0 ]) 7"
=Cllullallvl1+] &1+ a )

so that,
{60) || pemitziteo Klgis+sny) || ya—ao i SOl geon L+ E 4]0 )"
Next, a;+b;=—s5,>0, then by (58)

I 1+IE€+I0!)“0H(77, £, 80|
SO+ E1+]0 D 00(L+] 2+L D L+ 1)L+ SHE [+ 7 1oL+ | 7157
SO+ &L+ 0 ) tolL+] 748 ¥ L] 2L+ L) o(L 41 € [+ (L + {7 {372
SCA+] 7+ )M (L1 )™ 2L+ S0+ 71570
<O+ 7+ ¥ (L4 | L (et 214 | £ 47 2 CL+ | gL it
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Thus

pznmc,aa)Mvscu+wewwonw
j«Hm,ge,aHdcgcu+wsi+lpnm

Hence, from (59},
(61) Fpemiiven Klgt=trarig), o) | < Cl| e [|wa ey || v | lus ey (14| £ [ 4] 0 ])% .
This implies
(62) etz stom Klye 7400 flyasa g, SCL+ S|+l a [l u |l o -
Interpolating (60) and (62), we have

ettt Kluet =00} |yats o, SCL+| § [+ o ) wgaan

for so<lb<

THEORLM 11. If K s the operator given by (11) with s<0, then for any
Jized ¢ ¢ 7Dy, there exists a constant C such that for any u€ G {2),0<b< ~ s,

(63) [Hoe o Kluet»?) || o gn <CL+| 6 )40 u || 4o mm) .

Proor. For any v€ &/(R", by (59),
(64) (oot Kluet), vy = Sg Hin, ¢: 0, 0) Vi) UQ)dnds .
RnJ Rn

And for VN>0,
65) | Hiz, $:0,0) |<CA+17+E )Y A+ C1H) 021+ 7|5~ 20+ S+l o).
If ai+b;=0, then

VH(7, 8,0, 0) [SCAH{7+C NV 1+ L)t 214 o |0
=CA+[7+E )V (l+] o )

and

(66) 5 H7, C, 0, a)dn< CL+] o [)
Rn
S H{n L. 0,0)d<C1+]a])e
R®

By (64), (66), we have, if a+b=0,
| et Kiue'), v) | <Cl+a [)oljulladlvils .

From this
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(67) Hee  Klue) |, <CA+] o l)ojl ulls
If a+b=se, from {65) we have
(68) [H(n,$,0,0) | <CA+H] 7+ LH ¥ T+ o JrolCll 54 ) 0

So that we have

(69) 3 | Hin, ¢, 0, 0) d7<C. S | Hin, 2,0, 0) 1d<C .
R=» Rn

From (64) and (69), we have

{70) | {ge s Kiue ), v [<Cllulldl vl .

Therefore we have proved

(71) e i Klue') [lo— <Cllull, .

Interpolating (67) and (71), we obtain the estimate (63).

THEOREM 12. If K 1s the operator given by (11) satisfying (10}, with sy=—co,
the mapping K has the unique continuous extension from 6”’(!2)@ SRY to
DR (RY.

We call these operators K operators of order —co,

ProOF. Let ¢¢€ Z(2),¢€ /' (RY), then
(72 KloGo)(z, s)= (‘77:)“"“15 Klz; &, o)@(&)@g@(a)e""-’5*'""d$d<7 .
Rut+l

Since 8y= —oo,

(13) Kiz,8,0)C # QD7 (R = (D8 7 (RID.T (R .
Therefore we can define the bilinear mapping
B: (R X. 7R = 8 R (RYQ R
g o K& abl@dlo) ,

which is separately continuous. Since . /(R"), .’/ (R") are barrelled (% >") spaces,
this mapping B is continuous. The Fourier inverse transformation induces a con-
tinuous linear mapping from &?(Q)@/”/(R”)@ﬂ’(lf‘) to (2D RYG u(RY,
defined by

¥ glz, &, 0) — (27:)“"“‘§ glx, & oyet it deda |
Rni)

The following mapping @ induced by multiplication of functions in #(%2) and in
O (R™ is continuous
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@ D RIVE (R — PR R,

because the mapping 7 (2) % Zy(R™ — (£} is the composition of two continuous
mappings L)X y(R) — £ @72 and L2y x F(Q) - F(2;. Composing
B,¥ and ¢, we obtain a bilinear continuous mapping from _#’/(R" % _/'(RY to
2187, (RY) which ean symbolically he written as

(¢, ) - (27””"15 K(z, § 0)¢(&)d(o)et =0 dido .
Rni1

This last mapping induces the continuous linear mapping

N SR - 2 )@/Muel)

()

¢ <Zf)“’j Kz, &, 0)o(3)d(o)e! =i+odedo |
Rnst

Since 7 {.Q) 57 (RY i1s dense in 5”(!2)@9*’{1?‘) and the mapping K that we have
just defined is identical with the mapping K on ,g?’(Q)@f(Rl), K is the unigue
extension of K to /"(!))@.)"’(R‘}.

§3. Calculus of B-pseudo-differential operators
We have proved in Lemma 5 that if Pis a A-pseudo-differential operator on
2R and if fisin (D), the map 7/ (.O)Qy./ (RYY 3u — P(f-u) is of the form
{(11) with K=p(f, », £, 0). Therefore Lemma 6 implies
(74) piluf, x, &, a\~z D“p (f,z, & o) Diulz) .
J .

)
THEOREM 13. Let P be a [-psendo-differential operator on QcR* and
o f2€ 5, fr=r: in some neighbourhood of »¢ 2, then
’\75) fl" ’\, “"‘pj(f‘zi I, E) 0') .
Proor. If we 2 (2) and u==1 in some open neighbourhood of x where fi=/f>,

then ufi=uf.. So that we have

Ep](fl; .T,E,U):};‘ -D Y] flr . ,5,‘7)0 u( )
3

1
J,aa
=3 plufi; a0
J
=3 pilufe; 2, §, 0
i
=3 L Dip,(fu & 0)D%ule)
;‘.:1 a' ; ~)~7$s
=3 p;{fa 2, &, 0)
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From Theorem 13, it is possible to adopt the following

DEFINITION 14. If P is a j$-pseudo-differential operator, we define P, &, ol
©< 2 as p;(f; x, &, 0), where f¢ -7 (2) with f=1 in some neighbourhood of x.

THEOREM 15. If P is a 3-pseudo-differential operator,

>

(76) 2pilu;a, g, 0=3] at Dip;ix, &, oiD5uix) .
F) a.j .

Proor. With a function f¢ & (2), f=1 in some neighbourhood of x, we have

2o, @, 8, 0) =30 plfus , 8, 0)
J 3
=3 ° Dip;(f;x, & o) Diu

=3 Dip;ix, & a)D%u .

THEOREM 16. Let p be a continuous linear map from g’/‘(.)}ék}’/(Rl) to
‘,;‘(Q)@j”(l?‘) such that e =it Pl feieitery g independent of s and an

asymptotic expansion

-y

iz~
a0 P foir x4t ~ S pu( £ 1, &, 0)
o

holds in (xS, Si={1/2<|&24+02<2}. Then P is a A-pseudo-differential

operator, and the symbol of P at the point x is given by

) 9= | Dip,e., o) De( fei)
where
{78) §&o=grad gla), =gl —gle)—y—a, &) .

If f€ 7(2), the operator v — P{fu} is, by Lemma 5, of the form (11). Hence
from Theorem 8, it follows that this is a S-pseudo-differential operator and that

2 puf, g, x,0)=3] »al, Dip;(f, &., o) Dilues)
7 «,] .

Taking f=1 in some neighbourhood of x, we obtain (77:.

REMARK 17. It is obvious that a B-pseudo-differential operator on QX R' is a
pseudo-differential operator on 2xR' in the sense of Hérmander [3].

THEOREM 18. Let P, Q be B-pseudo-differential operators on Q%< R', Q is open
i R and let € 7(2). Then R=QfP 4s also a B-pseudo-differential operator
and we have
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(79) SN o= B Dl & DI v, 8, 0)

Proor. Let u€ 47(2), and let g€ “{£2) be real valued and dg+0 in supp u.
Then for any p, 0 in S={{p, 0) ¢ R%, 1/2<p? 402 <2}

(80 gisiontio) fPlgitntin )~ 2 f(u, g3 7, 0, )5
0

in Z(82x8). Thus
e—i.@!ppha}R(uex‘i(ym-w}):gaurw;«r-w)Q(eii.(gp+»au)e~i).Lpp+aa)fP(uengp+w>‘))
~ 3 Qulfpilu, g5 x, 0, PNt in FRXS) .
e
Therefore R is a S-pseudo-differential operator. Setting g={z, £, we obtain (79).

THEOREM 19. To every B-pseudo-differential operator P there is one and only
one S-pseudo-differential operator ‘P, called its formal adjoint, such that

(81) “(Pu, vy ={u, ‘Py)
Jor any uwc Z QR and veE (S F(RY. The symbol of 'P is given by

82) 2P0 40=X | (-~ Dyw, ~& ~o) .
7 «.] .

PrOOF. It is obvious that the operator ‘P is uniquely determined and maps
o (!2}@59 Z{R") into /' (2XRY}. To prove the existence of ‘P, it suffices to show
that for every f€ &/ (Q) there is a jS-pseudo-differential operator €, such that

P, vy =Cu, Q) if u, ve Q) F(RY .
For then, we obtain gQ,=fQ, for all 7, g¢ </ (2). So that there is an operator
tP satisfying
Q;=f"'P, for all f.

Obviously ‘P is a B-pseudo-differential operator if and only if all Q; are, and ‘P
satisfies (81).

Set Kix, & 0)=P(f; x,&, 0), which satisfies condition (10}, then we have by
Lemma 5

{Pluf ).¢®¢>=(2n)"““‘j 5 K(x, & o)iu(g, o)e' & ¢+39 o(x)d(sydedodxds
Rnti

Rn+1l

={u, He@e)> ,

Q(e®9¢) is the Fourier transform of the function of &,o.
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(83) gloRP)(E, 6)=(27)

gj Kz, 2, s)el{a)d{siet = itsedads

=(27)""d (0 § Kz, & a)elme=idr

where ¢ is the inverse Fourier

q

transform of ¢. By integration by part.

Eqle®¢) (5, o) = <2r~)"=é<o>j (=DJ)"(Klz, &, o)elx))eide

so that by (10), we have

Q

ID:K(x, &, 0)|<C(&|+]0])%

Since @ is arbitrary, | D:K(z, &, ojo{x)ei> {dx belongs to ;‘/""’(R’*)@(‘;,(R‘F. The map

R” fad .
¢ — glv@¢) can be extended continuously from 7/ (RY) to &/ (RY)&. /7 (RY.
Now we shall seek asymptotic expansion of

6~i(1-7.z+sui

This is the Fourier transform o

Qlpet=rn+eo), e l417] 00

f the function

(&, 0) > qloei =) (E—n, o —1) .

By (83), this is equal to

(27) "6 {c—T+7)

j K, §—n, 0—1)p(x)et= -1trdy
a9

:(2?»)‘"5(0)@}' K@, &—n, —t)elr)e=tdx .
Q

Therefore e—i (1:-11+35)Q(¢ei (rq“@-ﬂ))

expansion of K(x, £—~n, ~1) at (—

(2m)= 5
la| <N

is independent of s. We now study the Taylor
n, —7). The partial sum is

-

.\ 5: DiK(x, —n, —t)p(x)ei=idx .

At the point z, the Fourier transform of this is

1

lal<n al

—A=D) (DK, —9, —7))¢lx) .

This has the asymptotic expansion by Lemma 6.
The remainder term R} (£) can be written as

R?’(&>=(2z)—"j<K<x,smn, - 5 YDk, -1, ~r>><,o< Jeinide

jaf<N al
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To estimate RY we again integrate by parts, then, we have

-

N e . eyl g s &« AR
(~8) Ry () =(2m) } e=l'»D:<Kx:v,c~v, ~t)— 3 ° DK, — ,*T))%r,!e” e,
2

Im’\’ﬂ"
and
N e S HEA M
(84) 2P RY ()] = :
?cmwgtm it 121> Lini+iey

If 1&1<1/2(7]+17]), taking 8=N, then we have
| Ry-(&<Clinl+r]un.

If {jol+17 <2 2] choosing | 3] large, we have

[RY(S<CHEI+ e ¥ <ClUnl+1z )
Thercfore
P"<r>:;S|Rf(»§)idszo(lnl~!~!?l)““°“"*", PIESEIT
so that
—idxep o) () ppiioeftealy .l 1 \ fady,
gt Qpgit it~ S (D) K {x, )
&, a!

Where Lhe series is asvmptotic in ¢ (£} topology. By the same argument used
in the proof of Theorem 7 we can prove that this expansion holds in (%)
topology. It is easy to prove that the operator K is defined on &/ (.Q}@;/’(R‘)
by the formula (11) with kernel of type (10}, therefore K can easily be extended
to a continuous mapping from “{’Z*(Q)@f/""(R‘) to (?(Q)@\V’(R‘). Thus @ is a $-
pseudo-differential operator.

DEFINITION 20. A A-pseudo-differential operator P of order s, is called elliptie
if the principal part poix, § of degree so of the symbol is 0 for every real =0
and 2 C 0.

THEOREM 21. If P is an elliptic B-pseudo-differential operator of order so
on QX RY, then one can find a B-pseudo-differential operator E of order —s., such
that for every € Cy(Q), the symbols of the operators EfP and PfE are identi-
cally one on any open set when f=1. The symbol of E is uniquely determined.
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We omit the proof, but note that symbol e=3e;r, & 0) of E is determined
J

uniquely by

1

(85) S Die,ix, &, 0)D%e;lz, £, 0)=1
.35 .

or
w 1 pe e D £ o

(86) 2o Déipila, §, 0)Die;lx, &, 0} =1 .
Q. 3,5 .

§4. The case M is a manifold.

In this section, we again assume that M is a e¢-compact differentiable n-
manifold. In this case we shall restate the results corresponding to those which
were obtained in the preceding sections.

Let {¢,};c; be a smooth partition of unity on M then an operator Pis a 8-
pseudo-differential operator if and only if every ¢;Pg¢., j,k€d, is a S-pseudo-
differential operator. Therefore corresponding to Theorem 16, we have

THEOREM 22. Let P be a continuous linear map from [,’&‘(Ztl)@‘)j“’(R‘) to
é}?(M}@&"'(R‘). P is a B-pseudo-differential operator if and only if for any
@1, 02 € GF (M) whose supports are both contained in a coordinate neighbourhood
U (not mecessarily connected) and for any linear function z-§ of coordinate
functions x1, - --,x, wn U, an asympiotic expansion

e-—il(:ﬁ-,fw'—sa‘}(',gip((in_zei,%lx-f_?«i w))~2 p](x; 5’ G)/:zj
j=o

holds in &£ (Mx Sy, where Si={(&,6) C R, 1/2<0* V| €122} . Then the symbol of
¢, Pes 18 given by

(87) o pe,(f, 09)=3 a]j, D%op,lx, 205, 20) D3 feitehs) |

o,

where £,=grad gla), h.=gy) —9&)—{y—=, §.

COROLLARY 1. If P is a B-pseudo-differential operator and if ¢, ¢2€ &7 (M)
with supp ¢iNsupp ¢2=¢ then, ©.Pe: is of order —co.

Proor oF COROLLARY 1. We may assume that there is a coordinate neigh-
bourhood U (not necessarily connected) containing supp¢;Usuppe.. Let ¢
(resp. ¢2) be in @/ (U) satisfying ¢,==1 (resp. ¢»=1) some neighbourhood of supp ¢
{resp. supp¢.). Using the asymptotic expansion

o
e*&k(z-gé-m}g’)ll)((’gzetl(z.g+so>)~>—)“0 pj(x’ 8’ 6) A%
i=
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we can write as
e"i/’ﬁ(u;} x"af;;(‘;lpfv";_zeii'g'f,:*rm, } :g~i2t’go+saiggl,(I.'le{(;z(:,i‘zei/ﬁv’gh*é'o}}

~ei S ) Dipep,in, 205, 2 01D, (0”5

s

[

Since supp ¢ Nsupp ¢2=¢, the right hand side of (88) is equal to 0.
COROLLARY 2. (1) If oy, os€ o0 (M) with ¢3=¢1, ¢a=¢2 in a neighbourhood V

of «,

(89) Goypenl Ly V=200, (f, 9) T VXRIXS?
i) if er=0.=1 1n a weighbourhood V of x, then

(90) oplf, g) =0 p0lf, @) I V
iy f fi=fe=1 in some neighbourhood cf =,

(91) aplfr, gy =0plfo, g) in x.

These are direet consequences of Theorem 21 and Corollary 1.

We can define oplg)(x, 0,0, 1) as oplf, g){x; p, 0,4, where f€ (M) and f=1
in some neighbourhood of z. We don’t use the following theorem, however it will
not be of no use to state it here.

THEOREM 23. Let Pbe a f-pseudo-differential operator. Let J#(M) be the p-jet
bundle of M. Then for any k theve are integers >0 and function @, from
JU(My xSt to complex number field C such that

pilg. &, o, o) i=0, (0, 0g), o, 0) 4%, 0<j<k.

where 7,(g) 18 the section of JHUM) defined by g. For this it is sufficient to choose
120k --50).

Proow. p,lg,x, 0,0) has an intiinsic meaning by definition. On the other
hand, 87) implies that for fixed &, p;lg. 2, 0,0}, 0<j<k are determined completely
by 7/¢) with sufficiently large [. (It is sufficient to choose as 1<2(k~s).)
Since the fibre of J'Y{M) over 2 is generated by the Image 7,(g){x), g€ (M),
this implies our theorem.

REMARK 24. It is possible to state corresponding result for symbols of usual
pseudo-differential operator in the sense of Hérmander [3].

In the rest of this section we assume that M is compact. Let {U;};e, be a
finite coordinate covering of M and we denote the diffeomorphism from U; to an
open subset Q; in R* by @,. @7F is the corresponding isomorphism from #(2,) to
&(U;),jeJ. We can choose and fix a partition of unity {¢;} such that if
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supp ¢, supp ¢, ¢, then there is an index 7, j) ¢ J satisfying supp¢;Usupp ¢
cUiy -

DEFINITION 25. We say

iy a distribution T¢ /(& ’s@}(;}"(R‘) belongs to HMxRY a€ R, if

. -
(92; HT Hasorxrt =
7

4

; Il ‘.‘ojTGwT@IHI{“iR”:-‘RU <L oo .

133

iy A distribution S¢ </{M) belongs to H*{M), a< R, if

{93) Il SH?I“{M; =3 | 9’71‘551)3& “;2101'12"3 <Loo .

ied

We can easily prove the following theorems.

THEOREM 28. Let @ be an elliptic 3-pseudo-differential operator of order s,
on MxXR. Then one can find a B-pseudo-differential operator F of order - s
such that symbols of F-Q and Q-F are identically 1 on Mx R!.

PrOOF of THEOREM 28. Choose a coordinate patches {U,} and vpartition of
unity as above and consider the mapping

{95) Pi= (0" @1)eQe 0F Q)2 17 Q)R T (R) - 21208 .7 (RY .

This is, hy definition, an elliptic S-pseudo-differential operator of order s, on
2,%R'. Therefore, there is an jS-pseudo-differential operator £, of order -3, on
2% R' with the properties stated in Theorem 21.

With

(96) Fi=f@hEpo@f @I,
we define F as

97) F'uz?jj 0 Fu e

Now we shall prove the symbol @-F is identically one. To do this, fix a point 2
in M. Let I be the subset of the index set J such that for any 1¢ I, x € supp ¢,
and let Ur:i 21 Ui ;. We note that, if 4, 7,4/, ¢ I, then the symbols of mappings
u— Fy,;u) and w— Fyy ;o (u) is the same. In faet for any ¢ ¢ D(U) the symbols
of Fy;,;; 6P and Fy  ;¢P are equal in some neighhourhood of z. This is a re-
lation invariant by coordinate transformation. Therefore we can represent this
relation in terms of coordinate function. Since R is elliptic, Theorem 21 implies
that the symbols of Fi ; and F,- ;) are the same on U. We call this o(}F).
Then for any ¢¢ 2/ (U) with é=1 in some neighbourhood of z, the symbol of I
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at x=the symbol of F'-¢&=3] ¢, -(the symbol of (F,; ne¢; -4 at )

.

=31 ¢;-{the symbol of (F,; ¢} at 2)
1.7

=31 ¢0(F)
i

=g (F)

=the symbol of F, ;, for ¥i,5¢1.
Therefore, the symhol of P-F at z=the symbol of P-Fy; ; at x=1.
This completes the proof.

THEOREM 29. Let @ be a B-pseudo-differential operator of orvder s,<0, then
Jor any fixed @1, 02 € 7 (M), whose supports are both contained in a coordinate
neighbourhood U (not necessarily connected) and for any a€ R and belsy, —sol,
there is a constant C such that for any ¢ € 7 (M)@‘}/(R‘),

(98) e tte st @, Qeapes 8V | oty p,
SCA+ S+ e DMl e Hus gl

where x-8 1s a linear function of local coordinate function 2, ---, 2, in U.

This is a simple consequence of Theorem 9.

COROLLARY 1. Under the same hypothesis of Theorem 29,
{99) H Qs “ v ol 2 gty KCOH{E-H o P @ b arnryy

THEOREM 30. Let Q, ¢y, @2, and z-& be as in Theorem 29, there is a constant
S>>0 such that for any be 48y, —so) and w¢ (M), we have

(Lom [ {emitmarer e Qe @ )| patt 3 SCLHTE o B u o -

This follows from Theorem 10.
COROLLARY 1. Under the same hypothesis as in Theorem 30

(101) HQUeaet st} p2 o <CA+HE o DM ullg-ban -

Finally, we have

THEOREM 31. Let @ be a B-pseudo-differential operator of order se<0 and let
a be an arbitrary real number, then there exists a constant C such that for any
boin [0, —so] and w in G (M), we have

{102) Leto@letsou) || yevdoan <CA+[o [}P4oo]| u Hyay .

This follows from Theorem 11.
Proor. Consider a finite smooth partition of unity {¢;};c; such that for any
J. ke, there exists a coordinate neighbourhood U (not necessarily connected)
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which contains both supp ¢; and supp ¢,. Then from Theorem 11,
(103) 1 3'55°¢’5Q¢k(9i’“?4) ”?1""'%5{; <CA-+lofibiellu Hfi“;y) .
Summing these by j and &k, we obtain {102).

University of Tokyo
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