On intermediate logics 1

By Tsutomu Hosol

We have been studying the intermediate logics between the classical and the
intuitionistie, especially those of propositional logics. In this paper, we add some
further results. One of them is, we report, that we can eclassify the intermediate
logics somewhat neatly, so that we can recognize a structure, which we will call
as cone struciure, in the system of the intermediate logies. It seems to us that
this cone structure will very distinctly show properties interconnecting the inter-
mediate logies and it will provide us a useful tool for the study of intermediate
logics, especially as we study the inclusion and non-inclusion relations of intermedi-
ate logics or monotonously descending sequences of intermediate logics. The classi-
fication will be defined in §4, and in the succeeding sections, the cone structure
will be studied in detail. In §2, Boolean operations on logics are defined and some
theorems on them are prepared. These operations prove to be a useful technique
when we try to prove theorems in §§5-7. The section 3 is rather out of flow of
this paper. That is a remark to §2 dealing with non-intermediate logics. Hence,
§ 3 is dispensable for the understanding of the cone structure. But the fact dealt
in it will, we think, show a certain characteristic of the intermediate logies.

The existence of the logics between the classical and the intuitionistic was first
notified by Goédel [5]. And those logics were given the name intermediate logic by
Umezawa [30] and [31]. Ever since many authors have contributed to this field
of study, with or without consciousness of the notion of the intermediate logics in
mind. In the bibliography placed at the conclusion of this paper, we collect those
works as far as we are aware of. This bibliography will be supplemented in the
papers planned to succeed this as we obtain further informations concerning it.

The classical and the intuitionistic logics have many devotees, and attempts
have been made to construct the mathematics on them, but we do not think it
reasonable to work on the intermediate logics with the same principle as we hold
when dealing with the classical or the intuitionistic. So we shall not discuss such
problems as the mathematies built on an intermediate logic or the application of
the intermediate logies, though we do not deny the usefulness of them, especially,
that of many valued logies. In a word, we regard the intermediate logics merely
as objects of mathematical study. If we take those logies as axiomatic systems,
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we can think that the logics, as a whole, give a classification of the classically valid
formulas by the interdeducibility in the intuitionistic logic. This point of view is
more interesting to us than to regard them as logics in the usual sense.

To make this paper self-contained, we will transeribe those definitions and
results already mentioned in other papers whenever it is necessary, though often
without proof.

By logic, we mean a set of well formed formulas (wffs) which is closed for
substitution and modus ponens. Since we are mainly dealing with the intermediate
propositional logics, we always mean those logics simply by logic, unless mentioned
otherwise. Our study does not restrict its range only to the logics defined by the
axiomatic method. But it also covers such logics as defined by (characteristic)
models or by other methods if any, as far as they fit to our definition above-
mentioned. By model, we always mean a characteristic model, since it is not
necessary for us to use the notion of model in the usual sense. And unless
mentioned otherwise, a mode!l is always for an intermediate propositional logie.
Moreover, we deal with only such models as have only one designated value, since
we know (cf. [14]) that any models can he reduced to models with only one designated
value. Further, we take it for granted that any logic has o model, since the
Lindenbaum algebra of the logic is one.

§1. Preliminaries.

The logical connectives we use are >, &, V and 7]. We use, possibly with
indices, the lower case letters a, b, ¢, --- for propositional variables and the
upper case letters A, B,C, --- for wifs. By A A; (or V A4,, we mean the

Y

lefivin ik
formula A:&A4:&---&A, for A1VA:V---VA,). By A=B, we mean the formula
{(AD>B)&(BDA).
DEFINITION 1.1. K={m1Da0)Dai) Day,
Z={{a>b)De)2{({(bD>a)Dc) Do),
X,= V la;=aj),

i jEndl
(Pi=K,
lPiﬂ:(((liHDPs)DGiH)D@iﬂ (i=1),
R.=a.V{aiDa)V{a:Da) V- - V{de128,)V 1n.
We call the intuitionistic propositional logic as L. By M+ A, + A+ -+ A,
where M is a logic and A,, A, -+, A, are wffs, we mean a logic obtained by
adding new axiom schemes A,, A2, ---, A, to M. The logic of the form L+ A is
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often abbreviated as L4. Hence the classical propositional logic can be expressed as
L+K or LK. By MDNor by NCM, we mean that the logic M, as a set of wffs,
includes the logic N, as a set of wiffs. M>DCN means that the two logies M and
N are equivalent, that is, define the same set of wiffs, and MR N means that MDN
but not AfDcN. The logics S,(rn=1, 2, --.), which will play an important role in
§4, are defined by models as follows.

DeFINITION 1.2. The values of S, arc 1.2, ---,n and o, where 1 is the sole
designated value and w is regarded as grcdter than any positive integers. The
logical operations are defined as follows:

(1 if i,

Ty DPa== l

v2 otherwise,
11 & ve=max{vi, vl),
iV re=min{vi, v2),
Thr=7Dw.

DEFINITION 1.3. S. is an extension of S, by taking the values to be all the
positive integers and o.

Theorems as follow are known.

THEOREM 1.4. LKSCS 2825, 2 RS.RL.

THEOREM 1.5. S, DCL+Z+4+P,DCcL+R,,

S.ocL+Z.

THEOREM 1.6. L+Z+ADCS, if and only if §,5A and S,,, 5 A.

The proof of 1.4 is immediate. The first relation of 1.5 is proved in [11] and
[12], and the latter is in [3]. The theorem 1.6 is proved in [13].

Let M be a model. We mean by Va the set of the truth values of M and by
Das the set of the designated values of M (the subscript M is often omitted). Dusis
usually a set with only one element as mentioned in the beginning, whose element
will be, then, denoted as 1 (or 1a) if there occurs no confusion.

DEFINITION 1.7. For k>2, and for models M; (1<i<k), (My,---,M,) is @ model
with the truth values (vs,---,v,), where v, € Va, (1<1<k), and with the designated
values (dy,- - - ,d;), where d; € Dy, (1<i<k), and with the logical operations defined by

(U1, ~o o, ) (o, o, W)= (v wn, -0, vy % W,),
T, v =l s, T,
where * 18 O, & or V. If each M; is M, (M, --+, M,) is abbreviated as M*.

Let M and N be models. Let be that Vy# Va =, and let Vi be the set of the
undesignated values of N. By Du (or D), ete., we mean those logical operations
of M (or N). For any vEVn, let @{v) be v or 1ir according as v€ Vi or v=1x,
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and let A{v) be v or “Imly according as v€ Viyor v=1n.
DEFINITION 1.8. M1 N is ¢ model whose set of the values 18 ViU Vi and whose
designated value 1s 1y and whose logical operations are defined as follows:

zEVsM  x2Dmy y LEVuy ix&w y
cCVN | 1y aledny) xEVN | 2 T& Ny
VY YyEVM  yEVN LT

TEVy 2V my % TEVy vl

Z€VN .y BlaVay) 2eVh a(TIva).

This operation 1 on models is discussed in [14] and [29].
LeMMA 1.9, Let be that M=S; and A< N. Then, for any assignment f of
M1 N, flA) gets the value 1 or “laular (which is often expressed as 2).
Proor. If we take D to be {1, 2}, then M1 N becomes equivalent to N.
When we deal with the intermediate models, the notion of regular model de-
fined as follows is considerably important.
DEFINITION 1.10. An intermediate moedel M is regular if it satisfies the
Jollowing conditions.
(i) D has only one element.
(1) If D3v and D3vDw, then D3w.
(iiiy If D3v, then D3>w>Dv for any value w.
iv) If D2v>w and D> wDv, then v=1w.
COROLLARY 1.11. If M 1s regular and 1 1s its designated value, then 1Dv=1
i and only if v=1.
THEOREM 1.12. Any intermediate logics have regular models.
This theorem is proved in [14]. By this, we can always regard an intermediate
model as regular.

§2. Booelean operations on logics.

Let A and N be two logies. They are two sets of wffs by definition. We
want to introduce two Boolean operations on them, that is, union U and inter-
section . The operation of intersection for the axiomatic systems has been studied
by Miura [23]. It is easily seen that the intersection MNN as the set of wffs
still keeps the property of logic, that is, closed for substitution and modus ponens
and that it is intermediate. Miura’'s result is the following

THEOREM 2.1. If the sets of the propositional variables contained in the axiom
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scheme A and in the axiom scheme B are mutually disjoint, then
(L+A)N(L+Bj>cL+AVB.
ProOF. The D part is obvious, since Z3AD>AVB and L>B2AVEB. The
part is proved as follows. Let F be a provable formula both in L+A4 and L+B.

Then there are substituted cases A,, ---, A,, of A and B, ---. B, of B such that
(1 A A)DFand (1 A Bj;)DF areprovablein L. Andso (( A A)V{ A B;))DF,
<i<m Sisn Poism e gsin

hence (VA/ (A;VB;))DF is provable in L. So F is provable in L-+AVE.

THEOREM 2.2. If M and N are two models, then MO NDC{M, N).

This is well known and easy to prove.

The Boolean union of two logics as sets does not necessarily constitute a logie.
For example, let us take £Z and LP:. Since LZ+R:DCLR:DCS:2LZ, LZ does
not contain R.. And likewise, . is not contained in LP; since

LP:+R;DCLRDCS:ZLP;

{for the last relation, cf. §6). Suppose that LZULP: be a logic, then it is closed
for substitution and modus ponens and it contains Z and P.. So it must contain
R since L+Z+P>DCLR:;3> R:. If we insist on the former definition of logie, we
must define the operation U differently.

DEFINITION 2.3. LiUL: s a logic whose elements are just such wis C as, there
exists a finite sequence of wifs C, ---,C,=C such that, for each C;, at least one
of the following three conditions holds:

(i) Ciels,
(ii) C,€ Ly,
(ili) there ewist 7, k<<i such that C,=C;>C,.

It is easily seen that L,UL: is an intermediate logic. This definition means
that L,UL: is the infimum of such logiecs as include both L, and L.. It is also
easily seen that, if C¢€ LU L,, there exist C: € L; and C: € Ly such that (C, & C,) 2C,
or C\2(C:DC), is provable in L. The following two theorems are almost immediate
from the definition.

THEOREM 24. (L+A)U(L+BocL+A+B>CcL+A&B.

In this case, it should be noted that A and B can have some propositional
variables in common.

THEOREM 2.5. If L:DLs, then

LiUL:2Ly\ULs

and
LiNL:DLiNLs.
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COROLLARY 2.6. If L.DCLs, then

LUL:ocLiUL;
and
LiNnLl:D>CcLiNL;.

THEOREM 2.7. If Ac¢ M and B¢ N, then A& Be MUN and AVEBE M N.

PRroor. Since the formulas A, B and AD(BDA & B) belong to MU N, the for-
mula A & B belongs to MUN. Next, let us suppose that M and N are models. Let
v and fn be assignments of M and N, respectively. Then the function f such
that flo)=(fsmla), fal(a)) is an assignment of MNN. Conversely, any assignment
of MO N can be thus decomposed into the product of those of M and N. Since,
for any faand fv, fulA)=1yand fn(B)=1n, FIAVB)={fm(A) N fu(B), fn(AYVFin(B))
={AmVIimB), fn(AIVIn)=(1s, In). Hence AVBE¢ MNN.

THEOREM 2.8.

(1) LinL:DcCL:NL;.

2) LyUL:DCLUL;.
3) LiN{L:NL)DC(LiNL)N L.

(2)

3) )

4) LiU(L:UL)D>C(LiUL) U Ls.

(B) (LiUL)N Ly (LiNLs) U(L2N L),
(6) (LiNL)ULyDC(LiULy)N(L2ULy).
(M) (LiNL)ULyDCLs.

8) Lin{LiUL)>DcLi.

Proor. We will prove only (5) and (6), since others are almost immediate
from the definitions.

{5) Suppose that A¢{(L;UL:)NLy. Then there exist formulas A, ¢ L, A:€ L
and A€ Ly such that both (4, & A;)DA and As DA are provable in L. Hence
(A & AV AN DA, and so, ((A1VAs) & (A:VA;3)) DA is provable in L. This means
that (LiNLs) U{L2NLy) 3 A, since Ai VA€ LiN Ly and A:V A€ LN Ls.  This reason-
ing ean be pursued backward.

(6) Suppose that A¢(LiUL:)N(L:ULy). Then there exist formulas A4,¢ L,
A:€ L: and A3 € Ly such that Ai>(A3DA) and A4,D(A4:;DA) are provable in L.
Hence (A A:)>(AsDA) is provablein L. By this, A€ (LN L:) UL since 4,V Az€
LiNL: and As;€ Ly. The converse can be proved likewise.

REMARK 2.9, The above resasoning (2.1-8) can be easily extended to the pre-
dicate logies.

REMARK 2.10. The method of 2.4 used to obtain the union is axiomatie.
We do not know yet a constructive method to obtain a model which is the union



On intermediate logics I 299

of two models. In case the operation U is the set operation, a method has been
discovered by Kalicki [16], which will be discussed in the following section.

It will be interesting if we can define for a logic M an operation Af which
makes (in a certain sense} the complement of M. If we require M° to be inter-
mediate, both M and M must include L. This is not desirable from the sense of
the Boolean complement. So we should, perhaps, not insist that logies be inter-
mediate.

Suppose that we define M to be {4; A& M}. Then L° would contain a formula
a which is the propositional variable @ itself. L° must be closed for substitution
in order that it might be a logic in our sense, and so it would contain any formulas
since they are obtained as substituted cases of a. Hence L° must consist of all
the wifs. This property is not desirable again. So we must give up this definition
for M-.

Next, suppose that we define M to be {A; A&«M and A€ LK}. L° contains
{aDa)V aDa) if L¢ is closed for substitution. This is contradictory.

We have not succeeded in defining M to our hearts’ content. Our conjecture
for the possibility of well defining M¢ is rather negative by the above reasoning
and others.

§3. Models with many designated values.

As mentioned in §1, any intermediate models can be reduced to equivalent
regular models with only one designated value. We think that this property is
somewhat characteristic to the intermediate models from the reasoning as below.

DEFINITION 3.1. L(A), where 4 is a formula, is a set of wffs determined
by only one axiom scheme A and substitution.

REMARK 3.2. By the definition, L(A) is closed for substitution. But L(4) is
not necessarily closed for modus ponens. Let us take, for example, aD>(bDa) as
A. If L{A) is closed for modus ponens, the formula b>A must belong to L(A)
since A and AD{(b>A4) belong to L(A). But, in fact, b>A cannot be obtained
from A by any substitution.

Now, let us call L(e>a) as N and its characteristic model, if any, as M. As
is easily seen, N is closed for modus ponens, that is, a logie, though not inter-
mediate, in our sense.

LEMMA 3.3. If there exists such M, then the number of its designated values
18 greater than one.

ProOF. Suppose that 1 is the sole designated value of M. Since N contains
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a>a and bDb, flada)=Ffbobj=1 for any assignment f of M. On the other hand,
1751 must get the value 1. Hence, forany f, fllaDa) D(b2b))=1. Sola=a; ={b>bj e M
But this formula cannot belong to N. This is contradictory.

We do not know yet the minimum number of the designated values for the
existence of M. But as is shown below, there exists an M with infinitely many
designated values, which, we conject, would not be reduced to a model with finitely
many designated values. We will define M by and by.

DEFINITION 8.4. The set V of the truth values of M is that defined by the
following two conditions.

(1) KEvery positive integer belongs to V.
{11y If Voa, B, then V>(0,, «, B) where v 15 0, 1, 2, 3 or 4.

DEFINITION 3.5. The set D of the designated values consists of all the values
with the form (0o, a, B) where @ and B are any values.

For the elements « and 8 of V, the relation «=3 is defined as usual, that is,
a=4 if and only if @« and B have the same appearance.

DEFINITION 8.6. The logical operations of M are as follow:

j(OO‘J a, f) if a=3,
i(O;, a, B otherwise.
a& f= (0;, @, £}.
av = (05, @, §).
Te= (0, «, a).

THEOREM 3.7. Let A and B be two formulas which contain at the most the
propositional variables ai, ---,a,. A=B if and only if flA)=Ff(B) for any as-
signment f of M.

Proor. Let f be an assignment such that fla;) =1 (i=1,---,n). A=DBIis obvious
from f(A4)=f(B) since f(A) (and also f(B)) cmresponds faithfully to the Polish

aDdB=

expression of the formula. The converse part is immediate.

THEOREM 3.8. MDN.

PrOOF. If N3 A, then there necessarily exists a formula B such that A=
BoB. Let f be an assignment of M. f{A)=f(B)Df(B)=(0s, f(B). f(B})€D.

THEOREM 3.9. NODM.

PROOF. Suppose that M2 A. By the hypothesis, f{A) € D for any assignment
f of M. Hence f{4)=(0s, @, @) where @ is some value. Hence A is of the form
Bo>C. For any f, f V=f(C). So B=C by 38.7. Hence A=BDBEN.

The above reasoning also applies to others. Let us take L{aV e} for example,
which is also a logic in our sense. The formula @V " Ja) VvV (b 1) is the formula
needed in the proof of the lemma 3.3. The logical operations of M must be changed
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as follow:
a>f= {0, a, 8.
a& = (0:, a, 5.
{100, @, 5) if f=0,, «a, a),
{(03, a, B otherwise.
Tla= (04, @, aj.
The above are logies with one axiom scheme. But the above construction of
the model also applies to those with more than one axiom schemes only if they do
not contain any inference rules.

a\/ﬁ:

The definition of logieal operations for the logic with a>a and ¢V la for the
axiom schemes, for example, is as follows:
(0o, @, B)  of a=§,
aDﬁ:'l 0, @, B otherwise.

I s
a& 8= {0, a, B).
(0, @, B)  if B=(0w @, @),
l(Og, a, B otherwise.
Ta= (0, a, a),

REMARK 3.10. Even if A may be a contradiction in the usual sense, L{A} does

not necessarily contain all the wffs.

(1'\/,8:

REMARK 3.11. As is well known, L(a) is the logic which contains all the wifs.

We do not know yet if the lemma 8.3 holds generally for arbitrary L(A)’s.
Our conjecture is rather negative, since L{a) is characterized by a model with {1}
as its V and D.

We give one more example of models with many designated values. This
example is of Kalicki [16]. Let M, and M. be intermediate models. We can regard
them as regular models. Let M be the union as sets of M: and M.. Kalicki defines
a model for M as follows:

DEFINITION 3.12. Vs 1s that of (M, M), Du= {{(vi, v2); vi=1an or vez=1lan}
and the logical operations of M are those of (M, M.).

THEOREM 3.13. M3 A if and only if Mi3 A or M:3 A.

PROOF. Suppose that M > A but that M3 4 and M,®A. Then, for any as-
signment f of M, f(A) € Dy. There exists an assignment fi (f:) of M (M) such
that fi(A)&Dum, (f2(A)&€Dy,). Let f be an assignment of M such that fla)=
(fila), fzla)) for any propositional variable a. Then f(A)é&Das, contrary to the
hypothesis. The converse part is immediate.

THEOREM 3.14. The model M cannot be reduced to a regular model with only
one designated value 1f M is wnot closed for modus ponens.
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PrOOF. Suppose that M which is not closed for modus ponens could be reduced
to a regular model, which we would call as M again, with only one designated value.
Since M is regular, 1Dv=1 if and only if v=1. Since M is not closed for modus
ponens, there exist formulas A<M, and Be M. such that A& BeM but
AD(BDA & Bjc LcM. Let f be an assignment of M such that JIA & B)=v+#1.
On the other hand, f(A4)=1, f(B)=1 and fIA>(BDA & Bj)=1. Hence 1D{1Dv)=1,
by 1.11 we get 12v=1, and so v=1, contrary to the hypothesis.

§4. Definition of slices.

Hereafter we regard the constant » to be an integer, which is regarded to be
greater than any other integers, and when we want to mean other integers than
w, that is, integers in the usual sense, we will use the phrase finite integers.

LEMMA 4.1. Let M be a logic, then there uniquely exists an integer n such
that M+-Z>cCS,.

PROOF. Since MDL and L+Z>cCS., we obtain that M+Z>S8.. By 1.6, we
know that there is no logic between S; and S,,, (i=1, 2,---). And by 1.4, there
is no logic which includes S, other than S.’s (i=1, 2,---). Hence there must be
some uniquely determined integer n such that M+2Z>csS,.

DEFINITION 4.2. &, ={M; M+Z>cCS.}.

By 4.1, every logic belongs to some uniquely determined &,. &, is a set of
logics, which we call the n-th slice (of the system of the intermediate logics). That
Fu#tD (n=1,2,--.) is obvious from the fact that every ¢, contains S, at the least.

To prove the theorem 4.6, we need some preparations.

LEMMA 4.3. In L, the following formulas are provable.

(1) (@D P)=(ai2ay).

(2) (PiDae)=a,.

(3) (PiDPn)=(@>a) 1<),

(4) (Pi,DP)=P; (1<),
PRrROOF. We prove the formulas in the intuitionistic system LJ of Gentzen

1

Since the inferences used are only structural or implicational, we will not show
the names of the inferences used. Moreover, we will allow as beginning sequents
such sequents as easily seen to be provable in LJ.
(1) ae—a1Das ai—ax
o, (@1D00) Dt~ @y
@ P
> aDP.
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Since a,= P; is thus provable in L, (1) is immediate.
(2) ay—P ao—a

1, Piodo— a0

Pl.‘}ézg - apd;f ay— ay

7P;jao, (ax D'a'n) Sa; - a,lw

ijao—*Pl Ao —> Ap

P;Dao, Pioao - ae
P;Dao - Oy
-—*(P1D{Zo) Ddg.

The provability of ae>{P1Dae) is obvious.
(8) This is immediate from (1), if we take a, to be P;, Py to be P;, and
a; to be a;., in the sketeh of the proof of (1).
(4) If we interpret (2) as we did (1) in (8}, (4) Is immediate from (2).
DEFINITION 4.4. Bi=a:Day,
B;=P,p 2<ig<n+1),
Bo="a1Dai),
where n is an arbitrarily fixed positive and finite integer.
LEMMA 4.5. In L, the following formulas are provable.
(1) (B:>B,)=hB (2=7).
(2) (B;>B;)=B; (i<y).
(3) (Bi&B;)=Buax, i+
{4) (B:VBj;}=Buing, -
(5) {7B;)=(B; D B.).
PROOF. Since B. is a contradiction, (5) is immediate. And if 7 or j is w, or
if 4=7, the lemma is also immediate. We suppose otherwise.
(1) Suppose that i=j+k (k=1). In LJ,

N . I(Pn+2—j—k+m:)Pn+2—i—k+m+l) - n+2—i-k3Pn+2—:'
smi k-

is easily seen to be provable. Since each of the conjuncts in the left side of the
arrow is provable in LJ by (3) of 4.3, P,ysj—t D Pass-j, which is B;DB; itself,
is provable, that is, equivalent to B..

(2) We suppose that j=i+k (k>1). We will only show that (B;>B;)>B;,
that is, (PuyoeiDPris-i-t) D Pass-i-s, is provable in LJ. For convenience’ sake, we
put m=n+2—i—k. It is obvious that both a@ns+s = Pnsi and P, —> Ppyy-, are
provable in LJ.
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Aymsp > me.» P, — Pm+k—l
Qv s PopsyDP, - Piry
Pm+k3-lj)m > sy DO Py A = Vs
P..,DoP,, Otk D Prsto) DOy = U
Py DP, P, ., P, - P,
Ppii>Pp, Ppyy 2P, — P,
PuooP,—>P,

Py OPp) D P,

For the proof of {3) and (4}, suppose that 7>j. Then they are immediate
from the fact that L3 B,DB;.

The following theorem is due to S. Nagata. His proof will be published in
near future. Our proof is along the line of his sketch proof delivered to us, only
with slight changes.

THEOREM 4.6. The following two conditions are equivalent n<w):

{i) S.2A and S,,,DA.
{ii) S, DL+A>LP,.

Proor. By 1.6, (i) is implied from (ii). Suppose (i). Without loss of generality,
we suppose that A contains only the propositional variables b, ---,b,., which we
write as A(b,, -+, b,). By the hypothesis, there exists an assignment f of S,., such
that f{4)=2 (cf. 1.9). For 1<<i<m, we put ©(b,) =B, where k=7F,). We define A*
to be the formula A{¢(b), ---, ©(b,)) which is a substituted case of A. OQur aim is
to prove A*=DB. in L, which means that B., that is, P,, is provable in L+ A.
We know that we can substitute equivalent formulas freely in the intuitionistie
caleculation. So, the calculation leading to A*=B. just goes as that of f{A)=2 by
the assurance of the lemma 4.5.

COROLLARY 4.
LP, i3 the minimum and S, s the maximum.

It has been known that lim LP,>cL and lim §,>cS.. So 4.7 also applies to

N-rOD kdaadend

.

7. Every slice has the minimum and the maximum elements.

the case n=w.
COROLLARY 4.8. 7} consists of only one element, which is the classical logic LK.
This is immediate from the fact that $iDcLP;. As to the number of elements
in other slices, we will discuss it in §86.

§5. The cone structure.

As shown in §4, the set of the intermediate logics can be devided into slices.
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And here, we will show many structural relations interconnecting these slices. By
these, the reason will become, we think, clear why we call it cone structure,
likening the set of the intermediate logics as a cone, the slices as horizontal sections
slicing the cone parallel to the bottom and the logics as dots scattered on slices.

DEFINITION 5.1. Let M be a logic. Mlw) s the logic MNS., which is called
as the w-projection of M.

COROLLARY 5.2.

1) M>Mw).

2) Mlw)€ 75, that i3, SeDMw).

3) Mw)DCM if and only if M€ .

4) M{o)DCS. if and only if there exists an integer n such that

M>CS,.

THEOREM 5.3. Let be that M, N¢ _7,. Then M>CN if and only if
Miw}DC Niw).

Proor. The case n=w is trivial. Suppose that n#w. If MDCN, MleoDC
N{w) is obvious from the definition. To prove the converse, suppose that Acaf
but AeN. It will be sufficient if we prove that there is a formula which belongs
to M{w) but does not belong to N{w). The formula AV Z, where, we suppose, the
sets of the prepositional variables contained in A and Z are disjoint, belongs to
Miw) by 2.7. We regard N to be a model. If N3Z, N>CS,DM3 A4, contrary
to the hypothesis. Hence, N»AVZ by the hypothesis that A and Z have no
propositional variable in common. So Nw)®»AVZ by (1) of 5.2.

DEFINITION 5.4. Let M be a logic. M) (i=1, 2, ---) 15 the logic M{w)ULP;,,
which is called as the i-projection of M.

COROLLARY 5.5. If M€ %, then ME)DCMNS; for i>n.

PrOOF. M) =M{0)ULP;,DC(MN S.)ULP,DC(MULP,)N(S,ULP,)DCMNS,,
since MDLP; and S.ULP,oCcS,;. For i<n, see 5.13.

THEOREM 5.6. Let be that M, N€ /.. If i=n, then MDCN if and only
if M{iiD NI,

ProoF. This can be proved just as the proof of 5.3. We only need to use
the formula R; instead of Z in 5.3 and use the corollary 5.5 as the definition of
Mi1).

THEOREM 5.7. The sequence of logics {M(i)} =1, 2,... 18 strictly descending from
LK to Miw) and contains M in it. If M€ 7, (n<wo), there is mo intermediate
logic between M1} and Mi+1) for n<i<w.

PROOF. It is obvious that M(1)DCLK and lim M{()DcM(w), and that the

i-rco
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sequence contains M. Since LP,DLP;,,, M{I)DM(i+1). Since Mi1j¢ 77 and
Mi+1) € Y, MARM4E+1). Suppose that n<i<e and that there exists a logic
M’ such that MORM RM(i+1). M’ cannot belong to _7j.. since, if it does,
Mi+1)D2cM(iinN S, DM, which is contrary to the hypothesis. Suppose that
Mc /. Since MO)RM, MUi+1)RM'(3+1) by 5.6. Hence M Mi+1;2M (1+1).
And both M(i+1) and M’(Z+1) belong to /i,,. SoM'i+1lincM' NS, ,DM{i+1).
This is contradictory.

THEOREM 5.8. The sequence {LP,(w}}, =, 2,... 18 @ strictly descending sequence
on o-th slice &.. That 1s,

S OCLP{0)RLP ()R- - RLP(0)R---DL.

Proor. That S.DcCLPiw) and LP,(w)DLP,,,(®) is immediate from the de-
finition. It is necessary for us to prove only that LP,(0)RLP,.,/®}). By the
definition, LP,(w)D>cL+-P,vZ. We will prove that LP,,,/0:3P,\vZ. First we
define a sequence of models N,. N is the model §2. For n:»2, N, is defined as
follows: Vis {1, 2, ---, n, a, 8, ©}, where 1 is the designated value. The order
relation > for 1,2, ---, n, w is as that of §,, and « and j are regarded as greater
than n but smaller than @ and uncomparable with each other. The logical opera-
tions are as follows:

1 iWf viz=ve,

a  if vi=8 and =0,

VDV =S .
(,B if m=a and v2=w ,
ve  otherwise .
& m{w if vi=a and ve=8, or if mi=58 and v.=«
vr e max (v, va) otherwise .
- _[n if mi=a and v2=48, or if =4 and r.=a
DV {min (21, v2) otherwise .
Thr= vDw.

N,.+1, thus defined, can be regarded as S,1S8:2, or SitN.,. Ni>P, hence
N3 PiVvZ But o3PV Z, since P,V Z gets the value 2 if we assign the values
w, 2, @, 8 and 2 to the propositional variables a,, @i, @, b and ¢ respectively. Next,
let us prove N, 2P, by assuming N, >P,. By the hypothesis and 1.9, the
value f{P,) is 1 or 2 for any assignment f of N,..;. So, fiP,,)=1 for any f.
Hence N, 3 P,., and, by this, N.4, 5 P,wWVZ. But N,,,2P,VZ, since P,V Z gets
the value 2 if we assign the values ©, n+1, ---,2, «, 8 and 2 to the propositional
variables ao, a1, - - -, @,, @, b and ¢ respectively. Since N,>P,VZ, N,DLP,(»). On
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the other hand, as N,,,®P,VZ, LP,.,[0w)®P,VZ.
COROLLARY 5.9. lim LP,(0)DCL.

COROLLARY 5.10. If m>n, then LP,NS,DCLP,ULP, ().

COROLLARY 5.11. If p<q<m, then LP, ULP,(®)RLP, ULP,w).

Proor. This can be just proved as 5.8. Only we need to use the formula of
the form P,V R, instead of P,VvZ. By this corollary, we can recognize a strictly
descending finite sequence from S, to LP, on the m-th slice.

THEOREM 5.12. There exists L,., such that LP,RL..,RLP,.,.

Proor. It is easily seen that no logies on &7 can have the property men-
tioned in the theorem. We prove that LP,(n+1), which is on ¢7.,, has that
property. The relation LP,RLP,(n+1) holds obviously. Since LP.in+1)¢€ ¥,
LP,(n+1)DLP,.,. Suppose that LP,,,DLP,n+1). Then LP,,,>P,VZ, since
LP,(n+1)DCL4+P,,,+P,vZ. But this cannot oceur as shown in the proof of 5.8.

THEOREM 5.13. If M¢ &, and M>LP,NS,..,, then there exvists NE€ 7,
such that N(n+1l)DcM.

Proor. Since MDLP,NS,.y, M@)DLP,NS.. We define N to he M{o)ULP,.
Then,

Nn+1l) = (Mo)ULP,)NS)ULP, .,
DC{Mo)N S} U(LP,NS))ULP,
SC(M{w) U(LP, NS} ULP,,
SCM(®)ULP,,
DCMNSHULP,4,

DS(MULP,, )N (S.ULP,,,)
DCMNS,..
DCM.

§6. The rank of logic.

As a preparation, we prove the following
LEmMA 6.1. If n>j>1>0, then a;Da;, — P, 18 provable in LJ.
ProoOF. The following three sequents are provable in LJ.
(1) P,— P,
(2) a,— P.
(3) P;— P,.
Now,
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(2) (1)
a-—~>P P, — P,

a; —=>a; ¢ ‘“’P]_l
;5 @;30, «»P,_l

a,::»a —a;DP;., a;—>a;

a;oa,, (ajDP,-_.x)Da»j - a; (8)
aj:‘)ap»ij Pj"’"Pn
a;2a;— P, .

THEOREM 6.2. If MC 7/, and NE 7, (m, n<w) are two regular models,
then MY NG /iy

Proor. Let f be an assignment of Mt N. By 6.1, f(Pp.)=1 if fla;)> fla,)
for some j and 7 such that n>j>i>0. Hence, if f{P,..)#1, it must be that
VD {fla,): 0<i<k} and VuD {fla,); k+1<i<m-+n} for some k. Suppose that
k>=n. Then, the value f{P,} must be 1 since P,¢ N. Hence, f(P,..) gets the value
1. Suppose that k<n. Then f(P,) is either 1 or a value in Vi. If it is 1, f(Pusn)
is obviously 1. Otherwise, fl{la,,DP) Dayyy) D) =FlQusy), sinee flau.,) DF(P) =
f(P) and f(P)Dflaw,)=1. Hence we can regard the value f(P,..) to be the value
g{Prsn-r-y) by some assignment g of M, which is 1 since m+n—k—1>m and
P,e¢ M. So, again, f(P,+,) must be 1. Hence, Mt N3 P.... Next, by the
hypothesis, we have an assignment fau (fn) of M (N) such that fu(P,_)>1u
(fw{P,—)>1n). It is obvious that both of the assignments do not assign the
designated values to any propositional variables in the formulas. Let f be an
assignment of M1 N such that:

(fvla)  if 0<i<m—1.

afz . -
fla lf,u(a,t-.,,) wWf n<i<m+n—1.

Then, it is obvious that f(P,..-,)>1.
REMARK. Jaskowski [15] defines a sequence {J,},=: 2 ... which converges to
L as follows:

Ji=8,
Jio =S T,
And MeKay {20] simplifies it as follows:
Ji=8,

J:+1:S1 TJ;Z
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By the above theorem, we know that both J, and J. are on the n-th slice.

DEFINITION 6.3. The rank »(M) of M is the minimum integer n such that
M3 X, 1f there are any, otherwise riM=w.

COROLLARY 6.4. »(S,)=n+1 if n is finite, and #(S.)=w,

COROLLARY 6.5. If M is an n-valued regular model, then +(M)<n.

COROLLARY 6.6. If MDN, then r(M)<r(N).

COROLLARY 6.7. If M¢ &, then »(M)>r(S,) =n-+1.

COROLLARY 6.8. If r(M)=w, there is not a finite model for M.

COROLLARY 6.9. There is not a finite model for Mc 7.,

COROLLARY 6.10. Let M be an n-valued regular model 2<n<w). Then,
M=8, or M=S8,1 N for some N if and only if r(M)=n.

These corollaries are almost immediate and some of them are treated in [141.

THEOREM 6.11. The n-th slice v, has infinitely many elements if n>2.

ProoF. The logies Si118%, (k=1,2,---) all belong to & by 6.2, since
Si_\DCS8,1€ /.oy And, as 7(8, 1S5 )=n*+1 by 6.10, they are all distinct.

COROLLARY 6.12. 7(LP.)=w (n>2).

ProOF. This is immediate from 6.6 and 6.11. By 6.8, we know that there is
not a finite model for LP, (n>>2).

COROLLARY 6.13. If MCLP,, then M has not a JSinite model.

COROLLARY 6.14. The n-th slice 7, (n>8) has more than one logics such
that they have not finite models.

ProoF. LP, and LP.NS, are these examples.

§7. d-projection.

DEFINITION 7.1. Let A be a formula which does not contain the propositional

variables d,, do,---. Then,
JA =L A)=({d, D A)2d,)2d, ,
I A =({d, D4 A) Dd ) Ddsy (1>1) .

The logic L+4"(A) is often writtan as J*(LA).

THEOREM 7.2. If LA€ /,(n<w), then 4(LA)E /..

PROOF. By the hypothesis, §,34 but §,,,D4. So, for any assignment fof
8,41, flA) is 1 or 2. Hence f(4(A))=1. There exists an assignment g of S,., such
that g(A)=3, hence g(4(A))=2 if we put g(d,)=2. Hence S,,.34(A).

COROLLARY 7.3. Under the same hypothesis, 4™(LA)Y€ 7., ..

COROLLARY 7.4. LARALARLUAR --RINLAD -

THEOREM 7.5. LADLB implies 4*(LA)>4*(LB).
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Proor. It will be sufficient only if we prove the case n=1. By the hypo-
thesis, there are some formulas Ai, A.,---, A, which are substituted cases of A,
such that A, As,---. A, — B is provable in LJ. From this, we can easily derive
(A}, Ay, -, d(A,) — 4(B).

COROLLARY 7.6. LADCLB implies 4*{LA)D>c 4*(LB).

COROLLARY 7.7. For any formula A, LP, > 4*A) (n=1).

THEOREM 7.8. If LAE 3, 4MLAJCLP, N Syse.

PrROOF. Asthe proof of 7.5, 4"(R,) is deducible from P,.;. Hence LP,,,;D4™(S,).
S, 100 4%(S,) is obvious. S0, LP,. N 8, ;2 4"(82) DAMLA).

THEOREM 7.9. If LA€ 7, (n<w), then 4{LA)CLP:NS,;,.

PROOF. 8,..04(LA) is immediate from 7.2. LP,D4(LA) is proved from the
fact that LP,DLA and LP;ODCI(LP).

We have defined two kinds of mappings from &/, into &5.,. One is the o-
projection, which maps M€ &/, to M{n+1)€ 7,,,. By the reasoning of §5, we
know that S,(n+1)>cS...oMn+1)DLP.(n+1)DcLP,NS,.;. This projection,
figuratively speaking, maps the n-th slice parallel with the sequence {8}z :,...
which can be regarded as a generating line. The other is the 4-projection, which
maps LAE &, to 4(LA)€ ¥y, And we know that LP:N S8, D4(LA)DA(LP,)DC
LP,.,. So this projection maps the n-th slice parallel with the generating line

{LP,} {12 e0n o
University of Tokyo
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ERRATA

On the axiomatic methed and the algebraic methcd for dealing with propcsitional
logies. J. Fac. Sei., Univ. Tokyo, See. I, 14 (1967}, 131-169.

Page 131, line 10. For “‘probability”, read “provability”.

Page 132, line 4. For A,, read A,.

Page 133, line 19. TFor N, read M.

Page 134, line 10 from the bottom. For ‘‘completion of vV,
read ‘“‘completion of W',

Page 138, line 2. For “I'(M)"', read “"I'(M).”.

Page 138, line 11 from the hottem. For S, read S..

Page 139, line 6. For —ads, read —wdw.

Page 139, line 9 from the bottom. For ‘“‘eet”, read “‘set’.

Page 140, line 7 from the bottom. For &, read .

Page 141, line 4 from the bottom. For “‘logics,”’, read ‘‘logics.”.

Page 143, line 6 from the bottom. For ““been’’, read ‘‘be’.

Page 146, line 2. For S, read Sa.

Page 160, line 22. For S, read S..

Page 169, line 4. For 107, read 106.

Page 169, line 13. For ““Jaskowski”, read *“Jaskowski’.



