Local solutions of stochastic differential equations associated

with certain quasilinear parabolic equations

By Hiroshi TANAKA

1. Introduction. Let I=[0, T] for some fixed T>0 and {3,t<I} be the d-
dimensional Brownian motion starting at 0. Given functions a®’{t, x, v}, bi{t, 2, v)
(1<%,7<d) and ¢lt, x, v) on IX R % R, we consider the stochastic differential equation

{1.1a) ds®2 () =alt,&= =, wyd8,+b(t, &2, wdt, £ {sh=a,tC I,

T
{1.1b) i(s, x) =E[f(§"2(T) ‘emﬂ elt, 00 widt], 0<s<T

8

for a given data f on RY In the above pair of equations, £ and u mean
§o(t) and wu(t, £ =(t)) respectively. Other notational meanings will be explained
in §2. When ¢=0, stochastic differential equations of this kind were considered
by Yu. N. Blagoveséenskii [1] in the investigation of local solutions of Cauchy’s
problems for degenerated quasi-linear parabolic equations. But, his stochastic dif-
ferential equations needed a slight modification. In this paper, we extend a part
of BlagoveScenskii’s results to the case ¢#0, and then treat similar equations on
a compact manifold. In Theorem I (§3), we construct a local solution of (1.1) by
successive approximation under the assumption of Lipschitz continuity of @'/, ¥, ¢
and f. It will be remarked that (s, x) satisfies a backward quasi-linear diffusion
equation 1/ it is smooth enough. §4 is devoted to the case of compaet manifold
M (Theorem II). In this case, a similar method of successive approximation as in
§3 seems to be too complicated to carry out, and so we take another way; that
is, we first imbed M into the Euclidean N-space E¥ for some N, and then extend
all coefficients and data to the whole of R¥ by a suitable method to the effect
that the resulting stochastic differential equation in R¥ has a solution which can
be converted onto M.

2. Notations and preliminaries

Let {8,tcI}={(Bi{w), -, Bt®@)),tc I} be the d-dimensional Brownian motion
with Bo=0, built on a probability space (2, B, P). We may and do assume that
the paths B,(®w) are continuous. For 0<s<t<T denote by B the smallest o¢-field
on 2 that makes {8:—8, : s<t<t} measurable. Choosing arbitrary sub o-field B
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of B such that B, and B? are independent, we set B,=B,'VB). By an integral
t .

(s}df,, we mean the stochastic integral of K. It6 [3]; this is defined for a real
va ued function a{t, @) on I'x 2 such that i) all, ) is {¢, w)-measurable, ii) a{t, ®) is B~
measurable for each ¢ € I, and iii) | a(t, )*dt<oo with probability 1. We shall often
write Sa(s)dﬁ, for the m-vector (}:sa”(s)dﬁ’,, ~-,E§a"’(s)dﬁf>when a(sy={a'i(s)}

3 2
is an nxd-matrix with each a‘i(s) satisfying i), i), and iii). The precise meaning
of the stochastic differential equation (1.1a) is as follows: for fixed s<T and
€ R (T, sStST = {2, ---,8004(1)), s<t< T} is a stochastic process

on R* with continuous paths such that £ (¢) is Bi-measurable for each t€{s, T] and
2.1)  gorify= 5 7, 60 (1), ulr, 0 (¢)))dé-
S o), ufr, gl (m)))de  s<t<T, i=1,---,d,

where a'(t, z,v)=(a''(t, x,v), - - -, @'d(t, z, v)) and z* is the i-th component of x € R4,
In this section we consider the case in which a'/ and b do not depend on v
(so that the equation (1.1) reduces to (2.3) below) and prepare, for the need of
the next section, a simple estimate (Lemma 2.2) concerning the dependence of the
solution upon the initial position x under the assumption 1.
For real valued functions a'i(t,z) (1<4, 7<d) and b¥(t, ) (1<i<d) on Ix Re, set

(2.2a) Afty= sup 3| a'i(s,z)—a’(s, y)|¥/|x—y |?
iy 4, f
[i 2 o

{2.2h) B(t)= sup 3| bi{s, 2) -b'(s, p)|¥la—y |2
rxy I3
Geiast

and make the following.
Assumption 1. @'/ and & are bounded, and A=A(T)< oo, B=B(T)<co.
Under this assumption, it is well known that the stochastic differential equation

(2.3) dé{t)=alt, §(t))dB, +b(t, §(t))dt, te I, £(0)=

has a unique solution, which is denoted by &(t, z) to stress the initial position z.
First we list a simple lemma without proof.

LEMMA 2.1. If f(t) and g(t) are nonnegative measurable functions on [0, 7]
and if for some constant A>0 the inequality

f(t)£A+§}<s)g(s)ds<oo, 0<t<T
]



Local solutions of stochastic differential equations 315

holds, then f(ti<A expg gisids, 0<i<T.
0
LEMMA 2.2. Set &,(x, y)=5(t, y)—&(t, x) for x,yc R.. Then, for 0<t<T

.4) E{jé(z, v }<|1—2/l"e\p5 8)+24/ Bisi)d

PROOF. Set ai=(oi, .-+, ai), i=1,.--d, and 7,=(z}, - -, 7} where

o =atit, £(t, y) —a'iit, §it, @)
ti=bi(t, §(t, ) —bi(t, &(t, 2)).
Then, with the notation |#]| for the usual norm of d-vecter *, we have Slai|?
<A{) |&,(x, ¥} and |7, 12< B@) | §,(z, ¥)|® by the assumption 1. Let flz)=|z I‘g, and
fi=2x% f,;=26,;, We now apply the transformation formula concerning stochastic
differentials ([4]) to the stochastic differential df(§.(x, ) where

dé,(x, y)=0,dB,+7.dt, Solx, y)=y—x,

and then use the above estimates on o} and 7,. Then

(2.5) L2e, ) P=l 2 —y 2+ S 5 £ 6o, U)o A

52]"( g, (x, y))rids+- ;S Zf‘, (x, y))oitaitds

0 L.k

<la—yl+ S > 28, yl)oiids]
[ I

+S!2«/ B(s) | &,(x, y)l"’ds+SsA(s) [&,(x, y)|%ds .

Noticing that E{|&,(z,¥)|?} <co which follows immediately from (2.3), we take
the expectation of both sides of the above inequality. Then, Lemma 2.1 applied
to this resulting inequality implies (2.4).

3. Existence of local solutions of stochastic differential equations (1.1).

Suppose that we are given coefficients a'i(t, x, v), b*(t, z, v}, clt, x,v) (({, z, v) €
IXRiXRY and a real valued function f(z) (z€ R% as in the introduction, and con-
sider the stochastic differential equation (1.1). We will prove the existence and
unigueness of local solution under the assumption 2. Let p?=|z—y|*+|u~v|*and
set for s€{0, T}

(3.1a) A(s)-*—( sup Pt latit, x, u)—aiit, y, v)|2, A=A(0)
T,u) F iy, ?) 1,7
174344
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3.1h) Big)= sup p"S‘!b {t, z, by —b'it, y, vi|2, B=DB0j
fbd’ l» IIL
(3.1c) Cisi= sup p7%clt, x, u)—clt, y, vj{?, C=Ci0)
frm) o 1y,v)
P2
(3.11) F=sup|flx)~fly)F/le-yl*
£y

Assumption 2. A%, b, ¢* and f are bounded, and A, B, C, F<Coo, where ¢* is
the positive part of c.

DEFINITION. Let s¢[0, 7). By a solution of (1.1} in (s, 7], we mean a
family of stochastic processes (&2 (1), s<t< T} ((s,2) € (so, T]x 124} with continuous
paths such that &< {(#) is Bi-measurable for each t¢{s, T), and {2.1) and {1.1b)
hold.

TuroreMm 1. Under the assumption 2, there exists sy € [0, T) such that (1.1}
has a solution in (so, T| and the corresponding function uls, x} satisfies

[ uls, ) ~uis, y |
fa—y|

0o

<o, for any 8 € (s, Tl

Cul

7y
LIRS

Furthermore, a solution for which (3.2) holds is unique.

The proof is based on successive approximation and will be completed after a
series of lemmas. TFirst we set w(s, z)=f(x), and then for n=1, 2, - - -, define suc-
cessively as follows:

3

allis, xy=aii(s, x, ua_1(s, x)), biis, x)=Dbi(s, &, Un-1(s, 21,

cols, ah=cls, 2, u,is, 7)),

(3.3) g t):-*.rfrj a,lc, 85" (7NdB: +S W7, &7 ()dr

5

(3.4) tals, ) =B fE(T )e\pj ealt, E57 (1)d8]

We define A,(s) by

A= sup X alllt, ) —ad{t, Y)I¥ e —y 1% A.=A,0)
riy 4,
it T

and also B,(s), C.(s), U.(s) by a similar way. The following lemma shows that
the coeflicients in (3.3) satisfy Lipschitz condition, so that the above definitions
make sense for all =n.

LEMMA 3.1. (i) If U,.1<o, then

AR <A I+ U,als)) <AQ+ U,mi) <o
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and similar inequalities for B,(s) and C.(s) hold.
(i) If A,<eo,
E(I£07 (1) £ (012} < |2 — yi?exp {{A.(8) +2v/ Bu(s)) (E~8}}.
ity If U,_1<oo, then
U,(s) <2{F+ (T—sPIf11PCL+ Uprlshi}
xexp[{{A+2v B){1+U.(sh+2]l et [} (T~s}i".
{iv) A., Ba, C,, U,<oo for all n.
PrROOF. Since (i) is obvious and (i) is immediate from Lemma 2.2, we prove
(iii). Noting (3.4) and then using Schwarz inequality, we have after simple

caleulations

fu,ls, o) —uals, ) |2
CE[|F 2 (T)) —f (T 129\D2j ealt, & (0)d1)

T L T
+2E[Lf (&7 (T) |2lexpg ¢alt, E,‘es"'(t))dt‘“S et &0V (8))dt 12

E

L 2T I FE |87 (T) =& (T) I?]
T
e e | T = Cule | B0 ) -0 .

.....

short ealeulation. (iv) follows from Up=F < oo, (iii) and (i).

LEMMA 3.2. se=inf{t€{0,T]; supU J <o} < T

Proor. It is enough to show that for some « (=) and ¢ €10, T) the inequality
U,_.(t)<x implies U,{tj<x, and for this by (iii) of Lemma 3.1 it is also enough to
prove the existence of #>U, and t€{0, T) such that

2{F+(T—t)2f11PCL+r)}exp[ {{A+2y B)(1+x)+2||ct [} T —t)]Ix.

But, the above inequality holds if #>2F and T—¢ is small enough.

In the following lemma and in its proof, K, K, Ki, - -- denote suitably chosen
constants independent of »n and ¢t. They may depend on s, but are monotone de-
creasing in s. Also, when we think of u,(t,z) as a function of » with ¢ fixed, we
denote it by u.(t).

LEMMA 8.3. For fized s€ (so, T1 we 3et

Ouls, t) =sup E{|&>5 () =& (0%}, s<t<T.

Then 6,(s,t) and || wae1(s) —u.(8) ||? are dominated by K(TKo*(n!)™!

1 ||-}| is the supremum norm.
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PrOOF. For s<t<T set
7.t =557 (6 607 (t)
It =a (L, E07 (1) —as’ (8, 07 (1)
7t =by (8, £ (1)~ bolt, £ 7 (1)
Using the expression dy:(t)= La;,’(t)dﬁJ(t;dt+r t)dt and then the assumption 2,
we have

it) I j (Slaiite w+w§ (31 7i(0)12) de

8 t

t
/QuL+BT[ (142U, E 9.2 !}dr+4ub+BTW!nuw»~u?AﬂH%a

Y

and hence

3.5) @@ugmya

"mnw+mfnmm—mﬂmww

]

where K,=2(A+BT)(1+2sup U,(s)), K2=4(A+BT). Applying Lemma 2.1 to (3.5)

we have

3.6) 5@t)e‘””K4leﬂ~qum%R
and hence

T T
(3.7) jmmnmgmjn%m~mﬂmwm,

for suitable K. On the other hand, by a similar method as in the proof of (iii)
of Lemma 1.1,

T
nmmw—mwms&m@m+mjmmﬂa

T
+mSHMMprﬁm%L
and inserting the expression (3.5) with £=7 into the above

(3.8 [ 1,5,(8) wua(S)H?SKvY

&

m&nm+mrumm—mﬂmma.

L]

From (3.7) and (3.8)

1t 5) m(HS&SHMMmquWﬁ-

]

Since K, can be chosen to be monotone decreasing in s, the above inequality implies
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the conclusion of Lemma 3.8 for || %,1(8) —u.(s) }|*> and hence the same for d,(s, )
by {3.6).

Now we complete the proof of the theorem. By the stochastic integral equa-
tion (3.3) that £;>7(t) satisfies, each component of £**(t) —a splits into a martingale
(stochastic integral part based on the Brownian motion) and a process with ab-
solutely continuous paths. We write £ () —x =X, (t) + Y,{t) for this decomposition.
Then, by Dooly’s inequality on submartingales

P{ max; [ Xaer(t) - X, ()] >277 <2V,

Bl

Va=E{|Xun(T) - X.(T)?}.

But, by the same way as we derived (8.5}, V, is dominated by the right hand
side of (3.5}, and hence 2*V, is a general term of a convergent series. So, by
Borel-Cantelli's lemma X, (t) converges uniformly in t€{s, T)] as n tends to co with
probability 1. Since a similar reasoning based on Chebyschev’s inequality can apply
to Y,.{t), the same conclusion holds for Y,(t) and hence for £ (t). Let &2 (#) be
the limit of £;""(t) as »n tends to co. Then, letting n tend to oo in (3.3) and (3.4),
it is easily seen that {£“#(t)} is a solution of (1.1) in (ss, T1 satisfying (3.2).
Finally, to prove the unigueness, let {€®(t)} and {£®(t)} be solutions of (1.1) in
(80, T] both satisfying (8.2), and set

o(s, t)=sup E{|¢ 7 (1) £ ()17}, so<s<t<T.

Then as in (3.5)

ots, ) K| 9ta, e + K 1| wle) s o
where u.(t) is defined from {£{*(t)} as in (1.1b) and K, K} are suitable constants.
Similar arguments after (3.5) are applicable, and we have (s, t)==0 and hence ¢
&, are the same.

REMARK 1. Let {£®} he the solution constructed in Theorem I, and regard
% as a given function in (1.1a). Then, the method of successive approximation
for solving (l.la) shows that for each s€ (s, T] &“-(-, ) is measurable with
respect to FxXF,xB; where F (resp. F,) is the class of Borel set in R! (resp.
[s, T)). Also by the uniqueness, we have £ 3 (t)=9th.a () (z=£0.2(g+})) for all
t€([s+h, T] with probability 1 for each s,k (3<s+h<T).

REMARK 2. We suppose, in addition to the assumption 2, that a®/, b and ¢
are continuous in ¢ and ¢ is bounded, and let {£”#} be the solution constructed
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in Theorem 2. Further, suppose that u{s,2) is of C® in x for each s and that
uls, &), uls, ) and u,;(s, 2} (partial derivatives with respect to the space variable)

are bounded and eontinuous in s ([1] contains informations for proving smoothness
of u). Then, by the transformation formula on stochastic differentials

uls, 2y —uls+h, x)
£ et

S
e ‘\_“Igz )
A N

[

wi(s-+h, @7 (t) exp(chr)b‘dt {

&t h ‘"‘ { -1
-F( £ u(_s%»h,s“""'(t))equ cdr)cdtj

L

o -

ek -
S wyslsHh, ECD(E) exp(j%dr)a“‘a’"dt !

| R,
+ o DK
2056 1 ],

8 —
for sy<ls<s+-h<T, and hence

( —u{s, ©) =2 AV(s, 2, wu i+ 2bis, 2, whut+els, 2, wu, 8 <8 T
1

1

where u/(s, x)=duls, x)/0s and AU{s, z, u)z2

Slatk(s, z, wat(s, x, u).
&

4. Stochastic differential equations on compact manifold

Let M be a compact C™-manifold of dimension d. Stochastic differential equa-
tions of the type (1.1) can be considered also on M. First we introduce a system
of diffusion coeflicients on M. Let I={0, T as before, and suppose that to each
local chart v==(V,¢) on M there corresponds a collection {a¥, b’ 7, j=1,---,d} of
functions from IxX(V)x R' into B'. We say that a system {a'/, b’} of diffusion
coeflicients is given on M, if these collections for different local charts are connected
by the following transformation rule: for each pair v=(V, ¢} and 0 :{If\", f.\ of local
charts on M

A . LO0E 4 N
(4.1a) ailt, {,v)=3% sz af)’(t, z,v), 2edVNV), ve R
P
) P A LY
{4.1b) byt &, v)= k}_}} - bolt, @, v)
vl OT bt @ v, 2, ), xeAVAT), ve R
2 7% oxtoxt
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where x={z', -, 2% =¢(g), g€ V, and 3=, ---, 3% =d(g), g€ V. In addition to
{a’, b'}, suppose we are given a function c{t, p, v) on Ix Mx R' and a function f on
M. Our problem is to find, for some so € [0, T), a family [/ ={z"? (s, p) € (s, T1x M}
of stochastic processes =-? = {zt.2(t), s<t<T} on M such that
(=.1) =@=»(t} is continuous in ¢ and =“»(s)=p with probability 1,
(=.2) =¥t} is Br-measurable for each tc[s, T],
(=.3) for any s<s<&1<t<T and any local chart v=(V, ¢,

t

4.2) Gl B =g s)+ | afe, Gl ©), wle, 70 ()

o 8l

t
+j bols, Gz (), s, 700 ())ds
L1%

holds almost everywhere on {=®(s)€ V and t<o} where ¢ is the infimum of
>3 for which =*»(rj&e V, and

{(z.4) uls, p) satisfies

T
elt, =0 (1), ult, =" (t))}dt] .

8

(4.3b) uls, p) :E[f(?:"“” (T expj

Symbolically we write
{4.3a) dz? (t)=alt, = ? wdB,+blt, 7P w)dt

and call /7 a solution of (4.3) in (so, . We make the following assumption:

Assumption 3. For every local chart v=(V,¢) and every compact subset K of
V), 1) ay't, v, v}, by(t, x,v), c*it, ¢'(x), v) are bounded on IX KX R, ii) /(¢ x, 1),
bylt, o, v), ¢it, o~ x), v) satisfy the Lipschitz condition as functions of (z,v) ¢ Kx R
uniformly in t € I, and iii) f{¢~'(x)) satisfies the Lipschitz condition on K.

THEOREM 1I.  Under the above assumption, there exists an so€ [0, T) such that
(4.3) has a solution in (so, T] and the corresponding function wul(s, p) satisfies
(4.4) sup | uls, 7M@) —uls, My |/ 2 —y [ <oo

5, yEK
r£y, 818 T

Sor each local chart (V, ) and each compact subset K of ¢(V), 8,€ (s, T). Movre-
over, such a solution is unique.

We prove this theorem by reducing it to Theorem I by the method outlined
below. We imbed M into the Euclidean space R¥ of suitable dimension N, and
then on the basis of the transformation rule (4.1) we introduce several functions
(@i, b%, co, fo) on @(M) (¢ is the inbedding of M into R¥). These functions are
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extended to the whole of RV (Lemma 4.1) to obtain a stochastic differential equa-
tion in RY¥ of the same type as (1.1), and we finally prove that the solution is
confined on ¢{M) if the initial position is on ¢(M) to obtain a required solution on
M by the mapping ¢ L.

The imbedding of M into RY is well known, but in order to make the above
procedures precise we first sketch the method of imbedding {[5}). For each pe M
choose a local chart v,=(V,, ¢,) such that p€ V, and z(p) =0 where 2(g) = (z'(g), - - -,
g =, 0q), q€ Vo For fixed ri, 7. (0<ri<rs) such that [—r:, rltC ¢, (V),), we

set

Q,={qc V,: lzilg)|<r, i=1,---,d}
Ry:{qé V’;: lwi((l)[‘(?’e, izl,"’,d},

and let g be a C=-function in R! such that g{#)=1 for |t|<r, glt)=0 for |t|>72
and 0<Cg{t) <1 for < t|<r.. We define a C*-funetion f, on M by f,{g)=glz*(q)) - -
glxtg)) for ge R, and f,(q)=0 for g&R,. Since {Q,,p¢ AQ is an open covering
of M, there exist finite points p, ---, pwv, in M such that U @, =M. We set for
simplicity o

.fﬁn:f“) Qpa: Qﬂy (Vpﬂ) 9,)1),1) = (Va, 9”(1) >

LY I £ | i 74
aUPama“ > bupa_b“’

and denote by x«=(24, - -+, z%) the local coordinates with respect to (Ve ¢u). We
introduce N{(=N;({d+1)) C>-functions {f4,1=0,1,---,d,a=1,---, N} on M as
follows:

fa=foa=1, - N

Fd@)zdq), g€ Va <i:1,-~-,d >

fa(Q):{ 0 , q@:V« “:1,"',N1 .

Then the mapping ¢ :q¢ M—(filg),0<i<d,1<a<N)€ R¥ gives an imbedding
of M into R¥. Next, we introduce the functions a¥, bi (0<i<d, 1<j<d, 1<a
<Ny} on Ix@(M)xR' on the basis of the transformation rule (4.1). Each point
¥ in the image ¢(M) has the coordinate ¢(p)=(fi{p), 0<i<d, 1<a<N,). Setting
Xa= (G, -, ve) =¢a(p) and choosing @, such that p¢ Qs we define for 0<i<d,
1<5<d, 1<a< N,
A aoPa™!
k

a;J (ta Y, U) = k‘\_"lh . o 3 ) a“’;(t) ZYag, 'L")
= Lag
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. d 3 ;o g™
bitt, g, )= 5 0o o 2 )
F=1 ax%

é 3% (faoday™?) hr

1 1
2 kT=1 61:" dxl {t, Tagy V)@ay(t, Tay 2)
J. 8,0 =

There may be many a,’s for which p¢ an, but it is only a matter of applying the
transformation rule to prove that the above definitions are independent of the
choice of @, Also we set colt, u, v)=clt, ¢ ), v) and foly)=f (" "y for y < ().
Then, from our constructions and the a%sumpuon 3, we see easily that (i} a¥, bi,
et are bounded on Ix¢(M)xR!, (i) each of a¥, b, co satisfies the Lipschitz con-
dition as a function of (y,v) € o(M)XR' uniformly in t¢ I, and (ii) f, satisfies the
Lipschitz condition on ¢(M).

Our next task is to extend a¥, b, and ¢, (resp. fo) to the whole of IX R¥ x R

{resp. R¥). We first consider the function f,. For each a=1, ---, N, we choose
three neighborhoods Q. ; (i=1,2,3) of p such that the closure @. , is contained in
Qa iy for i=1,2,3 (Qa,0=@Q.) and U Qe s=M. In the following, we write y=(ye,

0<i<d, 1<a<N,) for points in RN and sat yo= (1, 1<3<d) € R* for a=1, ---, N
For each ¢>0 and a=1, ---, N, set

{4.5) W;_xz {ye R¥: ya€ Qba(Qa,I) and
| yi —fhodhi ya)| < for j=0 or B+#al}

Then, we can easily show that W: ,No(M)=¢(@Q.,) for sufficiently small . We
fix an ¢ so that the above equality holds for all @, and suppress & from Wi,
Then for each Wa..: we can correspond a unique % in ¢(M) for which ¥i=1a,
i=1, ---,d. Obviously ¥ € ¢(@Q.:). Now we define fuly)=fo() for y< Wa 1. The
LlpSChltZ continuity of fo on ¢(M) and the inequalities |y —Z|*<| %«— 2. |*4constant-
| Ya—2za |*<constant-|y—z|? for y,2€ W, imply the Lipschitz continuity of f« on
We.1. We next piece together f«, =1, .--, Ny, to get a nice function 7 which
coincides with fo on ¢(M). To do this, we define W. (Wa 1) hy the right hand
side of (4.5) with Q.1 and ¢ replaced by Q. (@« ) and €/2(¢/3) respectively. Since
We,sC Wa 2, we can choose a C>-function g on RN such that g=1 on W. o g=0
outside We . and 0<g<1 in We .~ Wa 3. Since 5‘_, g« is strietly positive on U We,s,

N1
there exists a strietly positive C™- functlon h which coincides with 3‘ g“ on U W s.

We set ha==g«/h and define f by fly) Zfa ), where fa~fu he on W, 2 and Fa=0

outside We 2 Then 7 is bounded on the whole of R¥, satisfies the Lipschitz con-
dition, and coincides with fo on ¢(M). As for a¥, b. and ¢, we think of them
as functions of y € (M) with (¢, v) fixed, and apply the above argument with fized
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Qai, Wi, g« and h. As a consequence, we have the following lemma.

LEMMA 4.1. There exist fumctions @, be (0<i<d, 1<j<d, 1<a<N,) and é
on IxR¥ %R and a function f on R¥ with the Following properties: (i) ax, bi,
&+ and [ are bounded, (i) @, bi, & and f are extensions of al, bi, co and fo re-
spectively, and hence if y={y}, 0<i<d, 1<r< N € ¢(Qu) and ye={yi, 1<i<d) €
PHa(Qs}, then

, . O
(4.62) a0y = O d

,LL)
py oy (&, ¥, v)

d {fio e va
{4.6h) bilt, v, )= 3 A f o) balt, v, v)

=1 ayk

b
It

[N

,_,‘72 (fioha™) is 1 -
o~ ay{izayg Qa (t’ y’ v)a«a (t’ y’ L}

(0<i<d, 1<j<d, 1<B<NY,

-

+

NN

(NI

(ili) each of @7, bi, & satisfies the Lipschitz condition as a function of (y, v) € RY x B!
uniformly in te I, (iv) f satisfies the Lipschitz condition.
We next consider the stochastic differential equation:

d L. Lo
(4.7a) del "ty = Sau(t, £, wdBl 4 bilt, g0, wydt
i=1

g (g)=y: 0<s<t<T, 0<i<d, 1<a<N,,
(4.7h) s, )= ] g (1)) exp|ett, 849, wit |

where v (1) = (5 (t), 0<i<d, 1<a<Ny) and y=(yh 0<i<d, 1<a<N,). By
Lemma 4.1 and Theorem I, this stochastic differential equation has a unique local
solution (&% (1), s<t<T} (s€ (so, T}, y€ RY).

LEMMA 4.2, For each yco(M) and s¢ (s, T1, ¢ (l) is on (M) with pro-
bability 1.

Proor. Considering u as a given function, we set a&¥(t, ¥, u(t, ¥) =a¥(t, ),
bitt, Y, wlt, Y= b, y). For each z¢ ¢(M) and « with z¢ ¢(Q.), denote by o.(t, 2)
the supremum of ¢’ ¢(t, T} such that £7(t) € ¢u(Q.) for all z¢[t, #/]. We first
prove that for each ye o(M) £=»{f) is on ¢(M) up to ¢ with probability 1, where
o=0.(8,4), Y€ Q). For ¢ Q) R?, we set

alit, =al(t, v, biit, 2)=bklt, 2)

where z=(z5, 0<i<d, 1<A<NY), z5=(fi¢a"){(2). Then, a(t, z) and bilt, z) are
bounded and satisfy the Lipschitz condition as funetions of 2 € ¢u{Q.) uniformly in
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t€ls, T1, and hence the following stochastie equation has a unique solution {7.(f),
s<t<T} = {(nalt), - - -, malt), s<t<T} (2.

() =i+ zg'a(, (c, )y lc<3)dpL

i=1],

Sb"( nEpe<ode  (1<i<d, s<t<T)

where ¢ is the supremum of r¢{s, T'] for which 7a(t’) ¢ ¢(Q.) for all ¢’ ¢ [s, 7], and
1(A4) denotes the indicator function of 4. Set 7;5(t)«~(f,)o<;’1a Y(7a(t)) for 0<1<d and
1<B<N,. Then, using the transformation formula on stochastic differentials and
(4.6), we have

drit= 3 20 e, nute) s

S oo™
=1 ox*k

(ra(t)) D5 (£, 7a () dt

d a2f;'o<,/;,,~) atigh
al L 2 7
kzl:l Py o’ ad dt

@i (e, 7(t)dRi+bilt, n(t))dt, t<

where 7(t)=(5(t), 0<i<d, 1<B<NY. Since {£¢9(tA0), s<t<T} satisfies the
same stochastic differential equation as above, we have £¢.@ {tA0)=7n(tAG), with
probability 1. But, this means that £“#(t) is on @(M) up to ¢ with probability
1. Next, let Qa1 be the same as in the paragraph preceding to Lemma 4.1, and
for each z¢ (M) denote by a(z) the first @ such that PQa,1) 2. We set oy=3s
and for m>1 o,=the supremum of t¢[o,_;, T] such that & (¢') € ¢u(Qs) for all
t'€[0,-1,t] where a=a(§#¥ (0, ;)). We prove that for n=1,2, ---

(4.8) Pigev(t) e p(M) for all tels, o,)]=1,

by induction. This is true for n=1, as we have just proved. For n>2, using the
induction hypothesis, we have

4.9 {gev(t)c @M) for all tels,o,]}
- '(J {alg" v (0, 1)) =, alg¥ (o, ) =F and
§ev(t)c (M) for all te(o, s, 0,]}
Ny

= U Udqs-?, Au.ﬁ,r:/ﬁz,ﬁ_rﬂ Ao,

9 A=A means that P{(A—A')U (4~ A)]=0.
.8,
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Aclx. B0, <T<o,,, alfew (0, o)) =a, &Y (r) € (@)}
/ﬁ,ﬂ_ri {a{gev (o, )j=B,e"vitic oM} for all te [r,o']},

where the union in r is taken over all rationals 7 in [s, T] and ¢’ is the supremum
of te[r,T] for which &“¥(t')€ ¢s(Qs) for all t'c|r,t]. Since &@.» (t)y =g ()
(2=§"¥(r)) for t=r with probability 1 by Remark 1 (§3), we have

P{dap ) =E{PA 5. | B,], Abpc}?
=EAPlaE " (o.(r, 2))) = 8,62 (8) C 9(M)
Jor all tcr,o5r, 2) acitm iy, A2 p.r)
=P {lip.», €l§*¥ (0,_))=B}.

So that we have

4.9) = 'G U l{dap,r, al§®v(o,_))=8} =0

s Bt

and hence (4.8). On the other hand, ¢,=7T for some n=nlw) with probablity 1,
because, if ¢, (@) <T for all n, then £ (t) would be discontinuous at £=1lim o (0)<T.
This remark and (4.8) complete the proof of the lemma.

Lemma 4.2 enables us to define stochastic processes on M by z¢.» (f) =¢p-1(g.» ),
y=¢(p), and obviously the family {z#(t)} is a solution of (4.3) in (80, T]. Also
the uniqueness is reduced to Theorem I by the mapping o.
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