On the hypoellipticity of differential operators

By Atsushi YOSHIKAWA

0. Introduction.

0.0. In this paper we consider the regularity property of differential operators.
A linear differential operator P (of order m) with C» coeflicients defined in a
domain 2 in the n-dimensional Euclidean space R., in short, a differential
operator P (of order m), is written as follows:

P=P(z, D)= a1 zm a{2) D%, aa(z) € C=(2) .

Here z=(x!, ---, 2") is a generi¢ point of 2; Di=--13/027, j==1, -+, m, 12 =1,
D*=D% - D for a=(a, -+, an) € N* with N=1{0,1,2, - - -}; and | e == a4+ - - 4 an,
Po(z, £) = |aj=m €a(2)&% i3 the principal symbol of P, where &=(&, -+, &€ R,
and £¢=£51 ... 2%, Function spaces C=(2), CO(Q), 7 w(2), and &'(2) are as
usual’. Cr(K) and SF«(K ) are subspaces of C5(2) and of 52 () respectively,
consisting of those elements with support in K where K is any compact subset
of @ with interior points. Note that the topology of Z#%°(2) can be defined by
the seminorm system?® {||%p||w} (7€ N, ¢ € 572,5°(2)) where Z;€ C; () with %=1
on J; and %;=0 on {2i;:.® Here the 2; are subdomains of 2 with 2 ,c8;,,
the closures 2 being compact and U,; 2,~2. A differential operator P is called
hypoelliptic in 2 if we have

sing supp Pe=sing supp¢* for all € 2(2).
0.1. In §1, we prove certain inequalities as necessary conditions of hypoel-

lipticity. We also show that the adjoint operator of a hypoelliptic differential

operator is locally solvable. In §2, we show that hypoelliptic operators in C5(X)
have finite dimensional nullspaces and closed ranges. Finally we give an example
of non-elliptic differential operators with finite index on a compact C manifold.

v As for definitions and notations we follow mainly those in Hormander [2].
2 lglle —:{S A+1815 " 912 df}m, where ¢ is the Fourier transform of ¢ € 577 i(R4).
Ra )

3 (JM denotes the complement in £ of the set M 2. M denotes the closure in £ of
the set MC 2.

¢ sing supp ¢=({x€L2; p is C~ near x} for o€ /(). It is well-known that we have,
for any differential operator P,

sing supp Py C sing supp ¢

where ¢€ Z77/(2).
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0.2. As an application of Theorem 1.2, the author had obtained a result
concerning first order hypoelliptic differential operators. But recently the author
was informed that Mr. Y. Kato independently obtained a more general result by
a similar method. See {4]. So we deleted this part from the original manuseript.
In the preparation of the present paper, the author owes very much to Prof.
K. Yosida.

1. Some inequalities.

Let E and F be vector spaces and P a linear operator defined in E into F.
Let E: and F be subspaces of E and F respectively. Let us denote by P ,,
in short P~, the restriction of P to the domain E:N{e; ¢ in the domain of P
with Pee F\}, and call P~ the operator induced in the pair (E\, F',) by P. We
have the obvious

LEMMA 1.1. Let P be a linear differential operator defined in 2. Then P
18 a continuous operator in &' (02), and the following operators P~ induced by
P in each pair are closed operators:

(1.1) P~ 8" ()-C=(Q) for every fized s€ Ry;
(1.2) P SFZx(K)»S70(K) for s and t in R,

where K is any fized compaet subset of £ with interior points. Thus %p
={o€ SEID); P oe C=(Q)) equipped with the graph topology becomes a Fréchet
space.

THEOREM 1.1, Let P be a hypoelliptic differential operator in 2 and Q be
any fized differential operator in 2. Let s be a fized real number. For any
te R, and j€ N, we have

1 Qellin<elllX;, el + 1%, Pollen)
for all pe C=(2) with switable ¢>>0,7:,7:€ N and t'€ R..

Proor. Let P~ and Q" be respectively the induced operators of Pand @ in
the pair (S22.%(2), C=(2)). P~ and Q" are closed operators. From the hypoel-
lipticity of P, the domoin of P" is contained in C(2), and hence in the domain
of @". The mapping J: {¢, Pole & ,— Qoe C={(2) being closed, J is continuous by
Banach's closed graph theorem. Recalling Sobolev’s lemma C=(2)=s 25" (),
we obtain the desired inequality by writing down explicitly the continuity of J
in terms of the seminorm systems. q.e.d.

In the sequel, we consider only the case @=1=the identity.

REMARK 1.1. The author found that essentially the same inequality (in cuse
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Q=1 and designed for pseudo-differential operators P) was obtained earlier by
Hormander [3].

By the local property of differential operators, we have the

LeEMMA 1.2. Let K be any compact subset of 2 with interior points. We
have, for any te R,

(1.3} Hetlo=Selllellor-H11Pellent for all ¢ e CP(K)

with suitable ¢>0 and t' € R,.

REMARK 1.2. If we denote by a(?) the infinimum of ¢' such that the inequality
(1.3) holds with ¢<- o0, Then we easily see that a(t) is non-decreasing. In fact,
since llelhaw<llelie for s<it, we have for any fixed ¢ >a{f),

Helto=Zet 3 {llello+ N Pellen) .
Hence a(s)<a(t) if s=<(t.

By Poincaré’s inequality we have, from Lemma 1.2, the following

LeMMA 1.3, For every x€ 2 there exists a sufficiently small neighborhood
Uof x such that

Hellm=ell Pelle, for all ¢e Co(l) .

TaeEoREM 1.2. If a differential operator P (of order m) is hypoelliptic in
Q, then its formal adjoint P* is locally solvable in 2, that is, at every ze
there exists a meighborhood U of x such that we can find, for every ¢oe Ci(U),
a distribution u safisfying Pru=¢ in U.

PrOOF. By Lemma 1.3, Pyp+0 with ¢ C(U) implies ¢—0. Thus for any

¢#e€Cr(U) we can define a linear functional L on P(Cy(U)) by ggf"gc dx=: L(Pg),

Xy’up dx

where ¢ is an arbitrary element in Cy'(U). Since |L(Py)|= ot enslielln=s

cldlwllPellery, there exists a u in SF-r, such that (u, Pede X(/upd:z: for all

0 € Cy(U) (the Hahn-Banach theorem). This proves the theorem.
COROLLARY 1.1.

tf Pulz,8)=0 at 2€Q and £€ R.. Here ~.  denotes the complex conjugate.
PROOF. This is an immediate consequence of the solvability of P* See
Chapter 6 of Hormander [2].
REMARK 1.3. Hormander [3] proved the above Corollary 1.2 directly from
Lemma 1.3 by substituting a suitable function into ¢. We note that for any
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differential operators of the form P», where n>>2 and P is an arbitrary differen-
tial operator, the above relation in Corollary 1.1 trivially holds. However we
have the

THEOREM 1.3. A differential operator P is hypoelliptic if and only if its n-th
power P* is hypoelliptic, where n is any natural number >2.

Proor. This follows immediately from the following

LEMMA 1.4. Let P and Q be differential operators.
1.4 If P and @ are hypoelliptic, then PQ 1is hypoelliptic;
(1.5) If PQ is hypoelliptie, then Q 18 hypoelliptic.

Proor or LEMMA. Let ¢ be any element in &2'(2). Then we have

sing supp PQ¢ = sing supp Qe=sing supp ¢ ,
if P and Q are hypoelliptic. This proves (1.4). Next, if PQ is hypoelliptic,
sing supp ¢==sing supp PQ¢sing supp Qe Csing supp o,

that is,

sing supp Q¢ =sing supp ¢ .

Hence @ is hypoelliptic.

2. Nullspaces and ranges.

Let K be any fixed compact subset of £ with interior points. In this section
we study the nullspace and range of a hypoelliptic differential operator in C7(K ).
Let T and T" be strictly increasing divergent sequences of positive numbers:
T:={t:tien, and T '={ti}iev such that for every t=t.€ T we assign t'=t;€ T to
satisfy the inequality in Lemma 1.2. Let P; be the closure as an operator from
(K into 272 ,(K) of the differential operator P in Ci(K). The preclosedness
of the operator P follows from (1.2) in Lemma 1.1. Then by Lemma 1.2 and
passing to the limit we have

2.1 leliuyZeiichon 1 Peflen)

for all ¢€ D' with a suitable constant ¢;>>0. Here we denote by D' the domain
of P..
LEMMA 2.1,

a2 DM Di, and ¢€ D+ implies Pinwo=Pi¢

2.3 N:D'=CaX) .
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PROOF. Let ¢ Di*'. Then there exist ¢« € C5'(K) such that ¢i-¢ in 5%, K)
and Pei—Piae in S0 (K} Since ti>6 and {.>t;, we have ¢w—¢ in
S#:o(K) and Pee—Pine in SF:p(K). By the definition of Pi, we have ¢e D'
and Pia¢=Pic. This shows (2.2). (2.3) follows from the inclusion relations
CriKycDic 5P K) and N SF, K)=C(K). q.ed.

LeMMa 2.2.

2.4) A7, the nullspace of Pi, is of finite dimension;
(2.5) i, the range of Pi, is closed.
Proor. For ¢e_#7, we have, from (2.1),
iplepseilielo .

Since the injection from S¥F,(K) into 57n(K) is compact, we see that _/7 is
of finite dimension. Thus we ecan decompose 57%:,(K) into the topological direct
sum of closed subspaces:

%iﬂ(fi"):TM'% % .
If we show
lolep=cliPilluy for ¢e ginD

with a suitable constant ¢>>0, then the proof of this lemma will be complete.
In fact, suppose that there exists a sequence {¢i}sen such that ¢.€ N D' and

(2.6) feelwa =kl Pigrllay .

We may assume [¢iliep==1. Since the injection from S#,(K) into S#n(K) is
compact, we may choose a subsequenee {¢w} from {¢:} such that vp ¢ in FF(K)
where ¢ is a certain element in SZ(K). Since || Pigwr{lep—0 by (2.6), we see
that ¢ € SZ(K) and ¢w—¢ in S7,(K) from (2.1). By the closedness of P,
we have ¢ €D and Pi¢p=0. On the other hand, we observe that ¢ e 7 from
the closedness of the subspace &7, and that ¢+0 from [ew lup=1. In coneclu-
sion, we have

pe FnD, ¢+0 and Pid==0,
but this is a contradietion. q.e.d.

THEOREM 2.1. Let K be a compact subset of 2 with interior points. For

a hypoelliptic differential operator considered as a linear operator in Cy(K),
we have
i) the dimension of the nullspace is finite;
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iij the range is closed.

Proor. Let ¢4 and <2 be respectively the nullspace and the range of the
differential operator P acting in C7(K). P being hypoelliptie, _#"=_+#7 and this
proves the statement i} by (2.4). If we show <Z=. <Z:; the proof will be
complete. For any ¢'e N: B there exists ¢;€ D' such that Pici=¢. From the
hypoellipticity of P and (2.2), we see ci—¢,€ CP(K) for j>1i. Thus we have
gio; i Y€ Ny DICCY(K).  The inclusion &ZcN: <&: being obvious, we
obtain <2 N: H#.. g.e.d.

REMARK 2.1, This proof is inspired by Grisvard [1].

LeEMMA 23, Let x=(a', ---, ") be a local coordinate system of class C~ in
an open set U. Let y=(y', ---, y*) be another local coordinate in U such that
the Jacobian J of the coordinate transformation x—y is C* and non-vanishing
tn U. Let P be a differential operator. We denote by P¥ (resp. P:) the adjoint
operator with respect to the coordinate system x (resp. y), that is,

S P«;-y’)dac:fg ¢ Prodx (resp.g ng-(,é'dyz:g go'P;fr/rdy)
1 1 78 U

for ¢,¢e CP(U). If P: is hypoelliptic in U, then so is P¥.
PrROOF. Since the mapping ¢->P¢ is independent of coordinate system, we

have
S Pg:-«;ﬁda:tg Pe-dJdy .
14 1
Hence
S es(P:Mdy::j Py
U U
that is,
JPE¢=Py(Jy) .
Since J is C* and non-vanishing, the assertion holds. q.e.d.

Let & be a compact C* manifold of dimension n, and P be a differential
operator on . The adjoint operator of P is determined depending on the choice
of the partition of unity of 2 and the local coordinate systems. However, since
the hypoellipticity of a differential operator is a local property and from the
above lemma, it is well-defined that the adjoint operator of a differential operator
is hypoelliptic on £ or not. Therefore, from the proof of Theorem 2.1 and
Banach’s closed range theorem, we obtain the following



On the hypoellipticity of differential operators 87

THEOREM 2.2. Let 2 be a compact C* mantifold of dimension n. If a differ-
ential operator P and its adjoint P* are both hypoelliptic in @, then P and P*
considered as linear operators in C=(Q) areof finite index, that is, their nullspaces
are of finite dimension, and their ranges are closed and of finite codimension.

It is well-known that any elliptic operator satisfies the hypothesis of Theorem
2.2. However we can give an example, slightly deviated from elliptic operators.

EXAMPLE 2.1. Let £ be a compact €~ manifold of dimension 2, and Phea
first order elliptic operator with C* coefficients in £. In some neighborhood U,
of a point wy€ S there exists a local coordinate (x, %) about w. such that P is
expressed, in this coordinate system, in the form

P=2 1ib, ) telw, ) in Ui,
9z ay

where b(x, ¥) is a real-valued C= function with bz, #)>0 in Ui, and ¢z, y) is a
C= function in U.. Take neighborhoods U: and U, of @ with compact closure
such that

Usc Us(i U.c (72(2 U, .
Let ¢;€ C5(Ui-1) (5==2, 3) be such that 129,20 on U,_, and ¢,=1 on Ui. We
shall construct a new differential operator P* from P: In U, we define PV by

P“’z;—xH by(z, y)g%ﬂlwsas(x, y) ez, ¥)

where

bi(z, y)=1—gslz, ¥) bz, ¥)-+a*"e(x, ), meN,
and outside U; we define P" as equal to P. Then we see that PV and its
adjoint operator are both hypoelliptic in £. In fact, PV being elliptic in £2-—{w},
so is its adjoint there. Since

P :3* 4o gim a_
ox oy

in Us in the coordinate system (x, %), its adjoint takes the form

-~

pok—_2 xzmaﬁ_ﬁ —pw
Y

-~

gz

in Us in this coordinate. The hypoellipticity of P* in U, was proved by
Mizohata [5]. Therefore PV'* is also hypoelliptic in Us.

University of Tokyo
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