On the hypoellipticity of differential operators

By Atsushi Yoshikawa

0. Introduction.

0.0. In this paper we consider the regularity property of differential operators. A linear differential operator P (of order m) with C^{∞} coefficients defined in a domain Ω in the n-dimensional Euclidean space R_n , in short, a differential operator P (of order m), is written as follows:

$$P = P(x, D) = \sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha}$$
, $a_{\alpha}(x) \in C^{\infty}(\Omega)$.

Here $x=(x^1,\cdots,x^n)$ is a generic point of Ω ; $D_j=-i\partial/\partial x^j, j=1,\cdots,n, i^2=-1;$ $D^{\infty}=D_1^{\alpha_1}\cdots D_n^{\alpha_n}$ for $\alpha=(\alpha_1,\cdots,\alpha_n)\in N^n$ with $N=\{0,1,2,\cdots\};$ and $|\alpha|=\alpha_1+\cdots+\alpha_n.$ $P_m(x,\xi)=\sum_{|\alpha|=m}a_{\alpha}(x)\xi^{\alpha}$ is the principal symbol of P, where $\xi=(\xi_1,\cdots,\xi_n)\in R_n$ and $\xi^{\alpha}=\xi_1^{\alpha_1}\cdots\xi_n^{\alpha_n}$. Function spaces $C^{\infty}(\Omega), C_0^{\infty}(\Omega), \mathscr{H}^{loc}_{(s)}(\Omega)$, and $\mathscr{H}'(\Omega)$ are as usual. $C_0^{\infty}(K)$ and $\mathscr{H}_{(s)}(K)$ are subspaces of $C_0^{\infty}(\Omega)$ and of $\mathscr{H}^{loc}_{(s)}(\Omega)$ respectively, consisting of those elements with support in K where K is any compact subset of Ω with interior points. Note that the topology of $\mathscr{H}^{loc}_{(s)}(\Omega)$ can be defined by the seminorm system. Note that the topology of $\mathscr{H}^{loc}_{(s)}(\Omega)$ can be defined by the seminorm system. Here the Ω_j are subdomains of Ω with $\Omega_j \subset \Omega_{j+1}$, the closures Ω_j being compact and $U_j \Omega_j = \Omega$. A differential operator P is called hypoelliptic in Ω if we have

sing supp
$$P\varphi = \operatorname{sing supp} \varphi^{(i)}$$
 for all $\varphi \in \mathscr{D}'(\Omega)$.

0.1. In § 1, we prove certain inequalities as necessary conditions of hypoellipticity. We also show that the adjoint operator of a hypoelliptic differential operator is locally solvable. In § 2, we show that hypoelliptic operators in $C_0^{\infty}(K)$ have finite dimensional nullspaces and closed ranges. Finally we give an example of non-elliptic differential operators with finite index on a compact C^{∞} manifold.

¹⁾ As for definitions and notations we follow mainly those in Hörmander [2].

 $^{||\}varphi||_{(s)} = \left\{ \int_{\mathbb{R}^n} (1+|\xi|^2)^s \, |\varphi^{\hat{}}(\xi)|^2 \, d\xi \right\}^{1/2}, \text{ where } \varphi^{\hat{}} \text{ is the Fourier transform of } \varphi \in \mathscr{H}_{(s)}(R_n).$

³⁾ $\int M$ denotes the complement in Ω of the set $M \subset \Omega$. M denotes the closure in Ω of the set $M \subset \Omega$.

sing supp $\varphi = \{\{x \in \mathcal{Q}; \varphi \text{ is } C^{\infty} \text{ near } x\} \text{ for } \varphi \in \mathcal{Q}'(\mathcal{Q}). \text{ It is well-known that we have, for any differential operator } P$,

sing supp $P\varphi \subset \operatorname{sing supp} \varphi$

0.2. As an application of Theorem 1.2, the author had obtained a result concerning first order hypoelliptic differential operators. But recently the author was informed that Mr. Y. Kato independently obtained a more general result by a similar method. See [4]. So we deleted this part from the original manuscript. In the preparation of the present paper, the author owes very much to Prof. K. Yosida.

1. Some inequalities.

Let E and F be vector spaces and P a linear operator defined in E into F. Let E_1 and F_1 be subspaces of E and F respectively. Let us denote by $P^*_{E_1,F_1}$, in short P^* , the restriction of P to the domain $E_1 \cap \{e; e \text{ in the domain of } P$ with $Pe \in F_1$, and call P^* the operator induced in the pair (E_1, F_1) by P. We have the obvious

LEMMA 1.1. Let P be a linear differential operator defined in Ω . Then P is a continuous operator in $\mathscr{D}'(\Omega)$, and the following operators $P^{\hat{}}$ induced by P in each pair are closed operators:

- (1.1) $P^{\hat{}}: \mathcal{H}_{(s)}^{loc}(\Omega) \rightarrow C^{\infty}(\Omega)$ for every fixed $s \in R_1$;
- (1.2) $P^{\hat{}}: \mathcal{H}_{(s)}(K) \rightarrow \mathcal{H}_{(t)}(K)$ for s and t in R_1 ,

where K is any fixed compact subset of Ω with interior points. Thus $\mathscr{G}_P = \{\varphi \in \mathscr{H}^{loc}_{(s)}(\Omega); \ P^\varphi \in C^{\infty}(\Omega)\}$ equipped with the graph topology becomes a Fréchet space.

THEOREM 1.1. Let P be a hypoelliptic differential operator in Ω and Q be any fixed differential operator in Ω . Let s be a fixed real number. For any $t \in R_1$ and $j \in N$, we have

$$||\boldsymbol{\chi}_{j} \boldsymbol{Q} \boldsymbol{\varphi}||_{(t)} \leq c \{||\boldsymbol{\chi}_{j_{1}} \boldsymbol{\varphi}||_{(s)} + ||\boldsymbol{\chi}_{j_{2}} \boldsymbol{P} \boldsymbol{\varphi}||_{(t')}\}$$

for all $\varphi \in C^{\infty}(\Omega)$ with suitable $c>0, j_1, j_2 \in N$ and $t' \in R_1$.

PROOF. Let P and Q be respectively the induced operators of P and Q in the pair $(\mathscr{H}^{\text{loc}}_{(s)}(\Omega), C^{\omega}(\Omega))$. P and Q are closed operators. From the hypoellipticity of P, the domain of P is contained in $C^{\infty}(\Omega)$, and hence in the domain of Q. The mapping $J: [\varphi, P\varphi] \in \mathscr{C}_P \to Q\varphi \in C^{\infty}(\Omega)$ being closed, J is continuous by Banach's closed graph theorem. Recalling Sobolev's lemma $C^{\infty}(\Omega) = \bigcap_s \mathscr{H}^{\text{loc}}_{(s)}(\Omega)$, we obtain the desired inequality by writing down explicitly the continuity of J in terms of the seminorm systems. q.e.d.

In the sequel, we consider only the case Q=1=the identity.

REMARK 1.1. The author found that essentially the same inequality (in case

Q=1 and designed for pseudo-differential operators P) was obtained earlier by Hörmander [3].

By the local property of differential operators, we have the

LEMMA 1.2. Let K be any compact subset of Ω with interior points. We have, for any $t \in R_1$,

$$(1.3) ||\varphi||_{(0)} \leq c\{||\varphi||_{(0)} + ||P\varphi||_{(u')}\} \text{ for all } \varphi \in C_0^{\infty}(K)$$

with suitable c>0 and $t' \in R_1$.

REMARK 1.2. If we denote by $\alpha(t)$ the infinimum of t' such that the inequality (1.3) holds with $c<+\infty$. Then we easily see that $\alpha(t)$ is non-decreasing. In fact, since $||\varphi||_{(s)} \leq ||\varphi||_{(t)}$ for $s \leq t$, we have for any fixed $t' > \alpha(t)$,

$$||\varphi||_{(s)} \leq c(t')\{||\varphi||_{(0)} + ||P\varphi||_{(t')}\}$$
.

Hence $\alpha(s) \leq \alpha(t)$ if $s \leq t$.

COROLLARY 1.1.

By Poincaré's inequality we have, from Lemma 1.2, the following

Lemma 1.3. For every $x \in \Omega$ there exists a sufficiently small neighborhood U of x such that

$$||\varphi||_{(1)} \leq c||P\varphi||_{(u')}$$
 for all $\varphi \in C_0^{\infty}(\overline{U})$.

THEOREM 1.2. If a differential operator P (of order m) is hypoelliptic in Ω , then its formal adjoint P^* is locally solvable in Ω , that is, at every $x \in \Omega$ there exists a neighborhood U of x such that we can find, for every $\varphi \in C_0^{\infty}(U)$, a distribution u satisfying $P^*u = \varphi$ in U.

$$C_{2m-1}(x,\xi)=2\ Re\ i\ \sum_{j=1}^n\partial P_m(x,\xi)/\partial \xi_j\ \overline{\partial P_m(x,\xi)/\partial x^j}=0$$

if $P_m(x, \hat{\xi})=0$ at $x \in \Omega$ and $\hat{\xi} \in R_n$. Here $\overline{}$ denotes the complex conjugate.

PROOF. This is an immediate consequence of the solvability of P^* . See Chapter 6 of Hörmander [2].

REMARK 1.3. Hörmander [3] proved the above Corollary 1.2 directly from Lemma 1.3 by substituting a suitable function into φ . We note that for any

differential operators of the form P^n , where $n \ge 2$ and P is an arbitrary differential operator, the above relation in Corollary 1.1 trivially holds. However we have the

THEOREM 1.3. A differential operator P is hypoelliptic if and only if its n-th power P^n is hypoelliptic, where n is any natural number ≥ 2 .

PROOF. This follows immediately from the following LEMMA 1.4. Let P and Q be differential operators.

- (1.4) If P and Q are hypoelliptic, then PQ is hypoelliptic;
- (1.5) If PQ is hypoelliptic, then Q is hypoelliptic.

Proof of Lemma. Let φ be any element in $\mathscr{D}'(\Omega)$. Then we have sing supp $PQ\varphi = \operatorname{sing\ supp} Q\varphi = \operatorname{sing\ supp} \varphi$,

if P and Q are hypoelliptic. This proves (1.4). Next, if PQ is hypoelliptic, sing supp φ =sing supp $PQ\varphi$ sing supp $Q\varphi$ sing supp φ ,

that is.

sing supp
$$Q\varphi = \text{sing supp } \varphi$$
.

Hence Q is hypoelliptic.

2. Nullspaces and ranges.

Let K be any fixed compact subset of Ω with interior points. In this section we study the nullspace and range of a hypoelliptic differential operator in $C_v^\infty(K)$. Let T and T' be strictly increasing divergent sequences of positive numbers: $T=\{t_i\}_{i\in N}$, and $T'=\{t_i'\}_{i\in N}$ such that for every $t=t_i\in T$ we assign $t'=t_i'\in T'$ to satisfy the inequality in Lemma 1.2. Let P_i be the closure as an operator from $\mathscr{H}_{(t_i)}(K)$ into $\mathscr{H}_{(t_i)}(K)$ of the differential operator P in $C_v^\infty(K)$. The preclosedness of the operator P follows from (1.2) in Lemma 1.1. Then by Lemma 1.2 and passing to the limit we have

(2.1)
$$\|\varphi\|_{(t_i)} \leq c_i \{ \|\varphi\|_{(0)} + \|P_i\varphi\|_{(t_i)} \}$$

for all $\varphi \in D^i$ with a suitable constant $c_i > 0$. Here we denote by D^i the domain of P_i .

LEMMA 2.1.

(2.2)
$$D^{i+1} \subset D^i$$
, and $\varphi \in D^{i+1}$ implies $P_{i+1}\varphi = P_i\varphi$;

$$\bigcap_i D^i = C_0^{\infty}(K) .$$

PROOF. Let $\varphi \in D^{i+1}$. Then there exist $\varphi_k \in C^{\infty}_{0}(K)$ such that $\varphi_k \to \varphi$ in $\mathscr{H}_{(i+1)}(K)$ and $P\varphi_k \to P_{i+1}\varphi$ in $\mathscr{H}_{(i'+1)}(K)$. Since $t_{i+1} > t_i$ and $t'_{i+1} > t'_i$, we have $\varphi_k \to \varphi$ in $\mathscr{H}_{(i,j)}(K)$ and $P\varphi_k \to P_{i+1}\varphi$ in $\mathscr{H}_{(i'j)}(K)$. By the definition of P_i , we have $\varphi \in D^i$ and $P_{i+1}\varphi = P_i\varphi$. This shows (2.2). (2.3) follows from the inclusion relations $C^{\infty}_{0}(K) \subset D^i \subset \mathscr{H}_{(i,j)}(K)$ and $\bigcap_i \mathscr{H}_{(i,j)}(K) = C^{\infty}_{0}(K)$. q.e.d.

LEMMA 2.2.

- (2.4) \mathcal{N}_i , the nullspace of P_i , is of finite dimension;
- (2.5) \mathcal{R}_i , the range of P_i , is closed.

PROOF. For $\varphi \in \mathcal{N}_i$, we have, from (2.1),

$$\|\varphi\|_{(t_i)} \leq c_i \|\varphi\|_{(0)}$$
.

Since the injection from $\mathcal{H}_{(i)}(K)$ into $\mathcal{H}_{(0)}(K)$ is compact, we see that \mathcal{N}_i is of finite dimension. Thus we can decompose $\mathcal{H}_{(i)}(K)$ into the topological direct sum of closed subspaces:

$$\mathscr{H}_{(t_i)}(K) = \mathscr{N}_i + \mathscr{F}_i$$
.

If we show

$$\|\varphi\|_{(t_i)} \leq c \|P_i\varphi\|_{(t_i')}$$
 for $\varphi \in \mathscr{F}_i \cap D^i$

with a suitable constant c>0, then the proof of this lemma will be complete. In fact, suppose that there exists a sequence $\{\varphi_k\}_{k\in\mathbb{N}}$ such that $\varphi_k\in\mathscr{F}_i\cap D^i$ and

We may assume $\|\varphi_k\|_{(t_i)}=1$. Since the injection from $\mathscr{H}_{(t_i)}(K)$ into $\mathscr{H}_{(0)}(K)$ is compact, we may choose a subsequence $\{\varphi_{k'}\}$ from $\{\varphi_k\}$ such that $\varphi_{k'}\to \psi$ in $\mathscr{H}_{(0)}(K)$ where ψ is a certain element in $\mathscr{H}_{(0)}(K)$. Since $\|P_i\varphi_{k'}\|_{(t_i)}\to 0$ by (2.6), we see that $\psi\in\mathscr{H}_{(t_i)}(K)$ and $\varphi_{k'}\to\psi$ in $\mathscr{H}_{(t_i)}(K)$ from (2.1). By the closedness of P_i , we have $\psi\in D^i$ and $P_i\psi=0$. On the other hand, we observe that $\psi\in\mathscr{F}_i$ from the closedness of the subspace \mathscr{F}_i , and that $\psi\neq 0$ from $\|\varphi_{k'}\|_{(t_i)}=1$. In conclusion, we have

$$\phi \in \mathcal{F}_i \cap D^i$$
, $\phi \neq 0$ and $P_i \phi = 0$,

but this is a contradiction. q.e.d.

Theorem 2.1. Let K be a compact subset of Ω with interior points. For a hypoelliptic differential operator considered as a linear operator in $C_0^{\infty}(K)$, we have

i) the dimension of the nullspace is finite;

ii) the range is closed.

PROOF. Let \mathscr{N} and \mathscr{R} be respectively the nullspace and the range of the differential operator P acting in $C_0^{\infty}(K)$. P being hypoelliptic, $\mathscr{N}=\mathscr{N}_i$ and this proves the statement i) by (2.4). If we show $\mathscr{R}=\bigcap_i\mathscr{R}_i$, the proof will be complete. For any $\psi\in\bigcap_i\mathscr{R}_i$ there exists $\varphi_i\in D^i$ such that $P_i\varphi_i=\psi$. From the hypoellipticity of P and (2.2), we see $\varphi_i-\varphi_j\in C_0^{\infty}(K)$ for j>i. Thus we have $\varphi_i-\varphi_j+(\varphi_i-\varphi_j)\in\bigcap_{j>i}D^j\subset C_0^{\infty}(K)$. The inclusion $\mathscr{R}\subset\bigcap_i\mathscr{R}_i$ being obvious, we obtain $\mathscr{R}-\bigcap_i\mathscr{R}_i$. q.e.d.

REMARK 2.1. This proof is inspired by Grisvard [1].

LEMMA 2.3. Let $x=(x^1, \dots, x^n)$ be a local coordinate system of class C^{∞} in an open set U. Let $y=(y^1, \dots, y^n)$ be another local coordinate in U such that the Jacobian J of the coordinate transformation $x \rightarrow y$ is C^{∞} and non-vanishing in U. Let P be a differential operator. We denote by P_x^* (resp. P_y^*) the adjoint operator with respect to the coordinate system x (resp. y), that is,

$$\int_{\mathcal{U}} P\varphi \cdot \psi dx = \int_{\mathcal{U}} \varphi \cdot P_{x}^{*} \psi dx \left(resp. \int_{\mathcal{U}} P\varphi \cdot \psi dy = \int_{\mathcal{U}} \varphi \cdot P_{y}^{*} \psi dy \right)$$

for $\varphi, \psi \in C_0^{\infty}(U)$. If P_x^* is hypoelliptic in U, then so is P_y^* .

PROOF. Since the mapping $\varphi {\rightarrow} P \varphi$ is independent of coordinate system, we have

$$\int_{U} P\varphi \cdot \psi dx = \int_{U} P\varphi \cdot \psi J dy .$$

Hence

$$\int_{U} \varphi(P_{x}^{*}\psi) J dy = \int_{U} \varphi P_{y}^{*}(\psi J) dy ,$$

that is,

$$JP_x^*\phi = P_y^*(J\phi)$$
.

Since J is C^{ω} and non-vanishing, the assertion holds. q.e.d.

Let Ω be a compact C^{∞} manifold of dimension n, and P be a differential operator on Ω . The adjoint operator of P is determined depending on the choice of the partition of unity of Ω and the local coordinate systems. However, since the hypoellipticity of a differential operator is a local property and from the above lemma, it is well-defined that the adjoint operator of a differential operator is hypoelliptic on Ω or not. Therefore, from the proof of Theorem 2.1 and Banach's closed range theorem, we obtain the following

THEOREM 2.2. Let Ω be a compact C^{∞} manifold of dimension n. If a differential operator P and its adjoint P^* are both hypoelliptic in Ω , then P and P^* considered as linear operators in $C^{\infty}(\Omega)$ are of finite index, that is, their nullspaces are of finite dimension, and their ranges are closed and of finite codimension.

It is well-known that any elliptic operator satisfies the hypothesis of Theorem 2.2. However we can give an example, slightly deviated from elliptic operators.

EXAMPLE 2.1. Let Ω be a compact C^{∞} manifold of dimension 2, and P be a first order elliptic operator with C^{∞} coefficients in Ω . In some neighborhood U_1 of a point $\omega_0 \in \Omega$ there exists a local coordinate (x, y) about ω_0 such that P is expressed, in this coordinate system, in the form

$$P = rac{\partial}{\partial x} + i \ b(x, y) rac{\partial}{\partial y} + c(x, y)$$
 in U_1 ,

where b(x, y) is a real-valued C^{∞} function with b(x, y) > 0 in U_1 , and c(x, y) is a C^{∞} function in U_1 . Take neighborhoods U_2 and U_3 of ω_0 with compact closure such that

$$U_3 \subset \widetilde{U}_3 \subset U_2 \subset \widetilde{U}_2 \subset U_1$$
.

Let $\varphi_j \in C_0^{\infty}(U_{j-1})$ (j=2,3) be such that $1 \ge \varphi_j \ge 0$ on U_{j-1} and $\varphi_j = 1$ on \overline{U}_j . We shall construct a new differential operator $P^{(1)}$ from P: In U_i we define $P^{(1)}$ by

$$P^{\scriptscriptstyle (1)} = \frac{\partial}{\partial x} + i b_{\scriptscriptstyle 1}(x, y) \frac{\partial}{\partial y} + (1 - \varphi_{\scriptscriptstyle 3}(x, y)) c(x, y)$$

where

$$b_1(x, y) = (1 - \varphi_3(x, y)) b(x, y) + x^{2m} \varphi_2(x, y)$$
, $m \in N$

and outside U_1 we define $P^{(1)}$ as equal to P. Then we see that $P^{(1)}$ and its adjoint operator are both hypoelliptic in Ω . In fact, $P^{(1)}$ being elliptic in $\Omega - \{\omega_0\}$, so is its adjoint there. Since

$$P^{(1)} = \frac{\partial}{\partial x} + i x^{2m} \frac{\partial}{\partial y}$$

in U_3 in the coordinate system (x, y), its adjoint takes the form

$$P^{\scriptscriptstyle (1)}*=-\frac{\partial}{\partial x}-i\;x^{\scriptscriptstyle 2m}\frac{\partial}{\partial y}=-P^{\scriptscriptstyle (1)}$$

in U_3 in this coordinate. The hypoellipticity of $P^{(1)}$ in U_3 was proved by Mizohata [5]. Therefore $P^{(1)*}$ is also hypoelliptic in U_3 .

University of Tokyo

References

- Grisvard, P.: L'indice des opérateurs de Calderón-Zygmund elliptiques, Séminaire H. Cartan (1963-64).
- [2] Hörmander, L.: Linear Partial Differential Operators, Springer-V. (1963).
- [3] : Pseudo-differential operators and non-elliptic boundary problems, Ann. of Math. 83 (1966), p. 129-209.
- [4] Kato, Y.: Note on hypoellipticity of a first order linear partial differential operator, to appear.
- [5] Mizohata, S.: Solutions nulles et solutions non analytiques, J. Math. Kyoto Univ. 1 (1962), p. 271-302.

(Received November 25, 1966. Revised March 10, 1967)