On the blowing up of solutions of the Cauchy

problem for u,=Ju-+w "

By Hiroshi Funra

§1, Introduction and the result.

Solutions of initial value problems for quasi-linear parabolic partial differential
equations may not exist for all time. In other words, these solutions may
blow up in some sense or other. Recently in connection with problems for
some class of quasi-linear parabolic equations, Kaplan [5], 1td [4] and Friedman
[1] gave certain sufficient conditions under which the solutions blow up in a finite
time. Although their results are not identical, we can say according to them that
the solutions are apt to blow up when the initial values are sufficiently large.

On the other hand, it is commonly believed that the dimension of the -
space, © being the space variable, has a crucial influence on the conditions for
the solutions of quasi-linear equations to exist for all time. As an example
we can refer to the Navier-Stokes equation (for example, see [3,6]), for which
the situation concerning global existence is quite different according as the
dimension of the x-space is 2 or 3.

The main objective of the present paper is to illustrate the following through
the Cauchy problem in the title above:r 1) Concerning quasi-linear initial value
problems with an unbounded x-domain, the solution may blow up, however
small the initial value may be. 2; The dimension of the a-space and the ‘degree
of non-linearity’ of the equation have their combined effect on the global existence
or the blowing up of solutions of these problems.

Now we pose our Cauchy problem with the unkonwn function w=-u(t, z) of
t>0 and z€ R™, K™ being the m-dimensional Euclidean space:

1.n Uy Ju4-utte, (t>0,me By,
1.2 U ymoalz) {(xe R™).

Here a=a(z) is a given function called the initial value of u. a is a positive
parameter. Throughout the present paper we shall deal only with non-negative
solutions so that there is no ambiguity in the meaning of w't¢. The initial
value problem (the Cauchy problem) consisting of (1.1) and (1.2) is denoted by
IVP. Below in the second half of this section we shall specify the class of
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funetions within which the solution is sought and shall state our main results
in Theorems 1 and 2. However, let us describe the results here in a rough but
intuitive way. If 0<ma<2, then every non-negative solution of IVP blows up
eventually except the trivial solution u=0. If 2<ma, there are many non-negative
initial values a:=-a(x) which give global solutions. This appears somewhat re-
markable inasmuch as the inevitable blowing up occurs rather in the case of
smaller «. Also, the result for a<2/m forms a striking contrast to the fact
that the initial value problem (1.1) and (1.2) has a global solution for a sufficiently
small and sufficiently smooth a(x) if R is replaced by a bounded domain with
smooth boundary and if some appropriate boundary condition, say, the Dirichlet
boundary condition is imposed.

We proceed to formulation of IVP.

DeriniTion 1.1, A non-negative function w==u(t, z) is called 2 regular solu-
tion of IVP in [0, T'], T being a positive number, if u, F.u, 7F.u and «, all
exist and are continuous in @Q,=[0, T]x E™ and if (1.1) and (1.2) are satisfied.
A regular solution # of IVP in [0, ) is a function whose restriction to
10, T1x R™ is a regular solution of IVP in {0, T'] for any T>0.

According to the definition above, a regular solution is smooth to some
extent but nothing is assumed on its growth as |z |—+c. We recall that even
in the linear case (a==0), we need some restriction concerning the growth of
the solutions in order to have the uniqueness of the solution. In view of this,
we shall restrict solutions of IVP into a class defined by Definition 1.2. At the
same time, we note that the wider the class # in Theorem 1 is, the deeper the
theorem is in its implication.

DermvitioNn 1.2. T being a positive number, %[0, T'] is the set of all con-
tinuous functions wu-=—wu(¢, x) defined in [0,T <X R™ satisfying

1.3) lu(t, ©) | < Mexp (j=18) 0<t< T, ze R™)

with some constants M and S subject to M>0 and 0<f<2. M and B may
depend on u. Furthermore, )0, ) is the set of all # whose restriction to
{0, T R™ belongs to &[0, T'] for any T>0.

We note that utee &[0, T'] if ue &[0, T'] and ux=20.

Dermiarion 1.3, If w is a regular solution of IVP in [0, T'] and at the same
time ¢ &[0, T], then u is called a regular soultion of IVP in %[0, T]. Here
we may replace &[0, T] by &[0, c0). A regular solution » of IVP in &[0, )
is also called a global solution of IVP in &[0, ).

Next, we specify the class of initial values. As a standing assumption, we
assume that the initial value a=a(x) of IVP is taken from the class & defined
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by the following
Derivition 1.4, .27 is the set of all non-negative functions ¢—a{z) on B” such

that a,F.a and F.F.a are all continuous and bounded there.

When compared with £7[0, 7'}, .27 may seem to be composed of too restricted
functions with respect to the growth order. However, we can avoid unessential
difficulties by taking nice initial values. Moreover, our stress at the present
paper is laid on the fact that under the assumption of Theorem 1, the blowing
up takes place even when the initial value a is so nice.

We are ready to state our theorems.

Treorem 1. Let 0<ma<2. Suppose that a €. does not vanish identically.
Then there is no global solution of IVP in [0, co).

This theorem will be proved in §2 by a method which was suggested by
and is partly identical with Kaplan’s method in [5]. The following theorem
involves the Green function of the heat equation. We put here and hereafter

12
(1.4) H(t, %)= (4xt)~"/* exp <~ ! z ) . (>0, zeR").

Tueorem 2. Let 2<ma. Take any positive number y. Then there exists a
positive number 6 with the following property: if a€ .S and 0<alx)<sH(y, 2),
then there exists a global solution u=wu(t, z) of IVP in [0, ), which is subject to
(1.5) O<ult, )< M H(t+7,z), (t20,zeR™, ’

Jor some positive constant M,

Theorem 2 will be proved in § 3. Several propositions used in §§ 2 and 3 will
be established in Appendix.

The writer wishes to express his thanks to Professor S. Itd who brought
the writer’s attention to the present subject and encouraged him through

valuable discussions.

§2. Proof of Theorem 1.

As a preparation for the proof of Theorem 1, we state the following
Lemma 2.1, Let u=u(t,z) be a regular solution of IVP in 5[0, T'] with a

nontrwvial initial value ae.%”. Then we have
(2.1) Jor—ult, 0y 2> ut , O=t<T),

where

2.2) Joo J.m::g Hit, Dyalz)dx.
Rm
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Proor. Let ¢ be a positive constant. Take ¢ in 0<t< 7T and fix it. Then
we put

2.3) Ve vels, ) - Hlt—~s4¢, %), 0<s<t=<T, xe B™),
and
(2.4) Jei:Jo(8) ‘::X ve(s, wyuls, ida.

n™

ve is regular in [0, T]x< B™ and satisfies the adjoint heat equation

(2.5) ﬁ-ve' = Jus,
o8

We claim that J.>0 for all s€{0,¢]. In fact, v.(s, ) is positive everywhere in
[0, t]= B», wu(s, ) is also positive in (0, %]« R™ according to Proposition A2 in
Appendix. By the assumption, w(0,x)=a(x)>20 and af{x,)>0 for some point
xoe R7. Taking account of the continuity of ». and u, we see that J.>0 if it
exists. We now claim that J. exists and is continuous ins. Since ue 5’[0, T},
there are some positive eonstants M and 5<2 such that

(2.6) O<uls,m)<Mexp(|z|®, 0<s<T,zeR™).
Hence changing the variable of integration by

z=2y t—8+e 7,

we have

R

2.7 0 Je(8) M} nH{t —84e, myexp (| x Bda

g

M’r:‘ég exp (~|ypHexp (1217 t—ste|f |y ifdy
pem

<2 E| exp by iy iy iy,

rm

where 7 -28(t-+e)#° The last inequality shows that the integral defining J.
exists uniformly and is a continuous funection of s.

Furthermore, Je¢ is continuously differentiable and satisfies the following
equation.

~

2.8 4 J:(8) X vels, 2yuls, o)t edx.
dS Rm

This can be seen as follows. Take a function pe C;°(R™) such that 1=p>0 and
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i

play=1

1, (xi<l,
[0, (z]>2).

Then we define oy (N-21,2, ---) by

(2.9) 0&1)0(%;)

and call them the truncating functions. We put

(2.10) j‘-"?(s):ig vew-pydz  (N-1,2, ).
nm

By what we have seen above, 7*'(s) tends to J«(s) as N->co uniformly in s.
Since its integrand is compactly supported, 7%'(s) can be differentiated under
the integral sign. Namely we have

4 3 *S (:‘C Ve U+ vgwa—u ){)yd&?

ds m\08 as

= 3 {-dve-utve Juonda
rm

18 Veru e ppdy
nm
=0+ 1.

Here use has been made of (1.1) and (2.5). I, tends to the integral on the right
side of (2.8) as N—oo uniformly, since u'*#e 5[0, T]. We have to show [,—0.
By integration by parts we get

(2.1 I, —~~2§ vg'Fplv.F’ud:va ve-u-dpyde.

nm nm
The last integral on the right side of (2.11) can be estimated with the aid of
(2.6) as

Py = S ver - dpyda
nm

= CN“?S veudz S CN™2,

m

since | dpy | <CN 2. Here and hereafter we shall denote positive constants in-
differently by one and the same symbol C. Thus py~+0 uniformly as N-»>=, In
order to deal with the first integral on the right side of (2.11) we need Proposi-
tion A3 in Appendix, which asserts that -:%f— isin [0, T also, (k==1,2, -+, m).
Therefore, as in (2.7), we have F

S ve- | Fuidae<C,
RM
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whence follows

q,v-:ig ve-Poy-Vuds | <CN-*
nm

in virtue of |[Fpy |<CN-'. Thus gy—0 uniformly as N—co. In this way, we
SN
obtain the uniform convergence of d;g to the right side of (2.8) and have

(2.8) consequently. At the same time, the continuity of ddf follows from that

dj(t\'\
ds -~
We proceed to derivation of the differential inequality

of

/e =gt (0<s<t).
ds

(2.12)
Noting that v. is positive and satisfies

S ve(8, 2)dx=1,
R™

we apply Jensen’s inequality to the right side of (2.8) and obtain (2.12). Here
essential use has been made of the convexity of #'** as a function of the real

variable u. Solving (2.12), we have

(2.13) J(0) —Je(t) " = at.

Finally we make ¢-0. Then we have

(2.14) J(t)—out,0) and Je(G)—J, (e—0),

owing to the well-known properties of the Green function H. Combining (2.13)
and (2.14), we end up with (2.1).

Proor or TuroreMm 1. We are going to prove Theorem 1 by reduetion to
absurdity. On the contrary to the theorem, suppose that there exists a global
solution % of IVP in ¢'[0, o0) and that the initial value a of u is not trivial.
Then (2.1) is applicable with any positive ¢ and gives

(2.15) gz ult, 0y +at>at.

We need an estimate of J, from below. Without loss of generality we can
assume that a(x) is positive in a neighborhood of the origin. Then we can
choose positive constants 7 and § such that | x| <24 implies a(z)=y. From now
on, we restrict ourselves to £=0° Then we can estimate as
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Jo:§ H{, oyalx)dx> g Ht, v)aix)da
JRm

Jizi<2d

27‘ (drt) "/fedx.

Jlzi<ab
Consequently,
(2.16) Joze it ™, {t=d%,
with a certain positive constant ¢,. Substitution of (2.16) into (2.15) yields
2.17) tme /2> et (t=d%.
However, (2.17) is impossible for sufficiently large ¢, because Z?lz-a-<1 by the as-
sumption. This completes the proof of Theorem 1.

§3. Proof of Theorem 2,

In this section we shall prove Theorem 2 by constructing the global solution
mentioned there. First of all, suppose that we are given a function ae.2”
subject to

(3.1 0<alx)<dH (7, x)

for some positive constants y and 4. We fix y here and will determine 4 later.
The theorem will follow with the aid of Proposition A4, if we construct a global
solution of the following integral equation associated with IVP.

(3.2) ult, o)=u,(t, ) + Stdsg H(t—s, x—y)uls, y)'**dy,
[ RM®
where
3.2/ Ut m)::g Ht, x—y)aly)dy.
R™

This integral equation is denoted by IE. We are going to solve IE by iteration
in the class $7[0, o) specified below.

Dermnition 3.1, 570, o) is the set of all non-negative continuous functions
w=u(t, ) defined in [0, o)X R™ such that the inequality

®38) 0<utt, )< MH(¢+7,%), (t20,ce R,

is satisfied for some constant M which may depend on u.
We put

(3.4) Holl= sup v, z) |

senmost p(t, x)
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for any function v with |»] € 70, o0), p(t, ) being H{t-+7,x). Then obviously

we have
[vlt, )| <|lvilplt, z) .

For instance, (3.1) implies

0<udt, x)gég H(t, x—y)H(y, y)dy=Hit+7, 2)

R
=6p(t, )

and thus |lu, || <d.
We study the non-linear integral transformation @ on the right side of (3.2):

(3.5) (Wu)(t, 7)- :Stdsg Hit—s, a—yyu'+e(s, y)dy.
rM

[}

Lemma 8.1, Let ma>2. Then, 0pc 570, ) and
(3.6) Dol <c,

where p==H{E+7, ) and ¢, 18 a constant given by

(37) Co = (475)“7;“1/2Sm(8+r)-ma/2ds
0

2r s
. 4 mafe .
2-— ma( 77)

Proor. The continuity of @p is clear. @p=0 is obvious. We note

3.8) pm Hi(s+y, o) < (dn(s+p) e,

(LB o1 g v
for exp( 4(34_7‘))41. (3.8) yields

4
Or;‘;w,ogg dsS H(t—s, x—iy)da(s+ )y ™e*H(s+7, y)dy
nm

]

|2
= (47:)""““& 8+y)ymerH{E +7, x)ds
1]

§<(4 ﬁ)“rim/ggm <S+T)v«ma/3 dS)H(t+7’, x)
[}
<= eeolt, ).

Here use has been made of the evolution property of the Green function H.
We note that the existence of the integral in (3.7) is based on the assumption
ma>2. Now (8.6) is clear and we have established the lemma.

As corollaries of Lemma 3.1, we have the following Lemmas 3.2 and 3.3,
where ¢, means the same as above.
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Lemma 3.2. Let ma>2 and let ue 5700, ). Then Gue 570, o) and we
have
(3.9 Houll<eo u i,
Proor. (3.9) is clear in view of
0<(@u)t, y<ifu il (@o)E, &) <eo ) |11 o(E, 2)

due to the preceding lemma.
LemMa 3.3, Let ma>2. Suppose that u and v are in 570, ) and they

satisfy

(3.10) HujlsM and |vil=M

for a positive number M. Then we have

(3.11) HOu—0v || <co(l+a) M | u—v il
Proor. Making use of the elementary inequality

|pre—gtei<(l+a) | p—ql max {p°, ¢}, (p=20,¢=0),
we have

furra(s, y)—v (s, y) | <A+ a) Moo (s, y) | uls, y)—v(s, v) |
<A+ @M= Hu—v||p'*(s, ¥).

Hence it follows that

[ (Du)t, 2)— (@), 2) | <A+ a)Me Ju—v || @), x)
L1+ a)Me [{u—v lip(t, =),

in virtue of Lemma 3.1. Thus we have (3.11).
We proceed to the iteration, setting

k3.12) WUn+17=Up + @un (n,.T:O’ ly . ')

with u, given by (8.2)). We assume ma>2. According to Lemma 3.2, we can
continue the iteration indefinitely within 7|0, o0) and get the inequalities

(3'13) Hun+1 HSB“*”‘CO HunHXHI y (77’ '7'0’ 11 2» v ')r

recalling || u4o!]<é6. By an elementary theory of recurrent inequalities, (3.13)
implies that the sequence || #. ! is bounded for sufficiently small §>0. Namely,
we have

3.19) Nuall<M, (n=1,2,---)

with a constant M=M(@) for sufficiently small 4, where M(6)—0 as 0. We
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choose a § such that

(3.15) r=efl+a)M <1,

Since Unio—Unii Oy —Du, by (3.12), we have

(3.16) Wtnrz=Unss S N Uns—ua ||, (n=0,1,---)

by means of Lemma 3.3. (3.16) implies the convergence of % Htnsa—un l] in
virtue of r<1. Thus %, converges with respect to the norm H" li, that is, u./o
converges uniformly in [0, o) x B™. Hence there exists a function u€.57[0, o)
such that

(3.17) Hup—u -0 as n--so0,

Making use of (3.12) and (3.17), it is quite easy to verify that % is a solution of
IE. In this way we have established the following

Lemma 3.4. The statement of Theorem 2 with a global solution of IVP in
10, ) replaced by a solution of IE in 70, o) is true.

Proor or TuroreEM 2. The solution 4 of IE constructed above is the required
global solution of 1VP, since .&7[0, co)c &[0, o0) and since a solution of IE in
&[0, ) is a regular solution of IVP according to Proposition A4 in Appendix.

Appendix
Here we shall prove several propositions used in the preceding sections.
Prorosition Al. Let u be a regular solution of IVP in &°{0, T] for T>0.
Then uw satigfies the integral equation (3.2) u=u,+0u in 0<t< T,
Proor. Let py (N:21,2,:--) be the truncating functions introduced by (2.9).
We put vy=pau (N1, 2, -++). Then we have

(A1) %Z‘—Jv» + o U =2 P oy - Pu— (o)

and v4(0, 2)=-px(x)a(x). Since every term in (A.l) has a compact support with
respect to x, we have the following integral representation

(A.2) v(E, £)=V+ V,—2V;—V,,
where

VS Ht, 5—y)ox-aly)dy,
nm .

Vo= Stdsg H(t—s, x—y)ox-u(s, y)i*edy,
0 ™
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3
Vi= S dsg Hit—s, a—y¥F,ox-Fouls, y)dy,
Q R®
and

t
V;:X dsg Hit—s, z—y(doxuis, ydy,
[ R™

where the argument of oy is y. Since a€.3” by our standing assumption, we

have immediately
(A.3) Vr»S Ht, v—yalyddy as N-—oo,
RM

ut*« satisfies, for some M >0 and some 8 in 0<5<2, the inequality
(A.9) lutte(s, y) [<Mexp(ylf), (O<s<T,yeRm),

because u!'**¢ &[0, T] is implied by u e &[0, T]. By the same estimation as in
(2.7), we see (Du)t, x)< -+o0. Futhermore, we have

| Va(t, 2)—(@u)t, z) | SMSstS H{t—s,a—y exp(ly|P)dy
o iwlzN
:Mgt%-(S)ds,
3]
where
%(s)zg H{t—s, z—y) exp (|y |F)dy.
wleN
For each z and ¢, ¢x(8) is bounded uniformly by a constant, since
0£50x(8)$§ H(t—s, z—y) exp |y |A)dy
R™
= S exp(—l7*)exp(la+21/T=5 7 |#)dy
nm

SCS,W exp (~171%)exp (1 1420/ T | 7 Fldy.

Therefore we can apply the convergence theorem of Lebesgue, in order to have

| Vit 2)— (@u)(t, ) 1sM§ ‘on($)ds—0,  (N—oo),
[}

We now claim V;—0and V—0. V. is dealt with easily by means of |dor(¥)| <
CN-2, since ue &[0, T]. Concerning V, we rewrite it by integration by parts
as

(A‘S) Vi — Va"' Vu



120 Hiroshi Furra
where

Vir- St ds K P Ht—s, 2—y) Pox-uls, y)dy.

Jnum

In order to estimate | V|, we note | Fox(y)| <CN-' and also

(A.6) {PLH(E, 7)< Ct-m v/ exp (u—'-g—t‘i)

We may suppose that
futs, )| <Mexp(lyif), (0<s<T,yeR™),

with some constants M >0 and € (0, 2), since ue &[0, Tl. Then changing the
variable of integration by y—z=31/t—s 7, we have

¢
(t— s)"“/”dsg
K

2

z%mczv—lg _exp(—{y 1 exp (@143 T3 |7 Dridy

0

<C'N™

with C’ depending only on z and t. Thus we have V,—0 and consequently V;—0.
In this way, we obtain u=u,+0u from (A.2).

Proposrrion A2, Let w be as in the preceding proposition. In addition,
assume that the initial value a of u 18 not trivial. Then u==u{t,x)>0 if t>0.

Proor. According to Proposition Al, u-:u,+@u. On the other hand,
{Du)(t, x) is non-negative and wu,(t, ) is positive for ¢ >0 as is well-known. Thus
the proposition is true.

Prorosition A3. Let u be a regular solution of IVP in {0, T'). Then we
have

ou
ox i

€ (‘,10, TL (] 1: 2, ] m)9

Proor. Suppose that » is a function in [0, 7'} satisfying
(A.D bos, ] <Mexp(lylP), 0<s<T, ye B™),

for some constants M >0 and 3€(0,2). Put

A
(A.8) w(t, :v);:s dsx Ht—s, x—y)v(s, y)idy.
rm

0

Then by means of (A.6) we can easily verify

(A9 ow .. Stdsg

dw O Hit—s, —yyis, dy.
ox;

rm a:lfj

Actually in virtue of (A.7)
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(A.10) WL, 1) g‘

o

e .
ds\ H{t—s, x—yw(s, y)dy

. R®

with ¢>0 is seen to converge to w uniformly in ¢t and locally uniformly in x
as e—0. This kind of convergence occurs also to

0_ o p gyl
(A1D) v (t,a,)-_‘

X5 Je

dsg iH\t— s, x—uls, Ydy

R™M 07”

with the aid of (A.6) and (A.7). Furthermore, noting that for any positive
constant 7 we can choose N>0 and 7 in 8<y<2 satisfying

(A.12) exp(Alz®<Nexp(laiy), {xe Rm),

we see that

6w & . _
< p{=—InPE+al+ - V8 d
it <o A expi=iypraeie s/ Tinmay
<Cexp(lzm g fs 8 S exp {—| 7 [*+Cli7|fdy
St B
.. ow
Hence we have the continuity of B and
]
ow < |
oy <Cexp(lzlm, (0<t<T, zeR™),
093_,'

with some constants C>0 and y in f<y<2. This shows

(A.lg) a] Eé)[o T} (].::1, 2' -..'m)-

&
On the other hand, it is quite easy to show that u,(f, ) in (3.2) is continuously
differentiable in = and F,u.(t, x) is bounded in [0, T]x R». (Recall the definition
of % in §1.) We are now ready to establish the proposition. In fact, accord-
ing to Proposition Al we have u=wu,-+Pu. Since u'<e [0, T'] along with u, we

can apply (A.13) to w=2u. Hence 5‘2 Pue 2|0, T]. This implies 2 u€ ¥ |0, T}

by the remark stated just above ané the proposition has been proxjred.

Prorosition A4. Let u be a non-negative continuous solution of the integral
equation (3.2) in Q,=[0, TIx R™. Suppose that u is bounded in Qr. Then we
have the following.

1) P, P P.u and u;, are continuous and bounded in Q.

i) % 18 a regular solution of IVP in [0, T).

Proor. This proposition might be regarded as a special case of an essentially
well-known differentiability theorem for solutions of quasi-linear parabolic equa-
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tions. However, the simple character of our problem enables us to give a

simple proof, which we sketch here.
In the same way as in the preceding proposition or more easily, we can

show that af’)u is continuous and bounded in @, and that it is expressible as

5
ou  ou t b
A14 ¢ o q-ug __Ht —_ 3, 14-a i
(A.14) om o dudsglmax] (s, z—yuls, n'dy
Noting 5—*H(t 8, x—y): :w»g—H(t—~.s x—y), we can transform the integral in

(A.14) by mtegratmn by parts, which is justified by the same procedure as that
in the proof of Lemma 2.1. The result is

(A.15) Do _ ~%’(1'*"“>Stds§ Hit—s, ac-«y)u"@i dy.
Ox; Ox; o o oy;

On account of the boundedness of u® aa:, (A.15) yields
;i

dy

Pu B
16 ou U K3 8
(819 &Eﬁfc, (736,(7%’,‘ 1+a) S(x Elﬁm oy, Hit—s @ y)u

(.77 k—lr 2; Tty m)'

u . ‘ . . ou
is continuous and bounded in @, since u®

From this it follows that
Ja Tk 6.’6,‘

is so.
Next, we claim that w=u(t, ) is Holder continuous in ¢ in the following

sense: there exists a constant C independent of ¢ and z such that
{u(t+h, o)—ult, 2) |<CV/ R, (O<t<t+h<T xeR™).

In order to show this, it is enough to deal with w=-@u since the corresponding

inequality for u, is obvious. We have

wit+h, x)—wlt, x)=1,+1,,

where
1= St ?hdsg RmH(t»%—hms, z—uls, Nt ody
and ‘
I,z S:dsg RmH(t—s, x—y(s, wdy
with

v(s, y)m& Hh, y—2)uls, a)odz—uls, )+
Fi3)
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In view of the boundedness of u, it is obvious that
j I, 1 <Ch.
On the other hand, we have

I’v(s,y)!sCK exp (=71 {uls, y+2v hyp)o—u(s, )+ |dy
Rm

<Cv'h,

because |V, (u(s, )" |=(1+au*{F.u| is bounded in in @Qr. Hence we have
| I,1<C1/h and thus we have established the uniform Héolder continuity of =
in ¢.

We turn to u#,. Taking a small positive number ¢, we put

(A.17) (@) (t, 2)= S:“sdsSl

2

H{t—s, x—y)uttedy, (e<t<T,ze R™).

Since #'** is bounded, @.u tends to Ou as ¢—0 uniformly in [4, T)x R™, i being
an arbitrary positive number. Recalling

—(%H(t—s, e—y)=4:H{t—s, x—y)=d,H{t—s, x—y),

we have

2

(A.18) P

(mgu) (t, w):§ H(E, m_y)u(t_e’ y>l+ady
RM

+§Hdsg Ht—s, 5—y)(dut*o)dy
[4] R
E.ix‘f‘jy_.

I, tends to wu(t,z)** uniformly in ¢ and z as e—0, since %'*” is bounded and
uniformly continuous in @Qr. On the other hand, J; converges uniformly in Q,
to

(A.19) olt, :c)zS:dsSMH(t — 5, z—y)durta)dy,

because (du'te)(s, z) is bounded in Q,. From (A.19) it is obvious that ¢(t, z) is
continuous and bounded in @,. At this stage, we have

(A.20) %wuct, ) =ut, B+ o, z),

while ¢(t, ) is nothing but 4.(0u) as is verified by integration by parts. Namely,
we have
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(A.Z].) .’:zmu:ul+a+dwu,
at

and furthermore,

(A.22) —;%u Juture,

because u=-u,+0u and gzuowzduo. At the same time, we get the continuity and

boundedness of u, in Q,. Finally, we note that u—a as ¢t—0 uniformly in R™,
since uy—a and @u—0 as t—0 uniformly in B”. In this way, we have estab-
lished i) and ii) in the proposition.
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