On stochastic matrices of a given Frobenius type

By Nobuko Iwanori

§1. Introduction.
A real square matrix P=:(p;;) of degree n is called stochastic if all p;; are
=0 and X p;;=1 for ©1=1,2,---,n. Let us denote by 2 the set {1,2, ---, n}.
j:;]
With a stochastic matrix P=(p,;) we associate a subset Supp (P) of 22, called
the support of P, defined by

Supp (P)={(4, )€ 2x2; py=0}.

Let us denote by S(n) the set of all stochastic matrices of degree n. The
question we shall consider in this paper is the following.

Suppose a subset G of @x 2 is given. We denote by S(n); the subset of
S(n) consisting of all P in S(n) such that Supp(P)=G. We assume that S(n)«
is not empty. For each P in S(n), denote by L*(P) the set of all row vectors

U=y, Us, * "+, Un) fixed by P (i.e. uP=u) and such that v, 20, - -, %20, 3 u;-=1.
Then how can one describe the set d;= eU L*P) in terms of G?
PESing

We can reduce this question (see §7) to the case where G is of Frobenius
type, i.e. the case where for any P in S(n)s; & consists of a single ergodic
class and 2 has no transient class (in the sense of Doob [3, Chap. 5]), or equiv-
alently, every P in S(n); is permutation-irreducible in the sense of Frobenius
(see Gantmacher [4, Chap. 2]; also see §2 below.)

Let now G be a subset of £? of Frobenius type. Our main result is as
follows:

(i) 4g is a convex, bounded subset of R". Hence the closure 4y of 4y in
R* is a compact, convex subset of R~

(ii) Let Ey be the set of all extreme points of ds. Then F, is a finite
set. Let E¢={u,, ---,un}. Then 4y is given by

do={au+ <+ +@plm; >0, -0, @, >0, 3 ;1)
k3

(ili) There exists a finite set E4 =lv,, -+, v;} such that
EGCESCJay
E;':—'{ax'01+ st oy, al>01 Tty (X};>O, Z ai‘:;l} .

In order to define the set E;, let us introduce a notion of a G-cycle. A
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cyele over 2 of length m is a sequence (i, ---, iny of mutually distinct elements
in £ identified up to eyclic permutations:

<'i1, Toy * oty Tmy =y, s, ~ ", Ty L= o0 =, Tyttt Emet) -

The subset {1,, - - -, im} 0f 2 is called the support of the eycle C={1y, - -+, s> and is
denoted by Supp (C). A eycle (4, -++,iny over £ is a G-cycle if m=1, (1, 1)€G,
or m>1, (4, 1) €G, (1s, i) €G, <+, (im, i) € G. We denote by (G> the set of all
G-cycles. For each C in {G), we associate a row vector vc=(a, -+, @) € R* by

;L if ieSupp (C)
;==

0, otherwise

where m is the length of C.

Now we will prove (see Theorem 5 below) that we may take as our set E;
the finite set {v¢; Ce {GH}.

The quantity A*(P, C) introduced in §9 may be regarded as the “probability
of running on the cycle C” in the homogeneous Markov chain represented by
P. 1In fact, for a stochastic matrix P of support G of Frobenius type, the
unique fixed row vector L*(P) is given by the following formula:

LxP)= 3, AP, C) v,
o0&

Our method is as follows: when G is a Frobenius type, L*(P) consists of
a single point for each Pe S(n); (see e.g. §7 below). Thus one has a surjective
map L*: S(n),—d,. This map is “linearized” as follows: we construct some
convex space of matrices, to be denoted by T(n); in §8 and a bijection a: T(n)s—
S(n)s such that === L*og: T(n),—4d, is affine-linear. Then immediately 4; is known
to be convex.!

We then consider the free R-module (G)r generated by (G) and define a
convex subset @; of {(GOr by

(’)G::{ E IJC'C; /lc>0 (for every C), 20/10':1} .

0EWG

Define now a linear map ¢: {GOr—R" by ¢(C)=v¢ (for every Ce{G>). Our main
result is equivalent to ¢(@,)=4Js and this is proved by constructing a surjective
linear map o: @z~ T(n)s such that ¢=cop (see §9).

1 We owe this construction of T(n)s and ¢ to Professor T. Kato; he pointed out this
construction which was vaguely visible in our first version of this work. This con-
struction simplified very much our former version.
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We have proved several facts about matrices and determinants as lemmas;
one of them is a new (we hope) proof of a theorem of Bott-Mayberry [1} which
gives an expansion formula of a determinant in terms of rooted trees in the
sense of graph theory.

As an application of the main theorem, we shall settle the following ques-
tion: let G be a subset of 22 of Frobenius type. Define n functions ¢, <+ -, »
on S(n); by

LEPY={0,(P), -+, v P)).

Then given ¢ and j, where v(P)=v;{P) for all P in Sn).? In other words,
the question is to find “the most important position in a communication net-
work” for all distribution of information-probability. (cf. Kemeny-Snell |5,
Chap. 8]). By our main result, we see that v,(P)Y=v;(P) for all P in S(n), if
and only if every G-cyecle through j passes through 7. (See Theorem 7 below).

Finally we will give a eriterion for the injectivity of the map L*: S(n);— 4.
It turns out that L* is injective if and only if |G| =n+d(G), where |G ] is the
cardinality of G and d(G) is the dimension of the linear space spanned by the
v (Ce{GH).

The author would like to express her hearty thanks to Professor T. Kato
for his crucial remarks which simplified a great deal of the first version of
this paper.

§2. Paths, cycles, trees, and pseudo-irees,

Let £ be the set consisting of positive integers 1,2, -:-,n. We denote by
2™ the cartesian produet 2xQx --- xQ (m factors). An element (¢,, ¢z, -+, iw)
of O™ is called a path over Q of length m—1 from 1, to %, if ¥, %, - -, 1. are
mutually distinet. In particular, an element ¢ of 2 is a path of length 0.

Now let us denote by = the permutation of 2™ defined by

R<ih iZ’ T T“m)~ (Iiz, ?:3r Tty imy 'Ll) .

Then the set O consisting of all paths over 2 is stable under =:n=(@y):Q7.
Thus the eyelic group Z.={1, =, ---, 771} acts on 27 and we get a partition of
07 into Zn-orbits. A Z,.-orbit thus obtained is called a cyele over 2 of length
m. For a path (4,4, -+ -, in), we denote by <{i,, %, -, tny the cycle containing

(5, %2, =+, tm). Thus we have
<7/h [ TER l‘m>:<’l/21 T3y * 0ty Ty 'Ll>:: et :<’Lmy Ty tmoi/ .

Let (45, - -+, Ju) be a path over 2 of length k—1 with k=m. We denote by
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Ct)(4,, ---, 7) the set of all cycles (%, iz, - - -, ny over 2 of length m such that
Ji=24y, o0, fe=%. We denote by C(j,, -+, i) the union of all C™(j, ---, 5,
(m-k, k+1, -+, n).

Lemma 1. CG) 15 @ disjoint union of C@4, 1), .-+, Cld, +—1), Cli,1+1), - --,
C(t, n) and {iy. AlsoCii)yisadisjoint union of C1, %), ---, Cli—1, 1), Cli+1,1), - -+,
Cin, 1) and {).

Proor. Obvious.

Let G be a subset of 22, A path (1, ---, i) is called a G-path if (44, 4;:1) € G
for k--1,---,m—1. A cycle C of length >1 is called a G-cycle if every path
in C is a G-path. Thus (i, -+, in) (m>1) is a G-cyele if and only if

(1, 1) €EG, (i, 1) €EG, <+, Bm, WEG .
A cycle <) of length 1 is called a G-eyele if (4,4) is in G. Let (4, ---, 5x) € @%.
Then we denote by Co(4,, - -+, Jr) the set of all G-cycles contained in C(j,, - - -, Ju).

Let T be a subset of 22 and let 7 be an element of 2. T is called an
oriented rooted tree over 1 if

(ORT) for any element 7 in 2--{i}, there exists a unique 7-path over &

from 7 to ¢, and

(ORT,) there is no T-cycle.

We denote by T(¢) the set of all oriented rooted trees over 1, given a subset
G of 2*, we denote by T(7), the set of all oriented rooted trees 7 over ¢ such
that Tc(.

Let C={4,, ---,tn> be a cycle and let T be a subset of 22. 7T is called an
ortented pseudo-tree over C if

(OPT,) C is the unique T-cycle over 2, and

(OPT.) T—{{i,, &)}, T--{(43, s}, <+ -, T—{(%u, 1.)} are all oriented rooted trees

over 1,1, - - -, i, respectively,.

Given a cycle C, we denote by 7T(C) the set of all oriented pseudo-trees
over C. TFor a given G 2%, we denote by T(C)s the set of all oriented pseudo-
trees T over C such that TcG.

We note finally that a subset G of £? is characterized by its directed gragh
I’y (See Ore [6] for the definition of a directed graph), defined as follows: the
vertices of Iy are elements of 2, the directed edges of 7', are bijective with
elements of G. Thus, for example, if n—=6 and if the graph of G is given by

e
@.1n

o
3 4
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then G consists of (1,2), (2,1), (2,3), 3,6), (4,3, 5,5, (5,6) and 6, 1).

It is convenient to denote a sebset G of ©2° by a matrix M; of degree »
defined as follows: if (4, j)€G, then the (4, j)-th entry of this matrix is the
symbol =, if (4, j)€ G, then the (7, j)-th entry is 0. For example, for G given
in (2. 1), we have

0 * 000 0
0 * 00 0
M, {00000
00 * 00 0
0000 * =
* 0000 0

§3. Subsets of £2° of Frobenius type,

Let 2-2{1,2, ---, n} and let G be a subset of 2%, Let us recall here a binary
relation on @ associated with G which is well-known in the theory of homogene-
ous Markov chain. Let 7 and j be elements of 2. We write iGj if

(i) either i==7, or

(ii) ¢#7 and there exists a G-path from 7 to j.

Then we have

(3.1) 1Gi for every 1 in @,
(3.2) if 1Gj and jGk, then 1Gk (1, 5, ke @),

i.e. this binary relation defines a structure of a quasi-partially ordered set on
£. Let us consider the associated partially ordered set: let i€ 2 and je. We
write i=j (mod. &) if we have both 4Gj and jGi. Then = (mod. G) is an
equivalence relation on 0.

We denote by 2/G the set of all equivalence classes thus defined. We denote
by [i]l. the equivalence class containing 7. Now it is easy to see that there
exists a unique structure of a partially ordered set on 2/G such that

[l 217]s==1G 7.
We note that the minimal (resp. non-minimal) elements of 2/G are called G-

ergodic (resp. G-transient) classes in £ in the theory of homogeneous Markov
chains (see Doob [3]). We denote by g(G) the number of minimal elements of

2/G.
Derinition 3.1. A subset G of £° is called of Frobenius type if 2/G con-

sists of a single element.
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Dervimion 3.2, A subset G of 0% is called of quasi-Frobenius type if g(G)=1.
We note that for any equivalence class 3 [i]; in 2/G, G,==Gn 3% is a subset of
2* which is of Frobenius type.

Let A-=(a;;) be a complex square matrix of degree n. We associate with
A a subset Supp (A4) of @7, called the support of A, as follows:

Supp (A)={(1, 7)€ 0% a;5#0} .
It is easy to see that for every permutation = of £, one has
Supp (P-AP;")-=(Supp (4))

where P is the permutation matrix associated with . A-:(a,;) is called non-
negative if every entry a,;; is non-negative. Then Def. 3.1 is justified by the
following:

Lemma 2. Let A be a non-negative matriz of degree n and let G be the
support of A. Then the following conditions are equivalent.

(1) G s of Frobenius type.

(i1) A is permutation-irreducible, i.e. there exists no permutation matriz
J such that JAJ™' takes the following form :

(A, 0 >
4. A,

Proor. (i)=»(ii). Suppose that G is of Frobenius type. Suppose also that
A is not permutation-irreducible. Then we may assume A4 is already of the
form mentioned above. Let k be the degree of A,. Then kGp implies p=k,
as is easily seen by induction on the length of the G-path from % to p. Thus
we have k#n (mod. G) which is impossible since G is of Frobenius type.

(iD)=»(i). Suppose that 4 is permutation-irreducible. Let G be not of Frobenius
type, and let £, be an ergodic class of 2. Then £, is a proper subset of 2. Let
1€, and je 2. Then 1G5 must imply je 2, since [i]; is 2 minimal element of
2/G. Hence the (¢, j)-th entry of A is 0 if i€ @, and ¢ Q,. But this means
the existence of a permutation matrix J which brings JAJ! into a form men-
tioned above. q.e.d.

We note that a subset G of ©° of Frobenius type is completely determined
by G-cycles: namely, let C,, ---, C, be the set of all G-eyeles and consider the
subset G of 02 consisting of (,7)e 2% such that C,=(i> for some p and of
(i, )€ 92 such that C,eCy, 7) for some p. Then G=G. In fact, one has ob-
viously G G. Now let (#, HNeG. If i=4, then (2> is a G-cycle and we have
(i, eG. If i+ ], then there is a G-path (j, ki, ---, k., i) from j to 5. We have
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then G-cycle <i, 4, ki, -+, k> ie. (3, ) eG.

§4. A lemma on matrices.

Let z;; (11, j=n;1#j) be #*—n indeterminates over the complex number
field C. We consider the square matrix X=(x;;) of degree n where

o= — (Bt o 0tk s )

for i=1, --~,n.‘ Thus i x;;70 for ¢=1, .-, n, i.e. denoting by a¢ a column
vector of degree n wijth! entries 1 everywhere, one has Xa-=0. Hence 0 is a
root of the characteristic polynomial ¢(t)=det(tI--X). We claim that 0 is a
simple root of ¢(¢). Suppose () is divisible by £2. Then, for every nxn com-
plex matrix A=(qg,;) satisfying }3 a;;==0 (for ¢==1, ---,n), 0 must be a muitiple
eigen value. But this is impossjigie as one can see from the following example.

1 -1 0---0 0
0 1 ~1.--0 0
(4.1) A=

—1 0 0---0 1

In fact, one gets by a simple computation that

F .
(HI—A|=t Il t+a’—1) (m:exp 2;:;_) '
¥o=l E

Thus the row vectors b0 such that 6X-=0 are uniquely determined up to
scalar factors. In particular, denoting by 4;; the (¢, j)-th cofactor of X and
putting

bi":(dliv Azn T Jﬂi) for 7‘1y e, Ry,

we have b, X=0 (i=1, ---,n). 4,, is a polynomial in z;; (i+7) and 4,,+0 as one
sees by an example given in (4.1). Hence b;#0. Therefore there exists non-zero
rational funections k., ---, k. in z,; (1% 7) such that

bi kibl (7; '2, cry 'n) .

We claim now ky— --- ~k,==1. In faet, for example, since
Joo e e o A
¢ dn d:l Anl '

we see that k,— :1113,2

11

does not contain z., X3, * -, Lin:
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Oky . Ok: . _ Ok

E il s B4 :;:.0 .
0y, 0y; 9210

Similarly, k.= 4 does not contain =z, -+, &y, Lisus, -+, Bin fOT every i=
i1
1, ---,n. Thus k; is a constant not depending on z;; (i+7). So we may compute
the value of k. by taking a matrix A—(a;;) such that i“_, a;=0 for t=1, .-, n.
i=1
Taking the matrix (4.1), we get k,--1 easily. We get ky-~ -+ —k, -1 similarly.
Thus we have shown that
(4.2) Y Y. PRy I (3=1, -+, m).
In other words, we have proved the following:
Lemma 3. Let A-(a;;) be a complex matriz of degree n such that f} a;;=0
i=1

Jor i=1, ---, m. Denote by 4,; the cofactor of a;; in A. Then
Ail:;‘diz*" e ;;:Ain (i:::]_’ ...’n)‘

§5. A proof of the theorem of Bott-Mayberry.
Let £=(1, ---,n} and let A=(a;;) be an nxn complex matrix. Given a

non-empty subset T of 92, we put after [1]

(5.1 A, T)= I a;.
hET

(i,5
Now, we define u;,(A) (1€ 2) by
(5.2) ’lLi(A)-':T > wA,T).

€T

Given a cycle C over 2, we define (4, C) by

(5.8) A4, C) - ,e}'j (A, T).
r€F0)

Fits
We also define 2;;(A4) for (4, j)e 2% as follows:
(5.4) LiA)= > A, C) (for i%j)
CEUL, §)

'zif(A,)'-;j(A: <i>) .

LEMMA 4. }n:‘ X,J(A)A— ﬁ A‘j‘-(A) fo'r ?:;—_:.1, tee, n.
i1 iz

Proor. We have by Lemma 1,

S aA)= 3 X(A,C)
it Cii)

CECs

and
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3 (A= 3 X4,0),

c€5i)
which completes the proof.

Lemma 5. 4i{A)=uA) ai; for every (1, ) in Q2.

Proor. Define a map ¢: T((i>)-3(2) by ¢(T)=T—{(%,4)}. Then obviously
¢ is bijective. Now, since we have v(4, T)=a, (A, ¢(T)) for every T in T((1D),
we get zii(A>::aii'ui(A)-

Now let (¢, 7)€ Q5. Define a map g’): ‘\/J»_ T{C)—-Z() by ¢(T)y=T--{(1, D}
Then from the deﬁmtlons of T(C), C@, 3) and 3() given in §2, it is easy to
see that ¢ is bijective. Moreover, we have »(4, T)=a;;v(4, ¢{T)). Hence we
get 1;{A)=u,(4)-a,;, q.e.d.

Now putting a;= ﬁl a:;; (=1, ---, n), one obtains easily from Lemmas 4 and
5 the following: "
LemMa 6. u,(4)-a;= Z ui{A)a; (1= R N

We note that u,(A) depends only on off-diagonal entries of A. l.e. if A—R
is a diagonal matrix, then we have u,(A)=u,(B) for i==1, ---, n.

Now let z,;; (1=4%, j=Zn: 1% J) be n*—n indeterminates over C. We consider
again the square matrix X=(x;;) of degree n defined in § 4. Then, from L 220
(=1, ---, n), one has by Lemma 6

0= 3 ufX)ms (=1, ),

i.e. the row vector u=(u,(X), ---, u.,(X)) satisfies uX=0. Hence u is a scalar
multiple of the row vector b, (+=by= --- ==b,) considered in §4: u=-kb,, where k
is a rational function in the z;; (1+ 7). We have thus,

u‘<'¥) LI e e e T u"(X) ::k

All dﬂl ’
where as in §4, 4;; is the (7, 7)-th cofactor of X. Now from k.= u,;X) and
u,(X)u 2 (X, T), we see that k& does not depend on .z, @13, -+, Zyn. Slfmilarly
o= ,%(,X,) does not depend on %y, -+, T,i-1, Tivi+r, "7, Tin. Thus k is a constant.

In ordei;' to compute the value of k, take the matrix A given in (4.1). Then we
get k=(—1)"1, Thus we get (noting 4;,=-4;; by Lemma 3)

W)= B v, Ty = (~ 14

In other words, we have proved the following theorem which is equivalent to
a theorem of Bott-Mayberry [1].
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Tueorem 1. (Bott-Mayberry). Let A=(a;;) be an nxn complex matrix such
that }i ;-0 for 1=1, .-+, n. Then, for each i=1, ---, n, Te%‘} WA, T)is equal
J ot PR
to the (i, 7)»-th cofactor of the matriz —A.

§6. Weakly symmetric matrices.

An mx<n complex matrix A=:(a;;) is called weakly symmetric if f\‘i a,-,-::j% aj;
for v-1, ---, n.

Now let £=:{1,2, ---,n} and let C be a cycle over £. We denote by UC)
the length of C. We associate with C a weakly symmetric matrix E.—=(z;;) as

follows:

0, if 1=74 and Ce C(t, §),
, 1/(C), if i+J and CeC(1, 7),
(G]> Z,j' ° . . . .
0, if -7 and C#{1),
1, if 1=7 and C={.

Obviously we have }] z;=1.

Lemma 7. Let A (@) be & weakly symmetric matrizx of degree n. Then
U A)=us(A)- -0 = nLA)

Proor. Put a;— ¥ \ e >_J aj; (1==1, -+, n) and denote by D==(d;;) the diago-

l
nal matrix defined by d ;=0 (fm 1%£7), dnaa, (t=1, ---,mn). Now let 4;; be the
(%, g)-th cofactor of A—D. Then, applying Lemma 3 on A—D and on {(4—D)
(the transpose of A—D), one has
dilt’dta JM’JH :".’.ij Ut ;j-/-‘ni (i::‘]-! “'yln/)'
Hence all the 4;; coincide. On the other hand, by Theorem 1 we have
wilA) =ul A—=Dy=(—1)"""dy; .

Therefore we get u,(A)= -+ =u,(4), q.e.d.
Tueorem 2. Let A be a weakly symmetric complex matriz of degree n.
Then

6.2) Z(A)-Am“ KC)-XA, C)-E;

where the summation is taken over all cycles C over 0=I1,---,n} and (A is
defined by

(6.3) HA)=u,(A)= - =u,(4).

Furthermore,
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(6.4 (2 a0) Ha-310) 24, 0).
1,7 [

Proor. Denote by Y=(y;;) the right hand side of the equation (6.2) in the
theorem. Then from the definition of E., one gets easily

Y= Aii(A) for every (4, 7) in 0%,

Putting u,(4)= - -+ =u,(A)=2(4) (Lemma 7), we get, by Lemma 5, Y: i(4)-A.

Hence comparing the sum of all entries of these matrix we have 3y~

Z(A)-E_ a;;. On the other hand, since the sum of all entries of E; is i, (‘)};e has
LR¥)

5 5= S UC)- 14, C).

Thus 3 HCA, Cy=i(A)-3 a;; which completes the proof.
4 11

§7. Stochastic matrices of a given Frobenius type.

A real matrix P=(p,;) of degree n is called stochastic if
(i) p;20 (for all 7 and j), and

(i) X py=1 (for all ).

We denote by S(n) the set of all stochastic matrices of degree n. S(n)is com-
pact, convex subset of the set of all non-negative matrices of degree n. Fur-
thermore, S(n) is closed with respect to multiplication. Now for any P in S(n),
the following limit exists always (¢f. Doob [3]):

L(P)=lim =(P+ Prt +- 4 P7).

L(P) is also in S(n).

Lemuma 8. Let P be a stochastic matriz of degree n and let G be the support
of P. Then ¢(G) is equal to the multiplicity of the eigen value 1 of P. ¢(G)
1s also equal to the rank of the matriz L(P).

Proor. It is well-known (ef. Gantmacher [4]) that

(i) every eigen value of P has the absolute value not exceeding 1,

(ii) if @ is an eigen value of P with |a|=1, then a is a root of unity and
a is a simple root of the minimal equation of P.

Thus there is a complex non-singular matrix @ such that
X 0)

QPQ%:(() Y

where X is a diagonal matrix whose diagonal entries are roots of unity and ¥
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is a square matrix whose all eigen values are smaller than 1 in the absolute
value. Thus lim Y™:==0, hence L({Y)=0. We have therefore

L(X) O).

@ L)@ =( oo

From this fact, it is immediate to see that the rank of L(FP) is equal to the
rank of L(X), which is nothing but the multiplicity of the eigen value 1 of
the matrix P. Now it is known (ef. Gantmacher, loc. cit.) that this multiplicity
is also equal to g(G), g.e.d.

Thus, if P is a stochastic matrix with a quasi-Frobenius support G, L(P)
is of rank 1. On the other hand, the column vector

satisfies the equation L(P)a==a. Hence 1 is a simple eigen value of L(P). Now
since L(P)*=L(P) (cf. Doob, loc. eit.), L(P)x is a scalar multiple of a for
every column vector x. Thus all the row vectors of L(P) are the same:

ul Ua *** Un
Uy Up -+ U
L(P)= "
Uy Uy **+ Un

Since L(P)P=L(P) (cf. Doob, loc. cit.), the row vector

u’f‘:(ul) Wgy 0y un)

is an eigen vector of P:uP=wu. Furthermore ﬁjlu‘;:l. We note that u 1is
characterized by these two properties since 1 is a’;imple eigen value of P. We
denote this vector u by wu=L*(P).

Now let us formulate the problem we shall consider below. Let G be a
given subset of 2* of quasi-Frobenius type. We denote by S(n); the set of all
stochastic matrices P in S(n) such that G is the support of P. We want to
determine the set consisting of the L*(P) when P ranges over the set S(n)s;.
We denote this set by 4.

Let us generalize this problem slightly. Let G be any subset of 22 such
that S(n); is not empty. For every P in S(n)s we denote again by L*(P) the
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set of all row vectors (u,, ---, #.)=u such that

(1) u;20, -+, uaz20,
(ll) ul+ M +un:1)
(iii) uP=u.

It is well known that L*(P)+¢. We denote again by 4, the union of all L*(P)
for Pe S(n);. Clearly these are natural extensions of the definition above for
the case where G is of quasi-Frobenius type.

The question of determination of the set 4s is now reduced to the case
where G is of Frobenius type as follows.

Let G be a subset such that S(n);+¢. Let

Q=000 -~ ULyU - UL,

be the partition of 2 into the equivalence classes under the binary relation
= (mod. G) (see § 2). Thus, 2,, ---, £, are the elements of 2/G. Let 2,,---, &,
(g=g(G)) be the totality of the minimal elements of 2/G. Applying a suitable
permutation on 2 if necessary, we may assume that

(7.1) if 1€9,,7€0, p<q, then ¢<J.

Then every P=(p;;) in S(n)ec has the following so-called normal form:

P, 0 0 e 0 0 0 e 0
0 P, 0 e 0 0 0 e 0
P=10 0 0 N 0 0 cee 0
Py—L[,l Pgu.z Pg+l,3 Pg+1,y Puvn 0 e 0
P, P, Py Pr.u Pr.g+1 Prgie o P,

Now it is known (see Gantmacher [4, Chap. 2]) that none of the matrices
P,s1, Pyszy - -+, P. has any eigen value 2 such that {2{=1. Let u be in L*(P)
and let w=(uy, --+, %, + -+, %,) be the block-decomposition of entries of w accord-
ing to the partition 2=0£,U --- U2uU .-+ UL,. Then uP=wu implies u,P,=u,.
Since 1 is not an eigen value of P,, we have #,:=0. Then from %, P 4+ u Py rio=
Uy, we get u,Pr_y=u,_,, and so #,_;=0. Thus u,>=u, = --- =u,.,=0. Hence
uwP=u implies u,Pi=wu,, « -+, U, Py=u,.

Obviously, P, ---, P, are stochastic matrices whose supports are all of
Frobenius type. Hence L*(P;) (i=1, ---, g) consists of a single vector e; and
each u; (i=1, ---, 9) is a sealar multiple of e;:
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ui;:’:kiei (Q:;gl’ ceey g) .

Obviously k,=0, ---, k,=0and ky+ - -+ + k,~1. Now put 2,={j+1, j+2, ---, j+n4}
and e~ (&, -+, 5m,). We denote by & the row vector of degree n defined by
G (g, -+, n) where 7. 0 for ke Qi 7500 &ty Ve =Eizy =00, Bisay= &in;. . Then we
have u=:k.&+ «++ +hky&,. Thus u is in the convex hull J of the set d,u --- ud,,
where we put 4= 0 -+ 0%, %0 --- %0 and G=Gng(i=1,---,¢). Con-
versely if u is in ;_1' then u is of the form u=-kz,+ --- +ke2, with z;€4,,, k:20
(=1, --+, ¢) and \‘ k; 1. Hence there exists Pi€ S(n);, (=1, ---, ¢) such that
20 L), Then 1t is easily seen that there exists P in Sgn),, such that we L*(P).
Thus we get

(7.2) 4 coincides with the convex hull J of the set 4,u --- U4,

where 4; 03¢ -+ X034y <0% --- %0 and Gi=Gn 2§ (i=1, -+, g).

Thus we have reduced our problem to the case where G is a subset of £*
of Frobenius type, which we shall assume from now on.

Limma 9. Let G be a subset of 22 of Frobenius type, and let P& S(n)e,
W (g, ey W) LHP). Then 4,>0, <+, 1, >0.

Proor. Since G is of Frobenius type, it is easy to see that Z(i)s#¢. Hence
wi (P e:;:'i (P, T )= /e:. . v(P, T)>0. By Lemma 6, the vector (u.(P), ---
U PY=u(P) satisfies w(P)P=u(P). Therefore w(P) is a scalar multiple of
w:w(Py=ku. Then wegetk=ufP)+ -+ +u,(P)>0andonehasu, >0 =1, ---, n),
g.e.d.

H

§8. Space T(n).

This section is due to T. Kato.

Denote by 7(n) the set of all non-negative, weakly symmetric matrices
T: (L) of degree n such that X t;;=1. Given a subset G of 2% of Frobenius type
we denote by T(n). the subse'z't"i of T(n) consisting of all T in T(»n) such that

,

Supp (7)) -G. Then for every T=:(t;;) in T(n);, we have

ki n
= E tgjrf: 2: tji>0 for L*l, e, M.
7= i1

Now we define two mappmgs g I(M, —S(n): and 7: T(n),—d, as follows:
let T-=(t:;;) be in T(n); and ¢~ “tu 21 i, then

J=1 3
\8.1) ?\T)L:(tlv "‘7tn),
) o t:; B N
(8.2) o TH)=(pi)y pii= (for (¢, 5)e £%).

ti
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Clearly P==(p:j)=e(T) is then in S{n);. Moreover Y‘ tipsi= }__‘,t” == t,%
Since t,>0, ,t.>0 and ?‘ ti—1, one has (T )=L* (P)EA( Thus a (resp 7)
maps T(n); into S(n); (resp into 4;).

TueoreM 3. (7. Kato) Let G be a subset of 2* of Frobenius type. Then

(1) o: Tn)s—Sn)e and «: T(n)g—ds are both surjective.

(1i) the following diagram 1is commutative:

lLe. L¥co=r.

(iil) 4. s convezx.

Proor. (ii) was shown above already. Let P=(p:;) be in Sin),. Put w=
(%, * -+, Ua)= L¥(P). Then w0, >0, >+, 4, >0 by Lemma 9. Now set &;;=u;p;; for
(i, 7)e 22 Then since 2 p;.~=1, one has

n

L tw 24 UiPij=U; = E uﬂ)w” fJ) tjiy

ie. (t;)=T is weakly symmetric. Moreover Supp(7")=G, and >_, t,r}_J Wy

Hence T e T{n);. Clearly we get o({T)=P. Thus ¢ is surJectlve Then by (11)

¢ is also surjective. (iii) is then an immediate consequence of the surjectivity

and the fact that = is a linear mapping, and that T(n)s is convex. q.e.d.
CoROLLARY. o: T(n)e—S(n): 18 bijective.

§9. Extreme points of 4.

Let G be a subset of 22 of Frobenius type. We denote by (G) the set of
all G-cycles. We also denote by (G)p the real vector space spanned by (G}
freely, i.e. (G)p is the real vector space consisting of all formal linear com-
binations g_, 1e-C with coefficients ¢ in the real number field R, and {G) is
linearly mdependent over R.

Now we define @, to be the subset of (G, as follows:

9(;':'{ S pe-C o pe>0 (for all CedG)) and }; /lci‘»l} .

CELL)

Thus, if {G> consists of k elements, @y i3 an (k—1)-dimensional open simplex.
Next we define 2 linear mapping # from (G} into the space M(n, R) of all
nxXn real matrices as follows:
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9.1) ﬁ(z /1(;'0)1':%: 10 Ey
¢ ;

(see §6 for the definition of the matrix E;). We define moreover a linear

mapping #: M(n, R)-+»R* as follows:
(9.2} L:(X)” (xly Tty :Cn\)

where X :{z;), J',‘Zi, z; (1==1, -+, m).

We denote f(ECJ) ioy ve. The restriction of # on T(n). obviously coincides
with the map =: T(n),—ds given in §8. We note that ve-(&, .-+, £9) is given
as follows:
(9.3) g0 {l/l(C), if CeCle),

0, otherwise.

We claim that, if 0-=3 uo-C is in @, then p(0)€ T(n)e. In fact, put 56 =
3 pe-Fe==T=(t;); then Tois weakly symmetrie and 3 ¢;;=-1 because this is the
case for K and I =1, Now the support of T ifé] G, since one can check
easily the following equalities:
tii:{/zg), if (,7)e@G
0, otherwise,

1 L.
L= oeu%‘.j)g LGy He (t=#7).
Thus, restricting 7 on @ we define a map p: Go— T(n)e.
Next we define a map p*: T(n)o—0; as follows: let Te T(n); and Ced(G>.

Define 2%(T, C) by

) (CY- AT, .
9.4) AT, Cy UCY»AT, C) , where A(T)= 3 UC)-AT,C).
ATy &)

Then clearly

(9.5) T, C)>0 for Te Tn)e, Ce (G
{9.6) 3 aXT, C)=1.
CEL)

o*: T(n)e—6y is defined by
(9.7 p*(T)r:GE T, COH)C.

€G>
We define ¢: @Gg—d,; by
9.8) Y=cop



On stochastic matrices of a given Frobenius type 155

Thus we get the following diagram:

p// \c,’l
(9.9) SN

Tn)e ——  4g

Lemma 10. Let G be a subset of 2° of Frobenius type and Te T(n);. Then
(i) T:CEZ);*(T’ C)'ECr
&

() AT)=udT)=ux(T)= -+« =u,(T).

Proor. Immediate from Theorem 2.

Lemma 11. (i) pop*=id.,

(1) p 1s surjective.

(iii) z=gop*.

Proor. (i) is equivalent to (i) of Lemma 10. (ii)is consequence of (i). Now
as to (iii), ¢gop*=copop*=:z, q.e.d.

Let us now translate these properties of the diagram (9.9) into those of the
following diagram

s
go// \95
(9.10) SN

making use of the bijection ¢: T(n);—8S(n);. Here ¢: Bs—S(n)s is defined by
(9.1 o=gop

and ¢*: S(n);—6y is defined by

9.12) @*==progTt

Then Lemma 11 can be translated as follows:

Lemma 12. (i) g@op*=id.,

(il) ¢ 1s surgjective,

(ili) L*=gop*

Remark. In general, we have p*op£id., ¢*op+id.

Let us interpret (iii) of Lemma 12 as follows:

THeEOREM 4. Let G be a subset of 2% of Frobenius type. Let P be a stochastic
matriz with support G. Then the fixed row vector L*P) of P 1s given by the
Sollowing formula:

L*(P)= 3, 24P, C)-veo
[ =3(- M
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where C ranges over the set (G of all G-cycles; ve is a row vector defined by
(9.3); X P, C) s defined as follows:

HCy-HP, C)

P, C)= AP)

, where A P)= 3 IC) P, Cy,
0E»
Proor. L¥P)={(dog* (P (dop*og )} P). Put T=¢Y(P). Then

LHP) @) g3, 74T, OC )= 3 2T, OYC)
N » ¢

E
CEY

and PCy=(p(CYy=o(E¢):=ve. Hence we get
L¥P)y=3 24T, C) v, .
(4

Now let us show 2*(T, C)=2¥(P,C) for all Ce {(G). In fact, putting P=(p;;), 0" (P)=
T=({;) and t;=3%;;=3t;, we have t;p;;=t;. Then it is easy to see that
ti-- ta-AP,C)=KT,C). Hencet, - t, AP)=2T)and we get :*(P,C)~ 1*T,C), q.e.d.

Tueorem 5. Let G be a subset of 9% of Frobenius type. Then the set 4.
of all row wectors fixed by some stochastic matriz in S(n), consists of all row
vectors of the form 3 1te-ve, o >0 (for every CedG)), > po=1, where v is the
row vector associated with a G-cycle C by (9.3). e

CoroLLaRY. Let Ly be the conver hull of the set Ej—{ve; Ce{G>. Then
(1) L., coincides with the closure 4. of 4, in R».

(ii) E&={ve; CelG)} contains the set E; of all extreme points of de.

(iiiy Let A,;;.:(Ce%» Eo-ves e e R (for every CedlG)), )(;_‘;;‘-‘c::l} be the smallest
affine subspace of R containing K& -{vc; CelGd). Then dg is the interior of
the convex hull Ly of ES lve; Ce(Gd) in the space A,

Proor. The theorem is a re-statement of the fact that ¢: G,—d,; ¢( pe-Ch=
3 vte+ve is surjective. However this is obvious since ¢:=vrop and o: O,—Tn),;
and ¢ : T'(n),—d; are both surjective. The corollary is an immediate consequence
of the theorem and the properties of extreme points (ef. Bourbaki [2]), q.e.d.

Thus, for a subset G of £* of Frobenius type, d. is an open cell of the
afine space A, spanned by J,. Now by the reduction of the general ease in
§7, we have the following:

Tueorem 6. Let G be a subset of £2° such that Sn),#¢. Let 0,---,0,
(g==g(G)) be the minimal elements of 2/G. Put G;=GnQi(i=1,---,¢). Then
de consists of all row vectors of the from

Lo«

i
< &CvCr
11 CELE P
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where & are real numbers such that

20 (for i=1,---,9,Ce(G),

S5 g1,
i=l CEWGD

and that, for a fixed i, & (Ce{(G>) are all zero or all positive. vc 1s a row

vector defined by (9.3). In particular, 4o is conmvex and J; has only finitely

many extreme points.

Remark 1. For a subset G of Q% of Frobenius type, a statement for T(n)s
analogous to Theorem 5 is valid by Lemma 10 and by the surjectivity of p.
For example, F:G*Z{Ec;C€<G>}) contains the set of all extreme points E; of
the closure T(n)s of T(n)s in M(n, R), and Esc Ef < T(n)..

RemaRK 2. In the corollary to Theorem 5, Ef + E; in general. For example,
if G=02% and C={1,2, ---, 0>, ve€ E; —E;.

§10. Some applications,

Lemma 13. Let G,G' be subsets of Q° such that GoG'. Then () If G isof
quasi-Frobemius type, so 1s G'. (i1) If G is of Frobenius type, so is G'.

Proor. Let 7,7€£. Then 1Gj implies iG'j. Hence i=j(mod. ) implies
i=7 (mod. G'). Thus there is induced a map =: 2/G—-2/G'. = is obviously
order-preserving and surjective. Thus our assertion (ii) is obvious. Assume
now G is of quasi-Frobenius type. Let p’ and g’ be minimal elements of 2/G'.
Then there are elements p,q in £2/G such that n(p)=9p’, n(q)=¢’. Since L2/G
has the unique minimal element ¥, we have p=r, g=r. Then »'==(r), ¢’ =n(r).
Hence by the minimality of p’ and ¢, we have p'==n(r)=¢’. Thus g(G'):-1,
i.e. G’ is of quasi-Frobenius type, q.e.d.

Lemma 14, Let P, P, Py, --- be: elements of S(n) such that lim Pp,==P. If
the support of P 18 of quasi-Froben?us type, then the supports o}q;’m i8 also of
quasi-Frobenius type for sufficiently large m and we have

lim L*(Pp)= L*(P)

Proor. Let G, Gy, G;, --- be the support of P, P, F;, --- respectively. Then
we have obviously G..>G for sufficiently large m. Hence G, is a quasi-Frobenius
type by Lemma 13. Now put L*(P.)=um, L¥(P)=u(m=1,2, --.). Since u, is
contained in a compact set, in order to show lim#,=wu, it is enough to show

m-rco

v=w% for every convergent subsequence #m,, Um, -+ —v. Thus we may assume
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that lim #.:=v exists. Then UpPn=u,(m=1,2, ---) implies vP=v. Hence v is
a scairiai: multiple of u. But since the sum of the components of v is clearly 1,
we have v=u, q.e.d.

Remarg. The map P->L(P)= lim ;}L*(P-{— «eo 4+ Pm from S(n) into itself is

m—ren

not continuous if nz2. For example let

e <P =

o 3

Then “I’YDI Pity—@Q. But

e (213 113 1 /1 0
L{P(t))= (2/3 1/3> for 0<t<2, L(Q)..._<0 1),

Lemma 15. Let T be o pseudo-tree over a 2*-cycle C. Then S(n)r consists
of a single matriz Q. Moreover, L*(Q)=ve¢.

Proor. Since any rooted tree has cardinality n—1, any pseudo-tree has
cardinality ». Thus every row of 7' (in the matrix form) contains exactly one
%, Le. for any 1€ R, there is exactly one j€ 2 such that (4, j)e T. Hence every
matrix Q in S(n), is of the following form: every row of @ has 1 as its entry
at exactly one place and all other entries are 0. Thus Q& S(n)r is uniquely
determined.

Now by a suitable permutation of £, we may assume that C={1,2,---, 7).
Then @ has the following form:

(Q: 0
(g q)

where Q, is a stochastic matrix of degree »=l(C), and all the eigen values of
Q. are smaller than 1 in the absolute value. Moreover, @, is a cyclic permuta-
tion matrix of » letters. Therefore we get
L (M@ )

fe. LXQ)=(L*Q, 0, -+, 0)=(r, 1/r, -+, 1/r, 0, - -+, 0)==v¢, q.e.d.

Tueorem 7. Let G be a subset of Frobenius type in 2%, Define n functions
i on S(n): by L*(P)=a=(a,(p), -+, (D)), P S(n)e. Then

(1) #{PY=@{P) for all PeS(n): if and only if C(1s2>C(F)s

(i1) if CeRC(J)s, then a({P)>a;(P) for every Pe Sn)

(iit) A P)Y=1;(P) for all Pe S8(n)s if and only if Cli)e=C(J)s.



On stochastic matrices of a given Frobenius type 159

Proor. Suppose a{P)za;(P) for all PeS(n),. Let C be any cycle in C(§)q.
Since.G is of Frobenius type, there exists a pseudo-tree 7' in T\C).. Clearly
T is of quasi-Frobenius type. Since Tc G, S(n); is contained in the closure of
S(n);. Hence, by Lemma 14, we have #{Q)=i; Q) for every Qe S(n);. Now,
by Lemma 15, CeC(j). implies i{@)>0. Therefore we have 1(Q)>0. But
this gives us Ce C{i)s by Lemma 15. Thus C(j),; < C{2)s.

Now if C(j)¢=C(i)s, then we have #(P)=it,(P) on S(n); by Theorem 4.
Also if C(1);2C{j):;, then we have i (P)>i;(P) by Theorem 4. (Note that
2¥(P,C)>0 for every G-cycle C). These considerations complete the proof of
Theorem 7.

ExampLe. Let Gc 22 (n =6) be given as frllows:

** 0000

4 5 00 * 000

' i.e. G= 00000
*0 00 * 0

0 0 0 0 0 *

2 3 6 00 * 0 00

Then {G> consists of 3 G-cycles:

Ci=(1>, Co={1,2,3,45, C,—{3,4,5, 6.
Then

C(DG:{CMC‘:}: C<2)G-“~‘:{Cz}y C(3>(;1‘“{sz Cs},

C(4>6‘:{CZ: Cs}, C<5><;:: {Cs}, C(G)(;:’i {Cs}.

Thus we have by Theorem 7, that
t(P)=-iid P), #i,(Py—=ite( P) for all Pe S(6),.
Also we have

L Py> i P), #:(P)>i,{P) for all Pe S(6),.

§11, A criterion for the injectivity of the map L*,

Let & be a subset of 22 of Frobenius type. We denote by |G| the number
of elements in the set G. We denote by ¢(G) the number of G-cyeles and by
d(G) the dimension of the affine subspace A, of R* spanned by 4,. Our pur-
pose now is to derive several relations between these numbers, |G|, ¢(G), d(G).

To begin with, put {G)={C,, ---, Ci} where k=¢(G). Put

(111) fyp:itq)c«p:ﬁ<fph sl Sp’l) (p:;l, s, k).
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Then by definition we have

£ &n 1
(11.2) d(G)+1=rank of | % T S 1
51‘1 e Skn 1

Since 3£,;=1, the last column of the matrix in (11.2) is a linear conbinations

of the other columns. Therefore

511 ctt Eln
N 521 re 5211.

(11.3) d(G)+1==rank of
Skl e skn

Thus we got

LemMa 16, d(G)+1 is the dimension of the linear subspace spanned by
UC) ve (CelG).

We note that I(C)-ve==(s, -+, &,) i8 given as follows:

(11.4) ei:{l’ if CeC),
0, otherwise.

TursoreMm 8. Let G be a subset of 2° of Frobenius type. Then
(i) G~1z|G|—nzd(G),

(1) L*: S(n).—4ds 18 injective if and only if |G|=n+d(G).

Proor. (i) Obviously we have dim 8.=¢(G)—1 and dim S(n)s=|G|—n. Also
one has dim 4,—d(G) by definition. Since o: T(n)s—S(n)s is a homeomorphism,
we have dim T(n),—dim Sin);=| G |—n.

Since g: Qu->Tn)y, =2 T(n)e—>d;, are surjective affine-linear maps, we get

dim @, =dim T(n)s=dim 4, ,

i.e. (i) is proved. (i) L*: S(n),—ds is injective if and only if =: T(n);—4d, is
injective, because of the bijection ¢: T(n);—S(n)s and L*os = z. However, since
+ is an affine-linear map, ¢ is injective if and only if dim T(n)e==dim 4¢, i.e. (ii)
is proved.
CoroLLARY. Let G be a subset of 2% of Frobenius type such that
L*: S(n)e—4ds

48 injective. Then |G|52n—-1,
Proor. |Gl=n+diGsn+n—1) since d{G)=n—1, q.e.d.
Finally, as to the actual computation for d(G), we note the following
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Lemma 17. Let G be a subset of Q% of Frobenius type and let f(G) be the
dimension of the real vector space F, consisting of all nxn real weakly sym-
metric matrices Q={q.;) such that

g2 g0 (=1, n)
2 J
q:;=0 (for (¢, NeG).
Then d(G)=|G|—n—f(G).

Proor. Let v=(v, ---,v,) be any point in 4, and let Y, be the full inverse
image of v under the mapc: T(n)s—d;. Since t is a surjective, affine-linear
map, Y, is a convex subset of dimension dim T(n);—dim dy=-| G |—n—d(G). Fix
an element T,==(ti,) in Y.. Then for any T=({;,)eY,, one has T—T,e F,, i.e.
Y. is contained in the set To,+F,. Hence dimY,<dimF,. Now let I/ be a
sufficiently small neighborhood of 0 in ;. Then To+ UcY,. Thus dim U=dim Y.,
i.e. dim Fy<£dimY,. Therefore we have

fiG)=dim Y,=dim T(n)y—dim 4¢=| G |—n—d(G) , q.e.d.
Exampie. Let n-+8 and G be given by the following graph;

1 G
Pt

2 2 7 5
3 4

Then, f{G) is easily seen to be 5. Hence one gets d(G)=|G|—n—f(G)==20—8
—5-:7. But here ¢(G) =23 and the direct computation for d(G) is rather awkward.
(d(G) is the rank of a 23x8 matrix).

Universivy of California, Berkeley
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