On Finite solvable groups with t(G)=4 or 5

By Minoru Kanazawa and Hiroyoshi Yamaki

Introduction:

In [3] Iwahori defined the number t(G) for finite group G, determined all groups with t(G)=2 and proposed an interesting problem of determining the structure of all finite groups with a given t(G). This problem was solved for t(G)=3 by Iwahori and Kondo [4]. In this paper, we shall solve this problem for solvable groups for the case t(G)=4 and 5. First we shall recall the definitions given by Iwahori [3].

Let G be a finite group acting on a set M, we call such a set M a G-space. For any element σ in G, we denote by M_{σ} the subset of M consisting of the fixed points by σ . For any non empty subset S of G, we denote by M_S the intersection of the sets M_{σ} for all σ in S. The cardinality of a set A will be denoted by |A|. Now let k be a positive integer. A G-space M is called of type k if the following two conditions are satisfied.

- (1) $|M_{\sigma}| = k$ for all σ in G^{\sharp} , G^{\sharp} being the set consisting of all elements in G different from the identity.
- (2) $|M_{ij}| = 0$.

If G admits a G-space M of type k, then we say that G is of type k on M. The number t(G) is the minimum of the types of G-spaces. (If there is no G-space of a positive type, then we put t(G)=0. It is easily proved that there is no group with t(G)=1.)

In dealing with the problem of determining G with a given t(G), we may and shall assume that the G-spaces M in consideration are "pure G-spaces" i.e. such that any element in M is fixed by at least one element σ in G^{\bullet} .

In §1 we shall determine the structures of all finite solvable groups G with t(G)=4 and in §2 those of all finite solvable groups G with t(G)=5.

We shall give here several notations used throughout this paper. p will always denote a prime. We denote by Sp a Sylow p-group of G. If N is a subgroup of G, we denote by $(Sp)_N$ a Sylow p-subgroup of N. For any subset S of G the normalizer of S in G is denoted by $N_G(S)$, the centralizer of S in G by $C_G(S)$. For any σ in G and any subgroup N of G, $\sigma^{-1}N\sigma$ is denoted by N^σ , we denote by \mathfrak{S}_n the symmetric group on n letters. and by \mathfrak{A}_n the alternating group on n letters.

We shall have to use the following lemmas several times in the course of this paper.

Lemma 1. Let G be a finite group admitting a G-space M of type k>0. If there is a normal subgroup N of index p, and M_N consists of k points, then any element σ of G-N is of order p, and the order of $C_{\sigma}(\sigma)$ is less than kp.

PROOF. This is clear from [4].

LEMMA 2. Let G be a finite group, M a G-space of type k>0, and A a G-orbit in M. Let φ be the homomorphism from G to the symmetric group $\mathfrak{S}_{(A)}$, and N the kernel of φ , i.e. normal subgroup of G, consisting of all elements which fix all points of A. If an element $\bar{\sigma}=\sigma N$ ($\sigma\notin N$) in the quotient group $\bar{G}=G/N$ is of order m in G, then any element $\sigma\tau$ of σN is also of order m.

PROOF. If σ is of order m, then for any $\sigma \tau$ in σN , $(\sigma \tau)^m$ is in N. If $(\sigma \tau)^m \neq 1$, $M_{\sigma \tau} = M_{(\sigma \tau)^m} = A$, therefore $\sigma \tau$ is contained in N, which is impossible. Hence $\sigma \tau$ is of order m.

§ 1. Determination of finite solvable groups with t(G)=4

We shall first prove:

LEMMA 3. Let G be a finite group acting on M and M a G-space of type 4.

- a) If there is a G-orbit A consisting of 4 points in M, then G is one of the following groups.
 - 1) An elementary abelian group of order 8 or of order 16.
 - 2) A Frobenius group with the kernel N which is abelian and of order $m \equiv 1 \pmod{4}$, such that $G = N \cdot H$ (semi-direct product), where $H = \langle 1, \sigma, \sigma^2, \sigma^3 \rangle$ is cyclic of order 4 and the order of σ^2 and σ^{-1} for any τ in N is 4, while the order of $\sigma^2\tau$ is 2. (In this case M has no other G-orbit consisting of 4 points than A.)
- b) If there are three G-orbits consisting of 2 points in M respectively, G is an elementary abelian group of order 8.

PROOF. a) The action of G on A defines a homomorphism φ from G to \mathfrak{S}_4 . Let K be the kernel of φ . Then $(G\colon K)$ will be 4, 8, 12 or 24 by the transitivity of G on A. In any case the quotient group $\overline{G}=G/K$ has an element of order 2, so by lemma 2, K is an abelian group. In particular if there is an elementary abelian subgroup of order 4 in G, then K is an elementary abelian 2-group. Therefore if $(G\colon K)=8$ or 24, then there is an element of order 4 in G-K, which contradicts to the definition of K. (Cf. [3], Lemma 1) Also if \overline{G} is of order 12, namely \overline{G} is isomorphic to the alternating group of 4 letters, then we can easily verify that $t(\overline{G})=3$. Hence \overline{G} has to be a cyclic group or

an elementary abelian group of order 4.

Case 1. \bar{G} is a cyclic group of order 4.

Let $\bar{\sigma}$ be a generator of \bar{G} , so by Lemma 1 the order of $\sigma \tau$ and $\sigma^{-1}\tau$ is 4, the order of $\sigma^2\tau$ is 2 for all τ in K. Hence σ^2 transforms any element τ of K into τ^{-1} . As K is the kernel of φ , σ induces a fix-point-free automorphism of K, hence G is a Frobenius group and the order m of K is congruent to 1 modulo 4.

Case 2. \tilde{G} is an elementary abelian group of order 4.

K is an elementary abelian 2-group, so is G by Lemma 1. Then G is an elementary abelian group of order 8 or of order 16. In particular when there is a G-orbit B different from A in M. We denote by K' the kernel of a homomorphism G to \mathfrak{S}_4 defined by the action of G on B. Then K and K' have the trivial intersection, and G is not an elementary abelian group of order 4. Hence Case 1 cannot occur and G is an elementary abelian group of order 8 or of order 16.

b) By the assumption G has three different abelian normal subgroups N_i (i=1,2,3) of index 2. Any element of $G-N_i$ (i=1,2,3) is of order 2 by Lemma 2, and the intersection of N_i , N_2 and N_3 is the identity. So G is an elementary abelian 2-group. Therefore we can conclude that G is an elementary abelian group of order 8. Hence this lemma is proved.

Remark. Conversely these groups in Lemma 3 admit G-spaces of type 4 clearly.

As for the case G is a finite solvable group of type 4 on a G-space M, we shall prove later, by Lemmas 5 and 6, there is a 4-points-G-orbit in M or otherwise G has some special properties. In the next Lemma 4 we shall show that groups with these "special properties" are in fact of type 4.

LEMMA 4. The following groups G are of type 4.

- (1) G has a normal subgroup N of index 2 such that any element of G-N is of order 2 (hence N is abelian), and $(S_2)_N$ is a direct product of two cyclic groups. (We call this group an A_1 -group if 4 < |N|)
- (2) Two Frobenius groups of order 56 or of order 80, with an elementary abelian normal Sylow 2-subgroups as Frobenius kernel. (We call these groups an A_2 -group, an A_3 -group respectively.)

Proof. It is sufficient to construct G-spaces of type 4.

(1) N is abelian, so all elements of order 2 in N form a subgroup of order 4. So if we put $N^2 = \{\tau^2 : \tau \in N\}$, then $(N: N^2) = 4$. Fix any element σ of G - N, and from four left cosets of N by N^2 , we choose τ_1, τ_2, τ_3 and 1 respectively.

And we put

$$\begin{split} &M_1 = \{\tau'\sigma\rangle \colon N\ni\tau\} \\ &M_2 = \{\tau\langle\sigma\tau_1\rangle \colon N\ni\tau\} \\ &M_3 = \{\tau\langle\sigma\tau_2\rangle \colon N\ni\tau\} \\ &M_4 = \{\tau\langle\sigma\tau_3\rangle \colon N\ni\tau\} \\ &M_5 = M_6 = \{N,\sigma N\} \end{split}$$

Then $M = \bigcup_{i=1}^{n} M_i$ is a G-space of type 4.

(2) If G is an A_2 -group, then

 $G = \{\sigma^1 = 1, F(G) = \langle \tau \rangle \times \langle \rho \rangle \times \langle \varepsilon \rangle : \sigma \text{ transforms cyclically } \tau, \rho, \varepsilon, \tau \rho, \rho \varepsilon, \tau \rho \varepsilon, \tau \varepsilon \}$.

So if we put

 M_1 =the set of the left cosets of G by $\langle \tau \rangle$ $M_2 = M_3 = M_4 = M_5 =$ the set of the left cosets of G by $\langle \sigma \rangle$.

Then $M = \bigcup_{i=1}^{5} M_i$ is a G-space of type 4. Also if G is an A_3 -group, we can easily construct a G-space M of type 4 as above.

Lemma 5. Let G be a finite solvable group and M a G-space of type 4. Then the following holds:

- (1) If G has an A_1 -group as a maximal normal subgroup, then G itself is an A_1 -group or there is a G-orbit consisting of 4 points in M.
- (2) If G has an A_2 -group or an an A_3 -group as a maximal normal subgroup, then G has another maximal normal subgroup which is neither an A_2 -group nor an A_3 -group.

PROOF. Let N be a maximal normal subgrup of G, then G: N is a prime p. In our case $|M_N|=0$, 2 or 4. If $|M_N|=4$, then by Lemma 1 p=2, and any element σ of G-N is of order 2 and $|C_G(\sigma)|\leq 8$. If we prove $|C_G(\sigma)|=8$, then $(S_2)_N$ is a direct product of two cyclic group, hence G is an A_1 -group. If $|C_G(\sigma)|\leq 4$, $(S_2)_N$ is a cyclic group, so G is generalized dihedral group, which is impossible since generalized dihedral groups are of type 2 (cf. [3]). Hence $|C_G(\sigma)|=8$. If $|M_N|=2$, then also p=2 and N is of type 2 on $M-M_N$, so G is an elementary abelian group of order 8. Therefore we may assume $|M_N|=0$, namely N is of type 4 on M.

(1) Since N is an A_i -group, N has a normal abelian subgroup H of index

2 and of order more than 4. Then $|M_H|=0$, 2 or 4. If $|M_H|=0$, then H is an elementary abelian group of order 8 or of order 16, which contradicts to the definition of N. Also if $|M_H|=2$, N is an elementary abelian group of order 8, which contradicts to the fact that N is an A_1 -group. Hence $|M_H|=4$. As (N:H)=2 and N is of type 4 on M, M_H is decomposed into two N-orbits M_1 , M_2 consisting of 2 points respectively. By Lemma 3 b), M_1 and M_2 are all of N-orbits consisting of two points, and there is not a G-orbit consisting of two points in M (because if there is a 2-points-G-orbit in M, then G has a normal subgroup N_1 such that $M_{N_1}\neq \phi$), therefore p=2 and $M_1\cup M_2=M_H$ is a G-orbit consisting of four points.

(2) When N is an A_2 -group or an A_3 -group, $(S_2)_N$ is normal in G. In our case $M_{(S_2)_N}$ is empty.

Case 1. N is an A_2 -group.

Since the order of the automorphism group of $(S_2)_N$ is $2^3 \cdot 3 \cdot 7$, if $p \neq 2, 3$ or 7, an element of order p in G induces an identical automorphism of $(S_2)_N$. Hence $M_{(S_2)_N} \neq \phi$, which is impossible. Therefore we examine only p=2, 3 and 7.

p=2: $N_{\sigma}(S_7)$ is of order 14, so there are σ of order 7 and τ of order 2 in $N_{\sigma}(S_7)$. τ and $(S_2)_N$ generate S_2 . Put Z the center of S_2 , and $Z^{\sigma} \cap Z=1$ ($i=1,\dots,6$). Hence we get that the order of Z is two, which is impossible.

p=3: The order of $N_G(S_7)$ is 21. Let σ be a generator of S_7 and α be an element of M_σ . Then $G_\alpha \cap N = S_7$, and S_7 and S_7 have the trivial intersection for any τ of S_7^{\bullet} . Therefore there are four N-orbits consisting of 8 points, at least one of which is also a G-orbit if p=3. Hence there is an isotropy subgroup of order 21, so we may assume that $N_G(S_7)$ is the isotropy subgroup of α . On the other hand, the automorphism of S_2 induced by ρ of order 3 in $N_G(S_7)$ has at least one fixed point τ in S_2^{\bullet} , that is, $M_\rho = M_\tau$. Hence τ is contained in $N_G(S_7)$, which contradicts to $N_G(S_7) = 21$.

p=7: S_7 is of order 7^2 , so S_7 is abelian. S_7 is not a cyclic group, for M_{S_2} is empty. Hence S_7 is an elementary abelian group of order 7^2 . Therefore in 48 elements of order 7 in S_7 there is at least one element σ , and σ induces an automorphism of S_2 with a fixed point. $\langle \sigma \rangle S_2$ is not an A_2 -group and maximal normal in G.

Case 2. N is an A_3 -group.

We can prove the lemma as in Case 1.

If G is a finite group of type k on a G-space M, $M = \bigcup_{i=1}^{r} M_i$ is the decomposition of M into G-orbits and for x_i in M_i $(i=1, \dots, r)$ G_i is an isotropy subgroup of x_i , then the following equation holds. (cf. [3])

$$\sum_{i=1}^{r} \frac{1}{|G_i|} = (r-k) + \frac{k}{|G|}$$
 , $k < r < 2k$.

Hence if G is an elementary abelian group of order 8 or of order 16, we obtain for the possible orders of G_1, \dots, G_r , G the following table:

$$G_1, \quad \cdot \quad \cdot \quad G_r \colon G$$
 $r = 5 \colon 2, \quad 4, \quad 4, \quad 4, \quad 4 \quad \quad \vdots \quad 8 \quad \quad (\alpha)$
 $r = 6 \colon 2, \quad 2, \quad 2, \quad 2, \quad 4, \quad 4 \quad \quad \vdots \quad 8 \quad \quad (\beta)$
 $r = 7 \colon 2, \quad 2, \quad 2, \quad 2, \quad 2, \quad 2 \colon \quad 8 \quad \quad (\gamma)$
 $r = 5 \colon 4, \quad 4, \quad 4, \quad 4, \quad 4 \quad \quad \vdots \quad 16$

Conversely we can easily construct G-spaces M for the groups of the above table. We call G acting on M of type (α) , of type (β) and of type (γ) respectively when G of order 8 has isotropy subgroups on the above table.

LEMMA 6. Let G be a finite solvable group and M a G-space of type 4. If G is neither an A_2 -group nor an A_3 -group and if any maximal normal subgroup of G is not an A_1 -group, then there is a G-orbit consisting of four points in M.

Proof. We shall prove this lemma by induction on the order n of G. If t(G)=4, $8 \le n$. The conclusion of the lemma is already proved for n=8. When 8 < n, let N be a maximal normal subgroup of G, then (G:N)=p. By the assumption and on the way of proving Lemma 5, N is of type 4 on M, and therefore by the assumption of induction there is an N-orbit A consisting of 4 points in M. If N is not an elementary abelian group of order 8 or of order 16, then by Lemma 3 a) A is the unique N-orbit consisting of 4 points, hence A is also a G-orbit in M. Therefore we have to consider the cases where N is an elementary abelian group of order 8 or of order 16.

Case 1. N is an elementary abelian group of order 8.

We have already known that N operates on M of type (α) , (β) or (γ) . If N operates on M of type (α) , there is only one 4-points-N-orbit in M, and therefore this N-orbit is also a G-orbit. N operates on M of type (β) . If $p \neq 2$, then at least one of four N-orbits consisting of 4 points is also a G-orbit. If p=2, M_N is empty, so two N-orbits consisting of 2 points from a G-orbit.(*)

Case 2. N is an elementary abelian group or order 16.

There are five N-orbits consisting of four points in M. Hence as in Case 1 of type (r), we can choose a maximal normal subgroup different from N. Now we can determine the structure of a finite solvable group with t(G)=4.

THEOREM 1. G is a finite solvable group with t(G)=4, if and only if G is one of the following groups.

- (1) A_1 -group, A_2 -group or A_3 -group.
- (2) An elementary abelian group of order 8 or of order 16.
- (3) A Frobenius group with the kernel N which is abelian and of order $m \equiv 1 \pmod{4}$, such that $G = N \cdot H$ (semi-direct product), where $H = \langle 1, \sigma, \sigma^2, \sigma^3 \rangle$ is cyclic of order 4 and the order of σ^2 and $\sigma^3\tau$ for any τ in N is 4, while the order of $\sigma^2\tau$ is 2.

PROOF. It is clear by lemmas in this section.

§ 2. On the structure of finite solvable groups with t(G)=5

We can deal with the case t(G)=5 by a method similar to that used in [4] for the case t(G)=3. We may assume that G is a finite solvable group with non-trivial partition. The results and method in [3], [4] are used in this section, but we shall repeat the necessary definitions so as to make our main theorem understandable independently from [3], [4]. We shall denote by F(G), the Fitting subgroup of G. G is a (\mathfrak{P}_P) -group if the following conditions are satisfied;

- (1) There is a normal subgroup N of index p in G such that $N \neq \{1\}$
- (2) For any a in G-N, $a^p=1$
- (3) For any a in G-N,

$$|C_G(a)|=p$$
, if $|N|\not\equiv 0$ (mod. p)
 p^2 , if $|N|\equiv 0$ (mod. p).

Then a (\mathfrak{P}_P) -group which is not a Frobenius group will be called $(\mathfrak{P}_P)'$ -group. We shall first prove:

Lemma 7. Let G be a finite solvable group and M a G-space of type p which is an add prime. Then G is a Frobenius group or a $(\mathfrak{P}_P)'$ -group.

PROOF. It is sufficient to prove that G is a $(\mathfrak{F}_P)'$ -group when it is not a Frobenius group. By Baer [1], [2] and Kegel [7], G has a Normal subgroup K such that (G:K)=q for some prime, $|K|\equiv 0\pmod q$ and $\sigma^q=1$ for any $\sigma\in G-K$. By Kegel [6] K is nilpotent. Let $M=\bigcup_{i=1}^{p}M_i$ be the decomposition of M into G-orbits. If K is not a q-group then M_K is a G-orbit consisting of p-points, and therefore p=q. We may assume that $M_K=M_1$. Let $x_i\in M_i$ and denote by G_i the isotropy groups of x_i . Then for $i\geq 2$, $G_i\cap K=(1)$, namely G_i is of order p. By the property of p-groups, we have $|C_G(\sigma)|\geq p^2$, and by Lemma $1|C_G(\sigma)|\leq p^2$. Hence G is a $(\mathfrak{F}_P)'$ -groop. If K is a q-group then G is a q-group and therefore p=q. Hence there is a non-identity central element τ and M_τ is a G-orbit consisting of p-points. For $x\in M_\tau$, $(G:G_x)=p$ and so $G\triangleright G_x$. The result follows immediately.

Remark. Using this lemma we can conclude that a group G of order 24 does not admit any G-space of type 5.

Lemma 8. Let G be a generalized dihedral group of order $2p^n$ and p an odd prime. Then G does not admit any G-space of type p. Particularly a group G of order 50 does not admit any G-space of type 5.

Proof. If G does not have an elementary abelian normal subgroup of order p^n , then by Iwahori and Kondo [4] G admits a G-space of type 2k where k is a positive integer. Hence we may assume that G has an elementary abelian normal subgroup of order p^n . Therefore there exist $(1+p+\cdots+p^{n-1})$ -different normal subgroups of order p, say $\langle \sigma_i \rangle$ $i=1,2,\cdots,1+p+\cdots+p^{n-1}$, and all involutions are conjugate in G. If M is a G-space of type p, M_{σ_i} is a G-orbit consisting of p-points and for $x \in M_{\sigma_i}$ G_x is of order $2p^{n-1}$. Then for any involution p we have $|M_p \cap M_{\sigma_i}| \ge 1$, $i=1,\cdots,1+p+\cdots+p^{n-1}$ and so $|M_p| \ge p+1$, which is impossible. If G is of order 50 and t(G) > 0 then it is easily verified that G is a generalized dihedral group.

REMARK. If p=2, the conclusion of Lemma 7 does not hold. For example let G be a symmetric group on 4 letters. Then G is a solvable group and t(G)=2. But G is neither a Frobenius group nor a $(\mathfrak{P}_P)'$ -group. Also if p=2, the conclusion of Lemma 8 does not hold. Since G is a dihedral group of order 2^{n+1} , G admits a G-space of type 2. C.f. Iwahori [3].

Lemma 9. Let G be a finite solvable group and M a G-space of type 5. If there exist two G-orbits A, B in M such that |A| = |B| = 5, $A \cap B = \phi$, then G is isomorphic to an elementary abelian group of order 25.

PROOF. Let $M=\bigcup_{i=1}^r M_i$ be the decomposition of M into G-orbits such that $M_r=A$, $M_{r-1}=B$. The action of G on A defines a homomorphism $\varphi\colon G\to \mathfrak{S}_5$. Let $b\in B$. Since $G_b\cap\ker\varphi=(1)$ and $(G\colon G_b)=5$, $\ker\varphi$ is of order 1 or 5. Since G is solvable and G acts transitively on A, we may assume that $|G|\leq 100$ and $|G|\equiv 0$ (mod. 5). When G is a $(\mathfrak{P}_5)'$ -group, it is easily seen that G is isomorphic to an elementary abelian group of order 25. Thus by Lemmas 7 and 8 we may assume that G is a Frobenius group of order 100. Since |F(G)|=25, G has a normal subgroup K of order 50. Then M_K is G-stable and $|M_K|=5$, 3, 2 or 0. Clearly $|M_K|\neq 5$, 3. If $|M_K|=0$, K is of type 5 on M which is impossible by Lemma 8. If $|M_K|=2$, K is of type 3 on $M-M_K$. Then by Iwahori and Kondo [4] G is a (\mathfrak{P}_3) -group, which is also impossible.

LEMMA 10. Let G be a finite solvable group and M a G-space of type 5. If $|G| \ge 25$, then there is a G-orbit in M consisting of 5-points.

Proof. We shall prove our assertion by the induction on |G|. If |G|=25

then $G \cong \mathbb{Z}_5 \times \mathbb{Z}_5$ and it is easy to verify that the pure part P of M consists of 6 G-orbits M_i ($i=1,2,\cdots,6$) with $|M_i|=5$. Now let n=|G|>25 and assume that our assertion is valid for finite solvable groups of order < n. Let H be a maximal normal subgroup of G and (G:H)=p. Then we have $|M_H|=5,3,2,0$ and M_H is G-stable.

Case 1. $|M_H| = 0$

H is of type 5 on M. If $|H| \le 24$, H is isomorphic to \mathfrak{A}_{\bullet} or a generalized dihedral group D of order 18, and G is of order 12p or 18p respectively. By Lemma 7 we may assume that G is a Frobenius group. Since H is not nilpotent in both cases, we have $H \supseteq F(G)$. Then we may assume that $H \cong D$ and $F(G) \cong \mathbb{Z}_3 \times \mathbb{Z}_3$. Since for any σ in $F(G)^{\sharp}$, $C_G(\sigma) \subseteq F(G)$, we have p=2. Hence by Iwahori [3] G admits a G-space of type 4, namely $t(G) \ne 5$. Therefore we may assume that $|H| \ge 25$ and by our inductive-assumption there is an H-orbit A in M consisting of 5 points. If $H \not\cong \mathbb{Z}_5 \times \mathbb{Z}_5$, such a set A is unique by Lemma 9, then A is a G-orbit and |A| = 5. If $H \cong \mathbb{Z}_5 \times \mathbb{Z}_5$, we may assume that p > 5 and G is a Frobenius group by Lemmas 7 and 8. Since |A ut $H| = 2^5 \cdot 3 \cdot 5$, G has a non-trivial central element and this is impossible.

Case 2. $|M_H| = 2$.

H is abelian and is of type 3 on $M-M_H$. Then $H\cong \mathbb{Z}_3\times\mathbb{Z}_3$. This contradicts to our assumption.

Case 3. $|M_{II}| = 3$.

H is of type 2 on $M-M_H$. If $H\cong \mathfrak{S}_4$, \mathfrak{A}_4 , or \mathfrak{A}_5 , then sylow 3-subgroup of G is of order 9 and so G is a (\mathfrak{P}_3) -group. Thus we may assume that H is isomorphic to a generalized dihedral group and $|H|\equiv 0\pmod{3^2}$. H has an abelian normal subgroup N such that (H:N)=2 and $\tau^2=1$ for any τ in H-N. By our assumption $|M_N|=5$. Since for x in $M-M_H$, $G_x\supseteq N$ we have $(G:G_x)=3$ or 6. If $(G:G_x)=3$, $G_x\supseteq H$ or $G_x\cap H=N$, which is impossible. If $(G:G_x)=6$, the action of G on G/G_x defines homomorphism φ ; $G\to \mathfrak{S}_6$ and clearly $\ker \varphi=1$. But in this case $|G|\equiv 0\pmod{2\cdot3^3}$ and $|\mathfrak{S}_6|=2^4\cdot3^2\cdot5$. Then we get contradiction.

Case 4. $|M_H| = 5$

 M_{II} is a G-orbit consisting of 5-points.

Now we can prove the following theorem.

THEOREM 2. Let G be a finite solvable group. Then t(G)=5 if and only if G is a (\mathfrak{P}_5) -group and G is not a Frobenius group of order 80 whose F(G) is an elementary abelian group.

Proof. Let M be a G-space of type 5 and M_0 a G-orbit consisting of 5-

points. The action of G on M_0 defines a homomorphism $\varphi: G \to \mathfrak{S}_5$ and $G/\ker \varphi$ is isomorphic to a solvable subgroup of \mathfrak{S}_5 . Since G acts transitively on M we have $(G: \ker \varphi) = 5$, 10 or 20. Put $\ker \varphi = H_0$, $M_0 = \{x, y, z, u, v\}$ and $G_0 = G_v$.

Case 1.
$$(G: H_0) = 5$$

We have $\sigma^s = 1$ for σ in $G - H_0$ and $G_a \cap H_0 = (1)$ for any α in $M - M_0$, that is, G_a is of order 5. If ξ in $G_0 \cap C_0(\sigma)$, $\xi^s = 1$. Thus $|G_0(\sigma)|$ is a power of 5. Hence if $|G_0| \neq 0 \pmod{5}$ we have $|G_0(\sigma)| = 5$. If $|G_0| \equiv 0 \pmod{5}$ we have $|C_0(\sigma)| \geq 5^2$. The case can be treated in a manner similar to that used in the proof of Lemma 7 and G is a (\mathfrak{P}_s) -group.

Case 2. $(G: H_0) = 10$

There exist $\sigma, \tau \in G$ such that

$$\sigma x = y$$
, $\sigma y = z$, $\sigma z = u$, $\sigma u = v$, $\sigma v = x$, $\tau x = u$, $\tau y = z$, $\tau u = x$, $\tau z = y$, $\tau v = v$, $\sigma^5 = \tau^2 = 1$.

For any $\xi \in H_0$, $\xi^{\tau} = \xi^{-1}$. Hence H_0 is an abelian group. Put $\rho = \tau^{\sigma^{-1}}$. Then

$$\rho x = x, \ \rho y = v, \ \rho z = u, \ \rho u = z, \ \rho v = y, \ \rho^2 = 1, \ \xi^{\rho^{-1}} = \xi^{-1}, \qquad (\tau^{-1}\rho)\xi = \xi(\tau^{-1}\rho).$$

Thus $\tau^{-1}\rho$ commutes with every element of H_0 . Therefore

$$K = H_0 \cup H_0(\tau^{-1}\rho) \cup H_0(\tau^{-1}\rho)^2 \cup H_0(\tau^{-1}\rho)^3 \cup H_0(\tau^{-1}\rho)^4$$

is an abelian subgroup of G. Obviously we have $M_K = \phi$. Thus K is of type 5 on M and so $K \cong \mathbb{Z}_5 \times \mathbb{Z}_5$. Now since $(G: H_0) = 10$ we have |G| = 50 which is impossible.

Case 3.
$$(G: H_0) = 20$$

By the same way as in Case 2 we have |G|=100, which is impossible. Thus we have finished the proof of this theorem.

From this theorem follows immediately the following corollary, which verifies partially the result of §1.

COROLLARY. Let G be a (\mathfrak{P}_5) -group and t(G)=4. Then G is a Frobenius group of order 80 and F(G) is an elementary abelian group.

Continuation of (*):

If N operates on M of type (γ) , there are seven N-orbits consisting of four points in M. If $p \neq 7$, then at least one of seven N-orbits is also a G-orbit. Also if p = 7, then S_7 is normal in G (because G is not an A_2 -group). Hence there is a maximal normal subgroup N_1 of order 28 in G. Therefore we can choose N_1 as a maximal normal subgroup instead of N.

University of Tokyo

References

- [1] R. Baer: Partitionen endlicher Gruppen. Math. Z. 75 (1961), 333-372.
- [2] R. Baer: Einfach Partitionen endlicher Gruppen mit nicht trivialer Fittingscher Untergruppe. Arch. Mach. 12, (1960) 81-89.
- [3] N. Iwahori: On a property of a finite group. J. Fac. Sci., Univ. Tokyo, 10 (1964), 215-236.
- [4] N. Iwahori and T. Kondo: On a finite group admitting a permutation representation P such that $TrP(\sigma)=3$ for all $\sigma \neq 1$. J. Fac. Sci., Univ. Tokyo, 11 (1965), 113-144.
- [5] N. Iwahori and T. Kondo: A criterion for the existence of a non-trivial partition of finite group with application to finite reflection groups. J. Math. Soc. Japan, 16 (1965), 373-376.
- [6] O. Kegel: Die Nilpotenz der Hp-Gruppen. Math. Z. 75 (1961) 373-376.
- [7] O. Kegel: Nicht-einfach Partitionen endlicher Gruppen. Arch. Math. 12 (1961), 170-175.

(Received September 26, 1966)