On Finite solvable groups with t{G)=4 or 5

By Minoru Kanazawa and Hiroyoshi Yamaxi

Introduction:

In [3] Iwahori defined the number #G) for finite group G, determined all
groups with #(G)=2 and proposed an interesting problem of determining the
structure of all finite groups with a given #G). This problem was solved for
t(G)=3 by Iwahori and Kondo [4]. In this paper, we shall solve this problem for
solvable groups for the case #(G)=4 and 5. First we shall recall the definitions
given by Iwahori {3].

Let G be a finite group acting on a set M, we call such a set 3 a G-space.
For any element ¢ in G, we denote by M, the subset of M consisting of the fixed
points by s. For any non empty subset S of &, we denote by My the inter-
section of the sets M, for all sin S. The cardinality of a set 4 will be denoted
by |A|. Now let & be a positive integer. A G-space M is called of type k if
the following two conditions are satisfied.

1) I M,|=k for all ¢ in G%, G* being the set consisting of all elements in G dif-
ferent from the identity.
(2) | M;|=0.

If G admits a G-space M of type k, then we say that G is of type k on M.
The number ¢(G) is the minimum of the types of G-spaces. (If there is no G-
space of a positive type, then we put {(G)=0. It is easily proved that there is
no group with {(G)=1.)

In dealing with the problem of determining G with a given t(G), we may and
shall assume that the G-spaces M in consideration are “pure G-spaces” i.e. such
that any element in M is fixed by at least one element ¢ in G*.

In §1 we shall determine the structures of all finite solvable groups G
with ¢(G)=4 and in §2 those of all finite solvable groups G with £(G)=5.

We shall give here several notations used throughout this paper. p will
always denote a prime. We denote by Sp a Sylow p-group of G. If Nisa subgroup
of G, we denote by (Sp)y a Sylow p-subgroup of N. For any subset S of G the
normalizer of S in G is denoted by N4(S), the centralizer of S in G by CiKS).
For any ¢ in G and any subgroup N of G, 07 'Ny¢ is denoted by N¢, we denote by
©, the symmetric group on 7 letters. and by %, the alternating group on n
letters.
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We shall have to use the following lemmas several times in the course of
this paper.

Lemma 1. Let G be a finite group admitting a G-space M of type k>0. 1If
there is a normal subgroup N of index p, and My consists of k points, then any
element o of G--N 135 of order p, and the order of C.{s) is less than kp.

Proor. This is clear from [4].

Lemma 2. Let G be a finite group, M a G-space of type k>0, and A a G-
orbit in M. Let ¢ be the homomorphism from G to the symmetric group &4, and
N the kernel of o, i.e. normal subgroup of G, consisting of all elements which
fiz all points of A. If an element 5=¢N (s€N) in the quotient group G=GIN
i8 of order m in G, then any element ot of oN is also of order m.

Proor. If ¢ is of order m, then for any ot in oN, (sc)" is in N. If (st)”#1,
M,:= M, m=A, therefore or is contained in N, which is impossible. Hence ot
18 of order m.

§1. Determination of finite solvable groups with {G)=4

We shall first prove:

Lemma 8. Let G be a finite group acting on M and M o G-space of type 4.

a) If there i3 ¢ G-orbit A consisting of 4 points in M, then G is one of the
Sfollowing groups.

1) An elementary abelian group of order 8 or of order 16.
2) A Frobenius group with the kernel N which is abelian and of order

m=1 (mod. 4), such that G=N-H (semi-direct product), where H={1, s, o*, 6*)

is cyclic of order 4 and the order of or and ¢”'t for any © tn N is 4, while

the order of oz 15 2. (In this case M has mo other G-orbit consisting of 4

points than A.)

bY If there are three G-orbits consisting of 2 points in M respectively, G
is an elementary abelian group of order 8.

Proor. a) The action of G on A defines a homomorphism ¢ from G to
@, Let K be the kernel of ¢. Then (G: K) will be 4, 8§ 12 or 24 by the transi-
tivity of G on A. In any case the quotient group G=G/K has an element of
order 2, so by lemma 2, K is an abelian group. In particular if there is an
elementary abelian subgroup of order 4 in G, then K is an elementary abelian
2-group. Therefore if (G: K)=8 or 24, then there is an element of order 4 in
G—K, which contradicts to the definition of K. (Cf. [3], Lemma 1) Also if G
is of order 12, namely G is isomorphic to the alternating group of 4 letters,
then we can easily verify that ¢/G)=3. Hence G has to be a cyclic group or
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an elementary abelian group of order 4.

Case 1. G is a cyelic group of order 4.

Let & be a generator of G, so by Lemma 1 the order of oc and ¢7'r is 4,
the order of ¢°r is 2 for all r in K. Hence ¢° transforms any element ¢ of K
into =7, As K is the kernel of ¢, 6 induces a fix-point-free antomorphism of
K, hence G is a Frobenius group and the order m of K is congruent to 1
modulo 4.

Case 2. G is an elementary abelian group of order 4.

K is an elementary abelian 2-group, so is G by Lemma 1. Then G is an
elementary abelian group of order 8 or of order 16. In particular when there is
a G-orbit B different from 4 in M. We denote by K’ the kernel of a homo-
morphism G to &, defined by the action of G on B. Then K and K’ have the
trivial intersection, and G is not an elementary abelian group of order 4. Hence
Case 1 cannot occur and G is an elementary abelian group of order 8 or of

order 16.

b) By the assumption G has three different abelian normal subgroups N;
(1=1,2,3) of index 2. Any element of G—N, (i=1,2,3) is of order 2 by
Lemma 2, and the intersection of N,, N, and N, is the identity. So G is an
elementary abelian 2-group. Therefore we can conclude that G is an elementary
abelian group of order 8. Hence this lemma is proved.

Remark. Conversely these groups in Lemma 3 admit G-spaces of type 4
clearly.

As for the case G is a finite solvable group of type 4 on a G-space M, we
shall prove later, by Lemmas 5 and 6, there is a 4-points-G-orbit in M or other-
wise G has some special properties. In the next Lemma 4 we shall show that
groups with these “special properties” are in fact of type 4.

Lemma 4. The following groups G are of type 4.

(1) G has a normal subgroup N of index 2 such that any element of G—N
18 of order 2 (hence N is abelian), and (Sy)x is a direct product of two cyclic
groups. (We call this group an A,-group if 4<|N|)

(2) Two Frobenius groups of order 56 or of order 80, with an elementary
abelian normal Sylow 2-subgroups as Frobenius kernel. (We call these groups
an A,-group, an Azxgroup respectively.)

Proor. It is sufficient to construct G-spaces of type 4.

(1) N is abelian, so all elements of order 2 in N form a subgroup of order
4. So if we put Ni={r: re N}, then (N: N)=4. Fix any element s of G--N,
and from four left cosets of N by N2, we choose =, 7, v; and 1 respectively.
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And we put

M,={z/¢>: N3t}

M,={z{¢r;): N7}
M= {={s7,>: N3z}
Mi={c{o7,>: N7}
M,=M;={N,sN}

(2) If (¢ is an A,-group, then
G={a"=1, FiG)—{zd»{pD>x{e>: ¢ transforms cyclically 7, p, ¢, tp, ps, tpe, 7} .

So if we put

M,=the set of the left cosets of G by (=)
w== My== M= M,~—the set of the left cosets of G by ().

8
Then M=U M; is 2 G-space of type 4. Also if G is an As,-group, we can easily

LR
construct a G-space M of type 4 as above. :

Lemma 5. Let G be a finite solvable group and M a G-space of type 4.
Then the following holds:

(1) If G has an Aigroup as a mazimal normal subgroup, then G itself is
an A;group or there is a G-orbit consisting of 4 points in M.

(2) If G has an A-group or an an Agxgroup as a maximal normal subgroup,
then, G has another maximal normal subgroup which is netther an A.-group
nor an Ag-group.

Proor. Let N be a maximal normal subgrup of G, then (G: N) is a prime
p. In our case | My|=0,20r4. If [My|=4, then by Lemma 1 p=2, and any
element ¢ of G—N is of order 2 and |Cu(0)|£8. If we prove |Cu(s)]|=8, then
(So)x is a direct product of two cyelic group, hence G is an Apgroup. If
1Cuela) [ <4, (S~ 15 & eyclic group, so G is generalized dihedral group, which
is impossible since generalized dihedral groups are of type 2 (cf. [3]). Hence
| Culo)|==8. If | My|=2, then also p=2 and N is of type 2 on M—My, so G is
an elementary abelian group of order 8. Therefore we may assume | My |=0,
namely N is of type 4 on M.

(1) Since N is an 4,-group, N' has a normal abelian subgroup H of index
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2 and of order more than 4. Then | M,!=0,2 or 4. If |M,;]=0, then H is an
elementary abelian group of order & or of order 16, which contradicts to the
definition of N. Also if | M,{=2, N is an elementary abelian group of order
8, which contradicts to the fact that N is an A,-group. Hence |M,|{=4. As
(N: H)=2 and N is of type 4 on M, M, is decomposed into two N-orbits M, M.
consisting of 2 points respectively. By Lemma 3 b), M, and M, are all of N-
orbits consisting of two points, and there is not a G-orbit consisting of two
points in M (because if there is a 2-points-G-orbit in M, then G has a normal
subgroup N, such that My #¢), therefore p=2 and M,uM.=M, is a (-orbit
consisting of four points.

(2) When N is an A,-group or an Asgroup, (S:)» 18 normal in G. In our
case M, is empty.

Case 1. N is an A,-group.

Since the order of the automorphism group of (S.)» is 28-3.7, if p+2,3 or
7, an element of order p in G induces an identical auntomorphism of (Syx.
Hence Ms,,+¢, which is impossible. Therefore we examine only p=2,3 and 7.

p=2: NgS;) is of order 14, so there are o of order 7 and ¢ of order 2 in
Ns(S:). « and (S;)x generate S,. Put Z the center of S,, and Z°'nZ=1 (i=
1,---,6). Hence we get that the order of Z is two, which is impossible.

p=38: The order of N4 (S;) is 21. Let s be a generator of S; and « be an
element of M,. Then G.NnN=S;, and S; and S; have the trivial intersection
for any = of S{. Therefore there are four N-orbits consisting of 8 points, at
least one of which is also a G-orbit if p=3. Hence there is an isotropy sub-
group of order 21, so we may assume that N,(S.) is the isotropy subgroup of
a. On the other hand, the automorphism of S; induced by g of order 3 in
N.(S:) has at least one fixed point = in S}, that is, M,=M,. Hence ¢ is con-
tained in N4(S;), which contradicts to Ng(S:)=21.

p=T. S; is of order 7%, so S; is abelian. §; is not a eyclic group, for Ms,
is empty. Hence S; is an elementary abelian group of order 7¢. Therefore in
48 elements of order 7 in S; there is at least one element 4, and ¢ induces
an automorphism of S, with a fixed point. {s¢)S; is not an A,-group and maximal
normal in G.

Case 2. N is an Ag-group.

We can prove the lemma as in Case 1.

If G is a finite group of type k on a G-space M, MQ:‘_l;l1 M, is the decom-
position of M into G-orbits and for a; in M; (i=1,.-+,7) G, is an isotropy sub-
group of x;, then the following equation holds. (cf. [3])
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4 1 k
% [ 2y I ; 2k
Z G {(r—1Iit G k<r<2k.
Hence if G is an elementary abelian group of order 8 or of order 16, we obtain
for the possible orders of G, ---, G,, G the following table:
G], . . . Gr: G
r-5:2, 4, 4, 4, 4 : 8 {e0)
r=6:2 2, 2, 2, 4, 4 . 8 (5
r7:2, 2, 2, 2, 2, 2, 2: 8 (1)
r- b:4, 4, 4, 4, 4 116

Conversely we can easily construct G-spaces M for the groups of the above
table. We call G acting on M of type (@), of type (8) and of type {y) respectively
when & of order 8 has isotropy subgroups on the above table.

Lemma 6. Let G be a finite solvable group and M o G-space of type 4. If
G is neither an Aygroup nor an Asgroup and if any maximal normal subgroup
of G is not an A,-group, then there is a G-orbit consisting of four points in M.

Proor. We shall prove this lemma by induction on the order # of G. If
t(G)=:4, 8=n. The conclusion of the lemma is already proved for n-:8. When
8<n, let N be a maximal normal subgroup of G, then (G:N)=p. By the
assumption and on the way of proving Lemma 5, N is of type 4 on M, and
therefore by the assumption of induction there is an N-orbit A consisting of 4
points in M. If N is not an elementary abelian group of order 8 or of order 16,
then by Lemma 3 a) A is the unique N-orbit consisting of 4 points, hence 4 is
also a G-orbit in M. Therefore we have to consider the cases where N is an
elementary abelian group of order 8 or of order 16.

Case 1. N is an elementary abelian group of order 8.

We have already known that N operates on M of type (a), () or (y). If N
operates on M of type («), there is only one 4-points-N-orbit in M, and there-
fore this N-orbit is also a G-orbit. N operates on M of type (8). If p=2, then
at least one of four N-orbits consisting of 4 points is also a G-orbit. If p=2,
My is empty, so two N-orbits consisting of 2 points from a G-orbit.(x)

Case 2. N is an elementary abelian group or order 16.

There are five N-orbits consisting of four points in M. Hence as in Case
1 of type (), we can choose a maximal normal subgroup different from N.
Now we can determine the structure of a finite solvable group with t(G)=4.

Turorem 1. G s a finite solvable group with ¢(G)=4, if and only if G is
one of the following groups.
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(1) A,-group, As-group or As-group.

(2) An elementary abelian group of order 8 or of order 16.

(8) A Frobenius group with the kernel N which is abelian and of order m=1
(mod. 4), such that G=N-H (semi-direct product), where H:==(1, g, ¢*, 6*) 18
cyclic of ovder 4 and the order of oc and o for any = in N is 4, while
the order of ¢°c 1s 2.

Proor. It is clear by lemmas in this section.

§2. On the structure of finite solvable groups with {G)=5

We can deal with the case t(G)=5 by a method similar to that used in [4]
for the case #((G)=3. We may assume that G is a finite solvable group with
non-trivial partition. The results and method in [3], [4] are used in this section,
but we shall repeat the necessary definitions so as to make our main theorem
understandable independently from [3], [4]. We shall denote by F(G), the Fitting
subgroup of G. G is a ($,)-group if the following conditions are satisfied;

(1) There is a normal subgroup N of index p in G such that N={1}
(2) For any a in G—N,a"=1
(8) For any a in G—N,

|Cela)i==p, if |N{20 (mod. p)
p?, if | N{=0 (mod. p).

Then a (Bp)-group which is not a Frobenius group will be called (,)'-group.

We shall first prove:

Lemma 7. Let G be a finite solvable group and M a G-space of type p
which is an add prime. Then G is a Frobenius group or a ($p)-group.

Proor. It is sufficient to prove that G is a ($,)-group when it is not a
Frobenius group. By Baer [1], [2] and Kegel [7], G has a Normal subgroup K
such that (G: K)=¢ for some prime, |K|=0 gmod. g) and ¢"=1 for any
ceG—K. By Kegel [6] K is nilpotent. Let M-- ;Li'l M; be the decomposition of
M into G-orbits. If K is not a ¢g-group then M, is a G-orbit consisting of p-
points, and therefore p=—¢. We may assume that Mx--M, Let z;¢M; and
denote by G, the isotropy groups of x;. Then for i=2, G,n K-=(1), namely G,
is of order p. By the property of p-groups, we have | Ci{0) |2 p%, and by Lemma
1 |Csls)|=p:. Hence G is a (Bp)-groop. If K is a g-group then G is a ¢-
group and therefore p=q. Hence there is a non-identity central element r and M,
is a G-orbit consisting of p-points. For ze M, (G: G,)=p and so GDG,. The
result follows immediately.
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Remark. Using this lemma we can conclude that a group G of order 24
does not admit any G-space of type b.

Lemma 8. Let G be a generalized dihedral group of order 2p* and p an
odd prime. Then G does not admit any G-space of type p. Particularly a
group G of order 50 does not admit any G-space of type b.

Proor. If G does not have an elementary abelian normal subgroup of order
p, then by Iwahori and Kondo |4] G admits a G-space of type 2k whevre k is
a positive integer. Hence we may assume that G has an elementary abelian
normal subgroup of order p*. Therefore there exist (1+p+ --- +p* -different
normal subgroups of order p, say (s> 1=1,2,---, L4 p+ - +p7%, and all
involutions are conjugate in G. If M is a G-space of type p, M,, is a G-orbit
consisting of p-points and for ze M,, G. is of order 2p»'. Then for any involu-
tion p we have |M,nM, |21, 41, -+, 14+p+ --- +p*! and so |M,izp+1],
which is impossible. If G is of order 50 and t(G)>0 then it is easily verified
that G is a generalized dihedral group.

Remark. If p-=-2, the conelusion of Lemma 7 does not hold. For example
let G be a symmetric group on 4 letters. Then G is a solvable group and
HGY=2. But G is neither a Frobenius group nor a (,)-group. Also if p=2,
the conclusion of Lemma 8 does not hold. Since G is a dihedral group of order
2=+ (G admits a G-space of type 2. C.f. Iwahori [3].

Lrmma 9. Let G be a finite solvable group and M o G-space of typeb. If
there exist two G-orbits A, B in M such that |A|==|B|=5, AnB=¢, then G is
isomorphic to an elementary abelian group of order 25.

Proor. Let M= 0 M; be the decomposition of M into G-orbits such that
M, A, M, =B, Théw:;ction of G on A defines a homomorphism ¢: G->&;. Let
be B. Since Gynker ¢=(1) and (G: G)=5, ker ¢ is of order 1 or 5. Since G is
solvable and G acts transitively on A, we may assume that |G |£100 and {Gi=0
(mod. 5). When G is a (5;)-group, it is easily seen that G is isomorphic to an
elementary abelian group of order 25. Thus by Lemmas 7 and 8 we may assume
that G is a Frobenius group of order 100. Since | F(G)|=25, G has a normal

| My |#5,8. If |Mg]=0, K is of type 5 on M which is impossible by Lemma 8.
If | Mgl:=2, K is of type 3 on M—M,. Then by Iwahori and Kondo [4] G is a
(PBy)-group, which is also impossible.

LemMa 10. Let G be a finite solvable group and M a G-space of type 5.
If 1G|=25, then there is a G-orbit in M consisting of 5-poinis.

Proor. We shall prove our assertion by the induction on |G|. If |G|=25
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then G=Z; < Z, and it is easy to verify that the pure part P of M consists of
6 G-orbits M, (i=1,2, ---,6) with | M,;|=5. Now let n=-1G|>25 and assume that
our assertion is valid for finite solvable groups of order <n. Let H be a
maximal normal subgroup of G and (G: H)~p. Then we have | M, ! =5,3,20
and M, is G-stable.

Case 1. |M,]1=0

H is of type 5 on M. If |H|<24, H is isomorphic to %, or a generalized
dihedral group D of order 18, and G is of order 12p or 18p respectively. By
Lemma 7 we may assume that G is a Frobenius group. Since H is not nilpotent
in both cases, we have HZ2F(G). Then we may assume that H=D and F(G)=
Zy X Zs. Since for any ¢ in F(G), Cu(0)< F(G), we have p=2. Hence by Iwahori [3]
G admits a G-space of type 4, namely #(G)#5. Therefore we may assume that
|H|=25 and by our inductive-assumption there is an H-orbit 4 in M consisting
of 5 points. If H#Z,xZ,, such a set A is unique by Lemma 9, then 4 is a
G-orbit and |A}=5. If H=Z,XZ;, we may assume that p>5 and G is a Fro-
benius group by Lemmas 7 and 8. Since |Aut H|=2°.3.5, ¢ has a non-trivial
central element and this is impossible.

Case 2. |My|=2.

H is abelian and is of type 3 on M—M,,. Then H= Z,% Z,. This contradicts
to our assumption.

Case 3. | My|=3.

H is of type 2 on M—M,. If H=©,, U, or %;, then sylow 3-subgroup of
G is of order 9 and so G is a (Ly)-group. Thus we may assume that H is
isomorphic to a generalized dihedral group and |H|=0 (mod. 3%. H has an
abelian normal subgroup N such that (H:N)=2 and *:=1 for any v in H—N.
By our assumption | My |==5. Since for x in M—M,, G.> N we have (G: G.)==8 or 6,
If (G:G,)=3,G.2H or G,n H=N, which is impossible. If (G:G.)--6, the action
of G on G/G, defines homomorphism ¢; G—&, and clearly ker ¢:==1. But in this
case |G =0 (mod.2-3% and [€;]|—24-3%5. Then we get contradiction.

Case 4. | My|=5

My is a G-orbit consisting of 5-points.

Now we can prove the following theorem.

Tueorem 2. Let G be a finite solvable group. Then t(G)==5 if and only if
G 1s a (Bs)-group and G 138 not a Frobenius group of order 80 whose F(G) i3 an
elementary abelian group.

Proor. Let M be a G-space of type 5 and M, a G-orbit consisting of 5-
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points. The action of & on M, defines a homomorphism ¢: G—&; and G/ker ¢
is isomorphic to a solvable subgroup of &,. Since G acts transitively on M we
have (G: ker ¢)-=5, 10 or 20. Put ker o= H,, My=={z, ¥, 2, u, v} and Gy=G..

Case 1. (G: Hy) 5

We have ¢°. 1 for s in G—H, and G.nH,—(1) for any a in M- M,, that is,
G,isof order 5. If ¢ in GonnCi(s), £51. Thus |Gyle)| is a power of 5. Hence
if {Gol#0 (mod. 5 we have {Gu(s)| =5, If |G,|=0 (mod. 5) we have | Cy(s) | = 5%
The case can be treated in a manner similar to that used in the proof of Lemma
7 and  is a (P;)-group.

Case 2. (G: Hy)- 10

There exist 4, 7 ¢ G such that

XY, OY 2, 0F7 U, U=V, 6V X, TE U, TY =2, T F, 2=y, TU=v, g*=t?=1 .
For any &e H,, & £7., Hence £, is an abelian group. Put p=-z°"*. Then
PLET, PY SV, PR U, PU--Z, PUY, pPosl, EoT gL (rtp)e=E(zp) .
Thus z7'p commutes with every element of H,. Therefore

KTA—'”I‘I() U Hg(Tml{)) U Ho(?~1p)2 U H{)(T_]py} U HQ(T““[))‘

5 on M and so K=Z,xZ,. Now since (G: Hp)-:10 we have |G |==50 which is
impossible.

Case 3. (G Hy)=20

By the same way as in Case 2 we have | G |==100, which is impossible. Thus
we have finished the proof of this theorem.

From this theorem follows immediately the following corollary, which veri-
fies partially the result of §1.

ConoLLaRY. Let G be a (Bu)-group and t(G)—=4. Then G is a Frobenius group
of order 80 and F(G) is an elementary abelian group.

Continuation of (x):

If N operates on M of type (7), there are seven N-orbits consisting of four
points in M. If p=7, then at least one of seven N-orbits is also a G-orbit.
Also if p==7, then S: is normal in G (because G is not an A,-group). Hence
there is a maximal normal subgroup N, of order 28 in . Therefore we can
choose N, as a maximal normal subgroup instead of N.

University of Tokyo
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