Kronecker’s limit formulas and their applications®

By Koji KATAYAMA

Let k& and K be algebraic number fields such that kC K. Let & and H be ideal
class numbers of k and K, respectively. Then “good” formula of the relative
class number H/h is obtained in every case of the following:

0) k==Q, K= the absolute abelian extension of %,

1) k=Q, K-- imaginary quadratic extension of k,

2) k= imaginary quadratic field,

K= Hilbert class field or ray class field over £,

3) k= real quadratic field,

K= imaginary quadratic extension of k (ramified or not).

Sinece K/k is abelian, it is well-known that the computation of H/h essentially
reduces to get residues of zeta-functions of k¥ and K at s=1 and the values of
L-functions L(s, X) of k at s=1. In getting L(1, %), Kronecker's limit formulas
of the first and the second kinds play essential roles. The one of the first kind
concerns with the eases 2) and 3) (unramified) and gives the residue at s=1 of
“generic” zeta-funetion
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of k.

The one of the second kind concerns with the cases 2) and 3) (ramified) and

gives the value at s=1 of “generic” L-function
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of k.

Then in the first, there appears so-called Dedekind eta-function 7(z) and good
formula for H/h in 2) was obtained by the theory of complex multiplication of 7(2).

In the second, there appears a holomorphic function which is essentially the
product of 7(z) and elliptic theta-function. In the case 3), the computations of
H/h were reduced to get periods of the abelian integral of the third kind which
is the logarithm of 7(z) in unramified case and is the logarithm of the above
holomorphic funection in ramified case. (Hecke [2], Siegel [5]). Then © good”
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formulas (elementary arithmetic function in the sense of Hecke {2]) for H'h can
be obtained by Riemann-Dedekind’s “Grenziibergang”.

Now, Hecke declaired the following as “Theorem” :

Let k be 2 totally real algebraic number field and K=k(~ §) with totally
negative number 6 of k. Then H/h ean be written as elementary arithmetic
funetion of 4. (But he proved only in the case where k is quadratic).

Recently, Siegel gave fine lectures at Tata Institute [5] concerning the problem
of getting H/h in the above cases under simplified calculations and casted new
lights on the problem.

The present paper deals with some generalized cases 4), and 5) of 2), and
3), generalizing slightly Hecke-Siegel’s methods but the results are so weak.

4) k- imaginary quadratic extension of real quadratic field in 2),

5) k-~ certain type of real biquadratic field (see conditions (A--1) or (4--1)).

In § 1, we shall recall several notions and facts from Siegel [5] for later uses.
In §2, we shall define the three kinds of Eisenstein series attached to a real
guadratic field, which are to be regarded as “generic” zeta- or L-functions of
fields of types 4), and 5) and compute the Kronecker’s limit formulas for them.
In §3, we shall compute the number H/h in the cases 4), following Siegel’s
methods. But functions appearing in the limit formulas are not holomorphic
Hilbert modular forms but non-holomorphic modular forms of Hilbert type.
Therefore we can not hope “good” formulas (there is no “theory of complex
multiplication”).

Another application of Kronecker's limit formulas is to solve Pell’s equation.
Also in §3, we shall generalize (formally) this “solving Pell’s equation”.

In §4, under the assumption (A—¥) (I==1 or not) (the case 5)}, we shall compute
the constant terms of zeta-functions and L-funetions at s==1 following Siegel's
methods. In the final §5, we shall show that the computations of Hjh are
reduced to get periods of certain abelian integrals of the third kind.

The problem, being left, is to obtain the formulas of the above periods and
transform them into elementary arithmetical forms.

13

1. Kronecker’s limit formula for zeta-function of real quadratic field
1.1. In this and the next numero, we shall quote the results of Siegel [5]
for later uses.

Let z==x-1iy, ¥>0, and s be complex numbers. We consider the following
function:

1.11) flz,8)=S —Y¥

o fm-t+nzl®
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where 30’ denotes the sum over all couples (m, n) € Z < Z except (0, 0). The series
converges absolutely for Re(s)>1 and can be continued analytically into Re(s)> é
Let F=Q(~/d) be a real quadratic field. Let b be an ideal in ¥, whose basis
is (1,). Let " be the conjugate of w. We take a hyperbolic element ¢ of
SL(2,Z), whose fixed points are w, w’. We may assume w>w’. Let 57(\» be the
semi-circle, end points of whose diameter are »" and . For zEJ’\«;, we put
UL W
e

(1.1.2) =

Then u is a positive real number. Let : be the fundamental unit of F. We
may take :>1. We put u=:% with a real parameter ». Then the transforma-
tion z-»3(z) corresponds to the translation v >v 1. Since f(z,8) is invariant
under z-— 3(z), fiz,s), regarded as a function of », has the following Fourier
series expansion:

J flz,8)~ . i‘:, ax exp (2rikv) ,
(1.1.3) l )

A

re i‘f(z, s) exp (—2=ikv)dv .
Je

We define the Grossencharacter 7. of F by

xik

ke, keZ, PeF.

(1.1.4) 2= |

i

[

Let B be the ideal class to whom 0! belongs. Then the zeta-function of I, with
Zr, associated with B, is defined by

Ce(s, Tx, B)= 3 Zu(a)[Naj .

B)¥QED
We have
(1.1.5) 1 (0)r(s, 2, B)=(Nby® X° bik(m))iN 3,
0 xpE

where 3° denotes the sum over all S¢b but associates of 3 appear only once in
3°. We write £p(s, B)=={1(s, 1, B) for fr=230=1.

Siegel discovered that the Fourier coefficient a: in (1.1.3) is essentially
Ci(s, Zr, B) and gave the explicit formula for osx:

S w1k ./ 8 ik
r :‘iw;ﬂi—ﬁ) 1( ,‘_Am)
d (2 2loge 2 : 2log e

(1.1.6) Qr= 3Tog < 1s) 20)r(s, 2, B) .

Now Kronecker’s first limit formula for f(z, s) is given by the following form:
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(1.1.7 linll (f(z, 8)~- _sj—l) =27(C —log 2)— 2= log (V' y I5(2)1%) ,

where C is Euler’s constant and 7(z) is the so-called Dedekind eta-function. Also
in [b], Siegel obtained the limit formula for {r(s, B} which comes from a., by
integrating (1.1.7) with respect to v. The result is as follows:

i _2loge 1\ 2loge (o o TV 12
18 tim (tets, B~ 2PES Do) B PR (o 2§ulog(x/y Y y(z)1dv) .

The limit formula for Zr(s, %x, B), coming from a., is not given in [5] for no

use in the course of lectures, but it ean be easily obtained by the same method.
The result is as follows:

1 —_
-4 log 5-2,‘({7)»4 S log (\/ o 1n(2)|Be-2rikedy
(119 er(l, 5, B)= - 0

i 1 ik 1 mik

2 2loge 2 J' 2loge
In the course of computation of (1.1.9), we see that the term corresponding to
the pole s=:1 of f(z, s) vanishes, since the term involves the integration

3

x exp (—2rikv)dv. Thus it is automatieally shown that {s(s, j«, B) for k~0,
Jo

has no pole at s=1.

1.2. Let K be an algebraic number field of finite degree. Let { be an integral
ideal in K. As usual, we denote by 7y1==7: (mod*{) the multiplicative congruence
of 71 and 7. modf. We define B the group of ideals in K whose denominators
and numerators are integral ideals coprime to §. Put

Ei—{(@) e®y; a>0, a==1 (mod* f)} .
Then &;/&; is called the ray class group modulof.

Let x be a character of &;/&;. We define, for Re(s)>1,

Li(s, V)= 3 2@)|Na|~*.

(ﬂtf)'Ll
It is known that Lx(s, X) has Euler product formula;

Li(s, xy= 1T (1—x(0)|Np|~)
v, i);:,l
and can be continued meromorphically into the whole s-plane and satisfies the
functional equation between Lx(s, ¥) and Lx(1—s, ¥) for proper X. If x=£1, Lx(s, %)
is an entire function of s.

For a ray class character ¥, we see that x{(a))==z((8)) for non-zero integers
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a, § in K coprime to | such that a=3 (modi). We can define a character ()

of signature, for i€ K*, associated with ¥ as follows. For ¢ K, there exists

an integer a in K such that e=1 (modf) and aZ>0. Then put o(2)=x{(a)).
Every ray class character %((a)) mod{ can be written as

(1.2.1) (@) =v(a)t(a) ,

where X(a) is a character of the group G(i) of prime residue classes mod §.
Now we can write

(1.2.2) Lx(s, )= 3 3 x(a)Naj~,
4 aga-1
(0, f):l
where A runs over all ideal classes and a over all ideals belonging to 4, coprime
to {. Taking an ideal b4 in A~' coprime to | and abs=(3) with an integer 3 in
K, we have
Lk(s, 1)= S 7(baA)N(ba)» 3 x(BHIN(B)I- .
A baltBr#0
B, fi=1
Extending x(5) to all residue classes mod | by setting x(a)=0 for « not coprime
to |, we may consider that the above inner sum is taken over all principal ideals
(B)cbs. Thus we have
Lk(s, %)= X i(ba)N (M"b 2 vBABING) .
y:

4l (B) %0

We define
(1.2.3) T= 3 j(erwisan

2mod §
where 7 is chosen so that (y)D has exact denominator |, for different ®. 7 is
fixed once and for all. 1 runs over a full system of representatives modf,
It is shown that T is independent of %he choice of 2. For f==(1), we have T=-1,
In general, T=+vN(f). For a proper ray class character ¥ mod |, we have the
following expression (Siegel [5] p. 140):

(1.2.4) Lk (s, Z):% 2 ) 2 x(0aN(bay 2 v(Ber A IN(B)|

2 mod § B by

where 4 runs over a full system of representatives of prime residue classes
mod§, A over representatives of the ideal classes of K (in the wide sense) and
(#) over all principal ideals #(0) divisible by b4.

By the ray class field modt of K, we understand that the relative abelian
extension Ko of K, whose Galois group is isomorphic to ®&/€;, such that the
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prime divisors of | are the only prime ideals ramified in K»,. Denote by Ix(s)
the Dedekind zeta-function of K. By the class field theory, it is known that

(1'2-5) CKU(S) b :K(s)}}!‘LK(Sr ZO) ’

where ¥ runs over all the non-principal ray eclass characters mod 1 and if iy is
the conductor of %, then %, is the proper ray class character modi, associated
with 2. It is also known that J17, is the relative diseriminant of Ko/K.

x

2. Limit formulas for Eisenstein series attached to a real quadratic field

2.0. Let FF-=Q(~' d) be a real quadratic field. For «€F, we denote by «
the conjugate of «. We assume that F has the fundamental unit ¢ of norm
—~1. Let a, b be two ideals in F. We say that («/, 51) and (a:, ) in FxF
are associated if there exists a totally positive unit ;2 of F such that pai=a:,
(Bi=:f.. We consider the following three types of Eisenstein series 1°, 2°, 3°.

1°. Oz, ;0,05 81, 82)= 37 la-kfo-¥ia’ 5,

a€Q
o(BED

where c—=x 1y, © =2 iy, y>0, ¥ >0, s, s are complex variables and

mik nil

8§27 8§ ke 2
log ¢

0.1 g
(2.0.1) i

with one complex variable s. $>0 means 5>0 and £'>0; i.e., § is totally positive.
3¢ denotes the sum over all aca, B€b but associates of § appear only once.

i
- . . , Yy o2
2°. (I)(T’ T a, bp 8, 82)1“0 2 PN R T - Y Y
aea latfri*|a’ 50 P
gED
(@)

where 7, #', 8, $: are as in 1° and X’ deno;;es the sum over all (a, 5l e Fx<F,
not being (0, 0) and mutually non-associated.

lyyyem Pre P

3°. Uz, <5 a,b; 85 (w), (0) = X

z€a fo + S| ®ja’ 45|

RED

(@.B
Here (w)==(u, u"), (v)==(v, v) are couples of real numbers satisfying the following
condition :
(2.0.2) autaw €Z for all aca or Sv-+p'v €Z for all feb.

We know the following Poisson summation formula: Let f(x:,2» be a

function continuous in (%, 2:) and 3 f(xi+-m:, x:-+m2) converges absolutely
i
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and uniformly for 0<a:i<1. Further,

oo
g Sy, wder vzt e gy dog,

- =

(@1, T2)= X

exists and 3 ertmiwntarae(p, q)
Prgr o

converges. Then
(2.0.3) S f(@ibma, 22bme)= 3 e tmeniturd L o(p, q) |

2.1. Limit formula for @.

@, 7"; a, b; 81, 82) converges absolutely for Re(s:)>1, Re(s:)>1, hence for
Re(s)>1. Let wi, w: be a basis of a. Then every element « of ais of the form
a=Miw+Mwe: with mie Z. We put

F @y, ®e)=|zr00s -+ Tewz + 5] %1 [y 4-@pe0z -4 B2

for —wo<a:<oo. Then we see that the series

mn, Z‘-mf(mx ! m.Z)

converges absolutely and uniformly in every —N; <z < N; for Re(s)>~é~. This

is shown by the same method as in Siegel [5] p. 8. Also following the considera-
tion of Siegel [5] pp. 9-12, we see that (2.0.3) is applicable to the present f(xz:, x2).
Thus for Re(s)>1, we obtain

@.1.1) S fim, my=3,

= i

= e teenydy, du,
v (U@ Uz BT Ui Uswz -+ fT [P0

Put d=lowi—wwt] = N@V' d
pEEPweqwy , [T Dok - gmy
VU Uewz and v U Uawh

Then substituting these in (2.1.1), we get for Re(s)>1,

2ailp n—pe’

SS‘” e K] ‘)‘dvdv'

" 1
2.1.2 2.1.1)=1 3 e vdv'
2.1.2) (211)=", v =y o s

u

As in Siegel [6] pp. 97-98, we have the following formulas:

(aypeytes  miaiwpr ( 4;:;1’{11/) e
. D S Risi, 81, 42 4f >0,
(2 1 3) g“ ezxz; vdv F(sl)zdul_l € 1 1 A /
o ~oo !7)—;52'12‘;1‘>~ v 28 f . 7 N28y 1 —2xin’ B — 4

I (2= ) ewﬁmh(s“ 3:,“47%‘“‘—‘;9?;) if <0,

I'(8,)242%
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e 285 148891 ‘_27;;71'76".’ T ay" N
(2 et [ s h (Sz , Sz, 4*%19&1) if >0,

PO L. L L, [7(82)2 47021
(214) S i'ejqj;';\fi[;) i
—w |V 3T [%0 TY282( e )28yt 2migBrEL —4ruBYy N .
2 4

Here Rh{a, B, t) is the so-called confluent hypergeometric function defined by

ha, B, )= Suw“ﬁ(ww;»nﬂ—x evidw ,

0

with t>0, Re(a)>0 and Re(5)>0.

It is known that h satisfies the following differential equation:

d?h dh
t d‘i; +{a+p—t) d“t‘ ~—ah=0,

We divide (2.1.2) into five parts:

(2.1.2)r:f~}—{(terms of p=0)+ S+ +5+3}.
A n>0 1#>0 u<0  p<0
450 p<t p'>0 p'<0

Using (2.1.3), (2.1.4) in (2.1.2) and transforming the last three parts of the sum
decomposition of (2.1.2) into the sum over totally positive p’s, we get, with
c=nik/loge,

(1 1
@12~ L[ Ney-acpr sy (L) : 1%(:3;3(;) :)

» (275)23
442 (g+c)2 (s —e)?

2x1 {8/t p’ BY) ror 5 y ot
xde= “Lmh(s“ s, ~4~~~ﬁ-§—y—)h(82, Sz, mpfy. )
4 4
gxi{epuB v - B ' BT} —dre' e .
4 (—1)keizeg bl ot l—wh (s: 81, ifjﬁ_ﬁ_y.) }L<32 , S2, ‘L%é}j__)

Baiie' ' BT - euB'R) —4mre' ' B e By’
-+ (*1)33_206 4 : h(s; , 81, *J“jﬂ“-i“y“)h<82,(82, 4 ;:'f*y*->

i’ Br—pB'%") e aul'y’
Ee (wl)aaemj_“‘.‘d-!“‘—_h(s’ , 81, ;24/787&)}&(32’ 8z, é,ﬁ@,%{.)}] .

S = ”IX o(ﬂ)““‘i(ﬂ)"

(2.1.5)

d 4

The part 2)]0 has no pole at s=1. In order to get limit formula, we have further
[

to take the sum 3° . Then the part 3.° 3 converges uniformly in every com-
0(3€D 0(RED w20

pact set of s-plane. Hence it defines an entire function of s and has no pole at

s=1. Now the term X° (term p=0) can be easily calculated. The result is as
0(<BED
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follows:

21.6) -+ 3° (term ;=0)
J 8({BED

7:[’(3— T}Z +c)1‘(s-—é~ mc> v\
— Ni-2s f I G2 128y -2 N
TG0 (yy") (y) BN = (p(25—1, 17, B).

Thus we see that ¢. has a pole at s=1 for k=0, i.e., for 7==1, and the residue
at s=1 is easily given by that of {r(25—1, B):

1-' o
1 T ( 2 ) 2x2log ¢
2.1.7) T Ty N s @l Bl = 5o NG

(observe (1.1.8)). For k+0, i.e., for =1, ¢, is regular at s=1. We can calculate
the value at s=1 using (1.1.9).
Now we put

(2.1.8) Flk;r,7'50,0)

= 3° 3 N(i)e . h(1-+c, 1+e, ﬂ.fiﬁ?/_)
LET 2000 4
X h(l—c, 1—¢, ﬁ%&)

with ¢=nikjloge. Then for F(r,'; qa, 0)=F(0; 7, 7"; a, b), we have

4 o 2xi(euflt’ — 2y’ A1)
(2.1.9) F(r,7;0,b0)=—">— 3° X N(f) e 1
Yy (47)° 52850 w0

Further we put
(2.1.10) FXk; o, o', 0, )=F(; —er, —¢'t’; a, b)-+(—1)*F(k; 7, "5 0, b)
(=1 F(k; 7, ~7 30, b)-+F(k;er,e't'; 0, b)),
FXz o' ;a,0)=F*0;7,t;qaDb).
By (2.1.5), (2.1.7), (2.1.9) and (2.1.10), we have the following.

ProprosITION 1. (CASE: k=0).

2
il E R s ol ey

_ 2rloge _ _ .M“/——mz)
e (Zlogz log N(6)— log yy' +2C Zgolog( 7 Y 1925w

dsN(a)aF (z, t'; 0, b) .
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By (1.1.9), (2.1.5), {(2.1.8) and (2.1.10), we have the following
PrOPOSITION 2. (CASE: k-+0).
Oz, <5 a, b, 14¢, 1—¢)
—4z%log ¢ gl log (V¥: |9(2)|?) etV Tikedy
NGO T T T )

4z
RENPE — AT R OY
TN el (A —c) e a, b)

with ¢—=v -—1kflogz, ke Z.
2.2. Transformation formula

We consider only the case k-=0. Put

e 2xi{epB v/ —8 ' Bt
@21 Fofr, 50, )= 2YANO - s 5 g HEETEES
7 loge (47)% papye s

and

(2.2.2) ooz, o'; a, 0)== exp (Fo(-~er, —&'c")--Fo(r, ')+ Fo(-—7, —7")+Foler, e'7')} .
(for brevity, a, b in F, are omitted)

Take &= (;” f ’) satisfying the following condition:

o

(2.2.3) v, it, 7, 0 are integers in F', p€aq, y€h, and
det £=totally positive unit in F.

Then we see
B (8(2), §(c'); a, 0, 8, )=z, 5 a, b s, 8)lyr 43|y e 6% .

Computing the limit formula for the above left hand side and comparing it
with that of ¢., we get the following.
PROPOSITION 3. (a, b being omitted in )

Po(5(2), £ (= N=po(z, =) lyz+8]72y e 0" 2
holds for & 4(:’ [(;) with condition (2.2.3) .

¢o(r, ') is non-holomorphie with respect to r, ¢’. On direct computation, we
observe that ¢, is a potential function of 2, ¥, " and ¥°. Hence it is real analytic
with respect to «, %, 2', ¥'. As for the case k+0, we can not speak of the trans-
formation formula of Hilbert modular type for F*k; r, r') or exp (F*k; =, ).
The reason comes from the existence of exponent 1 of y't*y''~* instead
of 2 in the denominator of the right hand side of Prop. 2. Also, we can not
speak of the existence of simple partial differential equation (for example,
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analogue to that treated by Siegel [6] and Maass {4]) satisfied by F*k; -, <) or
exp (F*(k; =, ")). The reason comes from the existence of ¥, ¥ in the exponential
funetion of (2.1.8). If the function I in (2.1.8) is reduced to exponential funetion,
then our F*(k; <, c') becomes a type of function treated by Hecke in §6 [3].

Also Hecke gave the almost explicit limit formula and transformation formula
for the case k=0 in [1] and investigated the analytic nature of analogous fune-
tion to Fo(z, ¢') in detail in [8].

ReEMARK. Let K be a totally real algebraic number field of finite degree n.
Iet e, -+, 21 be a system of fundamental units of X. let e, -+, ¢, be a
solution of the following simultaneous linear equation:

cilog e +elog @)+ fealog e =2rvin/ 1 421, -+, m -1,
with »;€ Z. With one complex variable s, put
S)\':'—S'f‘c)\ ;.Zfl, "',‘n .

We define, for ideals a, b in K,

7
G (M, o e™ i, by 8, e, 8w B L a4 fcd) o
aega A1
oK¢Amb

where every ™ is a complex number whose imaginary part is positive. We can
derive the limit formula for @¥” by the same method as for ¢.. For (ci, ---, ¢a)
=(0, 0 ---, 0), there appears non-holomorphic modular form of Hilbert type,
analogous to o7, t'), which is a potential function with respect to real and
imaginary parts of . For (¢, -+ -, ¢a)#(0, - -+, 0), there appears an analogous
function to F(k; ¢, r’) with Grossencharacter ¥ of K defined by

FUB) =150 - |fWen , fe K.

2.3. Limit formula for @
In this section we shall compute the limit formula for

. . Yy
Oz, 50,05 8, 8)= 3 TV
T b5 s, ) I N L N [ e S A L
FED
(a.8)

We divide ¢ into five parts:
(2.8.1) @z, q,b; 81, 82)=3° (term f=0)+ 2° 4+ Z° 4+ Z° o X°,

a€q a€Q a€d a€n o€l
0BED B0,p < B<UBZ0 BUO

where 32° have the same meaning as in 2.0. Further we divide the term
3% (term f==0) into four parts:
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37 (term F=0)= I° &+ 3° 4 3° 4 @,
a€Q a€a 2€qQ a€q
a0 a>0,6e’ <0 «<B,a’>0 ac(0

We can make the last three sums into the sums over totally positive a’s and
we get, for example,

<) ’.ll_‘}L_“ - o y ly ’2 . y ,y’sz ) o
a%a felnle' P g lealijea’ (e Jeftule | Lr(2s, 770, A),
a?go a0

where A is the ideal class to whom a-! belongs.
Therefore, we get

S (term f=0)=2y"1y "2<1{

«€q

)mzs, 72, A).

Jel1]e 252

As for the last three terms of (2.3.1), we see that they are essentially equal to
@.(r, 7 ;a, b; 8, 8:). For example, we have

° y"ly”z _ ° Yy
%o latpriBila 5T jea latefelm|a’+e B
BED [1¢¢:13 ]
B>0,8' <0
o Yyt Yy :
= e e m e Py (T, 705 @, B 81, 82)
wea Iea l—sﬁr]z’l l" o + [3 - lzaz 15123115 12,2 +\Cy s )
0BED

Thus we obtain

-2
(2.3.2) @z, T’ a, 03 81, 8y =20y 82[\:1“(23 x* A)+C}f%§;‘[;;§)‘
" @7, 7750, 5; 5, 8)
4@z, T q, b5 81, So)A — e }2”]:1“2 ]

Now ¢ converges absolutely for Ee(s)>1 and can be continued analytically into
Re(s)> *%‘. {r(28, 7%, A) converges for Re(s)>%~ and is, in particular, regular
at s=1. For k=0, i.e., ¥=1, @., and so @, has a pole at s=1. (Residues at
s=1 of four terms of ¢ do not cancel with together.) For k+0, ¢ is regular
at s=1. By (2.3.2), we see that the limit formula for ¢ is obtained by multiply-
ing yy to that of ¢., roughly speaking. Define

-/"uepﬂ'r'we #'B)

2.3.3) G(z, «*; a, B)= —4x®d Na®(r(2, A)ro'+ 2° 3 N(8) e

b>A3N0 w00
and

2.3.4) G*(z, "5 q, B)=G(—¢7, —e't'; a, B)+G(z, °; a, B)+G(—7, —7;q, b)
+Gler, €750, b) .
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Observing ¥y’ = —(zz’' 27" +7:'+77")/4, we obtain the following.
THEOREM 1. (i) CASE: k=0.

lim [q)(r, 'ia,b; 8, 8)— 8*log ¢ i~]

541 dN(ab) s—1
_8rtloge (2 log 2— log N(6)— log yy' +2C ZS log (V. ¢ a‘lr(zw)dv)
dN(ﬂb) o . /
I pp— _]; — Lo Fa
* gmany O e

(ii) CASE: k0.
@z, o' a, by 14+¢, 1—c)=dytroy' L p(2, 172, A)

—16x2log ¢ ‘ log (v 9 :|9(z)|D)es v =ikedy
dN@byyy < I'A+e)l'(1-¢)
G”th}cy -

P S U * . ,‘.’ . 1 A
+ dsN(ﬂ)3P(1-1 C) I (1 C) (kv ’ ; a, ))

As for the transformation formula in the case k=0, put

NOG*(z, v 50, B

log H(z, 5 a, D)= 324 log eN(u)

Then as in 2.2, we have the following.

THEOREM 3.

H(&(z), &'(z"); a, B)=Hl(z, ¢'; a, b)lyr 46|72y c 4+ 8"

holds for & satisfying (2.2.3).

2.4. Limit formula for 7

We shall consider the funection ¥ defined in 2.0-3° and compute the limit

formula for it.

For ideals a, b in F, we define ideals 4,, dy by
Bglz{ueF; Triauw)e Z for all @ca}
Bglz{veF; Tr(fv)e Z for all e},

For given basis [wi, wz], [wip, wep] of a, D, respectively, basis of 5“;‘, 6:' are
given by

respectively, where
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de o 3=~ wam 1

Ay langw 2p—@agw 1] .

We write
( g Geitber L @by
‘ Jd ’ d
(2.4.1) {
{ AL T (L R )
Jb ’ Jb

with a, b, ¢, b, ap, by, &'y, b's€ R. Then the condition (2.0.2) is equivalent to
(2.4.2) (a,b,a,b)Y¢Z* or (ap, by, a'p, be)EZ*.
We can write

Uz, "5 0, b5 85 (u), ()
(7/7/ )s e:’wzin(m‘m o pagtutin l""lbi "?."‘zb“”

. %)
> 11wy A Mg ('mwu) 4 Mawap)T 1“|m1m; Maws -+ (N iwip -+ Newap)T

‘l?.a

where S(uu-+wv)=pu-t-;'w Fvo-+v'v’ . Thus, up to the factor (yy'), ¥ is the
Epstein zeta-function of four variables (m., mz, n., n:), without spheriecal fune-
tion, defined in Siegel [5] p.61. It converges absolutely for Re(s)>1 (here, our
2¢ stands for s in Siegel [5] p. 61) uniformly in every half-plane Re(s)>1--x(x>0).
By Th.3 in Siegel [5], ¥'(z, ¢'; q, b; 5; (), (v)) has an analytic continuation, which
is an entire function of s, into the whole s-plane.

Now we shall consider the value of ¥ at s=1, which leads us to the limit
formula for ¥. The computation follows the course in 2.1, through Poisson
summation formula (2.0.3), and (2.1.3-4). We have

Wic, z';q,b; 8; (u), (v)

y '/ [4 o

0<<.ea lal“’la i“s

e?mn Swu)

o eaqésimurmm e-:u\ (wut+efy)
t T ;
e { B e A T R A
0FED
2l (Bu—-gBu 2718 @ u—Bv)
‘{MW& en B + em(uﬂv
l(r———usﬁ. |°3|a’ —e' Bl la— 3t la’ — 5|2

Applying Poisson summation formula for the first term in {}, we have the

following result.
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The first term in {} at s=1

-
——— ° 14_‘ eﬁﬂi[ﬂiv~u‘7)+5'(U’n-u’%"’)]

T 4 0«2;3:6!) N(B)

+:i s 1 ezuib‘(ﬁt){ S e_z""(‘!,‘i"”"")"ﬁ“:“-(_%'é“')5""
d olzes N(H) u~:~’3f>o
u’€-~§~>0
4 Z*e—~:‘zré(;}'~E-u),£’f'»f‘215(—%%fu’)_;i’t'

>0
<0

L 2*8-215 (~§j+u)jt»216(—-§~+u'),5’%'

S
n E*eu?.—.i(%’:-é*u)ﬁt—‘.’n‘(u%}-.Lu')p"f’}
i <0 ’

<0

where 3% denotes the omission of p=0.

The second, third and last terms in { } at $=1 ean be calculated in the same
way and are of the forms analogous to the above. Then the term involving only
7, 7 in ¥ is given by

x? 1 i Bttt
(2.4.3) = {e“’”[f‘"’““’”‘ﬁ wr-ntin]
4 03D N(.B)
FermiSpy Sk e”z‘"'i(‘5"*“)57”2’”(““[3'"'“")5'7'
uk’ijl->0
w0

fgiisem e—m (_-3:+u)95?—2m‘ (~-£Jf-+u')e’3"1"
]
<0

pertisi-ean STk ez,zi(%+u)e,s;»;~2xi (~J.3 +ul)eryr
<0

>0
e St-pn STk e:""'(/:,"“‘)ﬁ‘*”i(‘%’*'"')ﬂ'?} .
o

We can transform the summation conditions on %~i~u, H%Jru’ into that on

only g, #. This is shown by elementary, case by case considerations: For
example, assume that o,>w:, wi>wi. There exist 4, j€ Z such that
(E+Dlwe] > wi| > t|wl ,
(I+Dlwz| >0 >jlwi) .
%, %' being as in (2.4.1), we take b=b"=0 and 0<a<1, 0<a’ <1, namely

(2.4.4) u:“—‘é"ﬁi, u':%‘”ﬁl, 0<a<l, 0<a’<l.
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Suppose that

i (leal il —gleel

(2.4.5) 0<u<Min ( i - ) .
0<u'<Min(‘f2ﬂ &zL:M)

ke

Then we see that

—u>0ED ——%+u’>0,
;z’>0<::>"’3+u>0.

Hence under the supposition (2.4.5) the summation conditions on —i:;——:-u' , Z«-Pu
can be transformed into that on s, . But the expression thus obtained is valid
for all , w’ of (2.4.4). This is also shown by elementary, case by case considera-

tions. In fact, for example, let us change the summation conditions

H L an .
<A+u>0, A,u>0),<d~}u>0, Anu<0>,

. L i P
(d +u<0, y +u >0> , (A +u<0, i +u <O>
to (1'>0, —p>0), (>0, —£<0), (#' <0, —p>0), (#'<0, —p#<0). Suppose, say,
that the number of terms in (¢’ >0, —p>0) decreases than the number of terms in

“ B
(A +u>0, y +u >0) )

Then the number of terms in (¢’ <0, —:<0) increases than the number of terms in
i L
(d Fu <o, A+u<0>,

And increasing terms in (1'<0, —<0) and decreasing terms in (¢'>0, —¢>0)
cancel out. Further in this case, there is no change in the second and third
terms of double sum in (2.4.3).

Analogous expressions hold for the rest parts invelving only (z, T), (r, 7)
and (7, ¢’), respectively.

We put

. _‘_d ° 2Ty 7 Stau)
Ou(s, 7’5 0, b5 (w), ()= - 2° ¢

7 odeea  N@®

. 1
fis NG

e~ VI [Bre—un+p @ —u'7")]
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Lo 1 {e—zx VIS Sk ¢ 234-_1(%;“)5-4:2“’?1(%“')ﬁ'-—‘

T -
ocsed N(5) a'>0
>0

>0
—u<l

42T YT SieBol STk e*2'“’:“1(5'_,;'#")%,9-»2"J—‘l(m}m‘)z'ﬁ‘r’
i

12 VTI S Sk A O R et G R L }
<0
e

and

— 2N Y7 Nimu)
Oulr, <5 0, b; (w), @)= =2 3o &1

¥ da€a N(a)?

-~

o 1

~ @=2m VI [Bir—uri—e B (v ~u'T 1]

+0<<52éb N(B)

4 e 1 _ {eusz:‘l Sepy Pk eZT"/-_1(%,‘“)2.-‘9”271~/:“i(~‘§~+u’)€’.f?’f'
oczeb N(B) ¥’ >0

—u>0

e YIS EY STk o2 V(G )by S (< )re
20

_*_eh’/*_—l SBw E* eezftJ:i(%+|t)ﬁf—2nv—_1(—~5»+u’)ﬂ’r’
'
250

Jerr/TIsEpn Tk o in s/—_x(%luru)eﬁr—zﬂJ:T(~—§»+u’)e'ﬁ':'} .

g
al <0
~u<0

Then we have
248) Ui, a, b 1 (), ()

=T 0, <5 0, b5 (W), W) HO—F, —F; 0, b; (), ()
+0ulz, 75 0, by (u), () +0u(—7, =" a, b; (w), (—v))}

under the condition (2.4.4) on %, ' .

We see that the expression (2.4.6) is valid for all w, %’ satisfying (2.0.2),
hence (2.4.2). To prove this, it is sufficient to show that the right hand side
of (2.4.6) is invariant under a—a+1, ¢’ —>a’'+1, since ¥ is invariant under the
translations. (As for a, a’ see (2.4.2)). We consider the terms involving (r, '),
(z, ), (¢, ), (7,7) separlately. The term involving (7, 7) was given by changing

the sum conditions on %—I—u, —=—-§—+u’ to the respective conditions on p', 1.

The invariance under the above translations will be shown by elementary, case
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by case considerations. For example, assume that there occur changes in the
second term. Then, changes in the first, second and fifth terms cancel out. And
in this case, there are no changes in the third and fourth terms.

Now we can change the sum conditions in @ into that of totally positive
#'s. Thus we have

(24.7) Oz, ' q, b5 (w), (o)) =2 wo €I
4. (e, 775 a, 05 (w), (9))= - v
2 Oa€q N(a)

P

1,, euzrw.d [Biv—uri+B (v' ~u'7')]

o2 NGB

o 1 _ oy = l[ __,‘, “ 9-4 Y
4 e—4m /T8 BY STk (-5 Yoe+(Fru)se]
et >

4-@=2F VI S(2BY) Sk e 2"'/*_1[(“J;*‘“)fﬁw(—*f}f‘u')yﬁ’f']
el

J oIS Sk g VT (~A e (Grwr)orae ]
#10

et VTISEN Sk o ~’-—1[(—“+u)5-+(~5§+u’)5’r']}

1250
and

248 Oz, 750, b; (u), ()= =2 yo LTI
o, T T ; a, u — [ ——
: Y 7% oaeq N(a)

° W‘];_ g2 VT1 [eBlv—ur) 2/ B/ (v’ —u’'7")]

ts NG

1 - =is 2'"/:'_‘[(‘w‘:“'“)ﬁﬁf'?(iﬁ-f-u’)z"”:"
_I P 22y 01 S(epv) * e ] Y] E) ]
2w >

e VIiSEN Sk ¢ 2 \/—[(m+u),9 +(~—§—+u’)ﬁ’s']

w0

e VII @0 Sk o -2 (Geu)sea (G )pe]
#30

J-g2® VT Si2Bul E* e—21!b’:'l‘[(elf:+u)sﬁf+(—%ﬂ+u’)s’,3':’]} .

#20

Further we define
(2.4.9)  logd(z, z'; (w), (v)
=+/d Oz, v'; a, b; (w), (W)+6(—7, —7"; a, b; (w), (—2)
+6:(z, 7'; 0, b; (), (0))+6:(—7, —7"; q, b; (w), (—v))}.



Kronecker's limit formulas 19

We may summarize the above results in
THEOREM 4. Let a=[w;, ws], b==[ww, we;] be ideals in F. Let u,w', v, v" be
real numbers satisfying

(a,b,a',b)¢2Z* or (a,b,a,b)€2
in writing as
U= (a(ué -+ bml)/J , u f‘»“(a!(ﬂz "%"b'“’l)iﬂ '
vea{@iwntbwe)ids, v (@ g b yo)idy .

Then

3

Fie, 25,05 1; (w), (w)=-

Jo g log e, T (w), ),

where A is defined in (2.4.9).
In particular, if (a, b, a’, b'Yc Z%, then the first term in O; is given by

where A 1is the ideal class to whom a~' belongs.
Let 5:(” ’f) be as in (2.2.3). Put (u)=(u-+6), (W*)=(v-+y). Then

-

P(E(z), ()5 a, b; (W), W)=V, "5 a, b; (w), (V) .

Denote u=u(a, b), v=v(ap, bp) as in (2.4.1). Then we see easily the following
transformation formulas for 4.

(2.4.10) A7), §°(z7); (u*), (W*)=A(z, =°; (w), (W),
Az, o5 (w(a+1, b)), ()=4A(r, "5 (ue, b+1)), (v))
= Az, 75 (w), (agt1, bp)))==Alr, 7°; (u), (v(ay, by+1)))
=A(z, ;5 (u), (v)).

3. Limit formula for zeta-function of a certain biquadratic field

3.1, Let F=Q(+/d) be a real quadratic field with the fundamental unit ¢
of norm —1, as above. For a totally negative non-quadratic number p of F,
we define a biguadratic field K=F(v/7)=Q(v~d, v ). We shall consider the
zeta-function of K and compute the limit formula for it.

Let 97 be an ideal class in K and €. an ideal belonging to & ~'. There
exist elements 2., O, of K and an ideal a. in F such that €. =a.2:120:,
where o is the ring of integers in F. We may take Im 2;72,>0. Put r«
=070, and re =24 +1Ya .

i
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Let c¢x be the fundamental unit of K. We take that (ex|>1. There are
two cases:

1) Jexl=e,
2) lexl=+"¢ .
Firstly we consider the case 1). We have, with Ng,o(3)>0,

CK(s' ‘%)i: _QNK_/%E)(\%.{)JL Z ° NK/Q (g)—a

055€@ 5

G..))” ,
_ Q\.’ﬂ‘%( NS N ela 20
w a€Q.r

BED, (a8
where w is the number of roofs of unity in K. Now we have

Njolali+80:) 7= Npso(afr 4 f2:)(@ @ 14 B2 2))* = N ol 1 2 tlat frae|?)

oo P bt e ),

where D, is the discriminant of positive definite quadratic form

_ . G, — 0O 2
(a1 )@@ +B32), hence D,,:fi%g—"’jg 229" Thus we have

Cl\(sr y)“ 4'&0(‘\/Dm (p(&w’,r‘»f, a\w’D’ 3, S) -

By Th.1 (i), we obtain the limit formula for {x(s, )

) L ﬁZPNK/Q((sm»’) ( 41 A NI;/Q(QS:J)H(TJ/, T"s{; Qv 0)
s )= B D e Ny \ g1 T log =GR

+*(g—1) - ) ,
where we put

312  P=8loge/d, M=2log 2+20“2§‘ log (v7: Vd 17@))dv.
0

We can set

_ Ngpl€@ NH(zw, /o 0w, O)
(3.1.3) H()= NDaD ot

since it can be easily seen that the right hand side is a class invariant.
We see

Nz/o(€.s) 1
(3.1.4) 4VD2D »Naw)  VNO)
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with the relative discriminant b of K/F. Since in this case the regulator E of
K equals 2log lex]=2loge, we have

4=2Z

Cx(s, .,Q/)::wd \/W

(sil +M-+log H( &7 )4-#(s—1) -« ) .

Secondly, we consider the case 2). In this case, the summation condition in
(3.1.1) must be changed to that over non-associated («, 8) with units in XK. Hence

the sum 3 in (3.1.1) is multiplied by % The regulator R equals 2log |sx|=loge.

Thus we have the limit formula of the same form as in case 1).

THEOREM 5. Let K be biquadratic field obtained by adjunction, to F=Q(~/d),
of a totally megative number in F. Let {k(s, S7) be the zeta-function of K
corresponding to an ideal class . Then the limit formula for {x(s, ) s
given by

léim (CK(S,JZ'/ 472K ) 42*E
¥ 1

T wd VNG ) wd v NG (M+log H(¥7)) ,

where w 18 the number of roots of unity in K, M is the constant, not depend-
ing on 7, defined in (3.1.2), R is the regulator of K and H{.7) is the class
invariant defined by (3.1.3).

3.2. Let k be an arbitrary algebraic number field of finite degree. Let
K=k(~/ ) be relative quadratic extension of & by adjunction of non-quadratic
integer u in k. Let p be a prime ideal in k. We define, following Hilbert [7],
the symbol (-ﬁ) as follows:

(;-) =1 if p decomposes into different prime ideals in K,

(-”—):::—1 if p remains prime in K,
and
<~fg~>r~:0 if p is a quadrat of a prime ideal in K.

Let b be the relative diseriminant of K/k. Then Satz 6 of Hilbert [7]
asserts that

3.2.1) (;i>~0 if and only if plo.

For p coprime to 2 and g, Satz 7 in Hilbert [7] asserts
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(3.2.2) (g)tl if and only if £ is quadratic residue modyp,

(3.2.3) (;;) =—1 if and only if p is quadratic non-residue mod v.

Here we quote Satz 4,5 in [7] in the following forms:

(3.2.4) Let p be a prime ideal coprime to 2. We let 1* exactly divide . Then
pid for odd a and (b, d)=:1 for even a.

(3.2.5) Let { be a prime ideal such that (! exactly divide 2. Further we let
I* exactly divide 2. Then (1, 0)—1 if and only if ;is quadratic residue
mod (3,
(8.2.6) When 12 is coprime to 2, (b, 2)==1 if and only if s is quadratic residue
mod 4.
Thus for a prime factor | of 2, we have (;f)u() if ¢ divides exactly n

with odd exponent a. If this @ is even, take an integer 1* in & such that
3.2.7) pe=Acp® (mod B9+ for 4 in k, {14 but (314,

Then we have (»’?—):0 if /* is not quadratic mod 13, <-~[[i>:1 if s is quadratic
‘mod ***! and (%) =1 if /* is not quadratic mod (*'"'. We extend the symbol

(:) to an arbitrary integral ideal in k& multiplicatively.

Put pe==s1p12 with coprime s, 12 in k and Ki=k(~/ 1)), Ke==k(~/1;). Let by, be
be the relative discriminants of K., K: respectively. For a prime factor p of b
not dividing 2, we see, by (3.2.4), that p divides only b or only d:. (Here (1,
/t2)=1 is unneccessary). We consider a prime factor t of 2. If (1, 2)==1, we have
(i, 2)+(12, 2)-=1. Then by (3.2.6) it can be easily seen that if (b, 2)==1 then
(0, 2)=(d2, 2)==1 or (b, 2)#1, (02, 2)#1. In the first case, we can deduce that

(I‘)("{‘)(”{) In the second case, <-[;¥)r/:0 but ('%)—:(’1)0 Also by

(3.2.6), if (b, 2):£1, then (0, 2)#1 and (b;, 2)=1 for 7, j==1,2. In this case, we
hq‘ve ’,’If,_.>~w (ll‘ )(‘”i);;o
: ( S )= )
Now assume that
(3.2.8) b and D: are coprime mutually.

Then we have

(3.2.9) (9:(%)(&3) for pr2.

Since there does not appear the case (0, 2)=1, (0, 2)=1, (0, 2)#1, we have
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(3.2.10) if (1, 2)=1, then (;i)m(%)() for 112 .

We consider the case (#, 2)=1 under (3.2.7). Let I, a, 2, #* be as in (3.2.5)
and (3.2.7).
If @ is odd, then (»f(i)zo and since [® exactly divides su or (¢ exactly divides

/2, we have (%’—)zo or (“-{-ﬂ-):o. Let a be even. If (%‘—)::0, then ¢* is not

quadratic mod 12!, We denote by gz, 1§ numbers for s, s analogous to /% for

p as in (8.2.7). Then g or yF must be non-quadratic mod 1*; namely (F—%) =0

or (’;—1):0. If (»’f—)w, then (I, d)==1. Since , f= are coprime, (¢ exactly
divides g or p:. This is naturally satisfied without the condition (x, p)=1,
if k is quadratic. By this reason, we can deduce that if (I, d)=1, then (I, b))
=(,h)=1 or (I, b)#1, ({, b:)#1. But by (3.2.8), the second case does not occur.

In the first case, it can be easily seen that if (L:-):l, then (%L):(f?«) and if

{ {

LEMMA 1. Let ¢ be a non-quadratic number of k. Put p=w, 112 with non-
quadratic integers p, piz of k. Let b, 0,0 be the relative discriminants of
K im), B ), k(N ), Tespectively.

(1) Assume that (b1, d2)=1 and (u, p2)=1. Then

i) for any prime ideal p in k, (%):‘:(%)(%) .

ii) Only prime factor of b divides b or d.. Conversely, only prime
factor of b (i=1, 2) divides d.
2) If k is a quadratic field, then (¢, pa)=1 follows from (b, d2)=1.
3.3. Let k and K=k(~/7/) be as in 3.2. As usual, we denote by 71, 27, the
number of real, complex conjugates of k, over Q, respectively. It is well-known,
after Dirichlet and Dedekind, that

(%) =-—1, then (ﬁ'—):~<ﬁi> Summing up, we have the following

21 2n) e Rk

w,‘\/}Aki ’

(3.3.1) Res {i(s)==-
&g=1

where h: is the class number of &, R: is the regulator of %k, 4 is the discriminant
of k over @ and w: is the number of roots of unity in k.
We define

Lus)= S (-f:-)Na-s .

a

It has Euler product formula:
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Lis)=11 (1_ (%) N -s)"’ .

On direct computation, we have
Ck(8)=Cu(s)Lu(s) .
Then by (8.3.1), we have

2r{—r1(27?)"‘-:‘%’2 V4] R hc-wn
V| dklwk Rihi

(3.3.2) L.1)=
In particular, when k=F=Q(v/d), K=F(+/};;;) with totally positive s, then

(3.3.3) L (1)=-"7"-22

where we put Ri=Rx, hi=hx and 4,=4dx.
When K=F{(+/;;) with totally negative ;:, we have

27%- \/E'Rz'hz

(334) Lyz(l):vﬁ'wz Rk'hk ’

where we put R:=Rx, he=hx, do=4dx and we=wx.

34. Let k=F=Q(vd) and K=F(~/ /) with totally negative # in F. Put
p=upt; with totally positive i and totally negative x in F. Let b, D. be the
relative discriminants of Ki=F(v/}), Ko=F(~/11;), respectively. Assume that
(1, 02)=1. By Lemma 1, (2), (u, r)=1. For such a decomposition of x, and
for any prime ideal P, in K, coprime to b, we define

(i)

K
where the symbol (;;) is defined in 3.2. Then we have

(st

This ean be shown by Lemma 1 as in Siegel [5] p. 78. When L|b, only

H . 2 .
— is zero or onl ( — ) is zero. Then we define ¢ to be the non-
( Nic/r® ) Y U Ng/rB 4

zero value. We extend ¢ to all ideals % in K. It is proved that ¢(M)=¢(B)
if M is equivalent to B (in the narrow sense). ¢ is the so-called genus character
of K.

LEMMA 2. ¢(N)=¢(B) holds if N and B are equivalent (in the narrow sense).
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Consider L-series, for Re(s)>1,

Lk(s, )= 3 $ONUA—== 11 {1 A—=H(PINP-)— .
Lip
As in Siegel [5] pp. 79-80, we obtain
LK(S) ¢):LP1<S)L!‘2(S) .

Then Lemma 2 can be proved following Hecke's method (see, Siegel [5] pp. 84-85).
Let b be the relative discriminants of F(v/;)/F. Then (3.3.3), (3.3.4) are
rewritten as

Ly, ())=4RhijvV d VN Ri- b,
Ly2(1):—:ZE:RZ}LZ/\/E_"\/N}TE@UZRI\‘}%& .
We know by Th.5 that for non-prineipal ideal class character ¥ of K,

4R5

L1, )= ) /N(i-)

> %(.7) log H(Y)

holds. Thus we have the following

ProPOSITION 4. Let g be a totally negative number of F=Q(v/'d), d>0. Put
K=F(v ). Decompose it as p=yu: with totally positive i and totally negative
¢z in F. Denote by b, b1, b the relative diseriminants of K, F(v/ ), F(V )
over F, respectively. Assume that (01, d:)=1. Then for a genus character ¢

corresponding to the decomposition p=(up., the following formula holds:

2Rk Rahs
Rihiwsv N(0ids)

This is a generalization of “Kronecker’s solution of Pell’s equation”.

3.5. Class number of the absolute class field of Q(v/'d, v/ u).
d>0, p<0 in Q(Vd))

Let F=Q(+~d) be asin 3.1. Let Ko be the absolute class field of K=F(v)
with totally negative p. We have, by class field theory,

Cko(8)=T11 Lk(s, %) ,
%

where ¥ runs over all ideal class characters in K. For x==1, we have Lk(s, 1)
={x(s). Hence

L, (8)= :[I;!Lx(s, 2)Cxr(8) .

K. is totally imaginary of degree 4h (h=hk). Since K, is unramified over K,
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we have the discriminant of K,/@ equals (d*N(b))*, where b is the relative dis-
criminant of K/F. On comparing the residues at s==1, we obtain, by (3.3.1)
{or Th.5 for {«(s)), the following

PROPOSITION 5. Let K be a imaginary quadratic extension of a real quadratic
field. Let K, be the absolute class field of K. Then

Ri, he, R hk

Wi, w:,’*'

1;11 2 U) log H.Y) ,

where 7 runs over all ideal classes in K and % over all mon-principal class

characters in K.

3.6. Ray class field over K=Q(v d, v/ ;1) (d>0, #<<0). Let K, F be as in
3.5. Let 7+#(1) be an integral ideal in K. We consider the ray class group 85/t
modula }. Let X be a character of ai/e .

We start from (1.2.4) for L-series of K:

Li(s, )=T" 3 ) SHENC? 3 a(fer =1 5o NG

A mod o Corlid
In the present case, v(5)=1 identically.
Let w and w; be the number of roots of 1 and of roots of unit ¢ satisfying
¢==1(modf). We have
2 =wt 3

G G0 G| 8y %g
where (8). denotes that it runs over non-associated (with respect to units not
being roots of 1) f. As 2 runs over a full system of representatives of G(f)
and €. over a complete set of representatives of the classes, then ()6, covers
exactly w/w; times, a complete system of representatives of &;/¢;. Thus we
have, for Re(s)>1,
Li(s, =(Twp)™ SUCHNCLy 5 evTodn NG,

(LI T IINEN
where & runs over O;/; and € ; is a fixed integral ideal in <& coprime to §.

Write €o=a.,0:+002: and -, =010,
and put
Us=0y+ T, ve=0g+ 0.7,
Then (ws)=(u.+, ') and (v.s)=(vas, v'.5) satisfy (2.4.2), by our choice of V.
6.+ and §.
Put Dos=(0:0:—02.0,%/4,
D o= (12— 252024
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Then for case 1) in §3.1, we have, as in §3.1,

Lk(s, )= 7= 2 6 NG ) 4v dIvD D st log Alc e, ©' ot (was), (0.) .

With the relative discriminant d of KiF,
NE )4V DD s Naw=1/~Nd

holds.
For case 2) in §3.1, the right hand side of Lx(s, ¥) is multiplied by ; .
By Th.4, and the above, we obtain the following limit formula for Lx(s, %).

THEOREM 5. Let F be a real quadratic field of discriminant d with funda-
mental unit ¢ of norm 1. Lel K be a imaginary quadratic extension of ¥
with the relative discriminant D over F. Define ¢=1 if e¢x with jcx]--¢ 1s
fundamental unit in K, ¢= ; if ex with sx|=+"¢ s fundamental unit in K.

Let f be an integral ideal in K, y be a ray class character mod i and wj the
aumber of roots of unity congruent to 1 modi in K. Then

Lk(1, x)= 2 (€ ) log Alr e, v/ (u.r), (0.r))

’N o wiT -
where &F runs over &i/€; and T is defined in §1.2.

Let K. be the ray class field moduloj of K=F(+/ ), #<<0. We denote
d-=dx,, Br=Rk,, wr=wk,.

Let g be the order of Galois group of K,/K and b =0k, the relative dis-
criminant of K./K. K. is totally imaginary over @ of degree 4g. Let %, ix
be as in §1.2. Then |4.]=N®,} +/N5-d) and d.—=1l;. By Th. 5, we have

Li(1, %)= LITZJM | IO 2 Tog Alrisg, €anys (w5, (0)
where To=TXo):= 3 F(Nerv=isar

i mad fy

and 7o is chosen so that (yo)+/px has an exact denominator . Multiplying (s--1)
on both side of (1.2.5) and tending s to 1, we have the following

THEOREM 6. Let K, K., b, b,, §, X, %o, {2, wj,, ¢, Rk, E: be as above. Let
h: be the ideal class number of K.. Then
h' RK’wf 5xx/j\7~

hx  Rowx 11;1 w,xTo %07 o(Cag)log Alray, T wy; (), (v:v)))

where =, for all X and < runs over all &; /@f‘.
Rt
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4. Limit formula for zeta-function of a real biquadratic field

4.1. We call a biquadratic field, whose Galois group is “ Vierergpuppe”, a
Viererkorper or a V-field, (c.f., Kuroda [8])*. Let K be a real V-field. Then
K contains exactly three real quadratic fields Q(vm.), Q(vm:) and Q(v'mas)
with rational integers m: such that mim.ms is non-quadratic. Let e, e, & be
three fundamental units of @(vVm:), Q(v'm:z) and Q(~v'ms) respectively. Then
S. Kuroda gave the following table of possibilities of a system of fundamental
units in K and proved that every case really occurs.

1. e, e, e,
Ve, &2, &8, Ne=1.
‘V/El, \/Ez, &3, Ney=Ne=1,

Ve, €, €, Nzi==Nep==1 ,

\/51
Veer, Vess, Ve, Ney=Ney= Nea=:1,

2, V/Es, €2, NixiNEZEINSST:]. y

"

S AT o

\/515253 ; €2, €3,

4.2. Let F=Q(~/d) be a real quadratic field of diseriminant d with the
fundamental unit ¢ of norm —1. Let o be the ring of integers in F. Let

(a 3)5 be a hyperbolic element with «, b, ¢, d€p, b=0 (moda) and c=0
c

(mod ). Let K be the totally real field of degree 4 obtained by adding fixed
points of £ to F.

Let oi(i=0, ---3) be four distinet isomorphisms of K into R. We take as
follows: oo:=:1, ¢» fixes F and o, induces "on F'. We also write ¢’ =a’: for a ¢ K.

For an element a of K, we denote a"t==a. Hence a¢=:a'". By the notation,
fixed points of & are denoted by «®, w® and that of & by o, ©®, We put
one more assumption:

(A1) Let <1, 2 be relative units of K/F (.e., Ni#(e)=21, for i=1,2). Then
¢, ¢1, 62 make a system of fundamental units in K.

REMARK 1. For any given real V-field K=Q(~'d, vm), we can construct
K by adding hyperbolic fiixed points to F=Q(+/d).

REMARK 2. We consider F with ¢ of norm —1. Hence for V-field X, in
Kuroda's table, cases 1, 2, 3, 4, 7 can oceur. Cases 1, 2, 3, 4, 7 really occur, put-
ting e+-¢ in the table, see Kuroda's examples {8] p.p. 397-398.

We may take ¢%>1, V<1, [¢*1>1 and [¢’|<1. Put

* I thank Prof. M. Ishida, who has kindly informed me the existence of this paper.
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(4.2.0) w=|ef® /e P [T1|e 0 eV |72
1L,;!5{1)15{3‘,'zlleél)/séfi}x:re .
with two real parameters z,, z:. Put for an ideal a in F, C=atow. (0=w®),

Then € is an ideal in K. We consider &(zr,="; a, v, 8, 82) in 2.0, 2.3, and 7, <
under

(4.2.1) u\/ 1(1,<0>4_w(2) ?L" vV 1 1(0‘”+({3‘s’

' T =

uvV—1-+1 Vv —1+1

Then we have

v

(4.2.2) Y= (09 —a®) ;62%“—1— ) ‘(w“’«»w(s’)_;:‘ 1

and
2O =aq 4 Lw®, p®P=a+Be®, V=g 5o, p® a5 o,

Then we have

2.1 2)2 N P
4.2.3) ot ef= KWL e W

ut+1 w41

Remark that g is an element of € but comes from only non-associated («, j)
in FXF. We can rewrite
@(z, T'; a,0; 81, 82)

=2+ X))+ EHF 2N+ (2 +EH)H (T + E°)

[RET4 a€Q a€Q a€Q a€q a€q 2€Q a €
0((BED al>() BED a<l,a’ >0 Fii] a0 s€0
a’<0 gso0,p<0 £<0,8 >0 o
1
=(3°"+>° )4’"‘;;"‘“*2‘;"(2 + 3° )4“*";;“ ™ (42
0a€a  a€a [el?*1]e’ *2 olwea a€a efP1]e’'|#2 laea a€n
0(g€D 0BED WBED
+(2°+ 2°).
0a€a  a€q
0¢¢BED

Inserting (4.2.3) in the above last formula, we see that there only appear non-
F-associated ¢'s of € in the sums; namely, in the sums, every element of the
form ey, ne Z, appears only once. Thus we have

(4.2.4) @z, t";a,0; 8, 82)

=2 (1+ 1 )(mtm @Y1 - D)2
Je|?e]e” | 222

U122
X 2 ] 3 30 g,
Oxm),,r:@ (#(0) u2+#(2) )01(/10) W% 2+l‘(3’ )52




30 Koji KATAYAMA

where >, means the sum over all non-zero non-F-associated y in G,
0x i g8
4.3. ¢ is invariant under r— &(z). This transformation gives the transla-
tion &> x:+1, 22> 2:4+1. We see that ¢, regarding as a funetion of z, X2,
has period 1 and Fourier series expansion. The Fourier coefficients are given by

1 ~2r /1
a/;xkz“ig X(]) ' z VH dedir,
zg=0
We shall show, as in Siegel [5], that every @ %, is nothing but the zeta-function

with Grossencharacter of K up to /’-factors.
Since ¢, as function of =, ', is uniformly convergent on (4.2.1), we can

change 3’ and“. Changing variables z:, z: to u, u’, we have

1

(4.3.1) a”-’l"zitz(lw{u [Elzmp IZa

1
((U(O) 2 ’1((1) PSP I AT P
o ey

N

e1a) aygy —25 V1 e VT
- Sg Y 2y Du > dudu
o (

2 2 2 %g,
0% o @ ‘u(m u2+[t(2) )’1(_/1“’ u'2+!l(3) )32 wu'

Here the notation is follows:

D is the functional determinant -—~—-°.r22 2/ |
o(x:122)

d(log u, logw') _jlog &i”* log & |
1log e
A=k log e~ log £,@* |
B= -~k log 2%+ ky log &% .
and
G is the image of the unit square, whose vertices are (0, 0), (1, 0), (1, 1),
[ n
(0, 1), in (@1, ®2)-plane by the map (4.2.0). Changing f';’:m gu to u and -77§u to

%', we have

1 1
4.3.1 *”2( )("’”’“w‘*' oW —p®)e
( ) | lza‘ls Iza ) ) D
,m ‘,w,;"l (1 l VI 2 N ,
X £ e - & ) P Nl(fu(m)ﬁs‘Nl(ﬂw)) o
Ox ) po@i H 22|

A —
« S usy—-?z ~’-17'D ur 8- 22 Y X D du du:
T eee  (@EHLy(w 1) wu

where Gn,» is the image of the square, whose vertices (n, m), (n+1, m), (n+1,
m+1), (n, m+1), in (x:, x:)-plane by the map
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} -1 ioathi 21; 50; :.
; i i

We have to make change thesum 3 to the sum 3, . To do this, we remark
wpc@ =

that if (5)r=(;)r, then y== 3" for n, me Z. Observing sign distributions of
7, we have
(4.3.2) 5 (*M IOPS H .

el 60,0 Gn,m

me@ ™

In the above, S_‘. Ga,n covers the whole first quaters of (u, u')-plane without

mynm—oo

gaps and overlaps. Therefore, we have

X Sm usls-'."r‘m—lpus,wzwv-db dudu

4.3.2) =4 X (%

e (U +1)(uw+1p uwu'
Computing
o g g 1(.; Vs ) 1(—;— +m/:it>
230 Wl w 7'(s) ’
we obtain
1 , L1
(4.3.3) ek, .-;:2(1+ @81]5'[282 )(w(oyuwm) o — ) 2D

w 2"’—17;N (@)% N, (p®) =2

19 203 1.,
2| ]

Rty #(3,

z'(_Sa_.zz,Fié) 1*(..81_+?513§'_1_4> r(ﬁa-mf ~1B) (% 7Y 3};@) |

2D 2" D 2~ D 2
F(sy I's:)

X

For ¢c—==v =1ko/logs, koc Z, we put
- - e A g g B
Drgbata(10) = O T TR TG 8 T e

which is a Grossencharacter of K. Thus defining Gréssencharacter 7.,((8)==18/51°
of F, and observing

NOCY Loy, (E)CK(8, Tkghyeg » B)= Zcikgkikz((ﬂ)) N~
{3

for the zeta-function of K associated with Grossencharacter %i.,e, and the ideal
class & of €', we may summarize the above in
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4.3.4) gk, szl(a,k , with c=nv —1ks/ log ¢)

“2(u >

[‘(3 v~ }ﬁ)r(sz ,“:‘:’::15) 1’(8' et )r(é‘;ﬁ“@)

|5128,|5 i )N(G)"((o)“” @)V — e ®))p (“’ @ — “’m) 1

—1]

2 D 2 D D
1'(8)) I'(s2)

X %koklkg((‘g)cx(sy :X.kgk;kz s goﬂ)-

4.4. We computed, in §2, limit formula for &(z, z"; a,0; 81, 82) with ¢=0
or ¢==av —1k/log c. Therefore, by integration with respect to u, %, we may
obtain the limit formula for {i(s, ¥k, & ). Observe that by our chice of e,
&1, 2, we have Dloge=4 Rx and Nk o(€)/Na(w® —w?)w® —o®)=1/~Nbd with
relative discriminant d of K/F.

THEOREM 7. Let K be a real biquadratic field over F=Q(~'d). Let b be the
relative discriminant of K/F and Rx the regulator of K. Under the assump-
tion (A.1), the following limit formulas hold. In (i), (ii), H(z, <'; a, 0) is the
Sunction defined in 2.3.

(i) CASE: ko=ky=k:=0

. Qe 16Na 8atloge-P
1;{111 (CK(S’ <€) s-l) [Iog VN " d-Na

N SS! log (uﬂ(fr 3 _’;,,,thu) dxidz: ] ’
im0 Yy

1

where a_,=16Rx/w-d- v Nb, and
P—21log zvcu,fzzcwzg1 log (Vi Y 1(2)Hdw.
)

(i) CASE: k=0, (ki, k)#(0, 0)
Cx(, Foryk,, B°)

H(z, " S
-8 R | tog (FES 0 Yoo vm e dida
- d~vNbd-7(4, B, D)
where
7(4, B, D)
_ 1 =v—14 v =1 IA) (1 ﬁ\/:iB) (1 v —1B
=Y A St 0 I A P {2y —=0 = —iD
(2 D ) (2 D s 1 )zt )

A=k log ¢{"*—k: log ¢*
B=-—k log 62(0’24- ke log (0%
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;s PRITES
e ilog e log &) 3
[ log ¢ log &%

and Jor,x, comes from the Grossencharacter defined by

&

5o,
de

L= B e A e -
e L_,lu‘]?“"”z) AT 3 | LR

P
PR (1)) BV
with e==v —1ks/loge.
(iii) CASE: k=0

ik o6)- D (Niyp(8)1a- 2~ Na- ()
4v'Nu-1(A, B, D)

E:K(lv .Z’\'lefig ] (é)):

11
e [4§1‘(2, 7?/;]2, A)K S yrrey v e(dadas)

1
16=% log ¢ S log (V4 In(z)|2)e — = v=iker d@‘ g ¥y’ e(dxdas)

dNa-(c)
16‘ ! 1 14e, ‘1~~EF>§: ([ A e 4 d. d,.. AY
T\C)gV/dsN 1) Y 50,&,&,7,’!‘)8( RT3 BN
where elduidns)=e %1 f—_ i dindxs
T l(B)=18/8'1F with e=xv"1lko/log s
and iey="{1-+c)"(1-¢).

5. Ray class fields of a real biquadratic field

5.1. Let F be a real quadratic field of diseriminant d with fundamental
unit ¢ of norm —1. Let K be a real biquadratic field containing F, .o an
ideal class in K. ©@., being an ideal in &, we write

L w T fQ - "Q_
with an ideal a in F. Let o: be as in §4. We have
(5.1.1) QPP — PPN ~ 2P 0I)= NG ..)vV N5/ Naw) .

Let T be an integral ideal in K. We take r€ K so that ()v'? has an exact
denominator §, as in §2.2. We start from

(6.1.2)  Lx(s, n=T" X /(3)27& ANE.y 5 w(f)e Vs NG -

2mod G iGiso
with »(3)=1 identically.

For fef., we write f=a2,+p2; with aca., feo. Putting 2=
Skr(28217) and v.-=8k/r(A2:7), we have
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S(ifj'r) = Slr/Qf:a%;/ + 5’1);/) B

We consider ¥(r, v'; aw, 0; s; (), (v.-)), which is denoted by ¥ . (r, 1) for bre-
vity. Let I’ be the group of all units of K, I'; the group of c€ " with e=1modi,
and ['y* the group of totally positive units in I'. We set the following as-
sumption (A7) instead of (A—1):

(A—j) There are three units %, 7, 72 in I'f*, such that they generate I'y*
and 7, 7. are relative units of K/F.

Put w® =000 and oV =0L/0M

Consider a hyperbolic transformation whose fixed points are o, 0®, ¥, &®,
As in §4, we introduce variables

p= (v) (’7“)
72 ) \g®

. 3?{1) zy 7};1) Zq

= (1) (

with real parameters x:, x: and consider

pvV—1+1

5 /1w +o® , VA AL
5.1.3 T .p)‘m;;‘ﬁ ol T == p,,,,, mie @
( ) pv/ —1+1

Writing 7@ =a-t- S0, pV=a'f o™, we have, as in §4,

(5.1.4) 27, 4 8)= (N(ay))"glglyfy(r, Ddadzs
Ny

o T S g2 VIS U (910 — (g @)V — )2
P

p'p” dpdp’
o (PO pE(p S By pp’

where D is the functional determinant (2log pdlog p')/(dz: dx:) and G has the
same meaning for 7, % as in §4. By (5.1.2) and changing variables

N @ ., e ,

we have

(515) (514): N(@Q::/)S \/I\_fb_a e JZTS(A-,;Y) Sg psp'a dpdp'

D 5 INBP Gy, (P H1)(P 2 +1) pp’

where Ga, = is the domain defined for 7, 7: instead for &, & in §4.
Since 7:i=1mod{ and Ny:i=1,
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S TISGEP T o VTS

and ING7*yiyrt= NG| hold.

Changing #— =f77 and noting the sign distributions, we have by (4—1),

prpe9REP.
AN(G .y~ Nie E S Phvee
(5.1.6) (5.1.5)= VAN 5 e b IR ) .
) ) ( ) D \:) he [z\"(ljl\li ' (;m.n (P": 1)8(}3’“‘%”1)3

s

where 3 denotes the sum over all 5, not being I”'i*-a,ssociated. Since 3 Gu,m
(5[‘: L%
i

covers the whole “first quarter” of (p, p')-plane without gaps and overlappings,

2n,m 0 Jo

we have 30 H = rr. Thus we have
Gm,n

4
o ()
5.0 8 —— p
N((*’) \/Nb ; 20 E 62:\/_-13(2,37) IN('B)!“E .

D s 5.

:r[f
Let {0} be a complete set of units incongruent modf, {;} a complete set of rep-
resentatives of I'y/I'j. We see that {ois;} is a full set of representatives of

I'il’; . Hence,

(5.1.7) (5.1.6)=

1\
N(@., v N ! (_2-8> 5 e VIS ity
D I'(s) g BB NI

(6.1.1)=

Now there exists a set {4} of integers in K such that u=21mod and {s;/u} runs
over all 2¢ possible signatures. Let E(7) be the set of elements of G(i) contain-
ing at least one unit in K, {4} be a complete set of G()/E(). Then {Lp} runs
a complete set of representatives of prime residue classes mod i and {(lis2)6 .}
covers a full set of representatives of ®;/G;, (Siegel's proof of Proposition 15 in
[5] works well in the present case). Hence we have
(5.1.8) 2 Tt i(C ) Z (T, Aup)
Tpestpr o
e /1 N\
awr()

TGy 2 NE A7 Aep)i(Csr)

2}.: I EN-"g
e?r «/?15(21‘/'1?59_;5’)

x & NG

it i @
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VN (g s)
N2/ 6N,y , LAkt
Disy o JOHEANC 2 W 2 NG

€2 Y TIS Uputpif a7

evwr (- s)
, e ] ANEGy S
DIy L’ 2(pi (€. )N( )*%

Apeivgs s

ez~ VIS A epy B )

ING)I®

observing that
()= 7(2epi)
@ Y-S 2 B0 g2 VTIS R iBY (sinee ¢ju==1mod f)
and 7{m)=1 (since m==1modi).

Write ()8 €. for some &F ¢ ;. Then C.» runs over all &;/E;. Putting
OrJpm@Qy and QF = iynfe, we can write

6 p=ma Q8027 with as=a.- .
We set for brevity

27 VISt @I BED T

Valr, D=9y =

la+fritla’ -+ 822
(16,1:})
and E(P , 8)=Na ﬁyegg (e, 7) dpdp

i1gr5g)
which depends only on the ray class & modi and 7.
Sinee {4}~ {Zwp} runs a complete set of prime residue classes medi, we have
DI(s)

Lx(s, 1)—~ —— i EZ((' NI, 8) .
BT ( 5 s) VN

Now we have

i?p A»s(?. s') '

where

. -Nn‘e‘ Gy o ¢ Yyt i :
Asfe, ©) = JE (00— QPP ~ QPP QP NQP —2PF) |

Tending s to 1, we have the following

THEOREM 8. Let K be a real bi-quadratic field satisfying (A—1). Let y be
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a non-principal proper ray class character mod i in K with associated character
of signature (=1, Then

D
L 1 = 2 .;'l/'C', v ' ! N & } Ty e
KL, D=5 S ﬁ log (s, (), (v ) (_ =
where D is defined in Th. 7 for n., 7. instead for ¢, ¢, <& runs over all
representatives of &;/€;, T is defined in (1.2.3) . is defined in (2.4.9) and .1
18 defined just above.

5.2. We shall consider the case where »(4), associated with given ray class
character y, is of type v(2)=Ni/{N2| for 2+0. In this case, every unit congruent
to 1 mod§ should be of norm 1.

let K, F, & ,C., 2:;, w?, p, p" be as in 5.1. Also we start, under (A1),
from

. N(f)er=v=isudpn
L » = t G & A’\I ' 8 e -
wo =T 3 IAZICANCY 2 Sy E NG

and
yg,y'ser: ‘/:S(AB7)
|a’+,’37|2" la"{"ﬁlfllza

¥lr, v’ 5 a0, 0; 8; (Uor), (0))= 2

which, for brevity, is denoted by ¥ ..(z, 2.
We have

a 0

(5.1.2) e s Ve, H=(s/2vV —1)*(yy' )y

o2 V=ISARD

ot fel= et prfla’ + 5o [ + B )

bH

Now consider the integral
XS(‘!E-‘!(,‘) —«221/ i,(:._j) dede”
(xget) -

extended over 7, 7’ in (5.1.3). By the uniformity of convergence of (5.2.1) on
(5.1.8), we have

L R (yy )¢ Fis M deds’
” Gege Grd= (8’/4)2551 Bt 1B et B+ BT

:(82/4) (%;{-) il]\)]bs SN, et JTISABD

(Payl’o‘) (ppr),_l d_'pdp,
(pzﬂ‘°’2+ﬁ‘2’2)"‘(p'zﬁ“’2+/1‘3’2)‘"’(p/1‘°”i + /1‘2’)2(;17’;4”’{«{»/1‘3’)2

’
(pg:pg)
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Changing variables as in (5.1.5), we see

. . (pp'ydpdp’
* e 8 e s
W Jdpdp'== N7 S Sc P (i Ly (pv ~ 16+ 17p v — 16 +1)F

Nisefl Nigrf,

where &= (0 )| 0 ¥ | == Nk e (7) /| Nk r (@)1= N8l INg/ ]
and so

(5.2.3) §¢ =v(Bw(@y) .

Further (pvV —1&41)2=(pV—1 +&)p2.

103 )
Sinee o2 <o) 21,
7% 7

the values of &, & are the same for f§, fy™yi(m,neZ) and PLENES LY
2" Y=ISABIIN holds. Then we have, as in §4, §5.1,

G o (z, 2). -u.vfi_(N}?:f:{@ ’
(5.2.4) SXM drot’ dedz’= 4D Na.r )
- -~ 31 'e—~1d d ’
N —8 L2 JTIS(BY) p' p p__}') -
Z NG gg D it L L (i 1)
(65.2.4) z(*>§§r:.$; 2(*)” - 3 XT.
3 M Gon,m (,i)l-"‘f 0 Jo

Computing above integral, we obtain, for Re(s)>1,

TVl D)

5.4 d-dr

(N ) w(2y) S S

D e _]:,((s +1) A%N)4’(N(g,“f \/Né)s
4D1~'(3)2

S IN@)Io(p) exev=isin
Brers

f

Let p:, ¢ be as in 5.1. We have, as in 5.1, the right hand side of the above
formula

4 «V N - -
(5_2.5) e [’(é(s ‘1,,1)> Q_N%fzg)_{%@_ 2~ v(épisj)eass’-xSiAngJBY)!N(g)l-—s

P25, (3)

Let {Z} {/4} be as in 5.1. Summing over all ideal classes & and elements of
{Ax}, {u}, we obtain, by (56.2.5),

(5.2.6) S R R)TE )u(@y) Sg W@ D g
Yoot o drot
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(5 6HD) N S HumiE NGy
-—— 2 dpapps s

47 (s)*D
5 o(Boies)e Vi anBrisn [N(S)|

PiHE 55

Now we have
v(oies)y=1((pie )i (pics) =1 (pic;) =1 (p:) ,
82: ,/:“iS(z\ku;Ep;ejr) — ea: ,/:i:\.‘{,\kpiﬁr) .

Therefore, as in 5.1, we obtain
The right hand side of (5.2.8)

167 (—;— (s + 1))4 VN

=, B O SACONE T @)oo NG
ar (~~(s v 1))
== e YNTLx(s, 7).

Observing that ¥(Avz)=3%((rta))v(Aese) holds and €. ={m)8s+ runs over a full
system of representatives of ;/€;, we can write the left hand side of (5.2.6) as
follows: put QF=im?; and LF=4m:. Then Cor=as2}+0l} with aw=a..
Further put %.»=_Sk/r(2%7), ve=8k/r(27r) and denote

e2z YIS Er 5+ BY )

WY et g

by ¥ #(z, s), which may depend on &#, the choice of €.» and 2F, £}. But for
the hyperbolic transformation with fixed points @@, ©®, oV, o®, ¥..(z, 8) i8
invariant. Thus

The left hand side of (5.2.6)

= 3 X6 x)v(2) Sg ﬁ;:%;‘s) drdz’ .

We have
DI'(s)? (r 8)
Lx(s, p)=-— — 3 €2 )u(2:) 2 dzde’
4VNOT (—; (s +1)> S 5 '
Put 2P, s)~~~——v( )Sg ”f”(f . 8) dedr

Then by (5.2.5), we see that Z(<#, 3) depends only on <& (of course on 7).
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Writing 7(<Z)=3(8..), we obtain
=t/ '(s)

(5.2.7) Lk(s, )=~ s N UHE(A, 8).
VND“T[“( (s H))
=, ol 2y
f'j%i(}’&sl is essentially an Epstein zeta-funection, so Sg Ll f;’ ) d=dz’ is an
T Ut ot'ot

entire function of 5. Then (5.2.7) gives the analytic continuation of Lx(s, 7) into

the whole s-plane.

We shall consider the value of Lx(1, ).

(i) T#4(1). In this case, (u.>), (v») satisfy (2.4.2) for Cor=0,0Fr4+002%. By
Th. 4, we have

W s(z, 8)= A\/d log A(z, ' (w.s), (W) +*E—1)+ -
Applying - _—(i;;: to the above, we have
o2
sogs Voo, ) = T =5 [04((0); (w), (02))]

where @, is defined in (2.4.7) and for brevity, we write
0.((7); (wes), (02))=0u(z, *'; aw, 0; (uw), (V=) .

Since @, is absolutely uniformly convergent, we have

= ()] =~ ﬁ; o, TS 4
or'dt or’ N(ax)? =2
. et VTIBW 5 T Gots VIIB 07 —ur 71
+ ‘?‘ N(B) ot o’
b 1 { - VTISEY ) SUk der Vi 4ua)or gerrvmi(ev p)o e T } .
2 N(B) 7730 dr ar’

€% is regular and non-zero with respect to 7, ' in Im >0, Im = >0. Hence

we can choose fixed branch of ©; and 2 »—a- in the above right hand side

ar ' or
d d .
are — , ——, respectively. Thus
dr ' dr
d° N
SS~—-,—-—@1drd [@ (@), (us), (w))]
or'dr (tgr1p)

Letting s tend to 1, we have
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(5.28) 2B V=D 41[ 016, @), 0] 7
“10'10)

Putting

(5.2.8) HB)-dZB, ),

we have, by (5.2.7),
~4
(1, D)= e S WP )E(
L1, ) T Tan] P F),
where Jx is the diseriminant of K/Q.
(ii) §=(1). In this case, for all &, we see that
Vale, =0z, 75 0.5,0; 8, 8) .

By Th. 1, we have

~2 -2 -t o
¥ oz, 8)= 8ztlog e H_J;_ 4 8z%log ¢ 103’( H(r, ‘yz;la..c , D) >+M’+ #(s—1) +---

dNas s—1 dNa .

with obvious constant M. Since

0 - 0 . —
5o log y=1/(z—7), - log ¥’ =1/(z'—F%"} ,
T aT

we have
oW oz, ) 8 Ioge[ 1 1 5 . .
500r - dNaw Li—i Toow T gra 08 H( ’““"’)]""*(8 Do

When 7, ¢* are given by (5.1.3), then
1Y(e—7)= E(zi“ log v Za®) G —a®)
T

and Y ~F)= afl;, log v {& —a)(z —@®)

Hence for r, ' in (5.1.3), we have

W (c,8) _8rtloge[ d A Iy
S g [dr log V(r—a®)(r—w®)

+ »ii—'- log V(& —o™) (7 —w®)
dr

2
-2 g HG, o am, o)] F(g—T) - .
ar’'or

Using the series expansion of log H(r, '; aw, 0) (see the formula preceeding to
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Th. 38, (2.1.2), (2.3.3) and (2.3.4), we have

(5.2.9) XX ¢ /ff’a(; 8) dzde’ ;}K}Eie [1 g V=00t —a®) it —ot )z —o®)

G{L, tras,0) R
N 1 i __1 .l.w .
F 274 log ¢- N(aw) ](10 ) el
Put
a2
(5.2.9) HB)-d-5(B, 1):—93@(9,)5& Y aﬁ( D gege

Tending s to 1 and observing the value of £(<#, 1), we have, by (6.2.7),

Lk, 1)= SUBE(Z) .

\/lJIT

We summarize the above in

THEOREM 9. Let K be a real biquadratic field satisfying (A—3). Let y be
a non-principal ray class proper character modi in K and v(i)=NQ)/IN(],
where v(2) is the character of signature associated with y. Then we have

Lk, 1)= 2 BEZ)

Tx/ |dx] 5
where &F rums over all elements of &;/€; and

(6.2.8), (5.2.8") for {#1)

E# ):{ (5.2.9), (6.2.9) for =)

5.3. F, K being as above, we denote by K, a relative abelian extension of
K. Let | be the conductor of Ko over K. Then we have

Cko(8)=Ck(8) };L Lk(s, 1) ,

where 7 runs over a complete set of non-principal ray class characters modulo fx
with conductor {xIf. From this we have

2r10(2x) 20 Rolo . 4rxhk

e = II L
woV | o) wxV | dxl x x(L 0,

where ri,0=11,k,, T2,0=72,k,, Bo=Ri,, ho=hg,, wo=wk,, do=4xo and wx=2.

Let »(2)=Ni/|N2} be the associated character of signature with yx. We con-
sider Ko, such that only character y associated the above v appears. Thus Ko
is quadratic over K, and so

Tk (8)=Lx(s)Lx(s, ) .
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Let Ko be K(~/#) with non-quadratic ¢ in K and b the relative diseriminant
of Ko/K. Let P be a prime ideal in K coprime to d. There exists ce K such that
*=pc? is coprime to P. We consider the ray class character q’)(ii);;(‘?j) mod
defined in 3.2, which is equal to () for L4d. Hence y and ¢ coincide on §,/Ey,
¥ is a ray class character mod b and f«|b. (in fact {x=0.) Now by the quadratic
reciprocity law, we see that if ¢ totally negative, then x{((2))==¢(A)v{2). Thus we
are in the situation of 5.2 and obtain, by Th. 9,

2(z)* Roho 2rih
LD)tolte  ETKERK 7o,
wn e = e/ |25] TE L D)

_ 247'Kh’}’,w 7! S o
= x| 4] T{da] 2 WP -

Hecke [2] explicitly gave the value of T. In our notation,

T=+No oGV )i
where (7)v'd =q/f with integral ideal in K. Sinece we may assume (x)==d-¢* for
some ideal ¢ and ¥ is a real character, we obtain

T=~Nbdxlpyvd).

THEOREM 10. Let K, be an imaginary quadratic extension of a real bi-
quadratic field K, (Ko=K(~ 1)), with the relative discriminant d. Then

m:m%"w“ V) SUBE(R)
Wk @

0
where <& runs over all the ray classes modbd in K, 5(<#) is given in Th., 9
and x is the non-principal ray class character modd associated with v(A)=

NA/INA|.
Tsuda College
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