A transformation group whose orbits are homeomorphic

to a circle or a point

By Hideki OmoRry™* **

In his suggestive paper [2], D. Montgomery proved that a homeomorphism
T of a connected manifeld M is finitely periodic, if there is an integer k=Fk{x)
such that T“x)==x for every point. This result can not be extended to the case
of one parameter transformation groups, that is, 2 one parameter transformation
group acting effectively on M is not necessarily a circle group, even if every
orbit of the group is homeomorphic to a circle S'. A simple example of this
fact can be made easily on a two-dimensional torus.

The topology, however, of the one parameter group is affected by the condi-
tion that every orbit is homeomorphic to S'. The following theorem, which
will be proved in this paper, shows a thing of this kind.

For convenience, by M we mean a connected manifold with the second
countability axiom and by H(M) the group of all the homeomorphisms from M
onto M with compact open topology. These notations are fixed throughout
this paper.

THEOREM A. Let (L, 97%) be a vector group of finite dimension, where L
18 the underlying additive group and 7 4s the topology for L. Let ¢ be a
non-trivial continuous homomorphism from (L, T wnto H(M). If every orbit
of o(L) 1s homeomorphic to S' or a point, then ¢(L) is closed in H(M).

More oprecisely, o(L)y==(L', 7 9x8' or (L', Z74) for some vector group
(L', 9.

Since H{(M) is a set of second category [1], the above theorem means that
¢ is an open mapping from (L, 9) onto ¢(L). Thus, ¢(L) is a Lie group under
compact open topology.

Now, we consider the case where the above homomorphism is a mono-
morphism.

Let ¢ be a continuous monomorphism from (L, 97 into HM). If (L) is
not closed in H(M), then the relative topology for ¢(L) in H(M) introduces 2
new topology 7 for L such that (i) (L, &) satisfies the first countability axiom,
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(ii) (L, .97) satisfies Hausdorff's separation axiom, (iii) 7 is weaker than 775,
(iv) (L, 97) is a topological additive group and (v) (L, 7 )#(L, F o).

For a fixed underlying group L, we denote by T(L, ) the collection of
all the pairs of the fixed abstract group L and a topology & for L satisfying
(i)~(iv) above.

For a subgroup L’ of L, (L', 97) means the subgroup L’ with the relative
topology in (L, 7).

Under these notations, an element (L, &7 )€ T(L, F ) is said to be irreducible,
if for any proper vector subgroup L', (L', 9 )=(L', T ) but (L, 9 )=(L, ).

Since dim L<o, we see easily that if (L, 9 )eT(L, 5% and (L, 9)
7L, ), there is a vector subgroup (L', 97 ) which is irreducible. We know
in [4] that there is an example of topology & for two-dimensional vector group
L such that (L, 9 )e T(L, %) and (L, ) is irreducible.

Now, in the case of monomorphic ¢, Theorem A is obtained as an immediate
consequence of the following Theorem B.

THEOREM B. Let (L, 7 )e T(L, 97 be irreducible. Assume furthermore
that there 1s a mon-trivial continuous homomorphism ¢ from (L, &) into HM)
such that every orbit o(L)(x) i8 homeomorphic to S* or o point. Then (L) is
isomorphic to S

COROLLARY. Notations and assumptions being as in Theorem A, if ¢ s
monomorphic, then o(L) is closed in H(M).

The proof of Theorem B, which will be given later, is similar to that of
the following well-known theorem.

THEOREM C. Let ¢ be a non-trivial homomorphism from a toroidal group T
into H(M) such that every orbit (T )x) is homeomorphic to a circle or a point.
Then ¢(T)==8".

The proof of this theorem consists of the following three steps, which cor-
respond to those of the proof of our Theorem B.

a) It is well-known that the Pontryagin dual group Hom (7, S?) is a discrete
group.

b) Let 7%« T) be the connected component containing 0 of the full-inverse
of the isotropy subgroup of «¢(T') at v € M and let M’ be the set of the points
such that ¢(7')(x) is homeomorphic to a circle. Then T/T9=S' for ze M .
Therefore, there is a homomorphism ¢. from 7 onto S! depending continuously
onxeM'. Thus, from a) we have that ¢. is constant on every connected com-
ponent of M'. In other words, T operates as a circle group on each connected
component of M.
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¢) M’ is connected and dense in M, for the fixed point set of a compact
Lie transformation group acting effectively on M has no interior point of M.

Each step of the proof of Theorem B corresponds to each of a), b) and ¢),
that is, §1, § 2 and § 8 correspond a), b) and ¢) respectively. In our case, however,
since the transformation group in question is a vector group, we have not to
take a connected component of the isotropy group at x but the isotropy group
itself works well in our purpose.

Theorem A follows quite naturally from Theorems B and C. This will be

seen in §4.

1. As for an element (L, 97 )eT(L, &%), we have the following lemmas
whose proofs are seen in [3].

Lemma 1. If (L, 9)eT(L, 5 aend (L, 9 )+ (L, 5%), then for any
neighborhood U of 0 in (L, F7) and for any positive number r,

Uni(xy, ---,x)e L; S ai>rt+y.

LEMMA 2. Assumptions being as above, for any >0, there is a neighbor-
hood V of 0 in (L, ) such that the diameter of any connected component of
V 1s smaller than ¢, where the metric on L is the natural euclidean metric.

Using these lemmas, we have the following lemma on (L, .Z7) which is
irreducible.

LEMMA 8. Let ¢ be an integer such that 1=i=<k=dim L. If (L, )
eT(L, ) is wrreducible, then for any K>0 and for any neighborhood U of
0 in (L, ), there is y=(y1, -+, ye) € U such that |y:|>K.

PROOF. Assume that there are a neighborhood U of 0in (L, &), a positive
K and an integer j, 1=<j=<k=dim L such that |y;,| £ K for any point (3., - ,
y)€ U. Without loss of generality, we assume that j=1.

Let p be the metric on L defined by

olx, y)i= 3 (wi—yi)* .

From the condition that (L, &) satisfies the first countability axiom and
from Lemma 2, there is a basis {Vi} of the neighborhoods of the identity 0 in
(L, F) satisfying a) Uo Vi, b) ViD2Vi, ¢) —Vi=V:, d) the diameter of each
connected component of V; is less than K.

Let lf']q:i]‘fjl1 [—¢K, qK] be a cube in L containing 0 in the center of E, and
let Fy=L—F,. By Lemma 1, we see that ViNnF,#0 for any 7 and ¢, because
(L, )+#L, T).

Let V{® be the union of the connected components of V: which intersect
F,. From the condition d) of {Vi}, we have V@ NF, .=y for every i and q.
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Considering the projection Pr from L onto R (real number field) defined by
Pr (Zh y "7y yk):?/l y

we see that Pr(V©)c[~K, K] for all i and ¢. Thus, there is ye[—K, K]

such that e n(n Cl(Pr(V ")), where Cl(4) is the closure of A in [-K, K].
g

This implies that for any ¢, ¢ and 1, there is ye V¢ satisfying

IPr ()—#l<e.

It follows that (y! V(e))n H(j)+0, where V(e) is an s-neighborhood of 0
under the metric p and H(j) is the hyperplane defined by #.=4. On the other
hand, since the identity mapping from (L, Z ) onto (L, 97) is continuous and
V{e) is connected, we can choose sufficiently small ¢ such that V{e) is contained
in the connected component of Vi containing 0. Thus, we have

Y+ Ve Vit Visga Vi

It follows that V@ NH{+4 for all 7 and ¢, because (y-- V(e))n H{f)+N.
Therefore, there are y, ¥y’ € VinH(y) such that ply, y¥)=N for any positive
number N.

Let L' be the vector subspace defined by y:==0. As for y, ¥’ above, we see
that y—~y e L', y—y €2Vic Vi, and ply—y’, 0) 2 N. This implies that

L,ﬁFqﬁ Vz:ﬁQ

for all 7 and q. It follows that (L', &7 )%(L’, 97%), contradicting the assump-
tion that (L, &) is irreducible.

Let <x, y> be the ordinary inner produet in L i.e. <x, y>= X x:4:. Then,
as a consequence of Lemma 3, we have the following:

CoroLLARY. Let (L, 97)eT(L, F%) be irreducible. If xeL satisfies
[<x, y>1<6 (bounded) for any y of some neighborhood U of 0 in (L, ), then
x:=0,

Let St=:{¢**} be the unit circle with the natural topology and let Hom (L, %), SY)
be the set of the continuous homomorphisms from (L, %) into S!' with
compact open topology. For any (L, 97 )e T(L, F%), a homomorphism ¢ from
(L, &) into $' can be considered as a homomorphism from (L, Z7) into S'.
By Hom (L., ), §') we mean the set of the continuous homomorphisms from
(L, &) into S' with relative topology in Hom (L, 97), S).

It is well-known that (L, 9) is isomorphic to Hom ((L, ), S'). The iso-
morphism 7 is given by 7(x)(y)=e'=»,

For a neighborhood U of 0 in (L, 9 ), O<s<'—} and s-neighborhood V{(¢) of
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0 in S', we denote
AU, o)=lve Bom (L, .7 ), SU; c(Uyz V(o)) .
PROPOSITION 1. Notations being as above, if (L, ) is irreducible, then
(U, &) 1s totally disconnected.
PrOOF. Let W, be the connected component of $7(U, <) containing ¢, For
every ¢ € Wy, o'(x)=e** %> Thus, if xelU, then e the Vi{s). Since

e<52¥, there is an integer m.{¢') such that

[<x, 570" > —2zm{e)l <e .
It follows that m.{¢’) is constant on W, for every xc IU. Therefore
I<x, 770" —p e > <2

for every xe U. Since (L, &) is irreducible, by Corollary to Lemma 3 we have

=

As an application of the Proposition 1 to transformation groups, we consider
(L, 77) operating continuously on a metric space X. The operation is denoted
by f. Assume furthermore that there is continuous operation f of S! on X
such that if f(s, 2)=2« for a point z¢ X, then s==0, and that there is a mapping
¥ (L, 9)xX > 8 X satisfying (1) f¥=f (2 ¥({, 2)=.0), z) and ¥, is a
homomorphism from (L, &) onto S*.

Since f, f are continuous, so is #. In faet, if im (L., 2)=(s, @), then by
compactness of S', there is a subsequence (I.-, z»') such that

Hm (¥ (L), Zar)=(80, %) .
On the other hand,
Fso, z)=lim f (W2, ), &) =Hm fQu, Ta')==f o, @)= (e (Lo}, @o) .

Therefore ¥, (Is)=s .

From the continuity of ¥, we see that for an e-neighborhood V{¢) of 0 in
S' there are a neighborhood U of 0 in (L, Z) and an open set ¥ of X such
that (U, Y)<(V(), ¥). This means that the mapping z-— ¥, is eontinuous
from Y into S7(U, ¢). Thus, we have

CoROLLARY. If (L, ) is irreducible, then the mapping x-»> U, s constant
on every conmected component of Y. Moreover, if X is locally connected and
connected, then x— ¥, is constant on X. In other words, (L, ) operates on
X as a circle group.

2. Now we consider (L, 77 )e T(L, F) acting effectively and continuously
on 2 manifold M as a transformation group. Assume that every orbit is homeo-
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morphiec to a circle or a point. Clearly, the subset of M consisting of all the
points = such that the orbit of z is homeomorphic to S' is L-invariant and is
acted on by (L, 97) as a transformation group. Since the identity mapping
from (L, Z7) onto (L, 7 ) is continuous, (L, 9%) acts naturally on M. Thus,
we assume from the beginning, to simplify the argument below, that (L, 975%)
acts effectively and continuously on M itself as a transformation group and that
every orbit is homeomorphic to S!.

Denote by LY the connected component containing the identity of the isotropy
subgroup L. of L at x.

Clearly LY is continuous, that is, if 2., — %, then

lim L = {lim &u; ku€ L2}~ L2, .

Sinee M is locally simply connected, there is a connected open set M’ on
which the unit vector »(z) orthogonal to L? can be chosen in such a way that
it is continuous with respect to the variable z. Since L? is constant on every
orbit, we may assume that M’ is an L-invariant open connected subset of M.

LEMMA 4. Let A(x)=min {2>0; n(z) e L.}. Then A(x)is lower semi-continuous,
the points of continuity are open and dense in M', and i(x) is L-invariant.

Proor. It iseasy to see that A(x) is L-invariant and lower semi-continuous,

Let z be a point of continuity. Then there is an open neighborhood V. such
that |4x)—Xy)<e for any ye€ V.. If there is a sequence {y»} in V. converging
to y in V. and lim A(y.)%A(y), then we have

lim Ay») 2 2X(y) .
Thus, for sufficiently large n, we have
Hga)— A = 2y)—e 2 )~ 2e .

On the other hand, [A(y)—(y)|<2c. It follows that if =—<«}z<x>, then
lim Ay»)==4(y). Thus, the point of continuity of A(x) are open.

This argument shows that if A(x) is bounded on an open set U and A=
sup {A(x); x€ U}, then for a sufficiently small >0, a point z¢ U satisfying
Hz)zd--c 18 a point of continuity. Since every open set in M’ is a set of
second category, a category argument gives that the points of continuity is
dense in M'.

Let M’ be an open L-invariant subset of M’ on which i(z) is continuous.
Let ¥ be a mapping from (L, Fo) XM’ into S'xM" defined by
z[r(l, x):(ei(zzi(z]_ln(:),l), z),

and f be a mapping from S'XM'' into M'’ defined by
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e, a :f-:f(é}: s2(xn(z), ;1:) ,

where f is the continuous operation of (L, &%) on M. It is easy to see that
f is a continuous operation of S' on M with F=f¥ and if (s, 2)=2a for some
xeM'", then s=0.

Now, let (L, ) be irreducible and act on M as a transformation group.
Assume that every orbit is homeomorphic to S'. By the same argument as
above, there is an L-invariant open subset M on which i(x) is continuous and
the continuous mappings f and ¥ above are defined. Thus, we have from Corol-
lary to Proposition 1 the following

LEMMA 5. (L, 97) operates as a circle group on every connected component
of M. More precisely, let A be a connected L-invariant subset of M’ on which
i(x) is continuous. Then (L, ) operates on A as a circle group.

3. In this section, it will be proved that M '=M . The fundamental fact
used in proving this is that if a compaet Lie group G acts effectively and
continuously on a connected manifold and if the fixed point set of G contains
an interior point, then G={e}.

Let K be the collection of points € M’ such that on every neighborhood
of z, A(x) has an infinite least upper bound. Then K is a closed and L-invariant
subset of M’ and is nowhere dense.

LEMMA 6. On every connected component R of M'—K, the function A(x)n(x)
is constant, that is, (L, 7 ) operates on R as o circle group.

Proor. Clearly R is an L-invariant open subset. Since the points of conti-
nuity is dense and open, there is a connected open set H in R such that A(x)n(x)
is constant on H. If H is not all of R, let b be a point of R on the boundary
of H. There are an open neighborhood U of b in R and a positive number m
such that sup {A(z); x € U}=m, because A(z) has a finite least upper bound at b.
There is a point 7 € U such that (%) >m—< and we see easily that for sufficiently
small ¢, such y is a point of continuity. It follows that there exists an open
connected subset V of HUU on which A(z)n(x) is constant. Since A(z)n(z) is
L-invariant, the set V can be assumed to be L-invariant.

Assume furthermore that V is 2 maximal open connected subset on which
ix)n(x) is constant and equal to (b )n(d’) for a point '€ V. From Lemma 4,
we have that A(z)<A®') on the boundary point of Vin HUU. It follows that
i.(x)r:~k1~2(b’) for some integer k=Fk(z)>>2. Since the boundary B of V is closed

in HU U and then a set of second category, we see by a category argument
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that there is an L-invariant open subset W in Hy U such that i(z) is constant

and equal to —’i»/'.(b') on WnB for some integer %>>2. Then, an operation of

Zy== {e"”iflc} on Vi W is defined as follows:
(f(@;.(b')n(b'), f\) if zeV
gle’ x @) TNk
x if ze VUW-V,
where f is the operation of (L, ") on M and [ is an integer. It is easy to see
that g: Ze < VU W-» VU W is continuous.

Since VU W is a connected manifold and VU W-V has an interior point,
Zr operates trivially on VU W. This contradicts the definition of 2(x). Thus,
we have V=R H,

ProrositioNn 2. Let (L, 7 )e T(L, ) be irreducible and act on a connected
manifold M. If ecvery orbit is homeomorphic to S', then (L, 7 ) acts on M as
a circle group.

Proor. Notations being as above, it is easy to see that for every point
z €M there is an open, connected and L-invariant subset M’ containing z on
which n(y) is continuous. We have only to show that A(x)n(z) is constant on
M’. If Xxz) is bounded on M’, then by Lemma 6 we have 2{x)n(z) is constant.
The proposition will now be proved by the method of contradiction. Assume
that A(xz) is unbounded on M’'. On the basis of this assumption the lemma above
shows that M’ -- K is not connected and therefore that the closed set K is not
vacuous.

Let A(x|K) denote A(x) restricted to K ; i(x]K) is lower semi-continuous on
K. Since K is a set of second category, we have by the same argument as in
Lemma 4 that the set of continuity of A(«|K) is open and dense. Thus, there
is an L-invariant connected open subset U in M’ such that (x| K) is continuous
on UNK=>Y. Let R be any connected component of M —K and i(&)==4 on R.
The boundary Be of R is contained in K and /‘.(:clK):—]]?/‘.o on Bgr for some

integer k=k(x). Sinee A(z|K) is continuous on BrNU, we see that iA(z|K) is
constant and equal to 4 on BrxN U by the same reason as in Lemma 6 because
the set of the points & where A(xIK)::-ilcw.Zo is open in BrNU for every fixed k.

It will be shown below that 2(a) is continuous on U. Let {z.} be a sequence
converging to a point x in U. If 9:0¢K; then lim A(x.)=2(x:) because any con-
nected component of M’ —K is an open subset. Assume zo€ KNIU. There is
an are C:[0, 1] » U such that Ct.)=x., C(l)=20 and lgrll Ct)=2¢. For every t.
there is . such that #.<t., Clta) € KNU and C{{t., ta’]) is contained in the
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closure of a connected component of M — K. Since K{x{K) is continuous on UK,
we see lim A(Cit.))=i{xs). From this and the fact that i{v.) -i{C{t. ), we have
lim iz =4i(xz:). Thus, #x) is continuous on U and then constant on U. This
contradicts the definition of the set K. It follows that K is vacuous. Then
Ax)n(z) is constant on M and then on M. This means that (L, &) acts as a
cirele group on M.

Proo¥ OF THEOREM B.

Let K be the set of points such that ¢{L)x) is a point. Clearly K is a closed
subset. By Proposition 2, we see that i(z) is constant on a connected component
M of M—K. That is, (L, &) acts as a cirele group on M. Define an opera-
tion f' of (L, &) as follows:

d, x ifxeM’

x if xeM--M',
where f is the operation of (L, % )on M. Clearly /' is an operation of (L, &)
on M as a circle group. Therefore M—M' contains no interior point. This
means f=f', completing the proof.

4. PROOF OF THEOREM A.

Let ¢ be a homomorphism from (L, &) into H(M) and K be the kernel of
¢. The factor group (L, 9% )/K is isomorphic to (L', ¥ o)xT where T is a
toroidal group. Naturally, there is a monomorphism ¢ from (L', o)< T into
H(M) such that @r=¢ where = is the natural projection from (L, Z%) onto
(L', ZoxT. Assume furthermore that every orbit ¢(L)(x) is homeomorphic to
a circle or a point. Then, we see that every orbit ¢(T){x) is homeomorphic to
a circle or a point. Thus, from Theorem C we have T-=S'.

We have only to show that ¢(L') is closed in H(M). Assume that &(L') is
not closed in H(M). Then the relative topology for #(L’) introduces a topology
7 for L’ such that (L', 9 )eT(L', %) and (L', 7 )=(L', Z:). It follows
that there is a veetor subspace L’ of L’ such that (L', &) is irreducible.
From the irreducibility, we see that every orbit @(L’’) is homeomorphic to a
circle or a point. It follows by Theorew B that &(L'")=S!, contradicting the
fact that & is isomorphic. Thus, we see that ¢(L) is closed and isomorphic to

(L', To)xS'.
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