A transformation group whose orbits are homeomorphic to a circle or a point

By Hideki OMORI * **

In his suggestive paper [2], D. Montgomery proved that a homeomorphism T of a connected manifold M is finitely periodic, if there is an integer k = k(x) such that $T^k(x) = x$ for every point. This result can not be extended to the case of one parameter transformation groups, that is, a one parameter transformation group acting effectively on M is not necessarily a circle group, even if every orbit of the group is homeomorphic to a circle S^i . A simple example of this fact can be made easily on a two-dimensional torus.

The topology, however, of the one parameter group is affected by the condition that every orbit is homeomorphic to S^1 . The following theorem, which will be proved in this paper, shows a thing of this kind.

For convenience, by M we mean a connected manifold with the second countability axiom and by H(M) the group of all the homeomorphisms from M onto M with compact open topology. These notations are fixed throughout this paper.

THEOREM A. Let (L, \mathcal{T}_0) be a vector group of finite dimension, where L is the underlying additive group and \mathcal{T}_0 is the topology for L. Let φ be a non-trivial continuous homomorphism from (L, \mathcal{T}_0) into H(M). If every orbit of $\varphi(L)$ is homeomorphic to S^1 or a point, then $\varphi(L)$ is closed in H(M).

More precisely, $\varphi(L) \cong (L', \mathcal{J}'_0) \times S^1$ or (L', \mathcal{J}'_0) for some vector group (L', \mathcal{J}'_0) .

Since H(M) is a set of second category [1], the above theorem means that φ is an open mapping from (L, \mathscr{T}_0) onto $\varphi(L)$. Thus, $\varphi(L)$ is a Lie group under compact open topology.

Now, we consider the case where the above homomorphism is a monomorphism.

Let φ be a continuous monomorphism from (L, \mathcal{J}_0) into H(M). If $\varphi(L)$ is not closed in H(M), then the relative topology for $\varphi(L)$ in H(M) introduces a new topology \mathcal{J} for L such that (i) (L, \mathcal{J}) satisfies the first countability axiom,

^{*} The author wishes to express his sincere thanks to Professor Morio Obata for his kind advice.

^{**} The author would like to acknowledge a financial support given by Sakko-kai Foundation during the preperation of this paper.

(ii) (L, \mathcal{J}) satisfies Hausdorff's separation axiom, (iii) \mathcal{J} is weaker than \mathcal{J}_0 , (iv) (L, \mathcal{J}) is a topological additive group and (v) $(L, \mathcal{J}) \neq (L, \mathcal{J}_0)$.

For a fixed underlying group L, we denote by $T(L, \mathcal{J}_0)$ the collection of all the pairs of the fixed abstract group L and a topology \mathcal{J} for L satisfying (i) \sim (iv) above.

For a subgroup L' of L, (L', \mathcal{I}) means the subgroup L' with the relative topology in (L, \mathcal{I}) .

Under these notations, an element $(L, \mathcal{J}) \in T(L, \mathcal{J}_0)$ is said to be irreducible, if for any proper vector subgroup L', $(L', \mathcal{J}) = (L', \mathcal{J}_0)$ but $(L, \mathcal{J}) \neq (L, \mathcal{J}_0)$.

Since dim $L < \infty$, we see easily that if $(L, \mathcal{J}) \in T(L, \mathcal{J}_0)$ and $(L, \mathcal{J}) \neq (L, \mathcal{J}_0)$, there is a vector subgroup (L', \mathcal{J}) which is irreducible. We know in [4] that there is an example of topology \mathcal{J} for two-dimensional vector group L such that $(L, \mathcal{J}) \in T(L, \mathcal{J}_0)$ and (L, \mathcal{J}) is irreducible.

Now, in the case of monomorphic φ , Theorem A is obtained as an immediate consequence of the following Theorem B.

THEOREM B. Let $(L, \mathcal{J}) \in T(L, \mathcal{J}_0)$ be irreducible. Assume furthermore that there is a non-trivial continuous homomorphism φ from (L, \mathcal{J}) into H(M) such that every orbit $\varphi(L)(x)$ is homeomorphic to S^1 or a point. Then $\varphi(L)$ is isomorphic to S^1 .

COROLLARY. Notations and assumptions being as in Theorem A, if φ is monomorphic, then $\varphi(L)$ is closed in H(M).

The proof of Theorem B, which will be given later, is similar to that of the following well-known theorem.

THEOREM C. Let φ be a non-trivial homomorphism from a toroidal group T into H(M) such that every orbit $\varphi(T)(x)$ is homeomorphic to a circle or a point. Then $\varphi(T) \cong S^1$.

The proof of this theorem consists of the following three steps, which correspond to those of the proof of our Theorem B.

- a) It is well-known that the Pontryagin dual group $\operatorname{Hom}(T, S^1)$ is a discrete group.
- b) Let $T^0_x(\subset T)$ be the connected component containing 0 of the full-inverse of the isotropy subgroup of $\varphi(T)$ at $x\in M$ and let M' be the set of the points such that $\varphi(T)(x)$ is homeomorphic to a circle. Then $T/T^0_x\cong S^1$ for $x\in M'$. Therefore, there is a homomorphism φ_x from T onto S^1 depending continuously on $x\in M'$. Thus, from a) we have that φ_x is constant on every connected component of M'. In other words, T operates as a circle group on each connected component of M'.

c) M' is connected and dense in M, for the fixed point set of a compact Lie transformation group acting effectively on M has no interior point of M.

Each step of the proof of Theorem B corresponds to each of a), b) and c), that is, $\S 1$, $\S 2$ and $\S 3$ correspond a), b) and c) respectively. In our case, however, since the transformation group in question is a vector group, we have not to take a connected component of the isotropy group at x but the isotropy group itself works well in our purpose.

Theorem A follows quite naturally from Theorems B and C. This will be seen in § 4.

1. As for an element $(L, \mathcal{J}) \in T(L, \mathcal{J}_0)$, we have the following lemmas whose proofs are seen in [3].

LEMMA 1. If $(L, \mathcal{J}) \in T(L, \mathcal{J}_0)$ and $(L, \mathcal{J}) \neq (L, \mathcal{J}_0)$, then for any neighborhood U of 0 in (L, \mathcal{J}) and for any positive number r,

$$U \cap \{(x_1, \dots, x_k) \in L; \sum x_i^2 > r\} \neq \emptyset$$
.

LEMMA 2. Assumptions being as above, for any $\varepsilon>0$, there is a neighborhood V of 0 in (L, \mathcal{I}) such that the diameter of any connected component of V is smaller than ε , where the metric on L is the natural euclidean metric.

Using these lemmas, we have the following lemma on (L, \mathcal{I}) which is irreducible.

LEMMA 3. Let i be an integer such that $1 \le i \le k = \dim L$. If $(L, \mathscr{J}) \in T(L, \mathscr{J}_0)$ is irreducible, then for any K>0 and for any neighborhood U of 0 in (L, \mathscr{J}) , there is $\mathbf{y} = (y_1, \dots, y_k) \in U$ such that $|y_i| > K$.

PROOF. Assume that there are a neighborhood U of 0 in (L, \mathcal{I}) , a positive K and an integer j, $1 \le j \le k = \dim L$ such that $|y_j| \le K$ for any point $(y_1, \dots, y_k) \in U$. Without loss of generality, we assume that j=1.

Let ρ be the metric on L defined by

$$\rho(\boldsymbol{x},\boldsymbol{y})^2 = \sum (x_i - y_i)^2.$$

From the condition that (L, \mathcal{J}) satisfies the first countability axiom and from Lemma 2, there is a basis $\{V_i\}$ of the neighborhoods of the identity 0 in (L, \mathcal{J}) satisfying a) $U \supset V_i$, b) $V_i \supset 2V_{i+1}$, c) $-V_i = V_i$, d) the diameter of each connected component of V_i is less than K.

Let $E_q = \prod_{i=1}^K [-qK, qK]$ be a cube in L containing 0 in the center of E_q and let $F_q = L - E_q$. By Lemma 1, we see that $V_i \cap F_q \neq 0$ for any i and q, because $(L, \mathcal{J}) \neq (L, \mathcal{J}_0)$.

Let $V_i^{(q)}$ be the union of the connected components of V_i which intersect F_q . From the condition d) of $\{V_i\}$, we have $V_i^{(q)} \cap F_{q-1} = \emptyset$ for every i and q.

Considering the projection Pr from L onto R (real number field) defined by

$$\Pr(y_1, \dots, y_k) = y_1$$

we see that $\Pr(V_i^{(q)}) \subset [-K, K]$ for all i and q. Thus, there is $\hat{y} \in [-K, K]$ such that $\hat{y} \in \bigcap_{q} \bigcap_{i} \operatorname{Cl}(\Pr(V_i^{(q)}))$, where $\operatorname{Cl}(A)$ is the closure of A in [-K, K]. This implies that for any ε , q and i, there is $y \in V_i^{(q)}$ satisfying

$$|\Pr(\mathbf{y}) - \hat{\mathbf{y}}| < \varepsilon$$
.

It follows that $(y+V(\varepsilon))\cap H(\hat{y})\neq\emptyset$, where $V(\varepsilon)$ is an ε -neighborhood of 0 under the metric ρ and $H(\hat{y})$ is the hyperplane defined by $y_1=\hat{y}$. On the other hand, since the identity mapping from (L, \mathcal{F}_0) onto (L, \mathcal{F}) is continuous and $V(\varepsilon)$ is connected, we can choose sufficiently small ε_i such that $V(\varepsilon_i)$ is contained in the connected component of V_i containing 0. Thus, we have

$$y+V(\varepsilon_i)\subset V_i^{(q)}+V(\varepsilon_i)\subset V_{i-1}^{(q-1)}$$
.

It follows that $V_i^{\{q\}} \cap H(\hat{y}) \neq \emptyset$ for all i and q, because $(\mathbf{y} + V(\varepsilon_i)) \cap H(\hat{y}) \neq \emptyset$. Therefore, there are $\mathbf{y}, \mathbf{y}' \in V_i \cap H(\hat{y})$ such that $\rho(\mathbf{y}, \mathbf{y}') \geq N$ for any positive number N.

Let L' be the vector subspace defined by $y_1=0$. As for y, y' above, we see that $y-y' \in L'$, $y-y' \in 2V_i \subset V_{i-1}$ and $\rho(y-y')$, $0 \ge N$. This implies that

$$L'\cap F_q\cap V_i\neq\emptyset$$

for all i and q. It follows that $(L', \mathcal{J}) \neq (L', \mathcal{J}_0)$, contradicting the assumption that (L, \mathcal{J}) is irreducible.

Let $\langle x, y \rangle$ be the ordinary inner product in L i.e. $\langle x, y \rangle = \sum x_i y_i$. Then, as a consequence of Lemma 3, we have the following:

COROLLARY. Let $(L, \mathcal{T}) \in T(L, \mathcal{T}_0)$ be irreducible. If $x \in L$ satisfies $|\langle x, y \rangle| < \hat{\sigma}$ (bounded) for any y of some neighborhood U of 0 in (L, \mathcal{T}) , then x = 0.

Let $S^1 = \{e^{i\theta}\}$ be the unit circle with the natural topology and let $\text{Hom }((L, \mathcal{F}_0), S^1)$ be the set of the continuous homomorphisms from (L, \mathcal{F}_0) into S^1 with compact open topology. For any $(L, \mathcal{F}) \in T(L, \mathcal{F}_0)$, a homomorphism φ from (L, \mathcal{F}) into S^1 can be considered as a homomorphism from (L, \mathcal{F}_0) into S^1 . By $\text{Hom }((L, \mathcal{F}), S^1)$ we mean the set of the continuous homomorphisms from (L, \mathcal{F}) into S^1 with relative topology in $\text{Hom }((L, \mathcal{F}_0), S^1)$.

It is well-known that (L, \mathcal{J}_0) is isomorphic to Hom $((L, \mathcal{J}_0), S^1)$. The isomorphism η is given by $\eta(x)(y) = e^{i\langle x, y \rangle}$.

For a neighborhood U of 0 in (L, \mathcal{I}) , $0 < \varepsilon < \frac{\pi}{2}$ and ε -neighborhood $V(\varepsilon)$ of

0 in S^1 , we denote

$$\mathscr{S}(U, \varepsilon) = \{ \varphi \in \text{Hom}((L, \mathscr{T}), S^1); \varphi(U) \subset V(\varepsilon) \}$$
.

PROPOSITION 1. Notations being as above, if (L, \mathcal{F}) is irreducible, then $\mathcal{F}(U, \varepsilon)$ is totally disconnected.

PROOF. Let W_{φ} be the connected component of $\mathscr{S}(U, \varepsilon)$ containing φ . For every $\varphi' \in W_{\varphi}$, $\varphi'(x) = e^{i\langle x, \chi^{-1} \varphi' \rangle}$. Thus, if $x \in U$, then $e^{i\langle x, \chi^{-1} \varphi' \rangle} \in V(\varepsilon)$. Since $\varepsilon < \frac{\pi}{2}$, there is an integer $m_x(\varphi')$ such that

$$|\langle x, \eta^{-1}\varphi' \rangle - 2\pi m_x(\varphi')| \langle \varepsilon .$$

It follows that $m_{\mathbf{x}}(\varphi')$ is constant on W_{φ} for every $\mathbf{x} \in U$. Therefore

$$|\langle x, \eta^{-1}\varphi' - \eta^{-1}\varphi \rangle| < 2\varepsilon$$

for every $x \in U$. Since (L, \mathscr{T}) is irreducible, by Corollary to Lemma 3 we have $\varphi = \varphi'$.

As an application of the Proposition 1 to transformation groups, we consider (L, \mathcal{F}) operating continuously on a metric space X. The operation is denoted by f. Assume furthermore that there is continuous operation \hat{f} of S^1 on X such that if $\hat{f}(s,x)=x$ for a point $x\in X$, then s=0, and that there is a mapping $\Psi\colon (L,\mathcal{F})\times X\to S^1\times X$ satisfying (1) $\hat{f}\Psi=f$ (2) $\Psi(l,x)=(\Psi_x(l),x)$ and Ψ_x is a homomorphism from (L,\mathcal{F}) onto S^1 .

Since f, \hat{f} are continuous, so is Ψ . In fact, if $\lim_{n \to \infty} (l_n, x_n) = (l_0, x_0)$, then by compactness of S^1 , there is a subsequence $(l_{n'}, x_{n'})$ such that

$$\lim (\Psi_{x_{n'}}(l_{n'}), x_{n'}) = (s_0, x_0)$$
.

On the other hand,

$$\hat{f}(s_0, x_0) = \lim \tilde{f}(\Psi_{x_{n'}}(l_{n'}), x_{n'}) = \lim f(l_{n'}, x_{n'}) = f(l_0, x_0) = \hat{f}(\Psi_{x_0}(l_0), x_0).$$

Therefore $\Psi_{x_0}(l_0) = s_0$.

From the continuity of Ψ , we see that for an ε -neighborhood $V(\varepsilon)$ of 0 in S^1 there are a neighborhood U of 0 in (L, \mathscr{T}) and an open set Y of X such that $\Psi(U, Y) \subset (V(\varepsilon), Y)$. This means that the mapping $x \to \Psi_x$ is continuous from Y into $\mathscr{S}(U, \varepsilon)$. Thus, we have

COROLLARY. If (L, \mathcal{F}) is irreducible, then the mapping $x \to \Psi_x$ is constant on every connected component of Y. Moreover, if X is locally connected and connected, then $x \to \Psi_x$ is constant on X. In other words, (L, \mathcal{F}) operates on X as a circle group.

2. Now we consider $(L, \mathcal{J}) \in T(L, \mathcal{J}_0)$ acting effectively and continuously on a manifold M as a transformation group. Assume that every orbit is homeo-

50 Hideki Omori

morphic to a circle or a point. Clearly, the subset of M consisting of all the points x such that the orbit of x is homeomorphic to S^1 is L-invariant and is acted on by (L, \mathcal{I}) as a transformation group. Since the identity mapping from (L, \mathcal{I}_0) onto (L, \mathcal{I}) is continuous, (L, \mathcal{I}_0) acts naturally on M. Thus, we assume from the beginning, to simplify the argument below, that (L, \mathcal{I}_0) acts effectively and continuously on M itself as a transformation group and that every orbit is homeomorphic to S^1 .

Denote by L_x^0 the connected component containing the identity of the isotropy subgroup L_x of L at x.

Clearly L_x^0 is continuous, that is, if $x_n \to x_0$, then

$$\lim L_{x_n}^0 = \{\lim k_n; k_n \in L_{x_n}^0\} = L_{x_n}^0$$
.

Since M is locally simply connected, there is a connected open set M' on which the unit vector n(x) orthogonal to L_x^0 can be chosen in such a way that it is continuous with respect to the variable x. Since L_x^0 is constant on every orbit, we may assume that M' is an L-invariant open connected subset of M.

LEMMA 4. Let $\lambda(x) = \min \{\lambda > 0; \lambda n(x) \in L_x\}$. Then $\lambda(x)$ is lower semi-continuous, the points of continuity are open and dense in M', and $\lambda(x)$ is L-invariant.

PROOF. It is easy to see that $\lambda(x)$ is L-invariant and lower semi-continuous. Let x be a point of continuity. Then there is an open neighborhood V_x such

that $|\lambda(x)-\lambda(y)|<\varepsilon$ for any $y\in V_x$. If there is a sequence $\{y_n\}$ in V_x converging to y in V_x and $\lim \lambda(y_n)\Rightarrow \lambda(y)$, then we have

$$\lim \lambda(y_n) \geq 2\lambda(y)$$
.

Thus, for sufficiently large n, we have

$$\lambda(y_n) - \lambda(y) \geq \lambda(y) - \varepsilon \geq \lambda(x) - 2\varepsilon$$
.

On the other hand, $|\lambda(y_n) - \lambda(y)| < 2\varepsilon$. It follows that if $\varepsilon < \frac{1}{4}\lambda(x)$, then $\lim \lambda(y_n) = \lambda(y)$. Thus, the point of continuity of $\lambda(x)$ are open.

This argument shows that if $\lambda(x)$ is bounded on an open set U and $\lambda_0 = \sup \{\lambda(x); x \in U\}$, then for a sufficiently small $\varepsilon > 0$, a point $x \in U$ satisfying $\lambda(x) \ge \lambda_0 - \varepsilon$ is a point of continuity. Since every open set in M' is a set of second category, a category argument gives that the points of continuity is dense in M'.

Let M'' be an open L-invariant subset of M' on which $\lambda(x)$ is continuous. Let Ψ be a mapping from $(L, \mathscr{T}_0) \times M''$ into $S^1 \times M''$ defined by

$$\Psi(l,x)=(e^{i(2\pi\lambda(x)^{-1}n(x),l)},x),$$

and \tilde{f} be a mapping from $S^1 \times M''$ into M'' defined by

$$\hat{f}(e^{is}, x) = f\left(\frac{1}{2\pi} s\lambda(x)n(x), x\right),$$

where f is the continuous operation of (L, \mathcal{F}_0) on M. It is easy to see that \tilde{f} is a continuous operation of S^1 on M'' with $f = \tilde{f} W$ and if $\tilde{f}(s, x) = x$ for some $x \in M''$, then s = 0.

Now, let (L, \mathcal{J}) be irreducible and act on M as a transformation group. Assume that every orbit is homeomorphic to S^1 . By the same argument as above, there is an L-invariant open subset M'' on which $\lambda(x)$ is continuous and the continuous mappings f and Ψ above are defined. Thus, we have from Corollary to Proposition 1 the following

LEMMA 5. (L, \mathcal{J}) operates as a circle group on every connected component of M''. More precisely, let A be a connected L-invariant subset of M' on which $\lambda(x)$ is continuous. Then (L, \mathcal{J}) operates on A as a circle group.

3. In this section, it will be proved that M''=M'. The fundamental fact used in proving this is that if a compact Lie group G acts effectively and continuously on a connected manifold and if the fixed point set of G contains an interior point, then $G=\{e\}$.

Let K be the collection of points $x \in M'$ such that on every neighborhood of x, $\lambda(x)$ has an infinite least upper bound. Then K is a closed and L-invariant subset of M' and is nowhere dense.

LEMMA 6. On every connected component R of M'-K, the function $\lambda(x)n(x)$ is constant, that is, (L, \mathcal{I}) operates on R as a circle group.

PROOF. Clearly R is an L-invariant open subset. Since the points of continuity is dense and open, there is a connected open set H in R such that $\lambda(x)n(x)$ is constant on H. If H is not all of R, let b be a point of R on the boundary of H. There are an open neighborhood U of b in R and a positive number m such that $\sup\{\lambda(x); x\in U\}=m$, because $\lambda(x)$ has a finite least upper bound at b. There is a point $y\in U$ such that $\lambda(y)\geq m-\varepsilon$ and we see easily that for sufficiently small ε , such y is a point of continuity. It follows that there exists an open connected subset V of $H\cup U$ on which $\lambda(x)n(x)$ is constant. Since $\lambda(x)n(x)$ is L-invariant, the set V can be assumed to be L-invariant.

Assume furthermore that V is a maximal open connected subset on which $\lambda(x)n(x)$ is constant and equal to $\lambda(b')n(b')$ for a point $b' \in V$. From Lemma 4, we have that $\lambda(x) < \lambda(b')$ on the boundary point of V in $H \cup U$. It follows that $\lambda(x) = \frac{1}{k} \lambda(b')$ for some integer $k = k(x) \ge 2$. Since the boundary B of V is closed in $H \cup U$ and then a set of second category, we see by a category argument

that there is an L-invariant open subset W in $H \cup U$ such that $\lambda(x)$ is constant and equal to $\frac{1}{k}\lambda(b')$ on $W \cap B$ for some integer $k \ge 2$. Then, an operation of $Z_k = \{e^{2\pi i \frac{l}{k}}\}$ on $V \cup W$ is defined as follows:

$$g(e^{2\pi i \frac{l}{k'}}, x) = \begin{cases} f\left(\frac{l}{k}\lambda(b')n(b'), x\right) & \text{if } x \in V \\ x & \text{if } x \in V \cup W - V, \end{cases}$$

where f is the operation of (L, \mathcal{J}) on M and l is an integer. It is easy to see that $g: Z_k \times V \cup W \to V \cup W$ is continuous.

Since $V \cup W$ is a connected manifold and $V \cup W - V$ has an interior point, Z_k operates trivially on $V \cup W$. This contradicts the definition of $\lambda(x)$. Thus, we have V = R - H.

PROPOSITION 2. Let $(L, \mathcal{J}) \in T(L, \mathcal{J}_0)$ be irreducible and act on a connected manifold M. If every orbit is homeomorphic to S^1 , then (L, \mathcal{J}) acts on M as a circle group.

PROOF. Notations being as above, it is easy to see that for every point $x \in M$ there is an open, connected and L-invariant subset M' containing x on which n(y) is continuous. We have only to show that $\lambda(x)n(x)$ is constant on M'. If $\lambda(x)$ is bounded on M', then by Lemma 6 we have $\lambda(x)n(x)$ is constant. The proposition will now be proved by the method of contradiction. Assume that $\lambda(x)$ is unbounded on M'. On the basis of this assumption the lemma above shows that M'-K is not connected and therefore that the closed set K is not vacuous.

Let $\lambda(x|K)$ denote $\lambda(x)$ restricted to K; $\lambda(x|K)$ is lower semi-continuous on K. Since K is a set of second category, we have by the same argument as in Lemma 4 that the set of continuity of $\lambda(x|K)$ is open and dense. Thus, there is an L-invariant connected open subset U in M' such that $\lambda(x|K)$ is continuous on $U \cap K \Rightarrow \emptyset$. Let R be any connected component of M' - K and $\lambda(x) = \lambda_0$ on R. The boundary B_R of R is contained in K and $\lambda(x|K) = \frac{1}{k}\lambda_0$ on B_R for some integer k = k(x). Since $\lambda(x|K)$ is continuous on $B_R \cap U$, we see that $\lambda(x|K)$ is constant and equal to λ_0 on $B_R \cap U$ by the same reason as in Lemma 6 because the set of the points x where $\lambda(x|K) = \frac{1}{k}\lambda_0$ is open in $B_R \cap U$ for every fixed k.

It will be shown below that $\lambda(x)$ is continuous on U. Let $\{x_n\}$ be a sequence converging to a point x_0 in U. If $x_0 \notin K$, then $\lim \lambda(x_n) = \lambda(x_0)$ because any connected component of M' - K is an open subset. Assume $x_0 \in K \cap U$. There is an arc $C: [0, 1] \to U$ such that $C(t_n) = x_n$, $C(1) = x_0$ and $\lim_{t \to 1} C(t) = x_0$. For every t_n there is t_n such that $t_n \leq t_n$, $C(t_n) \in K \cap U$ and $C([t_n, t_n])$ is contained in the

closure of a connected component of M'-K. Since $\lambda(x|K)$ is continuous on $U\cap K$, we see $\lim \lambda(C(t_{n'})) = \lambda(x_0)$. From this and the fact that $\lambda(x_n) = \lambda(C(t_{n'}))$, we have $\lim \lambda(x_n) = \lambda(x_0)$. Thus, $\lambda(x)$ is continuous on U and then constant on U. This contradicts the definition of the set K. It follows that K is vacuous. Then $\lambda(x)n(x)$ is constant on M' and then on M. This means that (L, \mathcal{J}) acts as a circle group on M.

PROOF OF THEOREM B.

Let K be the set of points such that $\varphi(L)(x)$ is a point. Clearly K is a closed subset. By Proposition 2, we see that $\lambda(x)$ is constant on a connected component M' of M-K. That is, (L, \mathcal{J}) acts as a circle group on M'. Define an operation f' of (L, \mathcal{J}) as follows:

$$f'(l, x) = \begin{cases} f(l, x) & \text{if } x \in M' \\ x & \text{if } x \in M - M', \end{cases}$$

where f is the operation of (L, \mathcal{J}) on M. Clearly f' is an operation of (L, \mathcal{J}) on M as a circle group. Therefore M-M' contains no interior point. This means f=f', completing the proof.

4. Proof of Theorem A.

Let φ be a homomorphism from (L, \mathcal{F}_0) into H(M) and K be the kernel of φ . The factor group $(L, \mathcal{F}_0)/K$ is isomorphic to $(L', \mathcal{F}_0) \times T$ where T is a toroidal group. Naturally, there is a monomorphism $\tilde{\varphi}$ from $(L', \mathcal{F}_0) \times T$ into H(M) such that $\tilde{\varphi} \circ \pi = \varphi$ where π is the natural projection from (L, \mathcal{F}_0) onto $(L', \mathcal{F}_0) \times T$. Assume furthermore that every orbit $\varphi(L)(x)$ is homeomorphic to a circle or a point. Then, we see that every orbit $\tilde{\varphi}(T)(x)$ is homeomorphic to a circle or a point. Thus, from Theorem C we have $T = S^1$.

We have only to show that $\tilde{\varphi}(L')$ is closed in H(M). Assume that $\tilde{\varphi}(L')$ is not closed in H(M). Then the relative topology for $\tilde{\varphi}(L')$ introduces a topology \mathscr{T} for L' such that $(L',\mathscr{T})\in T(L',\mathscr{T}_0)$ and $(L',\mathscr{T})\stackrel{}{\Rightarrow}(L',\mathscr{T}_0)$. It follows that there is a vector subspace L'' of L' such that (L'',\mathscr{T}) is irreducible. From the irreducibility, we see that every orbit $\tilde{\varphi}(L'')$ is homeomorphic to a circle or a point. It follows by Theorem B that $\tilde{\varphi}(L'')=S^1$, contradicting the fact that $\tilde{\varphi}$ is isomorphic. Thus, we see that $\varphi(L)$ is closed and isomorphic to $(L',\mathscr{T}_0)\times S^1$.

Tokyo Metropolitan University

References

- [1] A. M. Gleason and R. S. Palais, On a class of transformation groups, Amer. J. Math., 79 (1957), 631-648.
- [2] D. Montgomery, Pointwise periodic homeomorphisms, Amer. J. Math., 59 (1937), 118-120.
- [3] H. Omori, Homomorphic images of Lie groups, J. Math. Soc. Japan, 18 (1966), 97-117.
- [4] H. Omori, Some examples of topological groups, J. Math. Soc. Japan, 19 (1966), 147-153.

(Received Jan. 29, 1966)