On the finiteness of perturbed eigenvalues

By Reiji KoNNG and S. T. KURODA

§1. Introduction.

In connection with the study of partial differential operators, Birman (1] gave
necessary and sufficient conditions in order that only a finite number of negative
eigenvalues are created by perturbing a positive definite selfadjoint operator Ho.
The setting of problems and the results obtained were given in terms of closed
Hermitian forms and Friedrichs extensions. On the other hand Schwinger [6]
considered the similar problem for the number of bound states of the three-
dimensional Schrédinger operator and showed (partly by intuitive argument) that
the total number of negative eigenvalues of the operator given formally by
—A+q{x)- in L¥R® is not greater than

1 x
This result, however, doss not seem to be deduced from the condition and the
estimate given by Birman.

The main purpose of the present paper is to give another sufficient condition
for the finiteness of perturbed eigenvalues which includes Schwinger’s condition
and partly Birman’s one. The setting of the problem is based on the technique
of factoring the perturbation. This techniqgue is currently investigated from
several aspects of the perturbation theory”. In the present paper we shall ex-
clusively follow the formulation given by Kato [3] in which the perturbed
operator H, is given formally by Hi~H,+B*AY.

Let the operator valued function Q(z) be defined as A(Ho—2)"'B* for any 2
belonging to the resolvent set p(Ho) of Ho. It has been shown that the behavior
of Q(z) on or near the real axis has an intimate connection with the perturba-
tion problems. Namely, its boundary values @(2+i0) on the continuous spectrum
of Ho, if they exist, have an important meaning in the “scattering theory”
and the distribution of its “zeros” in p(H,) somehow determines the discrete
part of the spectrum of Hi. Thus, the main intention of the present paper
lies in adding another piece of information to such investigation of the perturba-

0 See, e.g., Kato [3], Kuroda [5} and the literatures cited in them.
2 A more general factorization referring to Cayley transforms, which was used in (5],
seems not suitable for the present problem.
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tion problem and not so much in the improvement of the condition from the
practical viewpoint. Namely, our main result asserts roughly that, if Q{z) is
completely continuous for any z ¢ p/H,) and extendable continuously (in the norm
topology) to an endpoint a of the continuous spectrum of Ho,, then the eigen-
values of H, situated in p{H:) do not have a as a point of accumulation. This
result will be formulated in §2 and proved in §3. An estimate of the number
of perturbed eigenvalues is also given. In §4 a brief account will be given on
the application of the results to the cases considered by Birman and Schwinger.

§2. Asgsumptions and results.

Let $ be a Hilbert space. We denote by B the set of all bounded operators
T with the domain ®(T)-=9 and the range RN(T)<H. For any densely defined
closed operator 7' in 9, the resolvent set, the spectrum, and the point spectrum
of T are denoted by o(T), o(T'), and o,(T), respectively. When T is densely
defined and bounded, we denote by [T]€ B the closure of 7.

Now, let H, be a selfadjoint operator in © and put for brevity Ro(2)==(Hs—2)!,
ze p(H,). Let A and B be densely defined closed operators which satisfy the
following two assumptions.

ASSUMPTION 1. 1) D(Ho)CD(A)ND(B). ii) For some (or equivalently any)
z € p(Ho), the densely defined operator AR.(z)B* has a bounded extension Q(z) ¢ B.

ASSUMPTION 2. There exists z€ p(Ho) such that

2.1 —1€0(Q(2)) .

In our later arguments, we use the following propositions and equalities
which are easy consequences of Assumption 1%.

i) The densely defined operator Ro{2)B* is bounded;
i) [Ro(20)B*]—[Ro(22) B¥]:= (21— 22) Ro(21){ Ro(22) B¥] ;
iii) M Re(2)B*)T(A) ;
) Q) Qze)=(21—22) ARo(2)[ Bo(2:) B¥] .

(2.2)

Yor any z ¢ p(H,) satisfying (2.1), the operator R.(z)e B is defined by
(2.3) Ri(2)=Ro(2)—[Ro(2) B*}(1+Q(2)) A Ru(2) .
As was shown by Kato®, R.(2) is the resolvent of a closed operator H,, which
is an extension of Ho-+-B*A. This is the definition of our perturbed operator H:.
Its selfadjointness will be deduced later on the basis of Assumptions 3 and 4.
Since our theory is in the category of the so-called large perturbation, we
need the following additional assumption.

# For the proof, see Kato [3; §2].
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AssuMPTION 3. The operator Q(2) is completely continuous for every z< n(Ho).

Under Assumptions 1, 2 and 3, there is an intimate relation between the
discrete part of the spectrum of H: and that of Q(z). This fact, which plays
a fundamental role in our argument, is formulated as in the following lemma.

LEMMA 1. Suppose that z€ p(Hy). Then: 1) zeo,(H) if and only if —1¢
a,{Q(2)); and i) z€ o(H:) if and only if -1€ 0(Q(2). Moreover, in the case of
1), the (geometric) multiplicity of z as an eigenvalue of H. is equal to that of
—1 as an eigenvalue of Q(z).
Although this lemma can be deduced essentially from Remark 7.1 of [5], a direct
proof will be given in §3 for the sake of completeness.

In order to make H, selfadjoint, we follow the argument given in Kato {3}
and introduce the following assumption.

ASSUMPTION 4. For each z, ye D(A)NT(B) we have (Ax, By)—=(Bz, Ay).

THEOREM 1. Suppose that Assumptions 1-4 are satisfied. Then, the operator
H: defined as above is selfadjoint. Let I be an open (possibly infinite) interval
contained wn o(Ho). Then, o(H)NT consists only of isolated eigenvalues of finite
multiplicity. Furthermore, let a be one of the end points of I(a=+ow is per-
mitted) and suppose that Q(2), 2€l, tends to some operator Qa)e B in B as
Z—a. Then a is not a point of accumulation? of o,(H)NI.

COROLLARY. In addition to the hypotheses of Theorem 1, suppose that Q)
has a limit at each end point of I. Then, o(H\)NI consists only of finite
number of eigenvalues of finite multiplicity.

REMARK 1. If [=(--o0, a) (or (a, o)) and if B=WA where We B is such
that W-'e B, then [[Q(1))| >0 as 2->-—o0 (or =). (For the proof, see §3).
Therefore ¢,(H:)NI is bounded and hence, for assuring the finiteness, we have
only to assume that Q) —> Q(a) as 1—a.

The finiteness of the eigenvalues being established by this corollary, it is
desirable to have some estimate of their number. This becomes possible if we
add one more condition on Q(z). To simplify the exposition we first introduce
the notion of the total multiplicity of op(H)NI for a selfadjoint operator H and
an interval I. This is by definition the sum of the multiplicities of the eigen-
values of H: lying in I. Furthermore, for a completely continuous operator 7
we denote by S(T'; ¢, d) the sum of algebraic multiplicities of the eigenvalues
of T lying in the interval (¢, d) not containing 0.

THEOREM 2. Let I=(a, b) (a=—co or b=oo i3 permitted). In addition to the

4 Here and in what follows, we call oo (or —o0) a point of accumulation of a set w of real
numbers, if w is not bounded from above (or from below).
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hypotheses of the corollary to Theorem 1, we assume that for any <, 0<- <1,
there is at least one z € p(Hy) satisfying —1¢€ p(zQ(z)). Then the total multiplicity
of o,(H:){a, b) does not exceed S(Q(a); —ce, —~1)+S(Qb); —oo, —1).

COROLLARY. If, im particular, I=(—w, a) and A=+LB, then the total
maltiplicity of o,{Hi)NI 1is equal to that of ¢,(Q(a))N (-2, —1) (note that Q(a) is
now selfadjoint). The same is true for (a, «) in place of (—oo, a).

§3. Proof of theorems.

Proor oF LEMMa 1. For proving i) we fix z0¢€ p(Ho) in such a way that
1€ p(Q(2)) and note that Hiu=zu if and only if wu==(z-—20)R.(20)u. Therefore,
we see by (2.3) that ze op(H,) if and only if there exists u=+0 satisfying

3.1) (Ho—2)Ro(zs)u = —(2-—20)[ Ro(2) B¥](1 4+ Q(20)) ' ARo(20)1 .

Suppose now that «+0 satisfies (3.1) and put

(3.2) v=(1+4Q(z0)) ' ARo(20)u .

By applying (1-+Q(z0))"'ARo(2) to both sides of (3.1), we then get

3.3) vz (2 20)(1+Q(20)) T A Ro(2)[ Ro(20) B¥]v .

By virtue of iv) of (2.2) the right member is equal to
—(1+Q(20))"(Q(2) — Q20))v=—(1+Q(20))"(Q(2) + v+ .

Hence, we get Q(z)v=-—v by (8.3). If v==0, then AR«(z0)u==0 by (3.2) and hence
(Ho—2)Ro(zo)u=0 by (38.1). Since this is impossible, we see v#0 and hence
—~leop(@(z)). Conversely, suppose that Q(z)v==--v, v+#0. Then, following the
previous manipulation in the reverse order, we see that v satisfies (3.3). Here,
the order of Ru(z) and Ro(z:) on the right side of (3.3) can be reversed. There-
fore, applying [Ro(z:)B*] to both sides of (8.3) we see that

(3.4) w=[Ro(z0) B¥ v

satisfies (3.1). Furthermore u==0 implies v=0 by (3.3) and (3.4). Hence 2€ o,(H)).
The assertion ii) follows immediately from i) and the definition of H:. As we
have seen, each of (3.2) and (3.4) gives one-to-one mapping from one of the
eigenspace of H: and that of Q(z) into the other. Furthermore, the eigenspace
of Q(2) is finite-dimensional. The last assertion of the lemma follows from this
immediately.

PROOF OF THEOREM 1. For the proof we need to introduce a family of
operators H- depending on a complex parameter . Let £ be the set of all
complex numbers - which satisfy the following condition:
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(3.5) there exists z¢ p(H,) such that —1e€ o(zQ(z)) .

Since @(z) is completely continuous, the complement of £ in the complex plane
is at most denumerable and has no point of accumulation. For any - €2 and
any z such that —1¢p(zQ(z)) we put

(3.6) R-(2)= Ro(z)~[Ro(2) B*}(1 +Q(2)) "' ARo(2) .

Again R:(z),  being fixed, is the resolvent of a closed operator H.. As is easily
seen, H: is regular in 2 in the sense that, if z€ o(H:), - €2, then z€ o(H-) for
any « belonging to a sufficiently small neighbourhood of = and that resolvent
R.(2) is regular there. In particular, Assumption 2 implies that H: is defined
and regular in & neighbourhood of t=1. (Note that H: coincides with the
original H: when t=1).

We first verify that H. is selfadjoint. To do so, we have only to prove the
following lemma.

LEMMA 2. If —1¢p(Q®), then —1€ p(Q(z2)) and Ri(z)=Ri(2)*.

ProoF. If |z1<min (|Q(2)}i~, 1Q(2)I™"), it has been shown by Kato (cf. [3; § 4])
that R.(2) and R.(2)* exist and equal to each other. Considering that Q(2) is
completely continuous, both E-(2) and R:(2)* are analytic functions of r having
only isolated singularities. Therefore the process of analytic continuation shows
that Ri(z)=lim R:(z)*=R. By the resolvent equation, however, we see that R
18 actually e;\;al to Ri(%)* and the lemma is established.

Next we show that, when Q(a)=1im Q(4) exists, a is not a point of accumula-
tion of 6,(H:)N1I. The other assertion‘;} the theorem is essentially well-known.
Without loss of generality we suppose that @ is the upper end point of the
interval I. Let an interval (s, 1] of © be contained in £ and let A be the set
of all pairs {r, 4} such that 6<r<1 and A€o, (H:)NI. Furthermore, put® F={c;
{z, a} is a point of accumulation of 4}. We first show that F is a finite set.
For any z€F, one can choose a sequence {{r., 4}}< . converging to {r,a}. In
virtue of Lemma 1, there exists u. €9 with lju.]=1 such that —u.=r.Q(4)%a.
The last relation is rewritten as —u.=[ta@(Zn)— Q@)U+ t@Q(a)ur. Therefore,
since wxQ(2.) — tQ{a) and Q(a) is completely continuous, a subsequence {u.-] of
{u.} converges to some vector, say, —u. This yields that —u=rQa)u, Jull=1.
Hence Fcir; —r'€0,(Q(a))} and F is a finite set. Let A be an arbitrary point
of I. Since the set Fi,={r; {r, 2o} € Ay={r; —v~' € 0,(Q(4)), s <z <1} is a finite set,
one can choose to, 0<70<1, in such a way that no point of F», and no point
of F are contained in the interval (o, 1). Now it is clear that for any ¢,

5 In what follows ¢ is supposed to be finite. The case when a=co can be handled quite
similarly with slight changes, say, in the definition of 4.
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0<z<{1--74)/2, there is a positive number J§ such that o,(H.) " (4, @)= (4, a—a)
for every €[z iz, 1--c]. (Note that every eigenvalue of H. depends regularly
and a fortiori continuously on r by virtue of the regularity of H.). Hence one
can draw a closed rectifiable curve I" in s(H,) in such a way that, for any
7€ [ro ¢, 1--2], the interior of /" contains s.(H.)"1(/, @) and no other points of
a,{H:). Then we get

3.7 Ex{a—0) E-(a)e=— 13 R-(x)dz
271 Jr

where [.(y) is the right continuous resolution of the identity with respeet to
H.. The right hand side of (3.7) is regular and hence continuous in r in the
sense of the norm of B. Therefore, the dimension of the range of E.(a—0)
--K:(4%), that is, the total multiplicity of ¢,(H:-)N (%, a) is constant in [zo-i-z,
1--z]. Since ¢ is arbitrary, the total multiplicity is constant throughout (s, 1).
Moreover this constant, say, m is clearly finite, because o,(H-)N(J, a) has no
point of accumulation if € F. If there are an infinite number of eigenvalues
of H: in the neighbourhood of @, one can enclose an arbitrary number of them
with a closed curve. By carrying out the same integration as (3.7), it follows
that there exists r€(co, 1) for which the total multiplicity of o,(H-)N{4, @) is
larger than m. This contradicts the previous result and Theorem 1 is established.

In order to prove the statement mentioned in Remark 1, we need the fol-
lowing lemma.

LemMa 3.9 Let T, Tw, n==1, 2, ---, be in B and let S be completely con-
tinuous. If T. converges strongly to T then T.S converges to TS in B.

Without loss of generality we assume I=(—c0, @). Noting that RO(Z)%A*
C‘[ARO(,%‘)"}]* for iel and that the densely defined operator ARD(Z)";'RD(X)%A*
has an extension QA)W*-'z B, it is easily seen that ARo(Z)';”.-:m: T(2) belongs to
B. As a matter of fact, T(2) is completely continuous since Q(X) W*-1=T(N)T(A)*
is completely continuous. On the other hand, we have Q(A)=T(L)K(A)T (i) W*
where K(4)==(Ho—A)Rs(2)e B. Since K(2)—0 strongly as 1— —co, Lemma 3
therefore shows that Q) —>0 as A-> —wo.,

Proor oF THEOREM 2. The additional assumption of the theorem shows that
H: exists and regular in a region containing 0<r<1. Similarly as in the proof
of Theorem 1, let d={{z, 2}; 0<c <1, i€ op(H:-)NI}. Let Fa={r; {z, ¢} is a point
of accumulation of A4}. The set Fs is defined analogously with {r, a} replaced
by {r,b}. Again F. and F' are finite sets. Let F.UFs—{l}={r1, 72, - -+, zvo1},

9 For the proof, approximate S by a sequence of operators with finite-dimensional range.
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7¢==0, and t~=1. Using the same argument as bofore, one can conclude without
difficulty that the total multiplicity of ¢,(H-)"I is equal to a finite constant m.

throughout the interval (z.,, =), k=1,2, ---. Note that every eigenvalue of
H: lying in I depends regularly on - unless it comes in contact with a or b™.
Now, we estimate the difference ni==mpi—ms, k=1, 2, ---, N—1, and first

consider the case zx€ Fu—F%. According to the theory of regular perturbation
of selfadjoint operators”, the eigenvalues of H. in I are given by a set of mu
regular functions 4.(z), ---, Z»,(c) of ¢, each eigenvalue being repecated according
to its multiplicity. Suppose that p: functions among 4’s, say, 4(c), - -, Ap,{7)
tend to a as 7+ and the others do not. The number g; is determined similarly
referring to the interval (i, =::1), so that there are exactly ¢. eigenvalues y;(x)
tending to a as r | . Since r.¢ Fo—F4, it follows that n= qr—pr and hence
W< Pi+qr. Let ¢ be sueh that s<min(zss—%i, te—ce-1). Then, if el is
sufficiently close to @, each 4(7), i=1,2, ---, p:, takes the value 4 at least once
in (cx—¢, 7). The similar statement holds for p; in place of /4. Now, put
o7=(crxte)™. Then it follows from the above fact and Lemma 1 that pi-tqr<
S(Q(%); —d;, —8;). On the other hand, S(Q(%); —é; , —3;) is the rank of the
projection operator
g | @Otz

where C is a properly chosen closed curve enclosing the interval (8, —6;).
On account of the continuity of @) at a, it is clear that Px, >P. as L->a.
Hence its rank, S(Q(%); —d;, —-0}), is constant and coincides with the algebraie
multiplicity of the eigenvalue —<;' of Q(a). The case cve Fo~Fa or e Fu (1 F)
can be treated in a completely analogous way. Thus, we see that the total
multiplicity of o,(H:)" I, which is equal to 3 %=1 n., is majorized by

S@a); —-co, ~D+S@Qb); —co, —1)
and the theorem is proved.

PROOF OF COROLLARY. Let I=(—co, @). Since Q)] 0 as 21— —os by virtue
of Remark 1, F... is empty. Moreover, each regular funection, say, ic) re-
presenting an eigenvalue of H. is (strictly) monotone decreasing. Indeed, in the
contrary case A(r) has an extremum Z €I. Therefore, its inverse function 0(%)
and hence —1/9(2) have a branch point at ;. But this does not occur, because
the analytic function —1/0() represents an eigenvalue of the regular funetion
Q(%) of selfadjoint operators®. Thus we get pv=0 and qi==n«, from which the
assertion of the corollary follows at once.

% See Kato [2; §2].
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§4. Applications.

Let Jo[u, v] be a closed Hermitian form in £ with the dense domain .

u--0. Then, Jo[u]? difines a norm in ©. Let $y be the completion of ® with
respect to this norm. The following result is due to Birman [1].

Let J'[u, v] be a Hermitian form with the domain D such that J' [u]>0,
we?D. Furthermore, suppose that J' admits an extension J to 9o which is
completely continuous in 9.5 Then, the Hermitian form Ji=Jo—J +is closed
and bounded below. Let H; be the selfadjoint operator in 9 associated with J;
in the sense of Friedrichs. Then, o(H:)N(—co, 0) consists only of a finite
number of eigenvelues, each being of finite multiplicity. Actually, Birman
formulated the result with additional assumptions. But his method of proof
can be carried over to the general case stated above.

For this problem Birman's method is simpler, and more powerful in the sense
that it yields some sort of converse proposition. Nevertheless, it may not be
worthless to see briefly how our results are applied to this problem. Un-
fortunately, the pair of H, and H. itself does not seem to satisfy the assumption
of our theorems and we have to consider their resolvent. We shall give only
an outline, omitting the details.

Let £, r<0, be the Hilbert space ® equipped with the inner product
(Jo—7)[u, v] and let T, be the non-negative completely continuous operator as-
sociated with J’ in ©,. The fact that Ji is closed and bounded below follows
easily from the complete continuity of T,. Without loss of generality we
assume that H;>7>—1 and (1—T..)"' exists. Now, instead of H; consider
K;=(H;-+1)"", -:0,1. Then, it can be shown that

(41) Kl:KO“‘Tnl(l“‘“‘T—-l)MlKO .
In fact, this is verified by a calculation similar to the one used in the proof of
Proposition 5.3 of [4]. The second term on the right of (4.1) can be factored as
B*XA' with
H 1 1 1

BY-T% K3, X=K T(1-T.)"KZ, and A=K, T T2 K.
Using this factorization (A=XA"), the function @ for the pair K, and K: can
be computed as

® A form J’ is completely continuous in £o if J’ is bounded in §; and the operator as-
sociated with J’ in the usual sense is completely continuous in §s. This is equivalent
to say that any bounded sejuence {us} in £ contains a subsequence {un} such that
j’[unr—azcml] -0, m’, #/— oo,



On the finiteness of perturbed cigenvalues 63

Q)=XA (Ko—1)"'B*
1 1

1
=y XFOY Ho—2) ¢ T}' Kl}’
=t XF(DKF (25,

where we put i=(1--z)// and
UL TR _r
F=K > T (Hi=) "+, <0,

which is in B. Since o(Ko)C[0, 1} and 270 when # |1, it suffices to show that
F(2) is completely continuous and converges as 27 0. On the basis of the assumed
complete continuity of J in o, however, it can be shown that

FO)=[K T3 H )

is completely continuous in . Then, the desired conclusion follows from the
obvious relation

1

F()=F(O)Hy™ (Ho— 1) F

and Lemma 3.

Schwinger’s result concerning the Schrédinger operator with non-positive
potential function is deduced from the corollary to Theorem 2. This ecan easily
be seen from the argument given in Kato [3; §6] and the details are omitted.

Senshu University and University of Tokyo
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