A lemma on open convex cones

By Takushiro Ocuiar

§0. Let V be an n-dimensional real vector space with a positive definite inner
product <, >, and 2 be an open convex cone which does not completely contain
any straight line. We assume the vertex of the cone 2 is the origin of V. We
denote by 2* the subset {zeV|<z, u>>0 for *usC—{0}}, where O is the
topological closure of 2 in V. Then the following theorem is well known [6];

THEOREM A. (1) O%+#£¢.

(il) 2% is also an open convex cone which does not completely
contain any straight line, and whose vertex is the origin
of V. (Therefore (2*)* has a meaning.)

(iii) (@*)*=0

Using £*+¢ we shall prove

LemMA B. 2nN&*+4¢.

The following theorems C and D are corollaries to Lemma B.

THEOREM C. Suppose 2 is homogeneous, then 2 is self-dual if and only if
the aqutomorphism group G(2) of &£ is self-adjoint with respect to the inner
product <, >.

The precise definitions will be given in the section 1. Combining the thesrem
C and a theorem of G. D. Mostow, we shall prove

THEOREM D. Suppose £ is homogeneous, then £ is self-dual if and only if
the automorphism group G(£2) of £ is completely reducible (for some inner pro-
duct of V).

Theorem D was mentioned in Rothaus [5]. After the preparation of this paper,
we have heard he has a proof.

I wish to thank Professor N. Iwahori, Professor T. Nagano and Mr. M. Take-
uchi. Mr. Takeuchi kindly suggested me the paper [1] for the proof of the theorem
D. 1 also wish to thank Professor Y. Matsushima. Theorem C was suggested by
him.

§1. For any element v of V, we denote by P, the hyperplane {z= V| <z, v>=0}.
We define the subset P (resp. P7) of V by Pr={zcV|<n, v>>0}, P;={xe V]
<, v><0}. Then from the definition we have ve 2* if and only if P}>02-{0}.
The following Lemma 1 will be proved in the next section.

Lemma 1. (1) For any element ve 2%, the intersection of 2 and any hyper-
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plane parallel with P, is bounded.
(ii) For any v, 9% such that vk, there exists v,€ Py, such
that v, 2*.
We shall prove the next L.emma B by the induction on the dimension of the cone 2.

Lemma B. The intersection of 2 and 2% is not emply.

Proor. We do not prove Theorem A but use it here. When the dimension of
£ is 1, Lemma B is obvious. Let us assume that we can prove it provided the
dimension of £ is less than n. Now suppose the dimension of £ is n. Take any
element v, of 2* and fix it once for all. If v,&2, since £ is open, we can easily
see 2NP*£¢. Therefore we assume v 2. By Lemma 1, there exists an element
€ 2% such that <wvs, v,>=0. We may assume that v, and », are unit vectors.
We decompose V in the following two ways: (a) V=P, E{v}, and (b) V=P,,&
{ve) where {v.} is the line spanned by v.. We denote by p, the projection of V
onto Py, according to the decomposition (a). Let £, be the image of £ by the
projection p;. It is easy to see that £; is an open convex cone in Py, (the vertex
being the origin of Py,). Now we shall verify that £, does not completely contain
any straight line. For any element r&V, we denote p:(¢) by r;. Then we have
r==r;+lv; where 1=<r;, v,>. For any r& £, since vo= £* and <, v,> =0, we have
0< <V, > =<V, 71> +A< Vo, V1> = <, 71>. Therefore £2,N Py,=¢. Now suppose
2, thatcontained a straight line I. Since £,N Py, =¢, I must be parallel with Py,.
Therefore [ is contained in some hyperplane Pga:{ve V|<w, ve> =¢} parallel with
Py. For any element z&pr(D)NL we have <z, 1> =<a+ <&, 1> 11, vo> =
<®y, Vo>==¢. Hence we have p;’(l)ﬁQc:Pgoﬂ.Q. By Lemma 1, p7'()nL is
bounded, contrary to the assumption that ! is a straight line. Thus £, does not
completely contain a straight line.

Sinee the dimension of £, is »—1, using the hypothesis of the induction, we
can find an element w,&£, such that <wu,, x,>>0 for any z,=2,—{0}. (Here
the inner product in Py, is the one induced from <, >.). Take any u= 2 such
that p(u)=u, and fix u once for all. For any x=2—{0}, 2,=pi(x) is not 0. In
fact, if otherwise = will be contained in {v;}. Therefore <w¢, > =0 contrary to
the assumption that <wv,, #>>0 for any s=2—{0}. For any z=f8-—{0}, a,=p,
@ep(Dcp(2)=2,. Thus we have <uy, £;>>0. Then <u, 2>=<uy, £,>+n
<y, 1> when A=<, 9> and =<, v,>. Since u, z= 8 and vie 2%, we have
0< (v, w)=24 and 0< (v, 2)=pu. Therefore 41>0 and ©>0. Consequently we get
<u, >>0 for any x&Q—{0}. This means that uc=£*. Thus we have proved
ane*£¢. QE.D.

Let G(2) be the identity component of the group {S€GL(V)|s(2)=8}). G(2)
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is called the automorphism group of 0.

We denote by a* the transpose-inverse ‘a™! of @ with respect to <, >. Let
G(2)* denote {s*|s=G(2)}. It is easy to see G(2¥)=G(2)*, by Theorem A. We
say that 2 is homogeneous if G(2) is transitive on £. It is well known that ©*
is homogeneous if @ is so [6]. When 2=2%, we call 2 a self-dual cone. A sub-
group G of GI(V) is called self-adjoint if G*=G.

Suppose now 2=20* Then G(2)=G(2*)=G(2)*. Therefore we see that G(£)
is self-adjoint if 2 is self-dual. Conversely suppose G(2)==G(2)* then G(2)=G(L*).
Since 2=G(2)-p and 2*=G(2*)-p for any p 2N 2* (#¢ from Lemma B). Thus
Theorem C is proved.

Proor oF THEOREM D. If @ is self-dual with respect to the inner product < , >,
then by Theorem C, G(2)=G(2)*. Therefore G(2) is completely reducible. G(2
is the identity component of an algebraic group G ([6], Note that § is not only
-a subgroup of the affine group of V but that of GL(V).) Now suppose that G(2)
is completely reducible. Then so is G. (See e.g. G. D. Mostow, Amer. J. Math.
78(1956), 200-221, Lemma 3.1). By Mostow’s theorem ([4] or [1] p. 492), there
-exists g GI(V) such that gGg-! is stable under z—x*. Therefore G, in particular
'G(2), self-adjoint with respect to a suitable inner product. By Theorem C, 2 is
self-dual with respect to that inner product. Q.E.D.

§2. In this section we shall prove Lemma 1.

ProoOF OF (i). We have to show that £2n P2 is bounded for any real number a.
‘Suppose that for any integer n>0, there existed a,€82* such that ||a.]|>7 and
<a,, v>=a. Taking a subsequence if necessary we may assume that the sequence
@n/||an]| converges to some ge2*. Since [|8l|=1, we have f%0. Then <B, v>=
lim a/|lax}|=0. Since £=(£*)* p=02*— {0}, and v&H, we must have <v, 5> >0.
’Tyixis is a contradiction.

Proor or (ii). We write P for the hyperplane Provz={gaV|<s—v), v>
=0}. PN2 is not empty. In faet <z, v,> is positive for any x< 2 so that U=
feylys PN &, ¢>0}. Since PNY is compact by (i) and v& 2 by our hypothesis,
we have v, & PN 2. Therefore the distance between v, and PN % is strictly posi-
tive. Let s be a point in PN such that the length ||s—vo|| equals that distance.
We put v;=s—v,. Now v; is what we want to have; ie. <v;, 2>>0 for any
ze8—1{0}. We may assume that z is in PN2. Since PN& is convex, PNE
contains tz-+(1—t)s for any ¢t in the internal [0, 1]. By the choice of 8, we have
Hs—wol 2 |[te+(1—t)s—vo}|2=|t(x—ve) +(1—)w;}12.  The first derivative of the
right hand side must be non-negative at ¢=0. Hence we have 2<z—v,—v,,
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vi>20. In view of <wy, v,>=0, this gives <z, »>={{v]]*>0 and (i) is
proved.
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