A remark on the Riemann-Roch-Weil Theorem

By Kisao TAKEUCH!

A. Weil proved in [1] the generalized Riemann-Roch theorem for generalized
matrix divisors in the algebraic function field k in one variable. There he con-
sidered the case where the Riemann surface W of % contains a finite number of
elliptic points but no parabolic points for a simply connected covering surface.
Here we shall consider the case where 0 contains also a finite number of para-
bolic points.

In §1 we shall define a local divisor at a parabolic point. In §2 we shall
prove the Riemann-Roch-Weil theorem in our case. In §3 we shall define the
holomorphic form associated with a matrix representation 9 of I". All the holo-
morphic forms associated with 9, make a vector space over the complex number
fleld. We shall calculate the dimension of thig vector space by applying the
Riemann-Roch-Weil theorem.

§1. Divisors of Riemann Surface.

Let k be a field of algebraic functions in one variable over the complex
number field C, N be its Riemann surface and ¢ be its genus. We take a finite
set {Py, ---, P} of points on f and attach an integer n, to each point P, (1=4
=8) and oo to P; (s;+1=<2<s). We can construct a simply connected covering
Riemann surface R over R~ {Ps, 41, ..., P,} whose covering transformation group
I' is generated by {as, -+, a, B, ***, Bg 71, *++, s} and has (s, +1)-fundamental
relations,

(711,31&{1,31"1 bl Cfgigua;lﬁilrl e 7’;:1
=1 (1£i<sy).

From now on we put the assumption

3
29243 <1— 1) >0.
Azl n;

A

From this assumption it follows that % is isomorphic to the upper half plane 9.
Hence we regard % and I" as  and a Fuchsian group of the first kind on
respectively. Let P be the set of all parabolic points with respect to I". Put
HUP=9*, then I" operates on §*. Let us consider the quotient space I'\H*
and we denote the equivalence class of z(z&9*) by I'(z). As usual we can make
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the quotient space I™.9H* a compact Riemann surface by defining the local coordi-
nate as follows.

(i) For an ordinary point z, of §, take the local coordinate r=2z—=2, at 2
and the local coordinate t=r at I'(zy).

(ii) For an elliptic point z, of $ with the isotropy group Iz of order #:,,
take the local coordinate == Z:? - at 2z, and the local coordinate t=1" (n="m..) at
I'(z0). ’

(iii) For a finite parabolic point 2z, with the isotropy group I,= {y"lnez)
take the local coordinate ¢=e** at I'(z,), where r=—1/h(z—2,). Then y(r)=7r+1.
It is well-known that I'\H*=R.

Now, we define kp and K, for each point P of R as follows.

(i) For P=I(2;), zo=9 we denote by k, the set of all meromorphic func-
tions f(t) at t==0 and by K, the set of all meromorphic functions f(r) at =0.

(it) For P=I'(z), 2B we denote by kp the set of all meromorphie fune-
tions f(t) at t==0, by k% the set of all meromorphic functions f(t.) (f.=t'"), at
t,=0 and put Kp= 6 k. Then K is the algebraic closure of k». Each element
fe K, can be expréé:éd as f=te(ag-ta it +---) where ap#0 and each a; (1=0, 1,
-«+) is a rational number. We denote the local index of f at P by i(f)=a¢ and
I>r0 when ip(f)=0.

Let F'=(fi;) be a function matrix of Kp, namely a square matrix of degree
7, with entries fi;&Kp. We define the local index of F at P by ip(F)=ip(det(F))
and denote F'»,0 if all fi;>~,0 (3, 5=1,2, ---, 7). It follows immediately ip(FF:)
=5 p{F) +1p(Fy).

A local divisor @, of degree r at PeM is defined as follows™. Put Up=
{IF'e GI(r, Kp)iF'»p0, F-V>p0}, which is a subgroup of GL(r, Kp) invariant
under each transformation of the isotropy group I'z,. Then a local divisor 8, is
defined as a left coset Up#lp (0p=GL(r, Kp)) which is invariant under each trans-
formation of I';,. We define the local index of O, by ip(@p)=ip(@p). This is
independent of the choice of the representative #,.

ProrositioN 1. Let Gp be a local divisor of degree v at an elliptic or a para-
bolic point P, then 0p can be chosen in the form

[t 0 3
i p= { . ) - Hop(t)
L0 tar ]

< This definition is given by A. Weil [1] in case P is an ordinary point or an elliptic point.
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where top(t) belongs to GL(r, kp), d; ALi<r) is a rational number such that
0=d. <1, and d; is a multiple of 1/np when P is elliptic.

Proor. This was proved by A. Weil [1] in case P is elliptic. Hence we con-
sider the parabolic case. By the definition of €, there exists Ve Up such that
Up=V-0p. It is easy to see 0 =V '« ... .V'.V.f,. If we take another re-
presentative ¢ of @p, there exists Ue Up such that #p=Utl,. Then !7:31::((] YUY
6. Put V'=U VU, then we have V/(0)=U0)V(0)U (0) for {==0. Since there
exists an integer [ such that #»=0p by the definition of &p, we have V'™ v

- V'V=E (unit matrix) and hence Vi0)y=F for t=0. We know that there
exists MeGL(r, C) such that V(0)=M DM where

d;s are rational integers such that 0<d,2d,< -+ =d,.<l—1, & is a I-th primitive
foot of 1. Put %= M0 p, then (/}Z:V’(}}, where V/(0)=M-V(0)M ~*=D. Hence we
can assume that ¢,,=V-#,, V(0)=D, without loss of generality. Put ¢/;=V,#, and
{)‘p:j}j_; D43 =i‘_§‘:jo(z>~v- V)i, then L§__l,o D>V, >0, V,(0)=D" and (’z;) DV, )0)

i—1 -
=[.F. Hence EOD“‘Vy belongs to Uy and we have @p,=Upllp,. It is easy to see
that #p=D-fp. Put

$di/l 0 \

L0 . trdril
then (4°'0,)=4"'p, and there exists op(t)&GL(r, kp) such that ¢p=d4-0yp
(q.e.d.)
DeriNITION.  As usual, a divisor @ of degree r on 0 is defined as a system of
local divisors {®,} (P=R) such that @p=FE for almost all P. We define the total
index of @ by I(@)zp%{ip(@p).

§2. The Riemann-Roch-Weil Theorem,

Let a divisor ©® of degree » and e divisor @ of degree »' be given. Put
L@, 0)={@eM(rxr', k)|6060' >0 for all PeR}, then L(®, &) is a vector
space over C. By Proposition 1 we can assume that ’
{1) Be=4dp0p, 4p=(61) (0£d;<1), Gop=0,)GL(r, kp), Ep=4p0p, A}):((')’Utd!)
(0=di<1), Oopr=(0,)€GL(r', kp) where d,=d[=0 when P is an ordinary point, and
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d., di are multiples of 1/n, when P is an elliptic point. We denote vp= h}; zéx
<d,—d.> where <x>=x—[z].

Let dj be a differential of k. We call (f,)dj for f,,k, a differential matrix
of k. Let 9 be the set of all 7’ xr differential matrices of & such that & gf 61
~r0 for all Pc9t. Let 9 be the subset of 9 consisting of all dI’s such that at
each parabolic point P, S,.(1)>70 holds for each pair (k, k) with d,=d, at P
where (S.,())=6 it ©5'. It is easy to see that @ is a vector space over C and
o is a subspace of 9. We denote U@, 6")=dimension of L(®, &) and d;=dimen-
sion of .

TrrorEM (Riemann-Roch-Weil).

—

O, &)=r'K6)—rl(&)—rr(g— 1)"‘P§}{Vp+ do.

Proor., We can prove this theorem by the same method as Weil {1}, But it
is necessary to consider here the parabolic points which did not appear in his case.
Let @=(p;)el(0, ). Then GO& ' =L ">,0 for all PeR, where F=(dr)
=GO, Since ~1<d,~d; <1, we obtain ¥> .0 for all Pe$R. Put G =(J,;) and
By = ().

Let us attach a non-negative integer b(P) to each point Pe R, such that

—~b(P)= min (iP(Q?jt))"r min (il’((};k)) .
ik J k

where 6(P)=0 in case Or=FE, and 6,=EF,. Then ¢, belongs to L(PI’IERP””’)). If we
take {B(P)} such thatP;J‘* WP)>2g—2, then by the Riemann-Roch t;heorem

I LLPY) = dim L( 1T P®) = 51 y(P)—g-+1.
celt Pt PN

Let us attach a non-negative integer a(P) to each P=% such that —a({P)=ip(l:;)
for 1<%, j=7 and —a(P)Sip(Ju) for 1<k, 1<, where a(P)=0 in case O,=E.,
and Op=F.. ¢y has a pole at each PER at most of order 2a(P)+b(P) and
satisfies the following condition.
(2) > p0 for all PEN and ¢4(0)=0 for (k, k) with d,<d;.
(2) is equivalent to

Resp(tr-¢n.(t))==0 at each point P on R
for 0=p=2a(P)+b(P)—1, and for p=-1 for the pair (k, k) with d.<d; at P.

This condition ean be described by @ as follows.

(3) Resp (t7( 22 thig97)) =0 at each PeR
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for 1<h<r, 1<k=r', 0£0=2a(P)+b(P) and moreover for p=—1 for the pair (h, k)
with d,<d:.

Now, put M(P)={(h, k); d.<d;} and m(P)=the number of the element of
M(P). Since there are rr'(2a(P)+b(P))+m(P) equations (8) at each point P on
R, we obtain in total Pgbt{rr’(2a(P)+2b(P))+m(P)} equations. The number of un-
knowns is M"(P%ib(l’)—g%— 1). If we obtain the number of independent relations

among the left hand sides of (3), we can calculate (@, &').
If there exists a system {C{) = {0}, C{w”eC such that

T Cin? Rese{t/( S thugudi)) =0 for all ¢yye L(ILP*) then

I, I Lo,P

(4) >3 L > Resp( X! \‘ C WP 1ot 0,95)]=0 for all ¢ L(1T P*Y7),
T .7 PR fe k Pet

Put

(5) R&O(t) = > Cirw 2 and R= {(R{")

0sps2a( L)+ P~
;~~1 it (B, k)eIN(P)

(4) is equivalent to the following condition (6)

(6) ! Resp {( S 3 RE01)¢) =0 for all ¢ L( 1L P*7)
Pz k, h redt

and for all 1<:i<r, 1557

By a lemma which was proved by Weil [1] pp. 5859, there exists a differential
matrix dI=(dl;) of & such that 219,,.16 = dé (mod t***’). Hence there ex-
ists a system M={M‘®’} such that M‘P’>, 0 at each point PN and

Z; = O RO+ M(t)- 1.

From this it follows that

1
g!‘ 6" 1~(YpAp(R+OQMOol tMP)) J— Mnl‘

where ap is a constant. Put NP =N =M "0;'-t*?, then by the choice of
b(P) we have N »p0 for all PeR. Since di—d,+1— 7? =0 at each point Pe
P
R and di—du+1— hl_ =1 for the pair (k, k)sI(P), we obtain @’Z{ G pl
P T
for all PeR. Hence dI belongs to ©. Moreover
Sin=RE+ NG >0

for (h, k) with d,=d; at each parabolic point P&R. Hence dI belongs to 9.
Let V be the set of all systems R={R{’} (P& M) which is given by (5) satisfy-
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ing the relations (4). V is a vector space over C. By the fact explained above,
there exists a linear mapping f from V into 9, defined by f(R)=0,"'RO, (mod
t*7). We shall prove that f is surjective. Put

R(t)y=6, ?Z Bl traPirbcls P whepe T3, 0, then we have
‘éﬁ =0y ROy (mod £/7)

and
dl

. . . s g7 1 o 4 1 au s
/= LN B ¢ 17 Y7 FRN o I PP L( P
@ d- 6! “P(-Rxlh AR '/1]:) “1’( 77&) gt dnl np)' el by

By the definition of 9, we have R (t)=p..(t)+ 5e./t where pu.(t) is a polynomial
of degree 2a(P)+b(P)—1 and j../t appears if and only if (h, k)9 P), and

53 Resi () 3iRuthg) = 5y Rese (ip %57 ) =0 for all ¢eL(TLPX7).
o En Pan dt ’

Therefore ReV and we see that f is surjeetive.

Since dim V=dim 9,+dim Ker(f), it remains to calculate dim Ker(f). By
the same method as in Weil [1] we have

dim Ker(f)= 32 2a(P)rr’ + 11 p(0) —1ip(00)} .

Pzt
Therefore dim Vzdo-%(lgk?‘a(l’))-1‘1”+7"I (@) —7I(@;) which is the number of in-

dependent relations among the left hand sides of (3). Therefore the number of
independent equations among (3) is

N3 QRa(P) WP+ m(P)) = (S 2a(PY)rr 7/ 1(00)~(E5) + do)
pod =1
=y NP r[(0)—r @)+ Slvp—d,.
Pot PeR

Sinece there are ' { D30(P)—-g+1} unknowns, we obtain

(O, &)=rI@)~rIE)~rr'(g-D~ Syp+dy (q.e.d.)

§ 3. Holomorphic forms associated with a representation of I.

Let I' be a Fuchsian group of fractional linear transformations on the unit
disk 8= {wl]jw| <1} of the first kind. Let {M(5)} be a matrix representation of
degree r of I'. H. Poincaré defined the zetafuchsian series

Bu(w)= M) F(gw) (

=9

—d‘(z?e )m
dw
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where F(w)=(f,(w)), fi{w) is a rational function which is holomorphic on some
neighbourhood of the unit eircle {wljw]=1}.

Theorem (Poincaré (37 pp. 445-450).

Let {wy, -+, w;} be the set of all the poles of f.,(w), (i, =1, -+, ¥). If all
the proper values of M) for any parabolic transformation r have absolute value
1, then for sufficiently large positive integer m, O.(w) converges absolutely and
uniformly on any compact set contained in S‘€~(Z_E)1 (o))

Now we come back to the upper half planei\b and a matrix representation
M) of T,

From now on we consider the case where M(s) (6=1") takes only a finite
number of different matrices. Let p be the isomorphism from & to © defined by
2= p(w)= ‘l:l;zz_ Put 5=plop, I'=p"'I'p, MG)=M(s), then we can apply the
above theorem? and

da’w

Odw)= vmz(”’)lF(’w><q;~> Eﬂﬁ(a)‘F(p“’az)( "“f;’;)"

~(gmerre () ( aﬁf‘f@' )y

where F(2)=(fi/2))=F(p"'2) <_¢Ejf) )m

Put @*(z)~ b 93?(0) tF(oz) <-~> ‘, then 0,(z) converges absolutely and uniformly

t
on compact set contained in S:')—)u I'(z)), where {2z, ---, 2,} is the set of all poles

of fi(z) &, j=1, 2, -++, 7). Here we can take F(z)=E,. where § is an

)Zm
arbitrary point in $ and we can easily find 5 such that det (@*(z)) #0,

We shall consider ©,(2) near each parabolic point 2. Here we may assume
Zo=too. Take r= # | t=e¥* such that I'.={r"lr(z)=r+1}, then I'= U o'jl

o 2.
where o;= oA (r;%90).

. do4(z) -y labs— B ™ 1
Pat Fe) =0 Flo) (S50 )= ST e

then

0.0)= 3 3 MGV FG D=4 X} X DirArFi)
Jj=in=-—cw o= fe]

where Ap is a constant matrix such that Dp=ApT)A!
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// gZ:itn 0
E{ : 0£aEms -+ Sa.<1).
\ ' elriny

Put

/ glrianr 0

i

Jl'(f)z( - : )
3 22:-1’(1,,.:! .

4

(=]
Since 47 X! D;i"4,F (;"2) is invariant under the transformation y, we can express

7= 00
450 3 DRPAGF (72)=(@0 P (1)) and 457 4,-0,{(2)=D10t). Since 6% t)y=an, &
irmE e 00 J=1
$oe e BT have |t-6% 9()| <l o 3] 1 d
v e . PRRpe— 7‘».4.‘;“ - en we ave {7 * S . b ) A ;)» - s an
e (e () POl d B e

t-6% ()0 (Im r—o0). Hence t-69 (t) is zero at {==0. It follows that & "(t)
is holomorphic at £=0 and 43'A,0.(2) is also holomorphic at t=0. Therefore we
have G,(z)== A" dp(0)&(t) where Oy(t)eGL(r, kp). At each finite parabolic point
dr \™ 1 1
2=y (B real) we have O,(2)=A;!- dp(2)B(L) (dz) where r=- i (e—ii)” f=

e‘.’r:ir, I”J:‘u = (;’4” , ‘/’(?)::7‘*'1}1 @U(t)EGL(r; kl’)'
We denote by ¢/.(2) in case r=1 and {Wo)} is trivial. Put
7) G(2)=0,(2)/0.(z), then we have O(s2)=M(s)E(z)

for all ve:/. Hence we can regard ©(z) as a divisor of degree r on N.

Prorosition 2. The total index () of ©(z) given by (7), is equal to 0.

Proor. Since det1((~)) d(det(®)) is I'-invariant, then it is a differential of &k and
N emiddet (= L {1 d{det(®) _ 1 .
in(@)=ir(det (O)= , 31) det () =R sp<det © d(det(())))

. . ! 1
; 5 5 0 Y= \ Y = N1 I —
By the Residue theorem, we have I(®) P?m?:p(()) I%J:’{Resf:( det (@) d (det (@))) 0
(g.e.d.)
[ Fi(z)
DEFINITION. A vector f(2)=| - is called a holomorphic form associated
JH2)

with Mt of weight m, if f satisfles the following two conditions.
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1) floz)=M(o) f(2) ( dé-’;y (for all s=TI"). Assume that f satisfies 1). At

ferie 0
each point z, on 9* let [2,={;} and ‘}JE(;’):A( . }A" Oza =a:=
0 ' emia: |
-.+<a,<1). Then we see
fe 0 (R,
f(z)(g;}m:A{ - ‘ ) F@) <3f>, where AcGL(r, C). F(t)= \J
g | WAOF

e

2) F{t) is meromorphic at {=0 and f(z)((i;) >p0 for all PR,

Let M,.(I", ) be the set of all holomorphic forms associated with 3. It is a
vector space over C. We shall caleulate the dimension of M, (I", M). Let feM,
(I, M) and 6 be the matrix given by (7). Put K)=(0(N=0"f (" ™ Since
D(az)=P(2) for all sl and ¢ is meromorphic at each point Pedl, @J(2) (1sis)
belongs to k. By the condition 2) we have

d] m _ » d.:.‘ - . .
@q)( % ) —f ) <“dz'> >0 for all PER.

Hence (ﬁEL(@(.%z,A) , 1)’

Therefore, M,(I", M) is isomorphic to L<(~7< Z‘z > , 1) and

dim M.(T", ann:z(w( 33) 1) .

By Theorem 1 and Proposition 2.

! (@(—»‘” ) 1) =1 <o<d9> ) —r(g—1)= 3 vptdo=IOG)+
dr dr yah

+mrl <~fl»2~)—r(g—l)~I}:}wumtdo:r {(Qmml) (9—D+m };‘1 (1& g)}
= 4= 2]

3B ™ s 4d
-—2 ‘;.1<afh‘—‘;g>+ 0.

IS
1

—
B

It remains to calculate dy. Since we have assumed that {DM(o)|lesI"} is a
finite set, I"={occ'M(s)=FE} is also a Fuchsian group of the 1st kind and all
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the Fuchsian functions with respect to I make an algebraic function field &’
which is a finite extension over k. Since © is invariant under each transforma-
tion of I’, we have @eGL(r, k'). From the definition it follows that 9=L

(( dJ) 0) and 9D 9,.

dr

We divide two cases.

I m>1

, i di '™ _ djNy"
If UL <d_> ,6). then @=(0)= (97 ) "We1 >0 for all PeR.
, T | C y
Put d=(d)= vpou—u(z?) . Since I(@)=I(2)+(m— 1)1(d >>Oand vk,
1-m

we have ©,=0. This implies 9= ((gi) , -9)2(0), and hence Dy={0}, dy=
dim 5/)9“-::0.

an m=1

In this case we have $=L(, ©). Let ¥eL(l, @). Since ¥&-! >~,0 for all
PeR, we have FO-1=C (a constant vector). And (WY =00 1°=¥.0-1.M(s)?
=(FO-"Y(~)"!, hence C=CM(v») for all ;I". We obtain L(1, &)= {CO|C=CM(s)}
and hence 9= {C|C=CT(s) for all s=I"}. Decompose M into the irreducible re-
presentations of I Then dim @ is the multiplicity of the trivial representation
in M.

Now we shall calculate dim 9.

(II;): In case where I" contains no parabolic transformations, we have 9,=9
and hence do=dim 9.

(II,): In case where I' contains at least one parabolic transformation Let
us consider the case {m(s)} =1 and hence @=1. Then 9= {dI| ~ ( Z‘i) >p0
di_, ( dj tP>“l >0 for each parabolic point P)
dt dt

= {0} and dy¢=0. In the general case we have also dy=0 by decomposing M into

for all Pa} and D= {c djle

irreducible representations. Thus we have proved the following theorem.
TuroreM 2. If M ds a matriz representation of degree r of I such that
(Mo} 48 a finite set, then

dim M (", My=r{2m-1) (g—1)+m }__, <1ﬂ~ ;)}— }i‘, }_r_,‘ <ap— *;} > +d,

a=1 k=1

-~

where dy i3 the multiplicity of the trivial representation in M when m=1 and
I contains no parabolic transformations, otherwise d, is 0.

University of Tokyo
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