A remark on the Riemann-Roch-Weil Theorem

By Kisao TAKEUCHI

A. Weil proved in [1] the generalized Riemann-Roch theorem for generalized matrix divisors in the algebraic function field k in one variable. There he considered the case where the Riemann surface \Re of k contains a finite number of elliptic points but no parabolic points for a simply connected covering surface. Here we shall consider the case where \Re contains also a finite number of parabolic points.

In §1 we shall define a local divisor at a parabolic point. In §2 we shall prove the Riemann-Roch-Weil theorem in our case. In §3 we shall define the holomorphic form associated with a matrix representation \mathfrak{M} of Γ . All the holomorphic forms associated with \mathfrak{M} , make a vector space over the complex number field. We shall calculate the dimension of this vector space by applying the Riemann-Roch-Weil theorem.

§ 1. Divisors of Riemann Surface.

Let k be a field of algebraic functions in one variable over the complex number field C, \Re be its Riemann surface and g be its genus. We take a finite set $\{P_1, \dots, P_s\}$ of points on \Re and attach an integer n_{λ} to each point P_{λ} $(1 \le \lambda \le s_1)$ and ∞ to P_{λ} $(s_1+1 \le \lambda \le s)$. We can construct a simply connected covering Riemann surface \Re over $\Re - \{P_{s_1+1}, \dots, P_s\}$ whose covering transformation group Γ is generated by $\{\alpha_1, \dots, \alpha_g, \beta_1, \dots, \beta_g, \gamma_1, \dots, \gamma_s\}$ and has (s_1+1) -fundamental relations,

$$\begin{cases} \alpha_1 \beta_1 \alpha_1^{-1} \beta_1^{-1} & \cdots & \alpha_g \beta_g \alpha_g^{-1} \beta_g^{-1} \gamma_1 & \cdots & \gamma_s = 1 \\ \gamma_{\lambda}^{n_{\lambda}} = 1 & (1 \leq \lambda \leq s_1). \end{cases}$$

From now on we put the assumption

$$2g-2+\sum_{i=1}^{s}\left(1-\frac{1}{n_{i}}\right)>0.$$

From this assumption it follows that \Re is isomorphic to the upper half plane &. Hence we regard \Re and Γ as & and a Fuchsian group of the first kind on & respectively. Let & be the set of all parabolic points with respect to Γ . Put & $\cup P = \&$ *, then Γ operates on &*. Let us consider the quotient space $\Gamma \setminus \&$ * and we denote the equivalence class of z ($z \in \&$ *) by $\Gamma(z)$. As usual we can make

the quotient space $I \setminus \mathfrak{S}^*$ a compact Riemann surface by defining the local coordinate as follows.

- (i) For an ordinary point z_0 of \mathfrak{H} , take the local coordinate $\tau = z z_0$ at z_0 and the local coordinate $t = \tau$ at $\Gamma(z_0)$.
- (ii) For an elliptic point z_0 of \mathfrak{D} with the isotropy group Γ_{z_0} of order n_{z_0} , take the local coordinate $\tau = \frac{z z_0}{z \overline{z_0}}$ at z_0 and the local coordinate $t = \tau^n$ $(n = n_{z_0})$ at $\Gamma(z_0)$.
- (iii) For a finite parabolic point z_0 with the isotropy group $\Gamma_{z_0} = \{\gamma^n | n \in z\}$ take the local coordinate $t = e^{2\pi i \tau}$ at $\Gamma(z_0)$, where $\tau = -1/h(z z_0)$. Then $\gamma(\tau) = \tau + 1$. It is well-known that $\Gamma \setminus \mathfrak{H}^* \approx \mathfrak{R}$.

Now, we define k_P and K_P for each point P of \Re as follows.

- (i) For $P=\Gamma(z_0)$, $z_0\in\mathfrak{H}$ we denote by k_P the set of all meromorphic functions f(t) at t=0 and by K_P the set of all meromorphic functions $f(\tau)$ at $\tau=0$.
- (ii) For $P=\Gamma(z_0)$, $z_0\in \mathfrak{P}$ we denote by k_P the set of all meromorphic functions f(t) at t=0, by $k_P^{(n)}$ the set of all meromorphic functions $f(t_n)$ $(t_n=t^{1/n})$, at $t_n=0$ and put $K_P=\bigcup_{n=1}^{\infty}k_P^{(n)}$. Then K_P is the algebraic closure of k_P . Each element $f\in K_P$ can be expressed as $f=t^{a_0}(\alpha_0+\alpha_1t^{a_1}+\cdots)$ where $\alpha_0\neq 0$ and each a_i $(i=0, 1, \cdots)$ is a rational number. We denote the local index of f at P by $i_P(f)=a_0$ and $f\succ_P 0$ when $i_P(f)\geq 0$.

Let $F=(f_{ij})$ be a function matrix of K_P , namely a square matrix of degree r, with entries $f_{ij} \in K_P$. We define the local index of F at P by $i_P(F)=i_P(\det(F))$ and denote $F \succ_P 0$ if all $f_{ij} \succ_P 0$ $(i, j=1, 2, \dots, r)$. It follows immediately $i_P(F_1F_2)=i_P(F_1)+i_P(F_2)$.

A local divisor Θ_P of degree r at $P \in \mathbb{R}$ is defined as follows^(*). Put $U_P = \{F \in GL(r, K_P) | F \succ_P 0, F^{-1} \succ_P 0\}$, which is a subgroup of $GL(r, K_P)$ invariant under each transformation of the isotropy group Γ_{z_0} . Then a local divisor Θ_P is defined as a left coset $U_P \theta_P (\theta_P \in GL(r, K_P))$ which is invariant under each transformation of Γ_{z_0} . We define the local index of Θ_P by $i_P(\Theta_P) = i_P(\theta_P)$. This is independent of the choice of the representative θ_P .

Proposition 1. Let Θ_P be a local divisor of degree r at an elliptic or a parabolic point P, then θ_P can be chosen in the form

$$heta_P = \left(egin{array}{ccc} t^{d_1} & & 0 \ & \cdot & & \ & \cdot & & \ & 0 & & t^{d_T} \end{array}
ight) \cdot heta_{0P}(t)$$

^(*) This definition is given by A. Weil [1] in case P is an ordinary point or an elliptic point.

where $\theta_{0P}(t)$ belongs to $GL(r, k_P)$, d_i $(1 \le i \le r)$ is a rational number such that $0 \le d_i < 1$, and d_i is a multiple of $1/n_P$ when P is elliptic.

PROOF. This was proved by A. Weil [1] in case P is elliptic. Hence we consider the parabolic case. By the definition of Θ_P , there exists $V \in U_P$ such that $\theta_P^r = V \cdot \theta_P$. It is easy to see $\theta_P^{r_r} = V^{r_r-1} \cdot \cdots \cdot V^r \cdot V \cdot \theta_P$. If we take another representative θ_P^r of Θ_P , there exists $U \in U_P$ such that $\theta_P^r = U \theta_P$. Then $\theta_P^{r_r} = (U^r V U^{-1})$ θ_P^r . Put $V' = U^r V U^{-1}$, then we have $V'(0) = U(0)V(0)U^{-1}(0)$ for t = 0. Since there exists an integer l such that $\theta_P^{r_r} = \theta_P$ by the definition of Θ_P , we have $V^{r_r-1} V^{r_r-2} \cdot \cdots V^r V = E$ (unit matrix) and hence $V^r(0) = E$ for t = 0. We know that there exists $M \in GL(r, C)$ such that $V(0) = M^{-1}DM$ where

$$D = \left(egin{array}{ccc} oldsymbol{arxeta}_{l}^{d_{1}} & 0 \ & \cdot & \ 0 & & \cdot & oldsymbol{arxeta}_{l}^{d_{r}} \end{array}
ight),$$

 d_i 's are rational integers such that $0 \le d_1 \le d_2 \le \cdots \le d_r \le l-1$, ξ_i is a l-th primitive root of 1. Put $\theta_P' = M \theta_P$, then $\theta_P'' = V' \theta_P'$ where $V'(0) = M \cdot V(0) M^{-1} = D$. Hence we can assume that $\theta_P'' = V \cdot \theta_P$, V(0) = D, without loss of generality. Put $\theta_P'' = V_\nu \theta_P$ and $\bar{\theta}_P = \sum_{\nu=0}^{l-1} D^{-\nu} \theta_P'' = \sum_{\nu=0}^{l-1} (D^{-\nu} \cdot V_\nu) \theta_P$, then $\sum_{\nu=0}^{l-1} D^{-\nu} V_\nu \succ_P 0$, $V_\nu(0) = D^\nu$ and $\sum_{\nu=0}^{l-1} D^{-\nu} V_\nu >_{\nu} 0$. It is easy to see that $\bar{\theta}_P'' = D \cdot \bar{\theta}_P$. Put

$$\Delta = \begin{pmatrix}
t^{d_1/l} & 0 \\
\vdots & \vdots \\
0 & t^{d_1/l}
\end{pmatrix}$$

then $(\underline{J}^{-1}\overline{\theta}_P)^r = \underline{J}^{-1}\overline{\theta}_P$ and there exists $\theta_{0P}(t) \in GL(r, k_P)$ such that $\overline{\theta}_P = \underline{J} \cdot \theta_{0P}$

DEFINITION. As usual, a divisor Θ of degree r on \Re is defined as a system of local divisors $\{\Theta_P\}$ $(P \in \Re)$ such that $\Theta_P = E$ for almost all P. We define the total index of Θ by $I(\Theta) = \sum_{P \in \Re} i_P(\Theta_P)$.

§ 2. The Riemann-Roch-Weil Theorem.

Let a divisor Θ of degree r and a divisor Θ' of degree r' be given. Put $L(\Theta, \Theta') = \{ \Phi \in M(r \times r', k) \mid \Theta \Phi \Theta'^{-1} \succ_P 0 \text{ for all } P \in \mathfrak{R} \}$, then $L(\Theta, \Theta')$ is a vector space over C. By Proposition 1 we can assume that

(1) $\Theta_P = \Delta_P \Theta_{0P}$, $\Delta_P = (\hat{o}_{ij}t^{d_i})$ $(0 \le d_i < 1)$, $\Theta_{0P} = (\theta_{ij}) \in GL(r, k_P)$, $\Theta_P = \Delta_P' \Theta_{0P}'$, $\Delta_P' = (\hat{o}_{ij}t^{d_j})$ $(0 \le d_i' < 1)$, $\Theta_{0P}' = (\theta_{ij}') \in GL(r', k_P)$ where $d_h = d_k' = 0$ when P is an ordinary point, and

 d_h , d_k' are multiples of $1/n_P$ when P is an elliptic point. We denote $\nu_P = \sum_{k=1}^r \sum_{k=1}^{r'} < d_h - d_k' >$ where $< x > = x - \lfloor x \rfloor$.

Let dj be a differential of k. We call $(f_{ij})dj$ for $f_{ij} \in k$, a differential matrix of k. Let \mathcal{D} be the set of all $r' \times r$ differential matrices of k such that $\theta' \frac{dI}{d\tau} \theta^{-1} >_P 0$ for all $P \in \mathbb{R}$. Let \mathcal{D}_0 be the subset of \mathcal{D} consisting of all dI's such that at each parabolic point P, $S_{kh}(t) >_P 0$ holds for each pair (k, h) with $d_h = d'_k$ at P where $(S_{kh}(t)) = \theta'_0 \frac{dI}{dt} \theta_0^{-1}$. It is easy to see that \mathcal{D} is a vector space over C and \mathcal{D}_0 is a subspace of \mathcal{D} . We denote $l(\theta, \theta') = 0$ dimension of $L(\theta, \theta')$ and $d_0 = 0$ dimension of \mathcal{D}_0 .

THEOREM (Riemann-Roch-Weil).

$$l(\Theta, \Theta') = r'I(\Theta) - rI(\Theta') - rr'(g-1) - \sum_{P \in \mathbb{R}} \nu_P + d_0$$
.

PROOF. We can prove this theorem by the same method as Weil [1]. But it is necessary to consider here the parabolic points which did not appear in his case. Let $\Psi = (\varphi_{ij}) \in L(\Theta, \Theta')$. Then $\Theta \Phi \Theta'^{-1} = A \Psi \Delta'^{-1} \succ_P 0$ for all $P \in \Re$, where $\Psi = (\varphi_{hk}) = \Theta_0 \Phi \Theta_0^{-1}$. Since $-1 < d_h - d_k^r < 1$, we obtain $\Psi \succ_P 0$ for all $P \in \Re$. Put $\Theta_0^{-1} = (\vartheta_{ij})$ and $\Theta_0^{-1} = (\vartheta_{ij})$.

Let us attach a non-negative integer b(P) to each point $P \in \Re$, such that

$$-b(P) \leq \min_{j,k} (i_P(\vartheta_{jk})) + \min_{j,k} (i_P(\theta'_{jk})).$$

where b(P)=0 in case $\Theta_P=E_r$ and $\Theta_P'=E_r$. Then φ_{ij} belongs to $L(\prod_{P\in\Re}P^{b(P)})$. If we take $\{b(P)\}$ such that $\sum_{P\in\Re}b(P)>2$ g-2, then by the Riemann-Roch theorem

$$l(\prod_{P\in\Re}P^{b(P)})=\dim L(\prod_{P\in\Re}P^{b(P)})=\sum_{P\in\Re}b(P)-g+1\,.$$

Let us attach a non-negative integer a(P) to each $P \in \mathbb{R}$ such that $-a(P) \leq i_P(\theta_{ij})$ for $1 \leq i$, $j \leq r$ and $-a(P) \leq i_P(\theta_{kl})$ for $1 \leq k$, $l \leq r'$, where a(P) = 0 in case $\theta_P = E_r$ and $\theta'_P = E_{r'}$. ψ_{hk} has a pole at each $P \in \mathbb{R}$ at most of order 2a(P) + b(P) and satisfies the following condition.

- (2) $\psi_{hk} \succ_P 0$ for all $P \in \Re$ and $\psi_{hk}(0) = 0$ for (h, k) with $d_h < d'_k$.
- (2) is equivalent to

$$\operatorname{Res}_{P}(t^{p}\cdot\psi_{hk}(t))=0$$
 at each point P on \Re

for $0 \le \rho \le 2a(P) + b(P) - 1$, and for $\rho = -1$ for the pair (h, k) with $d_h < d'_k$ at P. This condition can be described by Φ as follows.

(3)
$$\operatorname{Res}_{P}\left\{t^{\rho}\left(\sum_{i,j}\theta_{hi}\varphi_{ij}\vartheta_{jk}^{\prime}\right)\right\}=0 \text{ at each } P\in\Re$$

for $1 \le h \le r$, $1 \le k \le r'$, $0 \le \rho \le 2a(P) + b(P)$ and moreover for $\rho = -1$ for the pair (h, k) with $d_h < d_k'$.

Now, put $\mathfrak{M}(P) = \{(h, k); d_n < d'_k\}$ and m(P) = the number of the element of $\mathfrak{M}(P)$. Since there are rr'(2a(P) + b(P)) + m(P) equations (3) at each point P on \mathfrak{R} , we obtain in total $\sum_{P \in \mathfrak{R}} \{rr'(2a(P) + 2b(P)) + m(P)\}$ equations. The number of unknowns is $rr'(\sum_{P \in \mathfrak{R}} b(P) - g + 1)$. If we obtain the number of independent relations among the left hand sides of (3), we can calculate $l(\Theta, \Theta')$.

If there exists a system $\{C_{h,k}^{(P_{h,k}^{(P)})}\} \neq \{0\}, C_{h,k}^{(P_{h,k}^{(P)})} \in C$ such that

$$\sum_{h,k,q,P} C_{h,k}^{(P,k)} \operatorname{Res}_P \{ t''(\sum \theta_{hi} \varphi_{ij} \vartheta'_{jk}) \} = 0 \text{ for all } \varphi_{ij} \in L(\prod_{P \in \mathfrak{N}} P^{b(P)}) \text{ then}$$

$$(4) \qquad \sum_{i,j} \left[\sum_{P \in \mathfrak{N}} \operatorname{Res}_{P} \left(\sum_{h,k,\rho} C_{h,k}^{(P,\rho)} t^{\rho} \theta_{hi} \varphi_{ij} \vartheta_{jk} \right) \right] = 0 \text{ for all } \varphi_{ij} \in L(\prod_{P \in \mathfrak{N}} P^{b(P)}).$$

Put

(5)
$$R_{kh}^{(P)}(t) = \sum_{\substack{0 \le \rho \le 2a(P) + b(P) - 1 \\ \rho = -1 \text{ if } (h, k) \in \mathfrak{M}(P)}} C_{h, k}^{(P)} t^{\mu} \text{ and } R = \{(R_{kh}^{(P)})\}$$

(4) is equivalent to the following condition (6)

(6)
$$\sum_{P \in \Re} \operatorname{Res}_{P} \{ (\sum_{k,h} \boldsymbol{\vartheta}_{jk} R_{kh}^{(P)} \boldsymbol{\vartheta}_{hi}) \varphi \} = 0 \text{ for all } \varphi \in L(\prod_{P \in \Re} P^{b(P)})$$

and for all $1 \le i \le r$, $1 \le j \le r'$.

By a lemma which was proved by Weil [1] pp. 58-59, there exists a differential matrix $dI = (dI_{jk})$ of k such that $\sum\limits_{k,\ h} \boldsymbol{\vartheta}_{jk} R_{kh}^{(P)} \boldsymbol{\vartheta}_{hi} = \frac{dI_{ji}}{dt} \pmod{t^{b(P)}}$. Hence there exists a system $M = \{M^{(P)}\}$ such that $M^{(P)} >_P 0$ at each point $P \in \Re$ and

$$\frac{dI}{dt} = \Theta_0^{\prime - 1} R \Theta_0 + M(t) \cdot t^{b(P)}.$$

From this it follows that

$$\Theta' \frac{dI}{d\tau} \Theta^{-1} = \alpha_P \mathcal{L}_P (R + \Theta'_0 M \Theta_0^{-1} \cdot t^{b(P)}) \cdot \mathcal{L}_P^{-1} t^{1 - \frac{1}{n_P}}$$

where α_P is a constant. Put $N^{(P)} = (N_{kh}^{(P)}) = \Theta_0' M^{(P)} \Theta_0^{-1} \cdot t^{b(P)}$, then by the choice of b(P) we have $N^{(P)} \succ_P 0$ for all $P \in \mathbb{R}$. Since $d_k' - d_h + 1 - \frac{1}{n_P} \ge 0$ at each point $P \in \mathbb{R}$ and $d_k' - d_h + 1 - \frac{1}{n_P} \ge 1$ for the pair $(h, k) \in \mathbb{M}(P)$, we obtain $\Theta' \frac{dI}{d\tau} \Theta^{-1} \succ_P 0$ for all $P \in \mathbb{R}$. Hence dI belongs to \mathcal{D} . Moreover

$$S_{kh} = R_{kh}^{(P)} + N_{kh}^{(P)} >_P 0$$

for (h, k) with $d_h = d'_k$ at each parabolic point $P \in \mathbb{R}$. Hence dI belongs to \mathcal{D}_0 . Let V be the set of all systems $R = \{R_{kh}^{(P)}\}$ $(P \in \mathbb{R})$ which is given by (5) satisfying the relations (4). V is a vector space over C. By the fact explained above, there exists a linear mapping f from V into \mathcal{D}_0 defined by $f(R) \equiv \Theta_0^{'-1} R \Theta_0$ (mod $t^{b(P)}$). We shall prove that f is surjective. Put

$$R(t) = \theta_0' \frac{dI}{dt} \theta_0^{-1} - t^{2a(P) + b(P)} \cdot T^{(P)} \text{ where } T^{(P)} \succ_P 0, \text{ then we have}$$

$$\frac{dI}{dt} \equiv \theta_0'^{-1} R \theta_0 \text{ (mod } t^{b(P)})$$

and

$$\Theta' \frac{dI}{d\tau} \Theta^{-1} = \alpha_P (R_{kh}^{(P)} t^{d_k' - d_h + 1 - \frac{1}{n_P}}) + \alpha_P (T_{kh}^{(P)} \cdot t^{d_k' - d_h + 1 - \frac{1}{n_P}}) \cdot t^{2a(P) - b(P)}.$$

By the definition of \mathcal{D}_0 we have $R_{kh}^{(P)}(t) = p_{kh}(t) + \beta_{kh}/t$ where $p_{kh}(t)$ is a polynomial of degree 2a(P) + b(P) - 1 and β_{kh}/t appears if and only if $(h, k) \in \mathfrak{M}(P)$, and

$$\sum_{P \in \Re} \operatorname{Res}_P \left\{ \left(\sum_{k,\ h} \partial_{jk} R_{kh} \theta_{ht} \right) \varphi \right\} = \sum_{P \in \Re} \operatorname{Res}_P \left(\varphi \ \frac{dI_{ji}}{dt} \right) = 0 \ \text{ for all } \ \varphi \in L(\ \Pi \ P^{b(P)}) \ .$$

Therefore $R \in V$ and we see that f is surjective.

Since dim $V=\dim \mathcal{D}_0+\dim \operatorname{Ker}(f)$, it remains to calculate dim $\operatorname{Ker}(f)$. By the same method as in Weil [1] we have

dim Ker
$$(f) = \sum_{P \in \Re} \{2a(P)rr' + r'i_P(\Theta_0) - ri_P(\Theta_0')\}$$
.

Therefore dim $V=d_0+(\sum_{P\subseteq\Re}2a(P))\cdot rr'+r'I(\Theta_0)-rI(\Theta_0')$ which is the number of independent relations among the left hand sides of (3). Therefore the number of independent equations among (3) is

$$\begin{split} &\sum_{P \in \mathcal{M}} \{ rr'(2a(P) + b(P)) + m(P) \} - \{ (\sum_{P \in \mathcal{M}} 2a(P)) rr' + r'I(\Theta_0) - rI(\Theta'_0) + d_0 \} \\ &= rr' \sum_{P \in \mathcal{M}} b(P) + rI(\Theta') - r'I(\Theta) + \sum_{P \in \mathcal{M}} \nu_P - d_0 \;. \end{split}$$

Since there are $rr'\{\sum b(P)-g+1\}$ unknowns, we obtain

$$l(\Theta, \Theta') = r'I(\Theta) - rI(\Theta') - rr'(g-1) - \sum_{P \in \Re} \nu_P + d_0$$
 (q.e.d.)

§ 3. Holomorphic forms associated with a representation of Γ .

Let $\widehat{\Gamma}$ be a Fuchsian group of fractional linear transformations on the unit disk $\Re = \{w | |w| < 1\}$ of the first kind. Let $\{\mathfrak{M}(\widetilde{\sigma})\}$ be a matrix representation of degree r of $\widehat{\Gamma}$. H. Poincaré defined the zetafuchsian series

$$\widetilde{\Theta}_*(w) = \sum_{\sigma \in \widetilde{\Gamma}} \mathfrak{M}(\widetilde{\sigma})^{-1} \widetilde{F}(\widetilde{\sigma}w) \left(\frac{d\widetilde{\sigma}w}{dw} \right)^m$$

where $\widetilde{F}(w)=(\widetilde{f}_{ij}(w))$, $\widetilde{f}_{ij}(w)$ is a rational function which is holomorphic on some neighbourhood of the unit circle $\{w||w|=1\}$.

Theorem (Poincaré [3] pp. 445-450).

Let $\{w_1, \dots, w_l\}$ be the set of all the poles of $\widetilde{f}_{i,l}(w)$, $(i, j=1, \dots, r)$. If all the proper values of $\mathfrak{M}(\widetilde{r})$ for any parabolic transformation \widetilde{r} have absolute value 1, then for sufficiently large positive integer m, $\widetilde{\Theta}_*(w)$ converges absolutely and uniformly on any compact set contained in $\widehat{\mathfrak{A}} - (\bigcup_{i=1}^{l} \widetilde{\Gamma}(w_i))$.

Now we come back to the upper half plane $\mathfrak D$ and a matrix representation $\mathfrak M(\sigma)$ of Γ .

From now on we consider the case where $\mathfrak{M}(\sigma)$ ($\sigma \in \Gamma$) takes only a finite number of different matrices. Let ρ be the isomorphism from \mathfrak{N} to \mathfrak{D} defined by $z=\rho(w)=i\,\frac{1+w}{1-w}$. Put $\widetilde{\sigma}=\rho^{-1}\sigma\rho$, $\widetilde{\Gamma}=\rho^{-1}\Gamma\rho$, $\mathfrak{M}(\widetilde{\sigma})=\mathfrak{M}(\sigma)$, then we can apply the above theorem and

$$\begin{split} \Theta_*(w) &= \sum_{\sigma \in \widetilde{I}} \mathfrak{M}(\widetilde{\sigma})^{-1} \, \widetilde{F}(\widetilde{\sigma} w) \left(\frac{d\widetilde{\sigma} w}{dw} \right)^m = \sum_{\sigma \in I} \mathfrak{M}(\sigma)^{-1} \, \widetilde{F}(\rho^{-1} \sigma z) \left(\frac{d\rho^{-1} \sigma z}{d\rho^{-1} z} \right)^m \\ &= \left(\sum_{\sigma \in I} \mathfrak{M}(\sigma)^{-1} F(\sigma z) \left(\frac{d\sigma z}{dz} \right)^m \right) \cdot \left(\frac{dz}{d\rho^{-1}(z)} \right)^m \end{split}$$

where
$$F(z)=(f_{ij}(z))=\widetilde{F}(\rho^{-1}z)\left(\frac{d\rho^{-1}(z)}{dz}\right)^m$$
.

Put $\Theta_*(z) = \sum_{\sigma \in I} \mathfrak{M}(\sigma)^{-1} F(\sigma z) \left(\frac{d\sigma z}{dz}\right)^m$, then $\Theta_*(z)$ converges absolutely and uniformly on compact set contained in $\mathfrak{G} - \bigcup_{j=1}^l \Gamma(z_j)$, where $\{z_1, \dots, z_l\}$ is the set of all poles of $f_{ij}(z)$ $(i, j=1, 2, \dots, r)$. Here we can take $F(z) = E_r \cdot \frac{1}{(z-\beta)^{2m}}$ where β is an arbitrary point in \mathfrak{G} and we can easily find β such that $\det (\Theta_*(z)) \neq 0$.

We shall consider $\Theta_*(z)$ near each parabolic point z_0 . Here we may assume $z_0=i\infty$. Take $\tau=\frac{z}{h}$, $t=e^{2\pi i\tau}$ such that $\Gamma_{\infty}=\{\gamma^n|\gamma(\tau)=\tau+1\}$, then $\Gamma=\bigcup_{j=1}^{\infty}\sigma_j\Gamma_{\infty}$ where $\sigma_j=\frac{\alpha_jz+\beta_j}{\gamma_jz+\delta_j}$ $(\gamma_j\neq 0)$.

Put
$$F_j(z) = \mathfrak{M}(\sigma_j)^{-1} F(\sigma_j z) \left(\frac{d\sigma_j(z)}{dz}\right) = \mathfrak{M}(\sigma_j)^{-1} \frac{(\alpha_j \hat{\sigma}_j - \beta_j \gamma_j)^m}{(\alpha_j - \beta_{\gamma_j})^{2m}} \frac{1}{(z - \sigma_j^{-1}(\beta))^{2m}}$$

then

$$\Theta_*(z) = \sum_{j=1}^{\infty} \sum_{n=-\infty}^{\infty} \mathfrak{M}(\gamma^n)^{-1} F_j(\gamma^n z) = A_P^{-1} \sum_{j=1}^{\infty} \sum_{n=-\infty}^{\infty} D_P^{-n} A_P F_j(\gamma^n z)$$

where A_P is a constant matrix such that $D_P = A_P \mathfrak{M}(\gamma) A_P^{-1}$

$$= \left(\begin{array}{ccc} e^{2\pi i a_1} & 0 \\ \cdot & \cdot \\ \cdot & \cdot \\ e^{2\pi i a_r} \end{array}\right) (0 \leq a_1 \leq a_2 \leq \cdots \leq a_r < 1).$$

Put

Since $\Delta_P^{-1} \sum_{n=-\infty}^{\infty} D_P^{-n} A_P F_j(\gamma^n z)$ is invariant under the transformation γ , we can express $\Delta_P^{-1} \sum_{n=-\infty}^{\infty} D_P^{-1} A_P F_j(\gamma^n z) = (\Theta_j^{(h,-k)}(t))$ and $\Delta_P^{-1} A_P \Theta_*(z) = \sum_{j=1}^{\infty} \Theta_j(t)$. Since $t\Theta_j^{(h,-k)}(t) = \alpha_h$, $k = -\infty$ $\sum_{n=-\infty}^{\infty} \frac{e^{-2\pi i n h} \cdot e^{-2\pi i (n h - 1)\tau}}{(\tau - \sigma_j^{-1}(\beta) + n)^{2m}}$ then we have $|t \cdot \Theta_j^{(h,-k)}(t)| \le |\alpha_{h,-k}| \sum_{n=-\infty}^{\infty} \frac{1}{|\tau - \sigma_j^{-1}(\beta) + n|^{2m}}$, and $t \cdot \Theta_j^{(h,-k)}(t) \to 0$ (Im $\tau \to \infty$). Hence $t \cdot \Theta_j^{(h,-k)}(t)$ is zero at t=0. It follows that $\Theta_j^{(h,-k)}(t)$ is holomorphic at t=0 and $\Delta_P^{-1} A_P \Theta_*(z)$ is also holomorphic at t=0. Therefore we have $\Theta_*(z) = A_P^{-1} \cdot \Delta_P(\tau) \Theta_0(t)$ where $\Theta_0(t) \in GL(r, k_P)$. At each finite parabolic point $z = x_0$ (x_0 : real) we have $\Theta_*(z) = A_P^{-1} \cdot \Delta_P(\tau) \Theta_0(t)$ ($\frac{d\tau}{dz}$) where $\tau = -\frac{1}{h} \frac{1}{(z - x_0)}$, $t = e^{2\pi i \tau}$, $\Gamma_{x_0} = \{\gamma^n; \gamma(\tau) = \tau + 1\}$, $\Theta_0(t) \in GL(r, k_P)$.

We denote by $\theta_*(z)$ in case r=1 and $\{\mathfrak{M}(\sigma)\}$ is trivial. Put

(7)
$$\Theta(z) = \Theta_*(z)/\theta_*(z)$$
, then we have $\Theta(\sigma z) = \mathfrak{M}(\sigma)\Theta(z)$

for all $\sigma \in I$. Hence we can regard $\Theta(z)$ as a divisor of degree r on \Re .

PROPOSITION 2. The total index $I(\Theta)$ of $\Theta(z)$ given by (7), is equal to 0.

Proof. Since $\frac{1}{\det(\Theta)}$ $d(\det(\Theta))$ is Γ -invariant, then it is a differential of k and

$$i_{P}(\Theta) = i_{P}(\det(\Theta)) = \frac{1}{2\pi i} \int_{P} \frac{1}{\det(\Theta)} \frac{d(\det(\Theta))}{dt} = \operatorname{Res}_{P} \left(\frac{1}{\det(\Theta)} d(\det(\Theta)) \right)$$

By the Residue theorem, we have $I(\Theta) = \sum_{P \in \mathbb{R}} i_P(\Theta) = \sum_{P \in \mathbb{R}} \operatorname{Res}_P \left(\frac{1}{\det(\Theta)} d \left(\det(\Theta) \right) \right) = 0$ (q.e.d.)

DEFINITION. A vector $f(z) = \begin{pmatrix} f_1(z) \\ \vdots \\ f_r(z) \end{pmatrix}$ is called a holomorphic form associated

with \mathfrak{M} of weight m, if f satisfies the following two conditions.

1) $f(\sigma z) = \mathfrak{M}(\sigma) f(z) \left(\frac{d\sigma z}{dz}\right)^{-m}$ (for all $\sigma \in \Gamma$). Assume that f satisfies 1). At

each point
$$z_0$$
 on \mathfrak{H}^* let $\varGamma_{z_0} = \{\gamma\}$ and $\mathfrak{M}(\gamma) = A \begin{pmatrix} e^{2\pi i a_1} & 0 \\ & \cdot & \\ 0 & & e^{2\pi i a_r} \end{pmatrix} A^{-1} \ (0 \leqq a_1 \leqq a_2 \leqq a_2 \leqq a_3)$

 $\cdots \leq a_r < 1$). Then we see

2) $F_i(t)$ is meromorphic at t=0 and $f(z)\left(\frac{d\tau}{dz}\right)^{-m} \succ_F 0$ for all $P \in \Re$.

Let $M_m(\Gamma, \mathfrak{M})$ be the set of all holomorphic forms associated with \mathfrak{M} . It is a vector space over C. We shall calculate the dimension of $M_m(\Gamma, \mathfrak{M})$. Let $f \in M_m(\Gamma, \mathfrak{M})$ and Θ be the matrix given by (7). Put $\Phi(z) = (\Phi_i(z)) = \Theta^{-1} f\left(\frac{dj}{dz}\right)^{-m}$. Since $\Phi(\sigma z) = \Phi(z)$ for all $\sigma \in \Gamma$ and Φ is meromorphic at each point $P \in \mathfrak{N}$, $\Phi_i(z)$ $(1 \le i \le r)$ belongs to k. By the condition 2) we have

$$\Theta \Phi \left(\frac{dj}{d\tau}\right)^m = f(z) \left(\frac{d\tau}{dz}\right)^{-m} \succ_P 0 \text{ for all } P \in \Re.$$

Hence $\phi \in L\left(\Theta\left(\frac{dj}{d\tau}\right)^m, 1\right)$.

Therefore, $M_m(\varGamma, \ \mathfrak{M})$ is isomorphic to $L\Big(\Theta\Big(rac{dj}{d au}\Big)^m$, $1\Big)$ and

$$\dim M_m(\Gamma, \mathfrak{M}) = l \left(\Theta\left(\frac{dj}{d\tau}\right)^m, 1\right).$$

By Theorem 1 and Proposition 2.

$$egin{split} l\left(\Theta\left(rac{dj}{d au}
ight)^m,\ 1
ight) &= I\left(\Theta\left(rac{dj}{d au}
ight)^m
ight) - r(g-1) - \sum\limits_{P \in \mathfrak{R}}
u_P + d_0 &= I(\Theta) + \\ &+ mrI\left(rac{dj}{d au}
ight) - r(g-1) - \sum\limits_{P \in \mathfrak{R}}
u_P + d_0 &= r\left\{(2m-1)\ (g-1) + m\sum\limits_{I=1}^s \left(1 - rac{1}{n_\lambda}
ight)
ight\} \\ &- \sum\limits_{\lambda=1}^s \sum\limits_{h=1}^r < a_h - rac{m}{n_\lambda} > + d_0 \,. \end{split}$$

It remains to calculate d_0 . Since we have assumed that $\{\mathfrak{M}(\sigma)|\sigma\in\Gamma\}$ is a finite set, $\Gamma'=\{\sigma\in\Gamma|\mathfrak{M}(\sigma)=E\}$ is also a Fuchsian group of the 1st kind and all

the Fuchsian functions with respect to Γ' make an algebraic function field k' which is a finite extension over k. Since Θ is invariant under each transformation of Γ' , we have $\Theta \in GL(r, k')$. From the definition it follows that $\mathscr{D} \cong L$ $\left(\left(\frac{dj}{d\tau}\right)^{1-m}, \Theta\right)$ and $\mathscr{D} \supset \mathscr{D}_0$.

We divide two cases.

(I) m>1

If
$$\Psi = (\Psi_i) \in L\left(\left(\frac{dj}{d\tau}\right)^{1-m}, \Theta\right)$$
, then $\Omega = (\Omega_i) = \left(\frac{dj}{d\tau}\right)^{1-m} \Psi \Theta^{-1} >_P 0$ for all $P \in \Re$.
Put $\Phi = (\Phi_i) = \Psi \Theta^{-1} = \Omega\left(\frac{dj}{d\tau}\right)^{m-1}$. Since $I(\Phi_i) = I(\Omega_i) + (m-1)I\left(\frac{dj}{d\tau}\right) > 0$ and $\Phi_i \in k'$, we have $\Phi_i = 0$. This implies $\Phi \cong L\left(\left(\frac{dj}{d\tau}\right)^{1-m}, \Theta\right) = (0)$, and hence $\Phi_0 \cong \{0\}$, $d_0 = \dim \mathcal{D}_0 = 0$.

(II) m=1

In this case we have $\mathscr{D}\cong L(1,\,\Theta)$. Let $\mathscr{V}\in L(1,\,\Theta)$. Since $\mathscr{V}\Theta^{-1}\succ_{\varGamma}0$ for all $P\in\mathfrak{R}$, we have $\mathscr{V}\Theta^{-1}=C$ (a constant vector). And $(\mathscr{V}\Theta^{-1})^{\sigma}=\mathscr{V}^{\sigma}\Theta^{-1\sigma}=\mathscr{V}\cdot\Theta^{-1}\cdot\mathfrak{M}(\sigma)^{-1}=(\mathscr{V}\Theta^{-1})\mathfrak{M}(\sigma)^{-1}$, hence $C=C\mathfrak{M}(\sigma)$ for all $\sigma\in\varGamma$. We obtain $L(1,\,\Theta)=\{C\Theta|C=C\mathfrak{M}(\sigma)\}$ and hence $\mathscr{D}\cong\{C|C=C\mathfrak{M}(\sigma)\}$ for all $\sigma\in\varGamma$. Decompose \mathfrak{M} into the irreducible representations of \varGamma . Then dim \mathscr{D} is the multiplicity of the trivial representation in \mathfrak{M} .

Now we shall calculate dim \mathcal{D}_0 .

- (II₁): In case where Γ contains no parabolic transformations, we have $\mathcal{D}_0 = \mathcal{D}$ and hence $d_0 = \dim \mathcal{D}$.
- (II₂): In case where Γ contains at least one parabolic transformation. Let us consider the case $\{m(\sigma)\}=1$ and hence $\Theta=1$. Then $\mathscr{D}=\{dI|\frac{dI}{d\tau}\left(\frac{dj}{d\tau}\right)^{-1}\succ_{\Gamma}0$ for all $P\in\mathfrak{R}\}$ and $\mathscr{D}_0=\{c\;dj|c\;\frac{dj}{dt}\cdot\left(\frac{dj}{dt}\cdot t_P\right)^{-1}\succ_{\Gamma}0$ for each parabolic point $P\}=\{0\}$ and $d_0=0$. In the general case we have also $d_0=0$ by decomposing \mathfrak{M} into irreducible representations. Thus we have proved the following theorem.

THEOREM 2. If \mathfrak{M} is a matrix representation of degree r of Γ such that $\{\mathfrak{M}(\sigma)|\sigma\in\Gamma\}$ is a finite set, then

dim
$$M_m(\Gamma, \mathfrak{M}) = r\{(2m-1) (g-1) + m \sum_{k=1}^s \left(1 - \frac{1}{n_k}\right)\} - \sum_{k=1}^s \sum_{k=1}^r \langle a_k - \frac{m}{n_k} \rangle + d_0$$

where d_0 is the multiplicity of the trivial representation in \mathbb{M} when m=1 and Γ contains no parabolic transformations, otherwise d_0 is 0.

References

- [1] A. Weil: Généralisation des fonctions abéliennes, J. Math. pures appl. 17 (1938), 47-87.
- [2] H. Poincaré: Sur les fonctions fuchsiennes, Acta math. 1 (1882), 193-294 (Oeuvres II, 169-257).
- [3] H. Poincaré: Mémoire sur les fonctions zetafuchsiennes, Acta math. 5 (1884), 209-278 (Oeuvres II, 402-462).
- [4] A. Weil: Über Matrizenringen auf Riemannschen Flächen und den Riemann-Rochschen Satz, Abh. Hamburg 11 (1936), 111-115.

(Received Nov. 20, 1965)