On generalized Picard varieties

By Megumu Miwa

Introduction. J.P. Murre has constructed generalized Picard varieties of a
complete normal projective variety {4]. They are the analogy of generalized
Jacobian varieties of a curve in the case of a higher dimensional algebraic variety.
There he considered new equivalence relations (called o-linear equivalence) and
parametrized the corresponding Picard groups by the commutative group varieties,
so called the generalized Picard varieties.!

In the paper [4] Murre defined a-structure on algebraic variety, but we deal
with slightly special case of a-structure (we call it m-structure) in this paper.
We need this restriction in order to calculate the structure of function modules
as algebraic groups and consider the structure of generalized Picard Varieties.
In our paper [3] we considered the structure of Ext(J, G,), where J is the Jacobian
variety of a curve C and G, is 1-dimensional torus. We proved that Ext(J, Gn) is
generated by generalized Jacobian varieties of C with respect to 0-cycles of type
Py+P, (P;#P,) on C. One of the purposes of this paper is to deal with this
problem in the case of a higher dimensional algebraic variety. In §1~§4 we
consider the structure of generalized Picard varieties and get a result analogous to
the case of generalized Jacobian varieties. In §5~§8 we consider the problem
stated above.

§ 1. Definitions and preliminaries.

Let V7’ be an »-dimensional normal projective variety. We denote the rational
function field of V over 2 by 2(V) and that over a field K by K(V). For a
point P of V, we denote the local ring at P in £2(V) by O(P) and its maximal
ideal by 9(P). When P is rational over a field K, we denote the local ring and
its maximal ideal in K(V) by Ox(P) and Mx(P) respectively.

Let Py, Ps,--, P, be a set of simple points on V and let ‘JJEM S)J((P Y, where
n; (i=1,2,--+,m) are positive integers. When the set of simple pomts {Py, Py~ -,
P,) and the module M are given, we say an ‘‘ M-structure on V" is defined on V.
If all the points P, .-, P, are rational over a field k& which is a field of definition
of V, we say that the -structure is defined over k. Through this section we

1) In the same paper of Murre 4], it is written that Oort has also constructed them by
another method, simplifying Serre’s construction. In this case he worked with Cartier
divisors.
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fix the M-structure defined over & which is defined as above.

Let 9-=9(V) be the group of divisors on V. We denote the support of a
divisor X by Supp(X). Let Da=Dw(V)={X|X&D, P.¢Supp(X) i=1,2,---, m}.
Dy is a subgroup of 9. We put Doy, =Dy NP, where 9, is the group of divisors
on V which is algebraically equivalent to zero.

We say a divosor XDy is M-linearly equivalent to zero if there exists
a funetion f in (V) such that X=(f) and f=1 (modM).

We denote this condition by x2o. (By X~0 we denote the usual linear
equivalence),

Let Dg={X| X< Dy, Xf);’f()), For two divisors X, Y in Do we say X is M
linearly equivalent to Y if X— Y20, This is an equivalence relation in Dy and we
have Dy, Dy,. We denote the quotient group Du./Pm by Piegn(V). We
denote the M-linear equivalence class of a divisor D in Dy, by Clw(D). (By CI(D)
we denote the usual linear equivalence class for a divisor D in 9,).

We define an M-linear system of positive divisors as follows: Let .2 be an
L-submodule of 241 and D be a divisor in Dy such that D+(f)>0 for every
function f in £. We call the family of positive divisors {D+(f)|fe-£) an M-linear
system defined by the module ¥. We define the complete M-linear system |X|o
of a divisor X& Dy, by

LX) ={fIf €2+, X+(f)>0},
Xl ={Y|Y>0, Y- X=(f), feln(X)}.

For the Mt-linear equivalence we have following lemmas.

Limma 1. Let X, Y (i=1, 2) be positive divisors in Dy and (Y, Y2) be a
specialization of (X, X.) over a field K containing k. Then Xl?ng implies
Y 2Y..

Lrvma 2. Let XeDy be a divisor on V which is rational over o field
Kok, Then Ly(X) has a set of basis defined over K.

Cororrary. The assumption being as in Lemma 2 the associated variety
Ta(X) of 1 X | is defined over K.

YFor the proof of them we refer to [4].

Let {X} be an algebraic family of positive divisors on V. We say that {X}
is defined over a field K if the Chow variety W of {X} is defined over K.

An algebraic family of positive divisors {X} is called total if for a fixed
member X’ of {X} there exists for every Y& ®,(V) a divisor X in {X]} such that
Y~X—-X’ This definition is generalized for the case of Mi-linear equivalence.

An algebraic family of positive divisor {X} of V is called restricted M-total
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if there exists a field of definition K of {X} such that for every Y in 4, and
for every generic member X’ of {X} over K(y) there exists a divisor X in {X]}N %Py
such that Y2X—X'.

An algebraic family of positive divisor {X} of V is called WM-total if for every
fixed divisor X’e{X} N9y and for every Y& 9w, there exists a divisor Xe{X)
N Dqy such that YRX— X,

In 74] it was proved that a restricted W-total family {X} of V exists when
V is normal and an 9M-total family exists when V is non-singular.

Let {X} be a restricted M-total family of V defined over ko**', W be its associ-
ated variety and X be a generic member of {X} over a field ko. By &=C(X]|w)
we denote the Chow-point of the associated variety of |Xjwm. Then by Cor. of
Lemma 2, & is rational over ky(z), where x is the Chow-point of X. We denote
by small letter «, ¥, z,--- the Chow-points of divisors X, Y, Z,.--.

Let U be the locus of & over ko, then U has a commutative normal law of
composition given by &+47=¢ where £=C(X|m), 7=C(Y!lw), {=C(iZ|w), X, Y
are independent generic members of {X} over &k, and Z is a generic member of
{X} over ky such that X+ Y~X02‘£Z. (Here X, is a fixed divisor in {X} N D).
Thus there is a commutative group variety ¥4 defined over k;*’ and a birational
transformation T : U—%yy defined over k, which is compatible with the composition
law. For the later use we define a rational mapping g from W to Py defined

over ko by g(x)=T(&) where x is a generic point of W over ky and é=C(| X |w).

By the definition if X~ then we have g(z)=g(y) and if X+ Y—X,~Z then
we have g(&)+g(y)=¢(2). P is unique up to birational isomorphisms over k. In
4] the following theorem is proved.

THEOREM. Let notations and assumption be as above. There is a surjective
isomorphism ¢a : Piew(V)--Puy such that :

1) If De Dy, is rational over a field KDk, then ¢n(Cla(D)) is rational
over K. 1f D'eDy, 15 a generic specialization of D over k (i.e. Df:»D’) then
ea(Clo(D") ts the unique generic specialization of ¢m(Clw(D)) over D&DY. (L
is given by ¢m(Clm(X,— X)) =g@)—g(x:) for generic members X; and X, of {X}
over ko)

2) Let G’ be a commutative group variety defined over k' Dk and ¢’ : Pieg(V)
—G' be @ homomorphism such that (i) if DedDnm, is rational ocver Kok’ then

*  The group variety % defined here may not be defined over k. But we can choose a
group variety which is defined over & and is biregularly isomorphic to P as is shown
in [4].

*#*  We may take such a field ko, that is separably algebraic over k.
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¢(Clm(D)) is rational over K and (i) if D' is a generic specialization of D
over k' then ¢'(Clm(D") is the unique specialization of ¢'(Clw(D)) over Dﬁ-”;l)',
Then there exists a rational homomorphism a: PLy—G' defined over k' such that

@ =g,

§ 2. Covering homomorphisms.
Let V be a complete normal projective variety defined over a field k and P,
, P, be a set of k-rational simple points of V. Put ‘Ul~ ﬂ M(PY* and

Do I"UE(P)”t (n;=n!>20). Then there exist two commutatwe group varieties
=l DM
Py and Pays defined over k, (by Theorem in §1) such that Pmm(V):_"., P and
o

Picoy (V)A, . By 2) of the Theorem, we have a rational homomorphism
mopa ¢ Pyp-Poye defined over k such that the following diagram is commutative

) oM
Picq(V) =Dy, /Doy, = P

|
iﬁmsm' |Foma
. ) Cme
Piem (V)=Dop o/ Dan+y Jsm’

where pmon is a natural homomorphism defined by Pwm.CPuwra, Do Doy,

Lemma 3. There exisls a field L containing k such that if w is o generic
point of Py over L then there exists a divisor DeDay, where D is rational
over L(u) with ¢m(Clm(D))=u. We may add the condition that for any set of
rational points Ry, R.,--- of V over k, R,&Supp(D) 1=1, 2,-

Let Qi,---, Q. be a set of a sufficiently large number of mdependent generic
points of V over k and z be a generic point of Py over ko(@Qi,---, Q), then the
Sield klz, @y, - -+, Q) fulfils the conditions.

By this Lemma, meey is a surjective rational homomorphism defined over k&
and moreover we have a rational cross section from %y to Pu defined over some
field LDk. In fact let v be a generic point of Py over the field L which is
chosen in Lemma 3 for “w. Then there exists a divisor D& 9w, such that
¢a(Clay (D))= and D is rational over L(»). Moreover we may assume that
P.d:Supp(D) i=1,2,--+,m, ie. DeDy,. Thus ¢nClyn(D)) is a point on Py
rational over L(v). If we put s(v)=wu, s gives a rational cross section from Py
to %y with respect to mmw'. From this the surjectiveness of mma follows.
Therefore the kernel of mpn is a connected subgroup of Py;. If we replace Loy’
by the usual Picard variety P of V defined over k, we have the following Theorem.

Thueorem 1. Let V be a complete normal projective variety with an M-
structure defined over k. Let Py be the generalized Picard variety of V for
the Wk-structure and P be the Picard variety both defined over k. Then there
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exists a rational homomorphism = from Po to P defined over k and the kernel
Ko of 7= 18 a connected subgroup of .

REMARK. The kernel Kam of =y would be defined over a purely inseparable
extension of k,.

§ 3. Algebraic structure of function modules.

Let d be a point of Py and D be a divisor in Py, such that ¢u(Cln(D))=d.
For the neutral element ¢ of P, mo(d)=¢ holds if and only if D~0 (i e. D=(g)
holds for a function g& 2(V) such that g is a unit at all points P; (1=1,2.--- 'm,\)

Let U(P) (=1,2,---,m) be the multiplicative group of all units of O(P) (

-, m), and let U(P)"?=1+M(P)". Then U(P)"" is a subgroup of U(P)
We put Rao= H UP)/ULP)"?. Then a function ¢ in Umfﬂ U(P;) determines
an element of Rm By this mapping we get a natural homomorp}usm ¢ from Usp
to Ray.

LeEMMA 4. Let V7 be an r-dimensional projective variety defined over k
and Py,---, P, be a set of simple points of V which are rational over k. Then
we can choose a set of gemerators ty,---,t., of M (L) =1, ---, m) such that all
t;; Ai<m, 1<J<r) are integral at every P, (i=1,---, m) and t, is unit at all
P; (i#7).

We omitt the proof.

PROPOSITION 1. ¢ is surjective.

Proor. Let (L, ti,- - -, tir)=(t;) be the generators of M (P) (i=1,.--, m) chosen
as in Lemma 4. Let g=(g,) (t=1,---, m) be an element of Rs such that
;@:0 Z Si(t) where f:..(t) is a homogeneous polynomial of degree k of the form

47
Fu=Xlas,..  thi--thir and 37 is taken all over the monomials thh Irg, =:f.
Let 91=02 hi(ts) and ti) =ay-+fs, be the power series expansion of J1 and t}}
<k
at P;. h, is the homogeneous part of degree &k and a:€2, w; %0, frIR(P).

If we put g;:‘gl___}i"“(fl) —falte) 11 then g7=foe(ts)+ lz;‘h;(tg). If we put

gl=gi— hilts)—fults) 5 then g7 = foolts)+for(t) + Z‘h{,’(tz). Thus we get

[£5:3

[2¢)

gi"=g: (mod M(P)=). Also we have gi") =g, (mod M(PY™). Let g =g1"=31mi(ty),

M-t =as;+f3 be the power series expansion of g,, 1§ -t1# at P, respectively, where

pi(ts) is the homogeneous part of degree k and a:#0, fi=T(Ps). If we put
£4)— faolts .

gi=gs— Pol '3)”“,"'{3’0‘(—-2 til- tii then gi =fu(ls)+ 21 pi(ts). If we put

t t
grmgs— TS0l e pon gr e o) fnte) 2 pi(ts). Thus we get

oz
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gs=95"=g; (mod M(Py™). Also we have gi"*’=g,(mod M(P;)") and g{" =g,
(mod M(P.y"s). Repeating this process we get a function g,=¢ such that #(g.)=g.
Q. E.D.
RemMArK. By the proof of the above Proposition we can choose a function

which is defined over k{(---,a,... ., ---), as a function ¢ such that #g)=4.

w

Pa]

Let A:{C’L—,‘-'-\-_,Tzlaelz*}, then 4 is a subgroup of Ry, We put Hgp=Ry/4.
The mapping ¢ induces a bijective isomorphism # from Ka to Hay as abstract
groups. This bijective isomorphism is given as follows. Let d=¢g(Clm(D))e Ka
then we have D=(f) for a funection fe Un. Let #(f)=Rw and (f)) be the image
of ( f«) by the natural homomorphism Raw—Rw/4=Hw. Then we have #(d)=(f).
If {(fy=1 in Huy then we have fi=a-+h, (a2, h,eD(PH*) (1=1,2,---, m) and
aﬂ F=1 (modM). Therefore d=e in Kay. This proves the injectivity of #. Sur-
jectivity is clear by Prop. 1.

The proof of the following Propositions 2—4 is essentially the same as that
in Serre’s Book {7] Chap. V.

Let P be a simple point of V7 and ¢, t.,--+, t, be a set of local parameters
of Vat P in MM(P). Then UP)/UP)™, which is defined as above, has, as its
system of representatives, the polynomials of the form,

7.
= S gttt (K= 3
V J=1

O K<

Therefore we may consxder UP)y/UP)Y™ as an open subspace of N-dimensional
affine space, where N= )J H; and the group structure is compatible with this
algebraic structure. )

ProrosiTion 2. UPY/UP)YV is birationally isomorphic to G, as algebraic
Groups.

Thig is clear by the definition of algebraic strueture of U(P)/U(P)V.

ProrosiTioNn 3. Let the characteristic p of 2 be equal to zero. Then
Uy UP)Y™ 48 birationally isomorphic to Gi~' as algebraic groups. The iso-
morphism is given in the following way. We give the lexicographic order in

the set of monomials {tf"tﬁ’“- e tfr0< ijkj<'n}. Let g, .. ., be the formal
/=1

»

power series in {ti,---, 1) such that the first term is t9.t5 .. % Then every

element g in UPYC/UP)™ is uniquely written as g= 1l explay,. .19, )

modulo formal power series of degree m, where K= Xk; @, . . €8 0<K<n.
=1

The mapping g— (-, ay,.. .., -+ ) gives the isomorphism.
] 4

Proor. Let exp(fl=1+f+ ; + ’;; -+.-. for all power series f in {¢y, ---,
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=~}

t,J. Then we have exp(fi)-exp(f)=exp(fi-+fJ). Let g be an element of
UPyv/UP)Yy™. Then

g=1+byo ot i+borgatat oo Dyt

g/ +bi. ofio.0) =104 otet -

9/(L+bio- 010 0)(L+btr0. .0Gu10-.0) =1 +4bifr0. ots+ - - .
Repeating this step we get

g:(lﬁ‘moo!L: »9)‘ . (1 *{‘(,l‘,“...k,g;,r.,;ﬁ,)' . '(1*{“(10‘..0“90...0?1),
(modulo formal power series of degree n.)

If we put explay,...; 9r,...t,) =1+ e,k then fi . has eyt F o tlr as
its first term. Choosing suitable (- -a;, ..., --) in £ we get
g= 1I explay, . 9. ..2) (modulo formal power series of degree n).

O<K<n

The uniqueness of this expression is clear. By the above argument a, ., must
be a polynomial of the coefficients of g and the coefficients of g are polynomials
of (-+-, ay,.. ., -+). This completes the proof of our Proposition. Q.E.D.

COROLLARY. When p=0, UP)/U(P)" is birationally isomorphic to G, X G¥~*.
When the sharacteristic of £ is not equal to zero we have the following

ProroSITION 4. Let the chamctemstw p of @ be #0. Let 0< Lk <n, I be
a positive integer such that lJY; k,<m—1, (,p)=1and 7, . ., ,=Min{ r[p >n/13k}.
Let g,,. .., be a formal power series of i -tiz---t5r such that its first term is
(t5e-the- - ti). Then every g in UP)V/UP)™ can be written uniquely as

g:(k] HA E(a;:gh ) (modulo formal power series of degree %)
using Witt vector a,” ,’, of length 7, .. .. UWPYP/UP)™ is birationally iso-
morphic to (k.,}?],k,,z)wm""k" as algebraic groups, where E(xz)=exp (~2®-—-z®
—gP—...y for a Witt vector x=2®, 2V, 2@ ...),

The proof is quite similar to that of Proposition 8.

Thus we get

ProrosiTiON 5. When p=0, Rgq (resp. Hsm) 8 bzmtwnall'y isomorphic to
GnXGY (resp. G2 X GY) over k, where M= L(Ni 1), N;= 2 H;.

When p+0, Ro (resp. Hy) is bir atwnally tsomorphw to

Grx 11 13 Wro e, (resp. G 'x ir I Wy
SR q=1 (Icf“,--',kf,’,l)

i=1 (k2,. . k])
over k.

1)

REMARK. By the isomorphisms of Proposition 4 we identify these algebraic
groups respectively. Then the mapping ¢ is given as follows:
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it )ERg and A be the image

1) p=0: Let A=(ny, ca,-- ,n',,,, e al
of A by the natural mapping Ry — ’Rm /4==Hy. Let g be a function in Uy, such

that g=a;, 11 exp(a,—,” Gy @=1,2,--- m). Then #(A)=¢q(Clnig).

Ve Ken
2y p+#0: Let A=y, g0y a0, 0504, - )ERm and A be the image of
A by the natural mapping Kgm-—-Ram/Jd=Hy. Let g be a function in Uwy such
that g=ai H )I’(a(” v,zgf,) w0 (=1,2,---,m). Then #(A)=¢m(Cln(g)).
3) By the Remark of Prop. 1, we may assume that ¢ is defined over k(4).

§4. The structure of generalized Picard Varicties.

For the proof of Theorem 2 first we remark the following Lemma.

Lemma 4. Let D and DV be divisors on V such that De Dy and D=(f) for
a function fe2(V). If D and IV are generic specializations of each other over
a field K>k, then D'eDy and IV=(f) hold, where o is a K-isomorphism of
K(d) to K(d') such that D'==D’ and d,d’ are Chow-points of D, IV respectively.

Proor. For a generic point N of V over K(d,d), » can be exiended to a
K(N)-isomorphism of K(N,d) to K(N,d). We denote it also by 0. f(N)=2z may
be assumed to be an element of K(N, d) and 27 is an element of K(N,d"). Thus
there exists a function f*(N)=2 on V defined over K(d)). It follows that

D' =D =(f) =pr¢ [ (VX{0—o0))]
=pre[ I (VX (0—o0)))
=prv[ L7 (VX (0—o0))]=(f).

Clearly we have D'=D"c Day.

THEOREM 2. The bijective isomorphism ¢ from Hw to Ko is a birational
tsomorphism defined over k', where k' is a purely inseparable extension of ko over
which Kw is defined (See Remark of Theorem 1)

Proor. Let Ac=Hy and geUwn be such that #(A)=¢m(Cla(g)). Since we
may choose such a funetion ¢ which is defined over k'(A4), ¢(A4) is rational over
k'(A). Conversely let L=Fk'(z,Q,,---, Q) be the field chosen in Lemma 3, where Q,,

-, @ are independent generic points of V over % and z is a generic point of
P over k(@ -+, Q). Let ¢m(Clm(g)=w be a point of Ka and # be a generic
point of “yy over L{w). If we put v=w-—wu, v is a generic point of Py over L
and L(w, v)=L(u, w). Let D, and D, be divisors in P4y, whose existence is
agsured in Lemma 3, such that ¢a(Clm(D.)=u, ¢m(ClmD.))=v and D,, D, are
rational over L(u), L(v) respectively. We have ¢yw(Clon(D.+D,))=u+v=w. There-
fore there exists a function f in Uy which is defined over L(u, ) such that
D,+D,=(f) By [12], Theorem 10, VIII). We have also (4)=¢m(Clm(f)). By



On generalized Picard Varicties 9

these arguments we see that A is rational over L{w, v)=L(u, w). Replacing u
by another generic point of P over L{w, u) we sce that A is rational over
L(w). We may also replace z, @Q,---, @ by another set of independent generic
points of %w and V over k'(¢,¢:,---, Q) vespectively then we see that 4 is
rational over k’(w). Thus the mapping ¢ is birational at every point in point wise.
Let A, and A. be two points of He such that 0(4)) = ¢n(Clwm(g)), #(AL)
=¢g(Cla(g.)). First we assume that A, and A, are generic specializations of
each other over k. Then we may assume that (¢;) and (g.) are generic speciali-
zations of each other over k'. Therefore #/(A,) and U(A.) are generic speciali-
zations of each other over . (By Theorem in §1)

Conversely we can show that if #{A4,) and #(A4.) are generic specializations of
each other over k' then A, and A, are generic specializations of each other over
k' then A, and A, are generic specializations of each other over k. In fact, there
exists a k-isomorphism o from k'(W(4,)) to E(6(A) transporting 6(4,) to 0(A:).
Let X; and Y, be generic members of {X} over k' such that Xle,%(g,), where
{X} is the algebraic family defined in §1. We have a function f in U defined
over k'(z;, ¥1) such that X;—Y,=(f)). By Theorem in §1 we have ¢qn(Clon(X,— Y1)
=g(x,)—gy)=0(4;). Let (X, Y.) be a generic specialization of (X, Y,) over 0(4,)
E0(Ay). Then ¢o(Clon(Xe— Y2)=0g(®:)—9g(y:)=0(As). & can be extended to a k-
isomorphism of k'(0(A4,), x1, 1) to k(O(As), 2., ¥2) transporting (0(A,), 21, ¥1) to (0(As),
®s, ¥:). We also denote this isomorphism by #. We have (X, — Y )’ =X.— Yo=(f1%)
where f.° shall be defined as in Lemma 4. A, and A are defined by f, and f\°
respectively. Therefore A, is transformed to A, by k-isomorphism #. That is to
say, A; and A4, are generic specializations of each other over k’. Thus we proved

the above assertion.
Taking into account that ¢ is an isomorphism as abstract groups, we can

easily see that ¢ gives a surjective birational isomorphism from Hap to Koy defined
over ['. This completes the proof of Theorem. QED

We get immediately the following Theorem 3 by Theorem 1 and Theorem 2.

THEOREM 3. Let V" be a complete normal projective variety with M-structure
{Py,-+, Pp; 9Jt* ﬂ MPY"} defined over k, Loy be the generalized Picard variety
of V defined ove’r k with respect to the M-structure and P be the usual Picard
variety of V deﬁned over k. Then Pay 18 an extension of P by the linear group
G- 1>< G (M= L(N 1), N;= ‘_41 ,H;) when the characteristic p=0, and by Gu'

X H IT Wyr oo o jt when p=0, where the product is taken for all
g1 (k‘u",. ‘-,kf”,l(”) i
(50 oo, B, 1PY such that (k$2,---, k) =1, 0<I® Lki"gn,nl and W7km RN
= JesP,

i8 the Witt group with length riw. . pojw=Min{r|p 2n/l™ 3] \‘k‘ 1
A
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§5. K/k-image and K/k-trace of Abelian varieties.

Yor the proof of the statements of this section we refer to the Book of Lang
(11, Chap. VII and Appendix.

Let V7 be an r-dimensional complete normal projective variety. We fix an
algebraically closed field k& in 2 over which V is defined. Let W, be a generic
hyperplane section of V over k, which is defined over k(u). Then W is also normal.
Let A be the Albanese variety of V defined over k and A, be that of W, defined
over k(). We denote the canonical mappings by f:V-—A and ¢: W.—A,, re-
spectively. The inclusion mapping i: W,—V induces a rational homomorphism
i*: A,—A defined over k(w). i* is defined by {(CHY))=Cl(i (Y)) for a divisor Y
on V. By the universal mapping property of the Albanese variety we have the

commutative diagram

W, — V
W |
A, —— A

By Theorem 4 Chap. VIII §2 [1] (A4, i*) is k(u)/k-image of A, i.e. i* is a sur-
jective homomorphism such that if B is an abelian variety defined over k and
a: A,—B is a homomorphism defined over k(w), then there exists a homomorphism
a’: A->B defined over k and a=a’-i*.

Let o : A—B be a homomorphism of Abelian varieties defined over k. We
have a homomorphism £, : B->A defined over k, where A and B are dual abelian
varieties of A and B respectively. The homomorphism ¢, is defined by {.(CI(Y))
=Cla-}(Y)) for the divisor ¥ on B. By Theorem 11 Chap. VIII §56 (2, tix) is a
k(u)/k-trace of ffu, i.e. t» has finite kernel, and if B is an abelian variety defined
over &t and 5: B4, is a homomorphism defined over k(u), then there exists a

homomorphism 5': B—A defined over k and p=t;-3'.

§ 6. Homological mappings.

In this section we consider the algebraic objects (algebraic groups, rational
mappings, etc.) defined or rational over a suitable field with respect to the objects
considered there, but we shall not notice the field explicity.

Let A, B be commutative algebraic groups and C, D be commutative linear
groups.

a) Let «:B-—-A a rational homomorphism. Then « induces a homomorphism
ao: Bxt(4, C)—-Ext(B,C). Let 3:C—D be a homomorphism. Then § induces a
homomorphism 5°: Ext(A, C)—Ext(4, D). Moreover, we get a commutative diagram
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v

Ext(4,C) -~ Ext(B,C)
H i

fco Y

/ 15
(ot ] (B

g r (1) M
Ext(4. D) = Ext(B, D).

b) The rational factor system of A with values in C is a rational mapping
f i AxA—C such that

Sy, a-rfaty. o+ @ y+a—-f@ =0 for &y 2z€A.

When f(x,y)=s(,x), f is said symmetric. For a rational mapping ¢: A—C,
sg(x, Y =glz+y) —gla)—gy) is called trivial factor system. We denote by HZ (A,
C), the group of symmetric rational factor systems modulo trivial ones. Then
« induces a homomorphism 357: HAi.(4,C)—H.:.(A, D). Moreover we get a com-
mutative diagram

ab

Hi(A,C)s —> HidB, C);
e 8
HZ(A, D), —» Hi(B, D),
¢) Let G be an element of Ext(A, C). Since C is a linear group, there exists
a rational cross section s: A—G and f(z, wy=s@+y)—s@@)—s(y) (x,ysA) is a
symmetrie rational factor system. If we take another cross section s’ : A—G and
put f'(@, y)=s'@+y)—s'(x)—s'(y), then flx,y)—f'(x, y)=6E+y)—s'@+y)—(s@)
—s'(yY))y=d(s—¢"x, y) is trivial. If we write A(G)=f, I defines a homomorphism
h:Ext(4, C)—H:E(A,C).. By Prop. 4 Chap. VII [7] h is an isomorphism onto.
PROPOSITION 6. Let the notation be as above. We have commutative diagram

e,
EXt(A, C) B ml(Ay C)G

b} s

o [£4

Iy .
Ext(B, C) ~> Hi(B, C),
Proor. Let G be an element of Ext(4,C) and «%(G)=HeExt(B,C). Let

s: A—G be a rational section, and f(z, ¥)=s(x+y)—s®)—sy). Then a’/(f)=fon.

hu(a®™(G)). Q.E.D.

d) Let G be an element of Ext(A4,C) and s: A—G be a rational section.
Then there exists an open set U on A on which s is everywhere regular. There
is a finite open covering {U;=U+a;} a,cU) of A. If we put s(z+a)=s(x)+sla;)
(xe U) and ¢,;=s,—3; then (¢,,) is a 1-coeycle and determines an element cc H'(4, (),
where C, is the sheaf of germs of regular mapping from A to C. If we
write 7(G)==¢, 7 defines an into-isomorphism = : Ext(4, C)—H'Y(A, C,) (see Prop. 5
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Chap. VII n” 6 {7]). Clearly (b,;=s;a—s,50) is a 1-cocycle for finite open covering
{Vi=a"Y(U)} of B and it determines an element b HY(B, ). If we put *a(c)=b.
*« defines a homomorphism *a: HYA, C)—HYB, Cp).

ProrosiTioN 7. Let the notations be as above a commutatige diagram

Ext(4, C) 2 HY(A, C.)

[(1‘0 ; *a

Ext(B, C) =" HI(B, ().

Proor. Let G be an element of Ext(4,C) and «%(G)=H. let s:4—G be a
rational section then sow: B—H is also a rational section. If s is everywhere
regular on an open set U of A then sew is everywhere regular on V=a Y(U) of
H. TFor a finite open covering {V-+b=Vi}.., ..., of B, {Utalb)=U;) is a finite
open covering of A. 1If we put

(seaYa+b;)=soa(x)+ scalb;) (xe=V),

sy +a;)=s(y)+s(a,) (weU, a;=ab))
and
b"f:(solr)j_—'(soa)i ’ Ci’j:Sj—Si y [bij]:b, [ng}zc.
Then *w(e)=b. We have a*(7 (@) =n3a’G)). Q.E.D.

e) Let s,: AXA—A be the composition law of A and pu,: AXA—A (i=1,2)
be the projections to the first factor (i=1) and to the second factor (:=2) respee-
tively. Then we have homomorphisms *s,: HW(A4, C)—HYAXA, Cs.4) and *pa;:
HA, C)y—HW(AXA,Cy4) (1=1,2). An element z of H(A4, C,) is called primitive
if *s.4(8)="*p., (@) *pa.(@).

ProrostrioN 8. Let the notations be as above *«: H(A,C)—HYB, Cp) maps
each primitive clement to a primitative element.

This follows immediately from the following Lemma.

LemMa 6. For a commutative diagram of algebraic groups and their homo-
morphism

A —— D

Tt Ta
e v

B W E

we have commutative diagram
*,,_“
HYA,Cy) <= HYD,Cp)
* . e=(=,,_
[ ()

*.n
HY(A, Cg) «2 H(B, Cy).

The proof is quite easy.
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§7. Geometric mappings.

Now we return to our problem. Let V be a complete normal projective
variety defined over k& and C be a l-dimensional generic hyperplane section of V
defined over k(x)=k. Let A be the Albanese variety of V defined over k and J
bz the Jacobian variety of C defined over k(u). Let P be the Picard variety of V.
We denote by «, the homomorphism fs: P—J defined in §1. J and A can be
considered as subgroups of HI(J, ¢¥) and H'(P, C}) respectively and they coincide
with the groups of primitive elements of theme respectively, where (¥ (resp. (})
is the sheaf of non-zero elements of local rings of J (resp. P). (See Chap. VII n®
16 7). By Prop. 3 §2 *a: H'(J, C¥)—H'(P, 0F) maps J to A.

ProrosITION 9. Let the notations be as above, We have t.="*alJ.

Proor. Let D be a divisor on J such that « (D) is defined. Then there
exists a definite open covering {U/}} of J such that D is locally defined on U, by
a rational function Ri(z) (.e. DN U,=(R«x)NU;) such that fi,=R(x)/B{x) is
unit at every point on U;NU;. {f.,} is l-cocycle and determines an element [ D]
=(f,JeH'(J,¢¥). By the definition *o({D))="*a([fi;)=[fical=[R;°a/Ria].
Putting V=« YU, we get a finite open covering {V;} of P. The divisor o '(D)
on P is locally defined on V; by the rational function Ryca on P. (See App. Theo-
rem 3 Cor. 2 Lang [1]). Thus we have t ((D))=[a"'(D)]=[Rpa/Riral and we
get t. [ D]="alD]. Q. E.D.

By Theorem 5 Chap. VII (7] =:Ext(4,C)—H'(A,C,) maps Ext(4, C) iso-
morphically onto the subzroup of primitive elements of H'(A, Cy). By Prop. 2
we have commutative diagram

T .
Ext(], Gn) —= JCH(J, 0%
lao te J'*f,r
Tp
Ext(P, Gn) —=> ACH(P, C%)
where 7, and 7, are surjective isomorphisms. As is stated in §1 £, is a surjec-
tive homomorphism. Therefore we have

PropositioN 10. Let the notations be as above, o' : Ext(J, G.)—Ext(P, G.) is a
surjective homomorphism.

§8. Structure of function modules and the correspondence of Py and Fan.

Let Py, P:,---, P, be a set of distinet points of C. Since V is normal, C is
non-singular. Therefore, Pi, P.,---, P, are simple points of C but also they are
simple points on V because C is a generic hyperplane section of V over the field
of definition of V. Let O(P,) and VP, be the local ring and its maximal ideal
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at P respectively in the rational function field 2(V) of V over 2. We denote by
(P) and m(P?) the local ring and its maximal ideal of C at P, m --fC) respec-
tively. We define the IM-structure on V and C by {Py, -+, P, SJL ﬂ M(P)* i} and
{Py, Py, Ppym= mn(l’)” respectively.

REMARK. The ‘JJE structure is determined if we give a 0-cycle \‘nP There-
fore we use sometimes O-cycle instead of M-structure.

Let U(P) and w(P) be the unit groups of T(P;) and o(P,) respectively. We
denote by (V, C) the specialization ring of C in 2(V). The restriction of a
function on V to the funetion on C defines an onto-homomorphism p:O(V, C)—
2(C). The homomorphism p maps O(P;) onto o(P), VP onto m(P,) and U(P,)
onto u(P) respectively. By [12] Chapter VIII, Prop. 10 we can choose such local
parameters {ty, tum,--+, 1.} at P on V and ¢; at P, on C that p(t.)=¢; and p(t;;)=0
(7=2). Choosing such local parameters p,=p|T(P) : O(P)—0o(P;) is given by

f‘?z(o_%m&/@ gt ) = 0,,\}%1 IR 21
; induces a homomorphism g, : U(P)/ UP) 2 -»u(P)/u(P;) "0,
By Prop. 2 and Prop. 3 in §4, we have

p=0: UP)/ UPY " =Gy x G, w(P)/uPY " =G X G,

p#-‘o M U(Ijg)/ U(Pi)ni =~ GnL X H WTk(zi\ .

(I o, k(“l“) "kf,"l”’

u(P«g)/u(Pi)(ni) szX H er(i)l(i\ .
k:() 1

By the proof of these Propositions and the above selection of local parameters,

l“o : G,I'X(‘\I 1 "’GMXGZJ ! (p:())»
hi m

it G,,,lel ) I Wr RSN ~—Gux IT 1 W'k“)l“' (p+0)
SR N CIEREPN SN R RN HEI
are projections onto suitable factors.

Let P be the generalized Picard variety of V' with respect to the m-structure
[Py, P, D of V and “m be the generalized Jacobian variety of C with respect
to the m-structure {P,---,P.; m} of C. P and J be the Picard and Jacobian
variety of V and of C respectively. Then by Theorem 3 in §4 we have the exact
sequences

lp De
0 — Km —> Pm ——> P - 0

4 §
0 km 5 I LT -0

where Kon=[ [T (U(P)/UP)*1/Gun and kn={ T u(P)/ulP) 1/ G
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We have a homomorphism : Kw—km defined by [T, and a homomorphism

=]
a: P—J induced by i: C—V. Therefore we have homomorphisms
= Ext(P, Kg) —BExt(P, kw), A BExt(, kn) (P, kw).

THEOREM 4. =o{%Pum)=a(Im).

Proor. By the definition it is clear that if f=1 (mod ) for a funection £ on
V, we have p(f)=1 {(modm) and i-{(N)=(o(f)) By Theorem 3 App. {1]). There-
fore i-' induces a homomorphism Da (V)—Dn(C) and Dy V)= Dy {C), and we
get, taking quotient, a homomorphism &: Pyp— 5. By the definition of the
homomorphisms «, &, r, we have the commutative diagram

0 -

» Ky —— f’”j":n)z —s P > 0

T [a «

0 — Em s G —— J —— 0.

Thus we get o{ Vm)=a%(Jm). Q.E.D.

By Theorem 4 we get immediately

COROLLARY. When m=2 and ny=n,=1, we have Km=kn=G, and z, must
be identity. In this case we have o®(Im)=Loy.

In the commutative diagram

Ext(], Gn) —5 J
?0:" ta
Ty
Ext(P, G») — A

t, is surjective by the statements in §1 and =, =p are surjective isomorphisms.
Therefore «° is also surjective. By the Theorem in our paper [3], Ext(J, G.) is
generated by Jm defined as in Corollary of Theorem 1. By the same Corollary we
conclude that Ext(P, G.) is generated by the generalized Picard varieties of V
with respect to 0-cycles P,+P; (Py#Py) on V.

Summarizing above results we get

TueorEM 5. Let V be a mormal projective variety and P be its Picard
variety. Then Ext(P,G.) is generated by the generalized Picard warielies of V
with respect to 0-cycles Pi+ Py (Py#Py) on V.

University of Tokyo.
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