On generalized Picard varieties

By Megumu MIWA

Introduction. J.P. Murre has constructed generalized Picard varieties of a complete normal projective variety [4]. They are the analogy of generalized Jacobian varieties of a curve in the case of a higher dimensional algebraic variety. There he considered new equivalence relations (called a-linear equivalence) and parametrized the corresponding Picard groups by the commutative group varieties, so called the generalized Picard varieties.¹³

In the paper [4] Murre defined a-structure on algebraic variety, but we deal with slightly special case of a-structure (we call it m-structure) in this paper. We need this restriction in order to calculate the structure of function modules as algebraic groups and consider the structure of generalized Picard Varieties. In our paper [3] we considered the structure of $\operatorname{Ext}(J, G_m)$, where J is the Jacobian variety of a curve C and G_m is 1-dimensional torus. We proved that $\operatorname{Ext}(J, G_m)$ is generated by generalized Jacobian varieties of C with respect to 0-cycles of type $P_1 + P_2$ ($P_1 \neq P_2$) on C. One of the purposes of this paper is to deal with this problem in the case of a higher dimensional algebraic variety. In §1~§4 we consider the structure of generalized Picard varieties and get a result analogous to the case of generalized Jacobian varieties. In §5~§8 we consider the problem stated above.

§ 1. Definitions and preliminaries.

Let V^r be an r-dimensional normal projective variety. We denote the rational function field of V over Ω by $\Omega(V)$ and that over a field K by K(V). For a point P of V, we denote the local ring at P in $\Omega(V)$ by $\Omega(P)$ and its maximal ideal by $\mathfrak{M}(P)$. When P is rational over a field K, we denote the local ring and its maximal ideal in K(V) by $\Omega_K(P)$ and $\mathfrak{M}_K(P)$ respectively.

Let P_1, P_2, \dots, P_m be a set of simple points on V and let $\mathfrak{M} = \bigcap_{i=1}^m \mathfrak{M}(P_i)^{n_i}$, where n_i $(i=1,2,\cdots,m)$ are positive integers. When the set of simple points $\{P_1,P_2,\cdots,P_m\}$ and the module \mathfrak{M} are given, we say an " \mathfrak{M} -structure on V" is defined on V. If all the points P_1,\cdots,P_m are rational over a field k which is a field of definition of V, we say that the \mathfrak{M} -structure is defined over k. Through this section we

In the same paper of Murre [4], it is written that Oort has also constructed them by another method, simplifying Serre's construction. In this case he worked with Cartier divisors.

fix the M-structure defined over k which is defined as above.

Let $\mathcal{D}=\mathcal{D}(V)$ be the group of divisors on V. We denote the support of a divisor X by Supp(X). Let $\mathcal{D}_{\mathfrak{M}}=\mathcal{D}_{\mathfrak{M}}(V)=\{X|X\in\mathcal{D},\,P_i\oplus\operatorname{Supp}(X)\,\,i=1,\,2,\cdots,\,m\}$. $\mathcal{D}_{\mathfrak{M}}$ is a subgroup of \mathcal{D} . We put $\mathcal{D}_{\mathfrak{M}_a}=\mathcal{D}_{\mathfrak{M}}\cap\mathcal{D}_a$ where \mathcal{D}_a is the group of divisors on V which is algebraically equivalent to zero.

We say a divosor $X \in \mathcal{D}_{\mathfrak{M}}$ is \mathfrak{M} -linearly equivalent to zero if there exists a function f in $\mathcal{Q}(V)$ such that X=(f) and $f\equiv 1 \pmod{\mathfrak{M}}$.

We denote this condition by $X \stackrel{\mathfrak{M}}{\sim} 0$. (By $X \sim 0$ we denote the usual linear equivalence).

Let $\mathcal{D}_{\mathfrak{M}l}=\{X|X\in\mathcal{D}_{\mathfrak{M}},\,X\overset{\mathfrak{M}}{\sim}0\}$. For two divisors X, Y in $\mathcal{D}_{\mathfrak{M}}$ we say X is \mathfrak{M} linearly equivalent to Y if $X-Y\overset{\mathfrak{M}}{\sim}0$. This is an equivalence relation in $\mathcal{D}_{\mathfrak{M}}$ and we have $\mathcal{D}_{\mathfrak{M}l}\subset\mathcal{D}_{\mathfrak{M}a}$. We denote the quotient group $\mathcal{D}_{\mathfrak{M}a}/\mathcal{D}_{\mathfrak{M}l}$ by $\mathrm{Pic}_{\mathfrak{M}}(V)$. We denote the \mathfrak{M} -linear equivalence class of a divisor D in $\mathcal{D}_{\mathfrak{M}a}$ by $\mathrm{Cl}_{\mathfrak{M}}(D)$. (By $\mathrm{Cl}(D)$ we denote the usual linear equivalence class for a divisor D in \mathcal{D}_{a}).

We define an \mathfrak{M} -linear system of positive divisors as follows: Let \mathcal{L} be an \mathcal{Q} -submodule of $\mathcal{Q}+\mathfrak{M}$ and D be a divisor in $\mathcal{Q}_{\mathfrak{M}}$ such that D+(f)>0 for every function f in \mathcal{L} . We call the family of positive divisors $\{D+(f)|f\in\mathcal{L}\}$ an \mathfrak{M} -linear system defined by the module \mathfrak{L} . We define the complete \mathfrak{M} -linear system $|X|_{\mathfrak{M}}$ of a divisor $X\in \mathcal{D}_{\mathfrak{M}}$ by

$$\mathfrak{L}_{\mathfrak{M}}(X) = \{ f | f \in \Omega + \mathfrak{M}, X + (f) > 0 \},$$
$$|X|_{\mathfrak{M}} = \{ Y | Y > 0, Y - X = (f), f \in \mathfrak{L}_{\mathfrak{M}}(X) \},$$

For the M-linear equivalence we have following lemmas.

LEMMA 1. Let X_i , Y_i (i=1,2) be positive divisors in $\mathcal{D}_{\mathfrak{M}}$ and (Y_1,Y_2) be a specialization of (X_1,X_2) over a field K containing k. Then $X_1 \overset{\mathfrak{M}}{\sim} X_2$ implies $Y_1 \overset{\mathfrak{M}}{\sim} Y_2$.

LEMMA 2. Let $X \in \mathcal{D}_{\mathfrak{M}}$ be a divisor on V which is rational over a field $K \supset k$. Then $\mathcal{L}_{\mathfrak{M}}(X)$ has a set of basis defined over K.

COROLLARY. The assumption being as in Lemma 2 the associated variety $T_{\mathfrak{M}}(X)$ of $|X|_{\mathfrak{M}}$ is defined over K.

For the proof of them we refer to [4].

Let $\{X\}$ be an algebraic family of positive divisors on V. We say that $\{X\}$ is defined over a field K if the Chow variety W of $\{X\}$ is defined over K.

An algebraic family of positive divisors $\{X\}$ is called *total* if for a fixed member X' of $\{X\}$ there exists for every $Y \in \mathcal{D}_a(V)$ a divisor X in $\{X\}$ such that $Y \sim X - X'$. This definition is generalized for the case of \mathfrak{M} -linear equivalence.

An algebraic family of positive divisor $\{X\}$ of V is called restricted \mathfrak{M} -total

if there exists a field of definition K of $\{X\}$ such that for every Y in $\mathcal{L}_{\mathfrak{M}u}$ and for every generic member X' of $\{X\}$ over K(y) there exists a divisor X in $\{X\}\cap \mathcal{L}_{\mathfrak{M}}$ such that $Y \stackrel{\mathfrak{M}}{\sim} X - X'$.

An algebraic family of positive divisor $\{X\}$ of V is called \mathfrak{M} -total if for every fixed divisor $X' \in \{X\} \cap \mathcal{D}_{\mathfrak{M}}$ and for every $Y \in \mathcal{D}_{\mathfrak{M}^n}$ there exists a divisor $X \in \{X\} \cap \mathcal{D}_{\mathfrak{M}}$ such that $Y \stackrel{\mathfrak{M}}{\sim} X - X'$.

In [4] it was proved that a restricted \mathfrak{M} -total family $\{X\}$ of V exists when V is normal and an \mathfrak{M} -total family exists when V is non-singular.

Let $\{X\}$ be a restricted \mathfrak{M} -total family of V defined over k_0^{**} , W be its associated variety and X be a generic member of $\{X\}$ over a field k_0 . By $\xi = C(|X|_{\mathfrak{M}})$ we denote the Chow-point of the associated variety of $|X|_{\mathfrak{M}}$. Then by Cor. of Lemma 2, ξ is rational over $k_0(x)$, where x is the Chow-point of X. We denote by small letter x, y, z, \cdots the Chow-points of divisors X, Y, Z, \cdots .

Let U be the locus of ξ over k_0 , then U has a commutative normal law of composition given by $\xi+\eta=\zeta$ where $\xi=C(|X|_{\mathfrak{M}}),\ \eta=C(|Y|_{\mathfrak{M}}),\ \zeta=C(|Z|_{\mathfrak{M}}),\ X,\ Y$ are independent generic members of $\{X\}$ over k_0 and Z is a generic member of $\{X\}$ over k_0 such that $X+Y-X_0\overset{\mathfrak{M}}{\sim} Z$. (Here X_0 is a fixed divisor in $\{X\}\cap \mathscr{D}_{\mathfrak{M}}$). Thus there is a commutative group variety $\mathscr{D}_{\mathfrak{M}}$ defined over k_0^* , and a birational transformation $T:U\to \mathscr{D}_{\mathfrak{M}}$ defined over k_0 which is compatible with the composition law. For the later use we define a rational mapping g from W to $\mathscr{D}_{\mathfrak{M}}$ defined over k_0 by $g(x)=T(\xi)$ where x is a generic point of W over k_0 and $\xi=C(|X|_{\mathfrak{M}})$.

By the definition if $X \stackrel{\mathfrak{M}}{\sim} Y$ then we have g(x) = g(y) and if $X + Y - X_0 \stackrel{\mathfrak{M}}{\sim} Z$ then we have g(x) + g(y) = g(z). $\mathfrak{P}_{\mathfrak{M}}$ is unique up to birational isomorphisms over k. In [4] the following theorem is proved.

THEOREM. Let notations and assumption be as above. There is a surjective isomorphism $\varphi_{\mathfrak{M}}: \operatorname{Picm}(V) \rightarrow \mathscr{P}_{\mathfrak{M}}$ such that:

- 1) If $D \in \mathcal{D}_{\mathfrak{M}a}$ is rational over a field $K \supset k$, then $\varphi_{\mathfrak{M}}(\operatorname{Cl}_{\mathfrak{M}}(D))$ is rational over K. If $D' \in \mathcal{D}_{\mathfrak{M}a}$ is a generic specialization of D over k (i. e. $D \stackrel{k}{\leftrightarrow} D'$) then $\varphi_{\mathfrak{M}}(\operatorname{Cl}_{\mathfrak{M}}(D'))$ is the unique generic specialization of $\varphi_{\mathfrak{M}}(\operatorname{Cl}_{\mathfrak{M}}(D))$ over $D \stackrel{k}{\leftrightarrow} D'$. ($\varphi_{\mathfrak{M}}$ is given by $\varphi_{\mathfrak{M}}(\operatorname{Cl}_{\mathfrak{M}}(X_1 X_2)) = g(x_1) g(x_2)$ for generic members X_1 and X_2 of $\{X\}$ over k_0 .)
- 2) Let G' be a commutative group variety defined over $k' \supset k$ and $\varphi' : \operatorname{Pic}_{\mathfrak{M}}(V) \to G'$ be a homomorphism such that (i) if $D \in \mathfrak{D}_{\mathfrak{M}_a}$ is rational over $K \supset k'$ then

^{*)} The group variety $\mathcal{L}_{\mathfrak{M}}$ defined here may not be defined over k. But we can choose a group variety which is defined over k and is biregularly isomorphic to $\mathcal{L}_{\mathfrak{M}}$ as is shown in [4].

^{**)} We may take such a field k_0 that is separably algebraic over k.

 $\varphi'(\operatorname{Cl}_{\mathfrak{M}}(D))$ is rational over K and (ii) if D' is a generic specialization of D over k' then $\varphi'(\operatorname{Cl}_{\mathfrak{M}}(D'))$ is the unique specialization of $\varphi'(\operatorname{Cl}_{\mathfrak{M}}(D))$ over $D \overset{k}{\leftrightarrow} D'$. Then there exists a rational homomorphism $\alpha: \mathcal{P}_{\mathfrak{M}} \to G'$ defined over k' such that $\varphi' = \alpha \circ \varphi_{\mathfrak{M}}$.

§ 2. Covering homomorphisms.

Let V be a complete normal projective variety defined over a field k and P_1 , \cdots , P_m be a set of k-rational simple points of V. Put $\mathfrak{M} = \bigcap\limits_{i=1}^m \mathfrak{M}(P_i)^{n_i}$ and $\mathfrak{M} = \bigcap\limits_{i=1}^m \mathfrak{M}(P_i)^{n_{i'}}$ $(n_i \geqslant n_i' \geqslant 0)$. Then there exist two commutative group varieties $\mathscr{L}_{\mathfrak{M}}$ and $\mathscr{L}_{\mathfrak{M}'}$ defined over k, (by Theorem in §1) such that $\mathrm{Pic}_{\mathfrak{M}}(V) \cong \mathscr{L}_{\mathfrak{M}}$ and $\mathrm{Pic}_{\mathfrak{M}'}(V) \cong \mathscr{L}_{\mathfrak{M}'}$. By 2) of the Theorem, we have a rational homomorphism $\mathfrak{L}_{\mathfrak{M}}(V) \cong \mathscr{L}_{\mathfrak{M}}$ defined over k such that the following diagram is commutative

$$\begin{array}{ccc} \operatorname{Pic}_{\mathfrak{M}}(V) = \mathscr{D}_{\mathfrak{M}_{a}} / \mathscr{D}_{\mathfrak{M}_{t}} & \xrightarrow{\varphi_{\mathfrak{M}}} \mathscr{P}_{\mathfrak{M}} \\ \downarrow p_{\mathfrak{M}\mathfrak{M}'} & \downarrow \pi_{\mathfrak{M}\mathfrak{M}'} \\ \operatorname{Pic}_{\mathfrak{M}'}(V) = \mathscr{D}_{\mathfrak{M}'a} / \mathscr{D}_{\mathfrak{M}'_{t}} & \xrightarrow{\varphi_{\mathfrak{M}'}} \mathscr{P}_{\mathfrak{M}'} \end{array}$$

where $p_{\mathfrak{MM}'}$ is a natural homomorphism defined by $\mathfrak{D}_{\mathfrak{M}a} \subset \mathfrak{D}_{\mathfrak{M}'a}$, $\mathfrak{D}_{\mathfrak{M}i} \subset \mathfrak{D}_{\mathfrak{M}'i}$.

LEMMA 3. There exists a field L containing k such that if u is a generic point of $\mathcal{P}_{\mathfrak{M}}$ over L then there exists a divisor $D \in \mathcal{D}_{\mathfrak{M}^a}$ where D is rational over L(u) with $\varphi_{\mathfrak{M}}(\operatorname{Cl}_{\mathfrak{M}}(D)) = u$. We may add the condition that for any set of rational points R_1, R_2, \cdots of V over k, $R_i \notin \operatorname{Supp}(D)$ $i = 1, 2, \cdots$.

Let Q_1, \dots, Q_t be a set of a sufficiently large number of independent generic points of V over k and z be a generic point of $\mathcal{P}_{\mathfrak{M}}$ over $k_0(Q_1, \dots, Q_t)$, then the field $k_0(z, Q_1, \dots, Q_t)$ fulfils the conditions.

By this Lemma, $\pi_{\mathfrak{M}\mathfrak{M}'}$ is a surjective rational homomorphism defined over k and moreover we have a rational cross section from $\mathscr{L}_{\mathfrak{M}}$ to $\mathscr{L}_{\mathfrak{M}'}$ defined over some field $L\supset k$. In fact let v be a generic point of $\mathscr{L}_{\mathfrak{M}'}$ over the field L which is chosen in Lemma 3 for $\mathscr{L}_{\mathfrak{M}'}$. Then there exists a divisor $D\in \mathscr{D}_{\mathfrak{M}'a}$ such that $\varphi_{\mathfrak{M}'}(\operatorname{Cl}_{\mathfrak{M}'}(D))=v$ and D is rational over L(v). Moreover we may assume that $P_i \in \operatorname{Supp}(D)$ $i=1,2,\cdots,m$, i.e. $D\in \mathscr{D}_{\mathfrak{M}a}$. Thus $\varphi_{\mathfrak{M}}(\operatorname{Cl}_{\mathfrak{M}}(D))$ is a point on $\mathscr{L}_{\mathfrak{M}}$ rational over L(v). If we put s(v)=u, s gives a rational cross section from $\mathscr{L}_{\mathfrak{M}'}$ to $\mathscr{L}_{\mathfrak{M}}$ with respect to $\pi_{\mathfrak{M}\mathfrak{M}'}$. From this the surjectiveness of $\pi_{\mathfrak{M}\mathfrak{M}'}$ follows. Therefore the kernel of $\pi_{\mathfrak{M}\mathfrak{M}'}$ is a connected subgroup of $\mathscr{L}_{\mathfrak{M}}$. If we replace $\mathscr{L}_{\mathfrak{M}'}$ by the usual Picard variety P of V defined over k, we have the following Theorem.

THEOREM 1. Let V be a complete normal projective variety with an \mathfrak{M} -structure defined over k. Let $\mathcal{P}_{\mathfrak{M}}$ be the generalized Picard variety of V for the \mathfrak{M} -structure and P be the Picard variety both defined over k. Then there

exists a rational homomorphism $\pi_{\mathfrak{M}}$ from $\mathfrak{L}_{\mathfrak{M}}$ to P defined over k and the kernel $K_{\mathfrak{M}}$ of $\pi_{\mathfrak{M}}$ is a connected subgroup of $\mathfrak{L}_{\mathfrak{M}}$.

REMARK. The kernel $K_{\mathfrak{M}}$ of $\pi_{\mathfrak{M}}$ would be defined over a purely inseparable extension of k_0 .

§ 3. Algebraic structure of function modules.

Let d be a point of $\mathcal{P}_{\mathfrak{M}}$ and D be a divisor in $\mathcal{D}_{\mathfrak{M}^a}$ such that $\varphi_{\mathfrak{M}}(\operatorname{Cl}_{\mathfrak{M}}(D)) = d$. For the neutral element e of P, $\pi_{\mathfrak{M}}(d) = e$ holds if and only if $D \sim 0$ (i. e. D = (g) holds for a function $g \in \mathcal{Q}(V)$ such that g is a unit at all points P_i $(i=1, 2, \dots, m)$).

Let $U(P_i)$ $(i=1,2,\cdots,m)$ be the multiplicative group of all units of $\mathfrak{D}(P_i)$ $(i=1,\cdots,m)$, and let $U(P_i)^{(n_i)}=1+\mathfrak{M}(P_i)^{n_i}$. Then $U(P_i)^{(n_i)}$ is a subgroup of $U(P_i)$. We put $R_{\mathfrak{M}}=\prod\limits_{i=1}^m U(P_i)/U(P_i)^{(n_i)}$. Then a function g in $U_{\mathfrak{M}}=\bigcap\limits_{i=1}^m U(P_i)$ determines an element of $R_{\mathfrak{M}}$. By this mapping we get a natural homomorphism θ from $U_{\mathfrak{M}}$ to $R_{\mathfrak{M}}$.

LEMMA 4. Let V^r be an r-dimensional projective variety defined over k and P_1, \dots, P_m be a set of simple points of V which are rational over k. Then we can choose a set of generators t_{i1}, \dots, t_{ir} of $\mathfrak{M}_k(P_i)$ $(i=1, \dots, m)$ such that all t_{ij} $(1 \leq i \leq m, 1 \leq j \leq r)$ are integral at every P_i $(i=1, \dots, m)$ and t_{i1} is unit at all P_j $(i \neq j)$.

We omitt the proof.

Proposition 1. θ is surjective.

PROOF. Let $(t_{i1}, t_{i2}, \cdots, t_{ir}) = (t_i)$ be the generators of $\mathfrak{M}_k(P_i)$ $(i=1, \cdots, m)$ chosen as in Lemma 4. Let $g = (g_i)$ $(i=1, \cdots, m)$ be an element of $R_{\mathfrak{M}}$ such that $\bar{g}_i = \sum_{0 \leq k \leq n_i} f_{ik}(t_i)$ where $f_{ik}(t_i)$ is a homogeneous polynomial of degree k of the form $f_{ik} = \sum a_{k_{i1} \cdots k} r_i^{k_{i1}} \cdots r_i^{k_{ir}}$ and \sum is taken all over the monomials with $\sum_{i=1}^r k_{ij} = k$.

Let $\overline{g}_1 = \sum_{0 \le k} h_k(t_2)$ and $t_{11}^{n_1} = \alpha_2 + f_2$, be the power series expansion of g_1 and $t_{11}^{n_1}$ at P_2 . h_k is the homogeneous part of degree k and $\alpha_2 \in \mathcal{Q}$, $\alpha_2 \neq 0$, $f_2 \in \mathfrak{M}(P_2)$. If we put $g_1' = \overline{g}_1 - \frac{h_0(t_2) - f_{20}(t_2)}{\alpha_2} \cdot t_{11}^{n_1}$ then $g_1' = f_{20}(t_2) + \sum_{1 \le k} h_k'(t_2)$. If we put

$$g_1'' = g_1' - \frac{h_1'(t_2) - f_{21}(t_2)}{\alpha_2} \cdot t_{11}^{n_1}$$
 then $g_1'' = f_{20}(t_2) + f_{21}(t_2) + \sum_{2 \leqslant k} h_k''(t_2)$. Thus we get

 $g_1^{(n_2)} \equiv \bar{g}_2 \pmod{\mathfrak{M}(P_2)^{n_2}}$. Also we have $g_1^{(n_2)} \equiv \bar{g}_1 \pmod{\mathfrak{M}(P_1)^{n_1}}$. Let $g_2 = g_1^{(n_2)} = \sum_{0 \le k} p_k(t_3)$, $t_{11}^{n_1} \cdot t_{21}^{n_2} = \alpha_3 + f_3$ be the power series expansion of g_2 , $t_{11}^{n_1} \cdot t_{12}^{n_2}$ at P_2 respectively, where $p_k(t_3)$ is the homogeneous part of degree k and $\alpha_2 \neq 0$, $f_3 \in \mathfrak{M}(P_3)$. If we put

$$g_2' = g_2 - \frac{p_0(t_3) - f_{30}(t_2)}{\alpha_3} t_{11}^{n_1} \cdot t_{21}^{n_2}$$
 then $g_2' = f_{30}(t_3) + \sum p_k'(t_2)$. If we put

$$g_2'' = g_2' - \frac{p_1'(t_2) - f_{31}(t_3)}{\alpha_2} \ t_{11}^{n_1} \cdot t_{21}^{n_2} \ \text{then} \ g_2'' = f_{30}(t_3) + f_{31}(t_3) + \sum_{2 \leqslant k} p_k''(t_3). \ \text{Thus we get}$$

 $g_3=g_2^{(n_3)}\equiv g_3\pmod{\mathfrak{M}(P_3)^{n_3}}$. Also we have $g_2^{(n_3)}\equiv \overline{g}_1\pmod{\mathfrak{M}(P_1)^{n_1}}$ and $g_2^{(n_3)}\equiv \overline{g}_2$ $(\text{mod }\mathfrak{M}(P_2)^{n_2})$. Repeating this process we get a function $g_m = g$ such that $\overline{\theta}(g_m) = \overline{g}$.

REMARK. By the proof of the above Proposition we can choose a function which is defined over $k(\cdots, a_{k_{i_1}\cdots k_{j_i}}, \cdots)$, as a function g such that $\overline{\theta}(g) = \overline{g}$.

Let $\Delta = \{ \widetilde{a, \cdots, a} | a \in \mathcal{Q}^* \}$, then Δ is a subgroup of $R_{\mathfrak{M}}$. We put $H_{\mathfrak{M}} = R_{\mathfrak{M}} / \Delta$. The mapping $\widehat{\theta}$ induces a bijective isomorphism θ from $K_{\mathfrak{M}}$ to $H_{\mathfrak{M}}$ as abstract groups. This bijective isomorphism is given as follows. Let $d = \varphi_{\mathfrak{M}}(\operatorname{Cl}_{\mathfrak{M}}(D)) \in K_{\mathfrak{M}}$ then we have D=(f) for a function $f \in U_{\mathfrak{M}}$. Let $\overline{\theta}(f_i) \in R_{\mathfrak{M}}$ and (f_i) be the image of $(\overline{f_i})$ by the natural homomorphism $R_{\mathfrak{M}} \to R_{\mathfrak{M}}/A = H_{\mathfrak{M}}$. Then we have $\theta(d) = (f_i)$. If $(f_i)=1$ in $H_{\mathfrak{M}}$ then we have $f_i=a+h_i$ $(a\in\Omega,\ h_i\in\mathfrak{M}(P_i)^n)$ $(i=1,2,\cdots,m)$ and $\frac{1}{a}f\equiv 1\pmod{\mathfrak{M}}$. Therefore d=e in $K_{\mathfrak{M}}$. This proves the injectivity of θ . Surjectivity is clear by Prop. 1.

The proof of the following Propositions 2-4 is essentially the same as that in Serre's Book [7] Chap. V.

Let P be a simple point of V^r and t_1, t_2, \dots, t_r be a set of local parameters of V at P in $\mathfrak{M}(P)$. Then $U(P)/U(P)^{(n)}$, which is defined as above, has, as its system of representatives, the polynomials of the form,

$$f = \sum_{0 \le K \le n} a_{k_1 \cdots k_r} t_1^{k_1} \cdot t_2^{k_2} \cdot \cdots \cdot t_r^{k_r} \quad \left(K = \sum_{j=1}^r k_j \right)$$

Therefore we may consider $U(P)/U(P)^{(n)}$ as an open subspace of N-dimensional affine space, where $N = \sum_{j=0}^{n-1} {}_{j} H_{j}$ and the group structure is compatible with this algebraic structure.

Proposition 2. $U(P)/U(P)^{(1)}$ is birationally isomorphic to G_m as algebraic groups.

This is clear by the definition of algebraic structure of $U(P)/U(P)^{(1)}$.

Proposition 3. Let the characteristic p of Ω be equal to zero. $U(P)^{(1)}/U(P)^{(n)}$ is birationally isomorphic to G_a^{N-1} as algebraic groups. The isomorphism is given in the following way. We give the lexicographic order in the set of monomials $\left\{t_1^{k_1} \cdot t_2^{k_2} \cdot \cdots \cdot t_r^{k_r} | 0 < \sum_{j=1}^r k_j < n\right\}$. Let $g_{k_1 \cdots k_r}$ be the formal power series in $\{t_1, \dots, t_r\}$ such that the first term is $t_1^{k_1} \cdot t_2^{k_2} \cdot \dots t_r^{k_r}$. Then every element g in $U(P)^{(1)}/U(P)^{(n)}$ is uniquely written as $g \equiv \Pi \exp(a_{k_1 \cdots k_r} g_{k_1 \cdots k_r})$ modulo formal power series of degree n, where $K = \sum_{j=1}^{r} k_j$, $a_{k_1 \cdots k_r} \in \Omega$ 0 < K < n. The mapping $g \rightarrow (\cdots, a_{k_1 \cdots k_r}, \cdots)$ gives the isomorphism.

PROOF. Let $\exp(f) = 1 + f + \frac{f^2}{2!} + \frac{f^3}{3!} + \cdots$ for all power series f in $\{t_1, \cdots, t_r\}$

 t_r]. Then we have $\exp(f_1) \cdot \exp(f_2) = \exp(f_1 + f_2)$. Let g be an element of $U(P)^{(1)}/U(P)^{(n)}$. Then

$$g = 1 + b_{10...0}t_1 + b_{010...0}t_2 + \dots + b_{k_1...k_r}t_1^{k_1} \dots t_r^{k_r} + \dots$$

$$g/(1 + b_{10...0}g_{10...0}) = 1 + b'_{011...0}t_2 + \dots$$

$$g/(1 + b_{10...0}g_{10...0})(1 + b'_{010...0}g_{010...0}) = 1 + b''_{010...0}t_3 + \dots$$

Repeating this step we get

$$g = (1 + \alpha_{10 \dots 0} g_{10 \dots 0}) \dots (1 + \alpha_{k_1 \dots k_r} g_{k_1 \dots k_r}) \dots (1 + \alpha_{0 \dots 0} g_{0 \dots 0}),$$

(modulo formal power series of degree n.)

If we put $\exp(\alpha_{k_1\cdots k_r}g_{k_1\cdots k_r})=1+f_{k_1\cdots k_r}$ then $f_{k_1\cdots k_r}$ has $\alpha_{k_1\cdots k_r}t_1^{k_1\cdots k_r}\cdots t_r^{k_r}$ as its first term. Choosing suitable $(\cdots \alpha_{k_1 \cdots k_r} \cdots)$ in Ω we get

$$g = \prod_{0 < K < n} \exp(\alpha_{k_1 \cdots k_r} g_{k_1 \cdots k_r})$$
 (modulo formal power series of degree n).

The uniqueness of this expression is clear. By the above argument $\alpha_{k_1\cdots k_r}$ must be a polynomial of the coefficients of g and the coefficients of g are polynomials of $(\cdots, \alpha_{k_1\cdots k_r}, \cdots)$. This completes the proof of our Proposition.

COROLLARY. When p=0, $U(P)/U(P)^{(n)}$ is birationally isomorphic to $G_m \times G_a^{N-1}$. When the sharacteristic of Q is not equal to zero we have the following

PROPOSITION 4. Let the characteristic p of Ω be $\neq 0$. Let $0 < \sum_{j=1}^{r} k_j < n$, l be a positive integer such that $l \sum_{j=1}^{r} k_j \le n-1$, (l, p)=1 and $r_{k_1 \cdots k_r l} = \min\{r \mid p^r \ge n/l \sum k_j\}$. Let $g_{k_1 \cdots k_r}$ be a formal power series of $t_1^{k_1} \cdot t_2^{k_2} \cdot \cdots t_r^{k_r}$ such that its first term is $(t_1^{k_1} \cdot t_2^{k_2} \cdot \cdots t_r^{k_r})^l$. Then every g in $U(P)^{(1)}/U(P)^{(n)}$ can be written uniquely as

$$g = \prod_{(k_1, \dots, k_r, l)} E(\overrightarrow{a_{k_1 \dots k_r l}} g_{k_1 \dots k_r l})$$
 (modulo formal power series of degree n)

using Witt vector $\overrightarrow{a_{k_1\cdots k_r l}}$ of length $r_{k_1\cdots k_r l}$. $U(P)^{\scriptscriptstyle (1)}/U(P)^{\scriptscriptstyle (n)}$ is birationally isomorphic to $\prod_{\substack{(k_1,\cdots,k_{rl})\\for\ a\ Witt\ vector\ x=(x^{(0)},\ x^{(1)},\ x^{(2)},\cdots)}} W_{r_{k_1\cdots k_{rl}}}$ as algebraic groups, where $E(x)=\exp{(-x^{(0)}-x^{(1)}-x^{(1)})}$

The proof is quite similar to that of Proposition 3.

Thus we get

Proposition 5. When p=0, $R_{\mathfrak{M}}$ (resp. $H_{\mathfrak{M}}$) is birationally isomorphic to $G_m^m \times G_a^M$ (resp. $G_m^{m-1} \times G_a^M$) over k, where $M = \sum_{i=1}^m (N_i - 1)$, $N_i = \sum_{j=1}^{n-1} H_j$.

$$\begin{array}{lll} When & p \neq 0, & R_{\mathfrak{M}} & (resp. \ H_{\mathfrak{M}}) & is \ birationally & isomorphic \ to \\ G^{m}_{\mathfrak{m}} \times \prod_{i=1}^{m} & \prod_{(k_{1}^{(i)}, \cdots , k_{r}^{(i)}, l)} W_{r_{k_{1}^{(i)}, \cdots , k_{r}^{(i)}, l}} & (resp. \ G^{m-1}_{\mathfrak{m}} \times \prod_{i=1}^{m} & \prod_{(k_{1}^{(i)}, \cdots , k_{r}^{(i)}, l)} W_{r_{k_{1}^{(i)}, \cdots , k_{r}^{(i)}, l}) \\ over & k. \end{array}$$

REMARK. By the isomorphisms of Proposition 4 we identify these algebraic groups respectively. Then the mapping θ is given as follows:

- 1) p=0: Let $A=(\alpha_1,\alpha_2,\cdots,\alpha_m,\cdots,\alpha_{k_1,\cdots k_r l}^{(i)},\cdots)\in R_{\mathfrak{M}}$ and A be the image of A by the natural mapping $R_{\mathfrak{M}} \stackrel{q}{\longrightarrow} R_{\mathfrak{M}}/A = H_{\mathfrak{M}}$. Let g be a function in $U_{\mathfrak{M}}$ such that $g\equiv \alpha_i \prod_{0< K< n_i} \exp(a_{k_1,\cdots k_r}^{(i)}g_{k_1,\cdots k_r}^{(i)})$ $(i=1,2,\cdots,m)$. Then $\theta(A)=\varphi_{\mathfrak{M}}(\mathrm{Cl}_{\mathfrak{M}}(g))$.
- 2) $p \neq 0$: Let $A = (\alpha_1, \alpha_2, \dots, \alpha_m, \dots, a_{k_1 \dots k_{rl}}, \dots) \in R_{\mathfrak{M}}$ and A be the image of A by the natural mapping $R_{\mathfrak{M}} \rightarrow R_{\mathfrak{M}} / A = H_{\mathfrak{M}}$. Let g be a function in $U_{\mathfrak{M}}$ such that $g \equiv \alpha_i \prod_{(k_1,\dots,k_{rl})} E(a_{k_1 \dots k_{rl}}^{(i)} g_{k_1 \dots k_{rl}}^{(i)})$ $(i=1, 2, \dots, m)$. Then $\theta(A) = \varphi_{\mathfrak{M}}(\operatorname{Cl}_{\mathfrak{M}}(g))$.
 - 3) By the Remark of Prop. 1, we may assume that g is defined over k(A).

§ 4. The structure of generalized Picard Varieties.

For the proof of Theorem 2 first we remark the following Lemma.

LEMMA 4. Let D and D' be divisors on V such that $D \in \mathcal{D}_{\mathfrak{M}}$ and D = (f) for a function $f \in \mathcal{Q}(V)$. If D and D' are generic specializations of each other over a field $K \supset k$, then $D' \in \mathcal{D}_{\mathfrak{M}}$ and $D' = (f^{\sigma})$ hold, where σ is a K-isomorphism of K(d) to K(d') such that $D' = D^{\sigma}$ and d, d' are Chow-points of D, D' respectively.

PROOF. For a generic point N of V over K(d, d'), σ can be extended to a K(N)-isomorphism of K(N, d) to K(N, d'). We denote it also by σ . f(N)=z may be assumed to be an element of K(N, d) and z^{σ} is an element of K(N, d'). Thus there exists a function $f^{\sigma}(N)=z^{\sigma}$ on V defined over K(d'). It follows that

$$\begin{aligned} D' &= D^{\sigma} = (f)^{\sigma} = pr_{V} [\Gamma_{f} \cdot (V \times (0 - \infty))]^{\sigma} \\ &= pr_{V} [\Gamma_{f}^{\sigma} \cdot (V \times (0 - \infty))] \\ &= pr_{V} [\Gamma_{f}^{\sigma} \cdot (V \times (0 - \infty))] = (f^{\sigma}). \end{aligned}$$

Clearly we have $D' = D'' \in \mathcal{D}_{\mathfrak{M}}$.

THEOREM 2. The bijective isomorphism θ from $H_{\mathfrak{M}}$ to $K_{\mathfrak{M}}$ is a birational isomorphism defined over k', where k' is a purely inseparable extension of k_0 over which $K_{\mathfrak{M}}$ is defined (See Remark of Theorem 1)

PROOF. Let $A \in H_{\mathfrak{M}}$ and $g \in U_{\mathfrak{M}}$ be such that $\theta(A) = \varphi_{\mathfrak{M}}(\operatorname{Cl}_{\mathfrak{M}}(g))$. Since we may choose such a function g which is defined over k'(A), $\theta(A)$ is rational over k'(A). Conversely let $L = k'(z, Q_1, \cdots, Q_t)$ be the field chosen in Lemma 3, where Q_1, \cdots, Q_t are independent generic points of V over k' and z is a generic point of $\mathscr{P}_{\mathfrak{M}}$ over $k'(Q_1, \cdots, Q_t)$. Let $\varphi_{\mathfrak{M}}(\operatorname{Cl}_{\mathfrak{M}}(g)) = w$ be a point of $K_{\mathfrak{M}}$ and u be a generic point of $\mathscr{P}_{\mathfrak{M}}$ over L(w). If we put v = w - u, v is a generic point of $\mathscr{P}_{\mathfrak{M}}$ over L and L(u, v) = L(u, w). Let D_u and D_v be divisors in $\mathscr{D}_{\mathfrak{M}u}$, whose existence is assured in Lemma 3, such that $\varphi_{\mathfrak{M}}(\operatorname{Cl}_{\mathfrak{M}}(D_u)) = u$, $\varphi_{\mathfrak{M}}(\operatorname{Cl}_{\mathfrak{M}}(D_v)) = v$ and D_u , D_v are rational over L(u), L(v) respectively. We have $\varphi_{\mathfrak{M}}(\operatorname{Cl}_{\mathfrak{M}}(D_u + D_v)) = u + v = w$. Therefore there exists a function f in $U_{\mathfrak{M}}$ which is defined over L(u, v) such that $D_u + D_v = (f)$ (By [12], Theorem 10, VIII). We have also $\theta(A) = \varphi_{\mathfrak{M}}(\operatorname{Cl}_{\mathfrak{M}}(f))$. By

these arguments we see that A is rational over L(u,v)=L(u,w). Replacing u by another generic point of $\mathcal{L}_{\mathfrak{M}}$ over L(w,u) we see that A is rational over L(w). We may also replace z, Q_1, \dots, Q_t by another set of independent generic points of $\mathcal{L}_{\mathfrak{M}}$ and V over $k'(z, Q_1, \dots, Q_t)$ respectively then we see that A is rational over k'(w). Thus the mapping θ is birational at every point in point wise. Let A_1 and A_2 be two points of $A_{\mathfrak{M}}$ such that $\theta(A_1) = \varphi_{\mathfrak{M}}(\operatorname{Cl}_{\mathfrak{M}}(g_1))$, $\theta(A_2) = \varphi_{\mathfrak{M}}(\operatorname{Cl}_{\mathfrak{M}}(g_2))$. First we assume that A_1 and A_2 are generic specializations of each other over k'. Then we may assume that (g_1) and (g_2) are generic specializations of each other over k'. Therefore $\theta(A_1)$ and $\theta(A_2)$ are generic specializations of each other over k. (By Theorem in § 1)

Conversely we can show that if $\theta(A_1)$ and $\theta(A_2)$ are generic specializations of each other over k' then A_1 and A_2 are generic specializations of each other over k' then A_1 and A_2 are generic specializations of each other over k. In fact, there exists a k-isomorphism σ from $k'(\theta(A_1))$ to $k'(\theta(A_2))$ transporting $\theta(A_1)$ to $\theta(A_2)$. Let X_1 and Y_1 be generic members of $\{X\}$ over k' such that $X_1 - Y_1 \stackrel{\mathfrak{M}}{\longrightarrow} (g_1)$, where $\{X\}$ is the algebraic family defined in § 1. We have a function f in $U_{\mathfrak{M}}$ defined over $k'(x_1, y_1)$ such that $X_1 - Y_1 = (f_1)$. By Theorem in § 1 we have $\varphi_{\mathfrak{M}}(\operatorname{Cl}_{\mathfrak{M}}(X_1 - Y_1)) = g(x_1) - g(y_1) = \theta(A_1)$. Let (X_2, Y_2) be a generic specialization of (X_1, Y_1) over $\theta(A_1)$ $\stackrel{k'}{\longleftrightarrow} \theta(A_2)$. Then $\varphi_{\mathfrak{M}}(\operatorname{Cl}_{\mathfrak{M}}(X_2 - Y_2)) = g(x_2) - g(y_2) = \theta(A_2)$. σ can be extended to a k-isomorphism of $k'(\theta(A_1), x_1, y_1)$ to $k(\theta(A_2), x_2, y_2)$ transporting $(\theta(A_1), x_1, y_1)$ to $(\theta(A_2), x_2, y_2)$. We also denote this isomorphism by σ . We have $(X_1 - Y_1)^{\sigma} = X_2 - Y_2 = (f_1^{\sigma})$ where f_1^{σ} shall be defined as in Lemma 4. A_1 and A_2 are defined by f_1 and f_1^{σ} respectively. Therefore A_1 is transformed to A_2 by k-isomorphism σ . That is to say, A_1 and A_2 are generic specializations of each other over k'. Thus we proved the above assertion.

Taking into account that θ is an isomorphism as abstract groups, we can easily see that θ gives a surjective birational isomorphism from $H_{\mathfrak{M}}$ to $K_{\mathfrak{M}}$ defined over k'. This completes the proof of Theorem. Q. E. D.

We get immediately the following Theorem 3 by Theorem 1 and Theorem 2. Theorem 3. Let V^r be a complete normal projective variety with M-structure $\{P_1,\cdots,P_m; \mathfrak{M}=\bigcap\limits_{i=1}^m \mathfrak{M}(P_i)^{n_i}\}$ defined over k, $\mathcal{P}_{\mathfrak{M}}$ be the generalized Picard variety of V defined over k with respect to the M-structure and P be the usual Picard variety of V defined over k. Then $\mathcal{P}_{\mathfrak{M}}$ is an extension of P by the linear group $G_m^{m-1}\times G_a^{\mathfrak{M}}$ $(M=\sum\limits_{i=1}^m (N_i-1),\ N_i=\sum\limits_{i=1}^{n_i-1} rH_j)$ when the characteristic p=0, and by $G_m^{M-1}\times\prod\limits_{i=1}^m W_{r_{i_1}^{(i)},\cdots,k_i^{(i)},l^{(i)}} W_{r_{i_1}^{(i)},\cdots,k_i^{(i)},l^{(i)}}$ when $p\neq 0$, where the product is taken for all $(k_1^{(i)},\cdots,k_r^{(i)},l^{(i)})$ such that $(k_1^{(i)},\cdots,k_r^{(i)})=1$, $0< l^{(i)}\sum\limits_{j=1}^r k_1^{(i)}\leqslant n_i-1$ and $W_{rk_1^{(i)},\cdots,k_r^{(i)},l^{(i)}}$ is the Witt group with length $r_{k_1^{(i)},\cdots,k_r^{(i)},l^{(i)}}=\min\{r|p^r\geqslant n_i/l^{(i)}\sum\limits_{i=1}^r k_j^{(i)}\}$.

§ 5. K/k-image and K/k-trace of Abelian varieties.

For the proof of the statements of this section we refer to the Book of Lang [1], Chap. VIII and Appendix.

Let V' be an r-dimensional complete normal projective variety. We fix an algebraically closed field k in Ω over which V is defined. Let W_u be a generic hyperplane section of V over k, which is defined over k(u). Then W is also normal. Let A be the Albanese variety of V defined over k and A_u be that of W_u defined over k(u). We denote the canonical mappings by $f: V \rightarrow A$ and $g: W_u \rightarrow A_u$, respectively. The inclusion mapping $i: W_u \rightarrow V$ induces a rational homomorphism $i^*: A_u \rightarrow A$ defined over k(u). i^* is defined by $i(Cl(Y)) = Cl(i^{-1}(Y))$ for a divisor Y on V. By the universal mapping property of the Albanese variety we have the commutative diagram

$$(1) \qquad \begin{array}{c} W_u \xrightarrow{i} V \\ \downarrow \\ A_u \xrightarrow{i^*} A \end{array}$$

By Theorem 4 Chap. VIII § 2 [1] (A, i^*) is k(u)/k-image of A_u , i.e. i^* is a surjective homomorphism such that if B is an abelian variety defined over k and $\alpha: A_u \rightarrow B$ is a homomorphism defined over k(u), then there exists a homomorphism $\alpha': A \rightarrow B$ defined over k and $\alpha = \alpha' \cdot i^*$.

Let $\alpha: A \to B$ be a homomorphism of Abelian varieties defined over k. We have a homomorphism $t_{\alpha}: \widehat{B} \to \widehat{A}$ defined over k, where \widehat{A} and \widehat{B} are dual abelian varieties of A and B respectively. The homomorphism t_{α} is defined by $t_{\alpha}(\operatorname{Cl}(Y)) = \operatorname{Cl}(\alpha^{-1}(Y))$ for the divisor Y on B. By Theorem 11 Chap. VIII § 5 (\widehat{A}, t_{i^*}) is a k(u)/k-trace of \widehat{A}_u , i.e. t_{i^*} has finite kernel, and if B is an abelian variety defined over k and $\beta: B \to \widehat{A}_u$ is a homomorphism defined over k(u), then there exists a homomorphism $\beta': B \to \widehat{A}$ defined over k and $\beta = t_{i^*} \cdot \beta'$.

§ 6. Homological mappings.

In this section we consider the algebraic objects (algebraic groups, rational mappings, etc.) defined or rational over a suitable field with respect to the objects considered there, but we shall not notice the field explicity.

Let A, B be commutative algebraic groups and C, D be commutative linear groups.

a) Let $\alpha: B \rightarrow A$ a rational homomorphism. Then α induces a homomorphism $\alpha_0: \operatorname{Ext}(A, C) \rightarrow \operatorname{Ext}(B, C)$. Let $\beta: C \rightarrow D$ be a homomorphism. Then β induces a homomorphism $\beta^0: \operatorname{Ext}(A, C) \rightarrow \operatorname{Ext}(A, D)$. Moreover, we get a commutative diagram

$$\begin{array}{c} \operatorname{Ext}(A,C) \xrightarrow{\alpha_{C}^{0}} \operatorname{Ext}(B,C) \\ \downarrow \beta_{A}^{0} & \downarrow \beta_{B}^{0} \\ \operatorname{Ext}(A,D) \xrightarrow{\alpha_{D}^{0}} \operatorname{Ext}(B,D). \end{array}$$

b) The rational factor system of A with values in C is a rational mapping $f: A \times A \rightarrow C$ such that

$$f(y, z) - f(x+y, z) + f(x, y+z) - f(x, y) = 0$$
 for $x, y, z \in A$.

When f(x,y)=f(y,x), f is said symmetric. For a rational mapping $g:A\to C$, $\partial g(x,y)=g(x+y)-g(x)-g(y)$ is called trivial factor system. We denote by $H^2_{\rm rat}(A,C)$, the group of symmetric rational factor systems modulo trivial ones. Then α induces a homomorphism $\beta^f:H^2_{\rm rat}(A,C)\to H^2_{\rm rat}(A,D)$. Moreover we get a commutative diagram

$$H^2_{\mathrm{rat}}(A,C)_s \xrightarrow{\alpha'_C} H^2_{\mathrm{rat}}(B,C)_s \ \downarrow \beta''_f \qquad \qquad \downarrow \beta''_f \ H^2_{\mathrm{rat}}(A,D)_s \xrightarrow{\alpha'_D} H^2_{\mathrm{rat}}(B,D)_s.$$

c) Let G be an element of $\operatorname{Ext}(A,C)$. Since C is a linear group, there exists a rational cross section $s:A\to G$ and f(x,y)=s(x+y)-s(x)-s(y) $(x,y\in A)$ is a symmetric rational factor system. If we take another cross section $s':A\to G$ and put f'(x,y)=s'(x+y)-s'(x)-s'(y), then $f(x,y)-f'(x,y)=(s(x+y)-s'(x+y))-(s(x)-s'(y))=\delta(s-s')(x,y)$ is trivial. If we write h(G)=f, h defines a homomorphism $h:\operatorname{Ext}(A,C)\to H^2_{\operatorname{rat}}(A,C)_s$. By Prop. 4 Chap. VII [7] h is an isomorphism onto.

Proposition 6. Let the notation be as above. We have commutative diagram

$$\begin{array}{ccc} \operatorname{Ext}(A,C) & \stackrel{h_A}{\longrightarrow} & H^2_{\mathrm{rat}}(A,C)_s \\ \downarrow^{\alpha^0} & & \uparrow^{\alpha^f} \\ \operatorname{Ext}(B,C) & \stackrel{h_B}{\longrightarrow} & H^2_{\mathrm{rat}}(B,C)_s \end{array}$$

PROOF. Let G be an element of $\operatorname{Ext}(A,C)$ and $\alpha^0(G)=H\in\operatorname{Ext}(B,C)$. Let $s:A\to G$ be a rational section, and f(x,y)=s(x+y)-s(x)-s(y). Then $\alpha^f(f)=f\circ\alpha$. Since $s\circ\alpha$ is a rational section from B to H, we have $h_H=f\circ\alpha$ i.e. $\alpha^f(h_A(G))=f\circ\alpha$ $h_B(\alpha^0(G))$. Q.E.D.

d) Let G be an element of $\operatorname{Ext}(A,C)$ and $s:A\to G$ be a rational section. Then there exists an open set U on A on which s is everywhere regular. There is a finite open covering $\{U_i=U+a_i\}$ $a_i\in U$) of A. If we put $s_i(x+a_i)=s(x)+s(a_i)$ $(x\in U)$ and $c_{ij}=s_j-s_i$ then (c_{ij}) is a 1-cocycle and determines an element $c\in H^1(A,C_A)$, where C_A is the sheaf of germs of regular mapping from A to C. If we write $\pi(G)=c$, π defines an into-isomorphism $\pi:\operatorname{Ext}(A,C)\to H^1(A,C_A)$ (see Prop. 5

Chap. VII n° 6 [7]). Clearly $(b_{ij}=s_{j^{\alpha}}\alpha-s_{i^{\alpha}}\alpha)$ is a 1-cocycle for finite open covering $\{V_i=\alpha^{-1}(U_i)\}$ of B and it determines an element $b\in H^1(B,C_A)$. If we put ${}^*\alpha(c)=b$. ${}^*\alpha$ defines a homomorphism ${}^*\alpha:H^1(A,C_A)\to H^1(B,C_B)$.

Proposition 7. Let the notations be as above a commutative diagram

$$\begin{array}{ccc}
\operatorname{Ext}(A,C) & \xrightarrow{\pi_A} & H^1(A,C_A) \\
\downarrow^{\alpha^0} & & \downarrow^{*_{\alpha}} \\
\operatorname{Ext}(B,C) & \xrightarrow{\pi_B} & H^1(B,C_B).
\end{array}$$

PROOF. Let G be an element of $\operatorname{Ext}(A,C)$ and $\alpha^0(G)=H$. Let $s:A\to G$ be a rational section then $s\circ\alpha:B\to H$ is also a rational section. If s is everywhere regular on an open set U of A then $s\circ\alpha$ is everywhere regular on $V=\alpha^{-1}(U)$ of H. For a finite open covering $\{V+b_i=V_i\}_{i=1,\cdots,n}$ of B, $\{U+\alpha(b_i)=U_i\}$ is a finite open covering of A. If we put

$$(s \circ \alpha_i)(\alpha + b_i) = s \circ \alpha(x) + s \circ \alpha(b_i) \qquad (x \in V),$$

$$s_i(y + a_i) = s(y) + s(a_i) \qquad (y \in U, \ a_i = \alpha(b_i))$$

and

$$b_{ij}=(\mathbf{s}\circ\alpha)_j-(\mathbf{s}\circ\alpha)_i$$
, $c_{ij}=\mathbf{s}_j-\mathbf{s}_i$, $[b_{ij}]=b$, $[c_{ij}]=c$.

Then ${}^*\alpha(c)=b$. We have $\alpha^*(\pi_A(G))=\pi_B(\alpha^0(G))$.

Q.E.D.

e) Let $s_A: A \times A \to A$ be the composition law of A and $p_{A_i}: A \times A \to A$ (i=1, 2) be the projections to the first factor (i=1) and to the second factor (i=2) respectively. Then we have homomorphisms ${}^*s_A: H^1(A, \mathcal{C}_A) \to H^1(A \times A, \mathcal{C}_{A \times A})$ and ${}^*p_{A_i}: H(A, \mathcal{C}_A) \to H^1(A \times A, \mathcal{C}_{A \times A})$ (i=1, 2). An element x of $H(A, \mathcal{C}_A)$ is called primitive if ${}^*s_A(s) = {}^*p_{A_1}(x) + {}^*p_{A_2}(x)$.

PROPOSITION 3. Let the notations be as above $*\alpha: H^1(A, C_A) \rightarrow H^1(B, C_B)$ maps each primitive element to a primitative element.

This follows immediately from the following Lemma.

LEMMA 6. For a commutative diagram of algebraic groups and their homomorphism

$$\begin{array}{ccc}
A & \xrightarrow{\tau_2} & D \\
\downarrow \tau_1 & & \downarrow \tau_4 \\
B & \xrightarrow{\tau_3} & E
\end{array}$$

we have commutative diagram

$$H^{1}(A, \mathcal{C}_{A}) \stackrel{*\tau_{2}}{\longleftarrow} H^{1}(D, \mathcal{C}_{D})$$

$$\uparrow^{*\tau_{1}} \qquad \qquad \uparrow^{*\tau_{4}}$$

$$H^{1}(A, \mathcal{C}_{B}) \stackrel{*\tau_{3}}{\longleftarrow} H^{1}(B, \mathcal{C}_{E}).$$

The proof is quite easy.

§ 7. Geometric mappings.

Now we return to our problem. Let V be a complete normal projective variety defined over k and C be a 1-dimensional generic hyperplane section of V defined over k(u)=k. Let A be the Albanese variety of V defined over k and J be the Jacobian variety of C defined over k(u). Let P be the Picard variety of V. We denote by α , the homomorphism $t_{i^*}\colon P{\to}J$ defined in § 1. J and A can be considered as subgroups of $H^1(J, \mathcal{O}_J^*)$ and $H^1(P, \mathcal{O}_F^*)$ respectively and they coincide with the groups of primitive elements of theme respectively, where \mathcal{O}_J^* (resp. \mathcal{O}_J^*) is the sheaf of non-zero elements of local rings of J (resp. P). (See Chap. VII no 16 [7]). By Prop. 3 § 2 * $\alpha: H^1(J, \mathcal{O}_J^*) {\to} H^1(P, \mathcal{O}_F^*)$ maps J to A.

Proposition 9. Let the notations be as above, We have $t_{\alpha} = {}^*\alpha | J$.

PROOF. Let D be a divisor on J such that $\alpha^{-1}(D)$ is defined. Then there exists a definite open covering $\{U_i\}$ of J such that D is locally defined on U_i by a rational function $R_i(x)$ (i.e. $D \cap U_i = (R_i(x)) \cap U_i$) such that $f_{ij} = R_j(x)/R_i(x)$ is unit at every point on $U_i \cap U_j$. $\{f_{ij}\}$ is 1-cocycle and determines an element $[D] = [f_{ij}] \in H^1(J, \mathcal{O}_J^*)$. By the definition $*\alpha([D]) = *\alpha([f_{ij}]) = [f_{ij} \circ \alpha] = [R_j \circ \alpha/R_i \circ \alpha]$. Putting $V_i = \alpha^{-1}(U_i)$ we get a finite open covering $\{V_i\}$ of P. The divisor $\alpha^{-1}(D)$ on P is locally defined on V_i by the rational function $R_i \circ \alpha$ on P. (See App. Theorem 3 Cor. 2 Lang [1]). Thus we have $t_\alpha([D]) = [\alpha^{-1}(D)] = [R_j \circ \alpha/R_i \circ \alpha]$ and we get $t_\alpha[D] = *\alpha[D]$.

By Theorem 5 Chap. VII [7] $\pi : \operatorname{Ext}(A, C) \to H^1(A, C_A)$ maps $\operatorname{Ext}(A, C)$ isomorphically onto the subgroup of primitive elements of $H^1(A, C_A)$. By Prop. 2 we have commutative diagram

$$\begin{array}{ccc} \operatorname{Ext}(J, G_m) & \xrightarrow{\pi_J} & J \subset H^1(J, \mathcal{O}_I^*) \\ \downarrow^{\alpha^0} & \downarrow^{t_\alpha} & \downarrow^{*\alpha} \\ \operatorname{Ext}(P, G_m) & \xrightarrow{\pi_P} & A \subset H^1(P, \mathcal{O}_I^*) \end{array}$$

where π_J and π_P are surjective isomorphisms. As is stated in §1 t_a is a surjective homomorphism. Therefore we have

PROPOSITION 10. Let the notations be as above, $\alpha^0 : \operatorname{Ext}(J, G_m) \to \operatorname{Ext}(P, G_m)$ is a surjective homomorphism.

§ 8. Structure of function modules and the correspondence of $\mathcal{P}_{\mathfrak{M}}$ and $\mathcal{I}_{\mathfrak{M}}$.

Let P_1, P_2, \dots, P_m be a set of distinct points of C. Since V is normal, C is non-singular. Therefore, P_1, P_2, \dots, P_m are simple points of C but also they are simple points on V because C is a generic hyperplane section of V over the field of definition of V. Let $\mathfrak{D}(P_i)$ and $\mathfrak{M}(P_i)$ be the local ring and its maximal ideal

at P_i respectively in the rational function field $\mathcal{Q}(V)$ of V over Ω . We denote by $\mathbb{Q}(P_i)$ and $\mathbb{m}(P_i)$ the local ring and its maximal ideal of C at P_i in $\mathcal{Q}(C)$ respectively. We define the \mathfrak{M} -structure on V and C by $\{P_1, \dots, P_m, \mathfrak{M} = \bigcap_{i=1}^m \mathfrak{M}(P_i)^{n_i}\}$ and $\{P_1, P_2, \dots, P_m, \mathfrak{m} = \bigcap_{i=1}^m \mathfrak{M}(P_i)^{n_i}\}$ respectively.

REMARK. The \mathfrak{M} -structure is determined if we give a 0-cycle $\sum_{i=1}^{m} n_i P_i$. Therefore we use sometimes 0-cycle instead of \mathfrak{M} -structure.

Let $U(P_i)$ and $u(P_i)$ be the unit groups of $\mathbb{D}(P_i)$ and $\mathfrak{o}(P_i)$ respectively. We denote by $\mathbb{D}(V,C)$ the specialization ring of C in $\Omega(V)$. The restriction of a function on V to the function on C defines an onto-homomorphism $\rho: \mathbb{D}(V,C) \to \Omega(C)$. The homomorphism ρ maps $\mathbb{D}(P_i)$ onto $\mathfrak{o}(P_i)$, $\mathfrak{M}(P_i)$ onto $\mathfrak{m}(P_i)$ and $U(P_i)$ onto $u(P_i)$ respectively. By [12] Chapter VIII, Prop. 10 we can choose such local parameters $\{t_{i1}, t_{i2}, \dots, t_{ir}\}$ at P_i on V and t_i at P_i on C that $\rho(t_{i1}) = t_i$ and $\rho(t_{ij}) = 0$ $(j \ge 2)$. Choosing such local parameters $\tilde{\rho}_i = \rho | \mathbb{D}(P_i) : \mathbb{D}(P_i) \to \mathfrak{o}(P_i)$ is given by

$$\bar{\rho}_i(\sum_{0 \leq \Sigma k_j} a_{k_{i1} \cdots k_{ir}} t_{i1}^{k_{i1}} \cdot t_{i2}^{k_{i2}} \cdots t_{ir}^{k_{ir}}) = \sum_{0 \leq k_{i1}} \alpha_{k_{i1} 0 \cdots 0} t_{i1}^{k_{i1}}.$$

 $\bar{\rho}_i$ induces a homomorphism $\rho_i: U(P_i)/U(P_i)^{(n_i)} \rightarrow u(P_i)/u(P_i)^{(n_i)}$.

By Prop. 2 and Prop. 3 in §4, we have

$$\begin{split} p = &0: U(P_i)/U(P_i)^{(n_i)} \approx G_m \times G_a^{N_i - 1}, & u(P_i)/u(P_i)^{(n_i)} \approx G_m \times G_a^{n_i - 1}, \\ p \neq &0: U(P_i)/U(P_i)^{n_i} \approx G_m \times \underbrace{(k_{i1}^{(i)} \cdots k_{ir}^{(i)} l^{(i)})}_{(k_{i1}^{(i)} \cdots k_{ir}^{(i)} l^{(i)})} W_{r_{k_1^{(i)}} \cdots k_r^{(i)} l^{(i)}} \\ & u(P_i)/u(P_i)^{(n_i)} \approx G_m \times \prod_{k \in i} W_{r_{k_1^{(i)}} l^{(i)}}. \end{split}$$

By the proof of these Propositions and the above selection of local parameters,

$$\rho_i: \quad G_m \times G_a^{N_i-1} \longrightarrow G_m \times G_a^{n_i-1} \tag{p=0}$$

$$\rho_{i} \colon G_{m} \times \prod_{i=1}^{m} \prod_{(k_{1}^{(i)}, \cdots, k_{r}^{(i)}, l^{(i)})} W_{r_{k_{1}^{(i)}} \cdots k_{r}^{(i)} l^{(i)}} \longrightarrow G_{m} \times \prod_{i=1}^{m} \prod_{k_{1}^{(i)} l^{(i)}} W_{r_{k_{1}^{(i)}} l^{(i)}} \qquad (p \neq 0)$$

are projections onto suitable factors.

Let $\mathcal{P}_{\mathfrak{M}}$ be the generalized Picard variety of V with respect to the m-structure $\{P_1, \dots, P_m, \mathfrak{M}\}$ of V and $\mathcal{I}_{\mathfrak{M}}$ be the generalized Jacobian variety of C with respect to the m-structure $\{P_1, \dots, P_m; \mathfrak{M}\}$ of C. P and J be the Picard and Jacobian variety of V and of C respectively. Then by Theorem 3 in §4 we have the exact sequences

$$0 \longrightarrow K_{\mathfrak{M}} \xrightarrow{\ell_{P}} \mathcal{F}_{\mathfrak{M}} \xrightarrow{p_{P}} P \longrightarrow 0$$

$$0 \longrightarrow k_{\mathfrak{M}} \xrightarrow{\ell_{J}} \mathcal{J}_{\mathfrak{M}} \xrightarrow{p_{J}} J \longrightarrow 0$$

where
$$K_{\mathfrak{M}} = \left[\prod_{i=1}^{m} (U(P_i)/U(P_i)^{(n_i)})/G_m \text{ and } k_{\mathfrak{M}} = \left[\prod_{i=1}^{m} u(P_i)/u(P_i)^{(n_i)}\right]/G_m$$

We have a homomorphism $\tau: K_{\mathfrak{M}} \to k_{\mathfrak{M}}$ defined by $\prod_{i=1}^{m} a_{i}$, and a homomorphism $\alpha: P \to J$ induced by $i: C \to V$. Therefore we have homomorphisms

$$\tau_0: \operatorname{Ext}(P, K_{\mathfrak{M}}) \longrightarrow \operatorname{Ext}(P, k_{\mathfrak{M}}), \qquad \alpha^0: \operatorname{Ext}(J, k_{\mathfrak{M}}) \longrightarrow (P, k_{\mathfrak{M}}).$$

THEOREM 4. $\tau_0(\mathcal{P}_{\mathfrak{M}}) = \alpha^0(\mathcal{I}_{\mathfrak{M}})$.

PROOF. By the definition it is clear that if $f \equiv 1 \pmod{\mathfrak{M}}$ for a function f on V, we have $\rho(f) \equiv 1 \pmod{\mathfrak{M}}$ and $i^{-1}((f)) = (\rho(f))$ (By Theorem 3 App. [1]). Therefore i^{-1} induces a homomorphism $\mathfrak{O}_{\mathfrak{M}^a}(V) \to \mathfrak{O}_{\mathfrak{M}^a}(C)$ and $\mathfrak{O}_{\mathfrak{M}^b}(V) \to \mathfrak{O}_{\mathfrak{M}^b}(C)$, and we get, taking quotient, a homomorphism $\bar{\alpha} : \mathcal{L}_{\mathfrak{M}} \to \mathcal{I}_{\mathfrak{M}}$. By the definition of the homomorphisms $\alpha, \bar{\alpha}, \tau$, we have the commutative diagram

Thus we get $\tau_0(\mathcal{P}_{\mathfrak{M}}) = \alpha^0(\mathcal{I}_{\mathfrak{M}})$.

Q. E. D.

By Theorem 4 we get immediately

COROLLARY. When m=2 and $n_1=n_2=1$, we have $K_{\mathfrak{M}}=k\mathfrak{m}=G_{\mathfrak{m}}$ and τ_0 must be identity. In this case we have $\alpha^0(\mathfrak{Im})=\mathfrak{P}_{\mathfrak{M}}$.

In the commutative diagram

$$\operatorname{Ext}(J,G_m) \stackrel{\pi_J}{\longrightarrow} J \ \stackrel{\uparrow}{\bigcap} \alpha^0 \qquad \stackrel{\uparrow}{\bigcap} t_{\alpha} \ \operatorname{Ext}(P,G_m) \stackrel{\pi_P}{\longrightarrow} A$$

 t_{α} is surjective by the statements in § 1 and π_{J} , π_{P} are surjective isomorphisms. Therefore α^{0} is also surjective. By the Theorem in our paper [3], $\operatorname{Ext}(J, G_{m})$ is generated by \mathcal{I}_{III} defined as in Corollary of Theorem 1. By the same Corollary we conclude that $\operatorname{Ext}(P, G_{m})$ is generated by the generalized Picard varieties of V with respect to 0-cycles $P_{1}+P_{2}$ ($P_{1}\neq P_{2}$) on V.

Summarizing above results we get

THEOREM 5. Let V be a normal projective variety and P be its Picard variety. Then $\text{Ext}(P, G_m)$ is generated by the generalized Picard varieties of V with respect to 0-cycles P_1+P_2 $(P_1\neq P_2)$ on V.

University of Tokyo.

References

- [1] S. Lang: Abelian varieties. Interscience Publications New York-London (1959).
- [2] T. Matsusaka: On the algebraic construction of Picard variety I and II, Jap. J. Math., 21, (1951), 217-235, 22 (1952), 51-62.

- [3] M. Miwa: Extension of group varieties and generalized Jacobian varities, J. Fac. Sci. Univ. of Tokyo, Sect. I. 11 (1964), 39 45.
- [4] J. P. Murre: On the generalized Picard varieties, Math. Ann., 145 (1962), 334-353.
- [5] M. Rosenlicht: Some basic theorems on algebraic groups, Amer. J. of Math., 78 (1956), 401-443.
- [6] ---: Generalized Jacobian variety, Ann. of Math., 59 (1954), 505-530.
- [7] J. P. Serre: Groupes algébriques et corps de classes, Hermann, Paris (1961).
- [8] S. Koizumi, G. Shimura: On Specializations of Abelian Varieties. Scientific Papers of the College of General Education, Univ. of Tokyo, 9 (1959), 187-211.
- [9] A. Weil: On the algebraic groups of transformations. Amer. J. Math., 77 (1955), 355-391.
- [10] ---: Algebraic groups and homogeneous spaces. Amer. J. Matn., 77 (1955), 493-512.
- [11] : Variété abeliennes et courbes algébriques, Hermann, Paris (1948).
- [12] -: Foundation of algebraic geometry, Amer. Math. Soc. 29, New York (1946).

(Received October 30, 1964)