On the second cohomology groups (Schur-multipliers)
of infinite discrete reflection groups

By Takeo Yoxkonuma

§0. Introduction.

This note is a continuation of Thara-Yokonuma [3]. It is well-known that
the second cohomology group of a group G is closely related to the theory of
group extensions and projective representations. More precisely, for any
element in the second cohomology group for the coefficient group £ (where @
is an abelian group) under the trivial action of G on £, there exists a central
group extension and vice versa {(cf. §1). And if G is finite, there exists a
similar correspondence between projective representations and the elements of
the second cohomology group. (When we consider the projective representations,
2 is the multiplicative group of a field.) (ef. Schur [5], Yamazaki [8)])

In our previous paper [3], we have determined the second cohomology group
H*G, C*) for the coefficient group C* (=the multiplicative group of the complex
number field C) under the trivial action of G on C¥*, in the case where G is
the finite reflection group on a Euclidean space. The purpose of this note is
to do the same thing when G is an infinite discrete reflection group on a
Euclidean space. Our main result is the following.

Tugorem. Let G be an infinite discrete reflection group on a Euclidean
space E. Then HY G, C*) is given as follows:

HYG, CHY=Z, < X Z,

K

where Z, means the cyclic group of order 2 and & is a non negative integer
which is determined as follows:

iy If G is irreducible on E, the value of « is given in Table I.

i) Let G=G,x--- %G, be a decomposition of G into the irreducible com-
ponents. Then

H¥G, C*)= TTH¥G:, C*) = TI P(Gi, Gj)
i $< 4

where P{(G:, G;) is the group of all pairings of G: and G; in C*.
{See for the definition of pairing to K. Yamazaki [8] or {3, §0].)
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Our method here is similar as that of [3] except few particular considerations
due to the following two facts:

a) in the present case G is not finite,
and

b) the diagram of type A(122) is a circuit.

In §1, we shall review, for the convenience of the reader, the concepts of
cohomology group and group extension, and the classification of discrete
reflection groups due to Coxeter [1] and Witt [7], etc.

In §2 and §3 we shall establish the theorem by a similar procedure as [3],
i.e. by constructing a bijective homomorphism HXG, C*)—N, where N is a group
consisting of “ normalized ” factor sets on G. However when we construct 9,
we have to pay attention to the facts a), b).

Through this note, notations and terminologies accord with those in 13].

§1. Preliminaries.

Let G be a group. A function a: GxXG—2 (where 2 is an abelian group}
which satisfies
(1) «la, bo)a(d, ¢)=afa, b)alab, ¢) for all a,b,ceG is called a factor set or a O-
valued 2-cocycle on G (under the trivial action of G on £2). The equivalence of
two factor sets, Z¥G, £) and the second echomology group H%G, 2) are defined
as [3, §1] where 2=C*,

A pair (H, p) of a group H and a surjective homomorphism p: H—G is
called a group extension of G. If the kernel 4 of p is contained in the center
of H, the extension (H, p) is called a central extension. Let (Hi, pi) 21,2 be
two group extensions of the same kernel A. Then they are called to be
equivalent (strongly equivalent in X. Yamazaki’s {8] terminology) if there
exists an isomorphism =: H,—H, such that p,or=p, and the restriction of = to
A is the identity mapping. A mapping S: G->H is called a section of (H, p)
if poS is the identity mapping of G.

Let (H, p) be a central extension of ¢ with kernel A and S a section of
(H, p). The mapping a: GXG—A defined by (a, b)—ala, b)=S(a)S(H)S(ab)"* is an
A-valued 2-cocycle of G (under the trivial action of G on 4. « is called the
factor set associated to the section S of the extension (H, p). Let T be another
section of (H,p) and B the factor set associated to 7. Then a and § are
equivalent. Also, equivalent central extensions of the same kernel have equiva-
lent factor sets. Thus we have a mapping

E(G)-HYG, 4)
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where G(G) is the set of all equivalence classes of central extension of G of
kernel A. It is well known that this mapping is surjective for any G and for
any abelian group A. (We refer to e.g. Yamazaki [8] or M. Hall [2] for the
details.) In the following we consider only the case where A=C*.

Moreover, let ¢ be a projective representation of G over Cand T a section
of ¢. Then there exist numbers «{a, b)€ C* such that

T{(a)T(h)=-cla, b)T{ab) for a,bel.
The function a: GxG—C* is a factor set of G and we have a mapping
PG)-HAG, C*)

where (G) is the set of all equivalence classes of projective representations
of G over C, as stated in [3. §1]. When G is finite, this mapping is surjective
{Schur [5]).

A group G of linear transformations in an [-dimensional Euclidean space
E" will be called a discrete reflection group if it is generated by reflections
and a discrete subgroup of the group of orthogonal transformations in E*.
G being discrete, we remark that the angle between P: and Pj(i=#j) is equal
to x/mi; where m;;€{2,3, -+-, 00} and P,, ---, P are the hyperplanes in E* fixed
pointwise by the generating reflections R,, ---, R« of G respectively. These
groups were classified by Coxeter [1] and Witt [7].

Let us recall the result in [1], (7] (c¢f. [3, §2]). Let G be an abstract group
generated by 7, 7, -+, r, with the defining relations
(2) (rarpymii=e my=1, mij=m;=integer=2 or . (t%j)

To such a group there is associated a diagram II(G) as [3, §2].

Lemma 1. The discrete reflection group is isomorphic to one of those groups
or direct product of several number of those groups which are represented by
the following diagrams or the diagrams in Lemma 2 of [3].

The group which is represented by the following diagram is infinite.
Ad=2) / 3 (the extended Weyl

n§ v group of SL(I+1, C))

(the extended Weyl
groupof SORL+1, €))




C(122)

D=4

1,
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£

%

7 £ £} 7 T Ty
O e O
3 3 3

3
€18
Yo 7 T, €] 7y
O O——0——0—50
~ 3 4 3
1 7 72
: 3 : 6
7 63
O—0

(the extended Weyl
group of Sp(l, C))

(the extended Weyl
group of SO2I, CY)

(the extended Weyl
group of complex

Lie group of type
(Es))

(the extended Weyl
group of complex

Lie group of type
(ED)

(the extended Weyl
group of complex

Lie group of type
(Es))

(the extended Weyl
group of complex

Lie group of type
(F4)

(the extended Weyl
group of complex

Lie group of type
(G2)

(We refer as for the details about the properties of those groups to N. Iwahori-
. H. Matsumoto [4, §1] or E, Stiefel [6].)
We shall now give the structure of the group P(G,, G:) of pairings of two

discrete infinite reflection groups G;, G:.

As in the finite case (ef. {3, §2]) we
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have the following lemma.

Lemma 2. 1) Let G be discrete reflection group on a FEuclidean space E.
Then
(3) HomiG,C*)=Z,x -2 Z, -times)

1f G s irreducible, 2 is equal to the number of connected components of
diagram after the segments of diagram corresponding to m.j=even are erased.
If GGy -G, is the decomposition of G into the irreducible components.
then

Hom (G, C*)= T] Hom (G;, C*).

ity Let G, G, be diserete reflection groups. Then
PG,Gy=Z,» - X, (2 Z-times)

where 4, i, are the numbers of Z, in (3) for G,, G, respectively.

§ 2. Normalization of a factor set.

Now, let us proceed in our subject. The process of proof is entirely same
as that in [3]. Namely, first of all we may assume that G is irreducible on
the Euclidean space E, and G can be identified with the group generated by
7o, -+, 71 with fundamental relations (2), because theorem 2.1 in Yamazaki’s [8}
is available in this case. Then we shall construet an injective homomorphism
# from HXG, C*) into N=(Z,)*, where % is a group consisting of “normalized”
factor sets on G (in the sense specified below), and (Z)v is a direct product
of x, copies of eyelic group Z.. And, in next section we shall prove that ¢ is
surjective.

Let {a} be an element of H%G, C*). There exist central group extensions
with kernel C* whose factor sets belong to {n}. Denote one of them by (H, p)
and let S be a section of p. Denote S(»;) by S;. Then the following relations
are valid according to (2x
(4) Stee  1-0,1,--,1
(B)Y (S Syi—ai(S;SHms if my; is even: my 20y
(6 (S S8, —B,(8; S8, if my; is odd: my;=2n;+1,
where e denote the identity element in H and ¢, a;;, 5;; belong to C*.

These numbers determine the cohomology class of the extension. Namely,

Lemma 3. Let G be the discrete reflection group which is generated by r;
=20, « -+, I with fundamental relations (2).

Let (H, p} and (K, 0) be two central extensions with kernel C* of G and
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Siresp. T) a section of (H,g)resp.(K,d)) and «resp. 3 the factor set of
(H, p)resp. (K, o)) associated with Stresp. T). We denote Str:) and Tir) by S;
and T respectively. Then the following relations are valid by (2).

Si=ze g Ti=c'ie! i=0,1, -+, 1,
(S:S,)mii = a, (88 s (TeTiyi=a AT T f mgg=2n;
{S{Sj)ib“jst‘:ﬁ;j(SjS;‘}"“ij; <4TiTj)”ijT;':;S,ljéTjI’i\)ﬁij T, if my=2n;+1
If ¢;=¢, ajj=di;
to 5.
Proor. To each element of G we fix once for all an expression with the

Bii== 3 for all @ and j in above relations, « is equivalent

i

generators (cf. [4, §1]). Let us construct sections S,: G—H and T,: G- K.
Suppose that Gsa=7;-- 7, is the expression thus fixed. We define S)(a)
=8;,---S;, and Ty(a)=T;---T,,. We denote by «a(resp. 5, the factor set of
(H, oXresp. (K, ¢)) associated with Si(resp. 7%). It is clear that ela, b)=p(q,b)

ip

for all a,bcG. a, is equivalent to 8, by the way of construction. « is equiva-
lent to a,, and 8 is equivalent to 8,. Therefore « is equivalent to £, Q.E.D.

Now, let us normalize the numbers ¢;, ., 5:;. We shall, however, distinguish
two types of diagrams. In Case I, the diagram has no circuits. In Case II,
there exists a cireuit in the diagram, that is to say, G is of type A

Case 1

As we showed in [3, §3], we may assume ¢;=1, 3;;=1 and a;;=1, by changing
the section of p. Even if G is of type Dill=4) or E,; i.e. in the cases which
are not described in [3], we may assume that all 5;;=1. Let G be of type D,
i.e. diagram of G be

We can assume B,,:=Ps,:=""+ =85, Prs1.1=1, and replacing S, by f. .S, we
also may assume 3,.1. Let G be of type K, ie. diagram of G be
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We can assume f£1,:= 52 Bas=Fss=Fs+=1 and replacing S, by PF4.S,, we also
may assume S, 1.
And we can define a homomorphism
0: HYG, C*)—C*x .- - x C*
by {a}->{e;;}. By lemma 8, 7 is injective. Using Lemma 4 in [3}, a;,’s are divided
into several classes: if «;; and @ are necessarily equal by Lemma 4 in [3], a;;
and o belong to the same class. The number of classes is denoted by i, which

is given in Table II, and the values of a;; of x, classes are denoted by a;, - - -, a«,-
Then ¢ is considered as a homomorphism: HXG, C*)~Z,x< -+ X Z; (x-times)—=NR.
Case 11

As before we may assume all ¢;=1, af;=1, §;=1, and all a;; are equal by
Lemma 4 in [3] except the case [=3.
We consider the coefficients 3;;. Let

be the diagram, and

( 7) {Sisﬂ-lsi::ﬁi,i+lsi+lsisi+l i:O: 1,---, -1
Slsoslzﬁt.osostso

are the relations (6). We can replace S; by B,.8:, S: by £..8,25, -+, and
S, by BoiBier -+ Bi1.S: keeping the other equations invariant. Then all £
4=0, --+,l—1 may be equal to 1. If we multiply side by side of (7) we have

( 8 ) SoS;S(}SgSgS; . ‘S!SQSL:ﬁt,QSISosl .. 'SoSlSo

If we put r=r,, s=rr.r. -1, we have rs=sr and B, ,=alr,s)-a(s, r)!
from (8), where «a is the factor set of (H, p) associated to S. By Lemma 1 in
[8], Bis is independent of the choice of the section. We denote 8i,0 by 8. In
this case ¢ is defined by {a}—{a;j, B} and r=1(1=2), 3(1=3),2(l1=4). The value of
ai; of (k,—1) classes are denoted by a,, -+, ax -1
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Table i1

type of G

normahzed relatlons (4)~(6)

A
A

Ar(lz4)

S~~—e =0, 1, 2 S'»Sos:—-v;SSoSSo

S»—e 1= 0 3 SS;»»}S S‘”S SHA 1“0 1 2
SsSoSs—ﬁSoSaSo ; SoSz~mSoSa 5 SiSs=a28:5,

S,;«-e 1=0, - 3 SiSia18:i=8:418:Si41 1=0,1, -+, 1—-1;
S18eS = BSOS[SD ; S iSi=aSiS; if mi;=2

Ciiz4)

Sz—e 2-«0 v 35 Si8:81=8:8:82; S0S:80=S:808:;
5031 meSo ; SuSs~—mSaSo 3 S1S85=a3Ss8y;
(8283)2 = a4 S5S2)?

Si=e =0, --,4; 8:8i4:18i=8i118:Sir1 i=1,2;
808:80= 528052 ; SoS1=a18:1S0; SoSs= S8
SiSi=asSiS: 1=0,1,2; S1S:=0:S:8;
(S88S4)? = as(S4Sa)?

Si=e 1=0,---,1; 8:Si+18i=5:1S:Si+s i=1, 0, 12
3032305323052; So81=a:8:8; SiSj=G‘ZSJ'Si
0=i<igl-1, mij=2; S$iSi=esS1S; =0, ---,1-2;
(S~ xS )° m(SzSz 12

S‘-e 31=0, 1 2 (Sosl)z-»m(slso) SoSzZa25'2So;
(5152)”-ara(Ssz)2

Si=e 1=0,1,2,3; (SeSi)2= ai(S180)? ; SoS:=25:8;
S0S3=a3SsS0; S1828:1=8:8:8:; S185=a.5:8:;
(S2838)2 = (83 82)?

Si=e 1=0,1,---,1; (Sosm:m(slso)ﬂ';
SoSi=a2S;Ss =2, --.,1-1: SoSt aaS;Se;
SiSi+lSi:Si+lsiSi+l =1, ---,1-2;
S:Si=asS;8; 14, ]<l 1 m”—~2

SiSi=as81S; ?l‘“l l 2 (S~ sz)ﬁras(SzSz )?

Di(1256)

Ez(l 6 7,8)

F4

| Si=e i=0,.--,4; ssgs SeS Se 3=0,1,3,4;
SoSi =181 ; SoSs—azSaSo 5 SoSs= s SsSe;
SiS3=asS3S:; Si1Si=as8:S1; SsSi=asS:Ss

Si=e i=0,:--,1; SsSi=mSiSs; SiSi=eS;S; mi;j=2,
0si<isl (& #0601, (l—~1, 1) ; S0S280==828082;
SiSi+18:=8:118:Si41 i=1, -+, 1-2;

S: 28181 2= 8128181 _3; Sz 1Sz aaSle -1

Sv«e 1=0, - SS;S1 S,S1S, 1f m,,»~3
SS]~(X1AS’)S;‘ lf m”—-z

S'A—~e i= 0 v 8iSinSi=8:418:8i41 1=0,1,8;
SoSz-—mSzSo, SS;»azS;S, 1=0,1,57=3,4 or (1, /)=(2, 4);
(S253)? = aa( Ss.S2)?

S?:e 1=0,1,2; SonSo~SxSoS;, (3152)3 az(SzS:)3
SoSz=a18:80

Iz

Si=e i=1,2

K0

DS e

181
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§3. Construction of projective representations,

We shall show now that the homomorphism ¢: H%G, C*)—% is surjective.
For this purpose, we shall do the same business as §4 in |3}, i.e. we construct
projective representations whose factor sets are generators of i, by exhibitting
the matrices corresponding to r;. The matrix which ecorresponds to r; will be
denoted by 7. 7T.'s should satisfy the normalized relations (where S should
be rewritten by T') in table 1l for pre-assigned values of «; (or a; and 3 if G
is of type A;).

We begin with a trivial remark. Let G, H be groups, v a projective
representation of H. If f is a homomorphism of ¢ into H, then ¢of is a
projective representation of G. In the following we shall consider the case
where G is a infinite discrete reflection group and H is a subgroup of G iso-
morphic to a finite reflection group.

Let G Dbe generated by i, -+, 7). Then we shall denote by G,..., the
subgroup of G generated by the {»}, 1210, -+, }—1{p, ---, q).

For eonvenience of the reader, we shall repeat the notations in [3].

Xim): the system of matrices Ny, -+, Newss in GL(2™, C) satisfying the

relations

(\"‘ 24 k;’: e 9n1+1
4 Nf, N;,Nc + N Np= l=k+#l=2m+1

Aidy: the system of matrices A,, ---, A, satisfying the relations

)Aj:;‘l j‘:’:;l‘ ‘..,l
{Aj, Ajut=—~1  j=1,.--,1-1
{i4jr Ak}?—:O 1§j<k§l |J“k!:é2

Such a system is constructed from a X(m), 2m+121 for example (cf. {3, Lemma
7h.
Jidy: the system of matrices I}y, ---, D; which are defined by

D= F NNy =1 1]

o«

t D!::V;lz (f\h»«t'*l\r;)

from Y(m), 2m-+1:z2l.
-1 4, iz4
1) ey, H=({—1, —=1)
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2

& 4

Let us take S([l—lﬂl ]) and put T;:;‘};) (N =Ny i=1,.--1

It R — A D s
To= ;}kjf\lj, where k,=k;:, = mw%?lhi%lf)—_ and ke=--- ,-:k,:uzll:dl‘?‘f .

i e, Si=(-1,1)

Let us take :([’;ID and put T,=—N,, Ti=a; Ni 4 b, =2, -, 1,

&

T, = é Ni+aiNi+eNw,, where aji+bi=1, 2ab;=—1, a= é ar + i et 1
{ef. [3, Lemma 7))
-2 A,

Using the results of the case I-1, for any values given to &, and Sconsisting
of 1 or —1 only) we can construct projective representations, though always
a;=a,. For example, if we take 7T, as the case I-1 i} and ii), then we can
construct projective representations whose factor sets correspond to (@, ay, 8)
=(~1, -1, =1), {(—1, —1, 1} respectively.

Consider the homomorphism: G--G, defined by ry—r., ro—r; 1=1,2,3. G,
is a finite reflection group of type As;. By [3], we can see that a. may be —1,
keeping a,=j5=1. For example if we take A(3)={A,, A,, A;} and put T\=T,=A,,
T.=A,, T,=A, we have the projective representation with (a,, w, 5)=(1, -1, 1).
1-3 A, p=-1

Let us take T; as the case I-1 i).

-1 B 125

Consider the homomorphism: G—G, defined by r,y—or, 77 i01, .-+, L
G, is a finite reflection group of type B;. By [3], we can construct projective
representations for any values given to «;, a; and «. though always a,=1.

Next, consider the homomorphism: G—G; defined by ri—r; 1==0, -+, {1,
ri-se. G, is a finite reflection group of type D;,. By [3] we can see that «
and a, can vary independently, keeping a;=a,=1.

n-2 B
Using the results of the case 1I-1 and of [3] with respect to the finite

reflection group Ds, the image of homomorphism G-»G, defined above, we ean
see that «; can vary independently.

11-3 B,
By 1I-1, a), a;, a5 can vary independently, keeping a.=a,.

For (ai, @y, a5, as)=(1, —1, 1, 1), let us take T; as follows:
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-1 1 0 10 0
6 10 O 0 1 0 0 0
0 1 0 1-1
T 1 -1 0 - -1 0 0
b 0 0-1 0 0 o 0 0—-1 0 0
00 -1 0-1 1
0 4] 1 0 0 1
1 0 0
111 0 0
0 0 1
, ! -1 0 0
o= | 0 -1 1-1 0
| 0 0-—-1
0 o 1
‘ bo—~1.
[ 2a a 0. 0 a —2a 0
4a —2a 00 0 2a—4a 0 O
2a -—a 0 ~—a —2a 0 4d
;0 a —2a 2a a 0 0 d
700 2a —4a 4a —-2a 000
0 —a —2a 2a -—a 0 b 0
: 2¢c —¢ 0 | 0 —e 2¢ : 0

1 , 1
H 2 . b '::dzx .
where a 16 c 1

n-1 G =4

Consider the homomorphisms G-»G., G—G, defined by r—e, ri—r; =1, ---, 1
and 7w, 1=0, ---,l—1, r—e respectively. By the results in [3] on a group
of type B, we see that ai, a;, &; can vary independently, keeping a;=a,=a3=1,
and «, a;, @s can vary independently, keeping es=os=a;=1.

For ay=-1, ;=1 (1%3), let us take I(1)={N,, N:, Ny} and put T,=N,, T,
=eoem= Ty =], Ti=N,.
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ni-2 G, G
The same reasoning as III-1 is available in this case, using the results on
groups of type B; and B..

IV-1 D 1z5
Consider the homomorphisms G—G,, GG, defined by -1, 7= i=1, -+, 1
and 7,—r; 1=0, - -+, l—1, 7,7, respectively. By the results on a group of type

Di(1=5) we see that «; can vary independently.
-2 D,

Consider the homomorphisms GG, defined by ry—r; 1=1,2,8, r;—r; j*0.
By the results on a group of type Di, we see that a; can vary independently.
V-1 Ey ay=—1
We take a A(5) associated to X(3). Put Ti=D; i=1,---,8. T,= f‘, a;N; T,

P
1 V'3

4
— . o ! Ny e =8, T — B - -
ng a;Nj (as N5 +agNg), where a, 2y ]/ 2 y 8¢ 2]'/ 9"

V—2 Ev Ofl:‘“‘l
We take a 4:6) associated to S(3). Put Ty=Di i=1, -6, =3 ;N;, To
=1

1 . 1
=—N;, wh JU—— =1, -, 6, ar= .
where a 2/ 2 1=1, 6, a;=

V-3 E; a=—1
We take a 47) associated to X(4). Put Tiy=D; v=1,---,7, Ts= ﬁ‘, a;Ni, Ty
J=1

(Ns—N,), where a;= i=1,---,8.

= 1 _ 1
V2 22

VI F
1) Aay, a, a)=(—1,1,1)

Let us take A(3)={A4,, 4., A}, and put To=A4,, T'=A:, T3=As, Ti=T,=1
i) (e, @, a3)=(1, —1, 1)

Let us take Y(1)=I{N,, N;, N3}, and put T;=N,, 1=0,1,2, T;=N,, §=3, 4.
i) (ay, @z ag)=(—1, —1, —=1)

Let us take X(2)={N,, N;, N5, Ni, N} and put Ty=-—N,, T,:fé N.+L/23 N,,

_ 1 Ve V'3, 1 -~
Tz—‘ ]/3N2 1/*3 Ns, Ts*“ 2 Ng"?‘ 2]\?‘, TJ**“N:.
vl G,

i) (a, a)=(—1, —1)

1

Let us take zj(l)Z{Nl, Nz, Ng} Put T(;:Nl, Txx““ 2

ii) (e, a)=(—1,1)
Let us take A()={A,, 4., A)}. Put Ti=A4;..

N’l ""1/23 Nz, TQ=N3.
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Remarx. By above considerations we can see that the mapping

WG HHG, CF)

stated in §1 is surjective for any infinite discrete reflection groups.

(1]

University of Tokyo.
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