Extension of group varieties and generaliied

Jacobian wvarieties

By Megumu Miwa

Let A and B be commutative algebraic groups and let Ext(4, B) be the
additive group of all extensions of 4 by B. The purpose of this note is to consider
the structure of Ext (4, B) in case B is multiplicative group of the universal do-
main 2, which we denote by G., and A is the Jacobian variety J of an algebraic
curve C. Our main result is that Ext (J, G..) is generated by generalized Jacobian
varieties of C with respect to 0-cycles of type P;+P: on C (Theorem in §4). In
§1 we recall the composition law of Ext (4, B) and some of its properties. In §2
we state about generalized Jacobian varieties. In §3 we consider subgroups of the
group of type G, X---XG,. In the last §4 we prove our Theorem.

§1. Let 2 be the universal domain. We fix an algebraically closed field & in
2. We deal with algebraic objeets (algebraic groups, rational mappings, --- ete.)
defined over k or rational over k. We recall some necessary properties of Ext (4, B)
(ef. J. P. Serre (1)).

Let A, B, C be three commutative group varieties. In case the sequence

0 — B —5C "> 40

is exact in the usual sense, where ¢ and p are separable homomorphisms, we call
C an extension of A by B. We denote by Ext (A4, B) the set of all extensions of
A by B. In Ext(4, B) we define the composition law as follows.

1° Let C be an element of Ext (4, B) and f: B-- B/, be a homomorphism
from B to some commutative group variety B’. Then there exists a unigue ele-
ment ¢’ of Ext (4, B’) and a homomorphism F from C to C’ such that the diagram

i
00— B-"5C~"> 40
1
P I gu

0— B —> ¢’ 4

» 0

is commutative. For C’ we may adopt the quotient group of B’XC by the sub-
group {(f(b), —i(d)); b= B}. We denote the group C’ by f.(C).

2° Let C be an element of Ext (A4, B) and ¢g: 4’ — A be a homomorphism
from some commutative group variety 4’ to A. Then there exists a unique element
¢’ of Ext(A’, B) and a homomorphism F from C’ to C such that the diagram
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0 — B 1o ¢ A~ 0
th‘ ; il 9
0~~’B-~>C-»»A-w'0
is commutative. For ¢’ we may adopt the sub-group {{¢,a)s=Cx 4’; p(c)=g(a}} of
CxA’. We denote this group C' by g*(C).
Let d: A~ AxXA be the canonical injection from A onto the diagonal of
AXA, and 8; BXB - B be the mapping of the composition law of B. For two

elements € and €’ of Ext (4, B) we define the sum C+C’ by
C+C'=d*3,(CxCy=25,d*(Cx ().
By this composition law Ext (A, B) turns out to be an abelian group, and

1) Ext(Ax A, B)=Ext (4, ByxExt (4, B},
2) Ext(4, BxB)=Ext(4, ByxExt(4,B).

§2. Here we consider generalized Jacobian varieties. Let C be a complete
non-singular curve and suppose that the set of rational points over k is dense in
C. Let S be a finite set of points of C and L npP be a k-rational cycle of C.
In the rational function field 2(C) of C over £ the set of all functions f with
vu(f)=npr makes an 2-module m. For O-cycle a and b are m-linearly equivalent if
there exists a function f in Q(C) such that f=1 (modm) and a—5=(f). Let P
be a k-rational point on C outside S and == g+ 24 np—1, where g is the genus of
curve C. For 2r independent generic points (Ml, oo, M., Ny,-++,N) of C over k
there exist = independent generic points (Ry,---, RB:) of C over k such that

(1) M"*“szﬁ,ER{'{"ﬁPO

1»1

By € we denote the symmetric product of g coples of C Let M, N, R be the
points on C which correspond to cycles L iy “N,, LR respectively. Then
we know

kM, N)=k(M, B)y=k(N, R) .

Under these situation, there exists a group variety Ji, and a birational mapping &,
from C% to Jy, where Jy and &, are defined over k. From (1) follows ¢, (3)+
PuN)=¢(R) which means the composition law in Ju. Jn and ¢n are uniquely
determined up to isomorphism over k. Let ¢, be the rational mapping from C to
Jw canonically defined by @,. Ju is the generalized Jacobian variety of C with
respect to the module m or with respect to the cycle 3} npP, and ¢y its canonical

\‘.\

mapping. (Ju, ¢w) has the following properties;
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1. ¢y is biregularly defined on C outside S and the image of ¢y generates Jy.

2. If we denote by J the Jacobian variety of C, Jy is an extension of J by
the linear group G, X K where s=%(8)—1, K is Ga(*r* N (np»« 1)) when characteristic
p=0 and is a product of Witt groups when p>0.

3. Let m and w’ be £-modules in (C) corresponding to the cycles X' mnpP

n\

and Y‘ ny P respectively. If np2n} for all P in S, then Jy is an extention of Ji
by G,,‘XK where §'=#(S)—%PeS; nr+0), K is a product of G, or Witt groups.
We denote by fiu, m the homomorphism of Jy to Ju..

4. (Universal mapping property). Let G be a group variety defined over k
and ¢ be a rational mapping of C into G defined over k. Let S=(Py, Pp,--+, P)
be the k-closed sub-set of C on which ¢ is not defined. Then there exist a cycle
}}_:_:_;’in and a corresponding module m of £(C), a k-rational point a of G and a
rational homomorphism r from the generalized Jacobian variety (Juw, ¢n) of C, with
respect to m, to G such that for any point P of C outside S we have

‘/f"(P):T(‘Fm(P))'f‘CE .

§3. Let S=(P,, P+, P,) be a finite set of distinet points of C and m be the
O-module of &(C) corresponding to the cycle }_jP, Then J,, is an extension of

the Jacobian variety J of C by G XGuX-- xG,,L G,,szmx xG,,,/A where 4

is the diagonal of G XGnX+++XG,. Hence we have the following exact sequence

(2) O*ﬁAMGmXGmX“'XGm_}JM -

Let m; be the module corresponding to the cycle >3 P;, Then Ji,, is an extension
e
of Jm, by Gn. If we denote this group G, by G, (2) can be written as

0 — 4 — GXGoX o XGy — Sy = J === 0.

Let m;; be the module corresponding to the cycle P+ P, (1<7), Then Ju, =J; is
an extension of J by G.=G;XG,/4 and we have following commutative diagram:

0 r g s G,szx X Gy~ Ty e T 0
lul 51'4 |ft'j lv‘l
0 — 4 — s GiXGy ——— Sy s J o O

Here p,; GiXGeX+++XG,
homomorphism. G;XG:X -+ XG, can be considered as an open set of n-dimensional

» GyXG; is the projection and fi; is the covering

affine space. Hence we can fix a coordinate system (X, X,+++, X,) on G X G2 X
XGn. The kernel of p;,; is a sub-group of GiXG:X-++xXG, defined by X;=X,.
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The sum J;, ;, of J. ; and J,,, in Ext (J, G..) is defined by the following commutative
diagram

0 > 4~ (GXCIX(G,XG) — T X, — JxJ ~— 0
| | ! X

[# E:ép%:s;q i X3

0~ J e Gy XGy G o JXT — 0
1i:l‘ lzI ; ?:l

0= d- = GuXGy —— T, gy e - —= 0

where s;, (resp. 8;,) is the homomorphism of G;xG, (resp. G;XG,) onto G, (resp.
(;,) defined by the group law of G,,,,k and G, G;, are linear group G,. By the
definition of J;, ;, we can define a rational homomorphism F from J,, to J,, ,, and
we have the following commutative diagram

0~ s GiXGaX e X G —> Sy~ J — 0
i): 11«' lid,
0 = d s G X Gy Jip 4y = o 0

where p=(8;, X8;)0 (DX pjy) i.e. p(X:, Xoyo oo, Xo)=(X:X,, X;X,) and the kernel of
p is defined by X, X, =X, X, on G, XGsx---X(G,. In general we can define 2 homo-
morphism F' from J, onto the group Ji,j -+Jij.+ -+ +Jis as above which induces
a rational homomorphism p of GiXG:X -+ X G, onto G,.XG,, given by p(X;, Xo,«+-,
X=X Xooo o+ X, X5 X500 X5, '

Let S be a sub-group with co-dimension 1 of the group G, XG,x --- X G, which
contains the diagonal 4. Then S is defined by a unique irreducible minimal poli-
nomial Q(Xi, Xs,+++, X,)=0 up to constant factor. @Q(X,, Xs,---, X,) satisfies the
following conditions:

a) Qx,x,---,2)=0 for all  in &,
b) Qi a0+, 2)=0 and QW ¥z, -+, ¥u)=0 (z, ¥; In Q)

From a) and b) it follows that @z, %z, -+, 2,)=0 implies Q(Tx;, Tas, -+, T
=0 for an indeterminate T of £. If we denote by Q (X, X,,--+, X.) the homo-
geneous part with degree of Q(X,, X.,---, X,), then we have 2@y, @oye o v, ) TI=0.
Therefore we have @&, T+, #,0=0, 7=0,1,2,--, 7. B; the minimality and
irreducibility of @, Q(X;, X»,- -+, X,) must be homogeneous polynomial, and by a) the
sum of coefficient a, of X, X5,-++, X,) is zero
(3) Sa;=0.

[

Let G=GXG: X+ X Gy and let (X, Xy, -+, X,) and (Y, Yo, - -+, ¥2) be two sets

of independent indeterminate coordinates of G, the zero points of the polynomial
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Sx S is defined by the ideal (Q(X), Xo,+++, Xu), Q(Y5, Yo,ooo, Y)) in £ X, Xoye oo, X,
Yl, Yg,' o, Y«,l-_\i. Therefore Q(X; Y;, Xe Yw,' vy X, Yn) can be written as

QXY X:Y5, --+; XY of (X, Xoyo-+, X, Yy, Yoo+, Y,) contains SXS in GXG.

(4) Q(XIYly"‘y Xzszz):Q(Xh“ s X.va)R(;{h" ) Xm Yh"'; Yw)
+QY -+, YOP(Xy, oo, X, Yipeee, Vo)

where R(X,+--, X, Y-+, YY) and PX,---, X,, Y,,--+, ¥, are elements of
orX, X, X, Y, Vs, -, Y0 Since the left hand side of (4) is symmetric with

respect to (X, ---, X,) and (Y, Y,, -+, Y)), we get

(5) Q(le" ',XII)R(XH' tty Xm Yly' tty YTL)+Q(Y1!' Ty Y")I)<X1,"', Xm Y]y"'p }r’?)
:Q(Yly' "y Yﬂ)R(Yly' Sty Yn.y Xh' t s AXyﬂ.)Q(Xl" ) Xn)P(},ly" ) }fny ‘X:ly" ‘s ‘YH)

In the equation (5), if we put (X, X;,---, X.)=(,1,+-+, 1), we get P(1,---,1, ¥Yy,--~,
Y.)=1 and if we put (¥i, Yo, -+, Y)=(1,1,:-+,1) we get R(X, Xy ---, X, L1,
.++,1)=1. Therefore if we consider R(X,, -+, X,, Y), -+, ¥,) (resp. P(X,, ---,
X, Y, -, Y)) as a polynomial of (Y, ¥s, ---, ¥, (resp. (Xi, X, --+, X)), the co-
efficient R, (X, ---,X») of the monomial MY, ---,Y.) of (Y, ---, Y. (resp.
P(Yi, -++, Y,) of the monomial M(X,,---,X,) of (X,,---,X,)) is a multiple of
QX4 -++, X)) (resp. @Yy, «+-, Yo)). Taking into account the degree of the both
side of (5) we get R;(Xy, -++, Xa)=0 (resp. Py(Yy, -+, Y,)=0). Thus we have

(6) Q(XIYIy A -XnYn):Q(le Tty Xn)R(Yly tr Y'ﬂ)+Q(Y19 crty lf'lz)R(Xh vy Xn) .

where R(X,, -, X,) is homogeneous of degree k and deg. @=deg. B. Let M(X),
(j=1,2,-++, N) be all the monomials of degree h in (X, X, -++, X,). Then Q(X,,
.-+, X, and R(X;, -+, X,) can be written as

N N
QX v, Xp)= -ME;“*M”(X) , R(X, - X,,)::g_‘;biM;(X) .

By (6) we have (i) 2ab.=a;, (ii) ab.+ab,=0 (k#+1). The properties (i) and (ii)
do not hold if a,40 for more than three indices 7. In fact if @, @z ay were
not equal to zero we would have a;=-—t,=a3=—a, by (i) and (ii), Hence we
would have a,=0, which is a contradiction. Since Zéja;z() by (3) we have

(7) Xy, Xoy oo, o)== MU(X)— M (X)

up to a constant factor.
LeMMA. Let = be any rational homomorphism of GiXGpX--+ X G, onto Gp.

Then the kernel of « is defined by M(X)—N(X)=0, where M(X) and N(X) are
monomial of the same degree in (X, Xo, -+ -, Xo), and t is defined by (X, Xo,
e, X)=MX)/NX) or (X, Xy« o0, Xo)= NX)/MX).
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§4. Let G be an element of Ext(J,G.).
e, 0 — G, — G —> J—0, (exact) .

Since G, is a linear group there exists a rational cross-section s of J to G. Trans-
lating the image of the canonical mapping ¢ of C into J by a suitable k-rational
point of J, we may assume that s is defined along the image ¢(C) of C by ¢.
The rational mapping of C into G induced by s we denote by ¢. Then ¢ must be
defined biregularly on C outside a k-closed set S=(P,, P;,---, P,). By 4) of §2,
there exists a O-cycle i‘, n:P; and a corresponding £-module m in 2(C). If we de-
note by (Jin, ¢m) the gé;éralized Jacobian variety of C with respect to the module
m, then there exists a homomorphism r of Ji, to G and a k-rational point ¢ such
that

¢(P)—a==c((P)) for all P in C outside S,
namely we have the following commutative diagram:

0 ~—Gt XK Jy —> J — 0

T

00— Gn — G —J -0

where 7 is the induced homomorphism of r, and K is Witt group or a multiple of
the additive group G, of universal domain. Hence K must be in the kernel of 7,
and we may assume ;=1 (¢=1,2, -+, n). Therefore we have following eommuta-
tive diagram:

(® Tl

|
!
OM""Gm

» G

> J

+ 0

In the group Gi we fix the coordinate system (X, X, +-+, X,) asin §3. Then 7 is
given by (X, X, »++, Xo)=M(X)/Mu(X) by Lemma, where M(X) and My(X) are
monomial of the same degree h:

Ml(X):Xi,Xé;"'X‘in, M;‘,(X)ijij:"'Xjn-

Let J,; be the generalized Jacobian variety of curve C with respect to the cycle
PP, 1gi<jgn). Then J; is an element of Ext(J,G,). We have the com-
mutative diagram:

U GgXGj — eL; — J = 0

R N

0 — Gm —— 'L; m— J - 0
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where Tis is given by ?gj(;Yi, X)):Xk/X, or ng(Xg, X}):X;‘/Xg. If T§j(X;‘,, X'g)::Xj/.Xv;,
take the inverse —J; of J;; in Ext (J, G.). Then we have the commutative diagram:

0 — 4 - GiXGj — J_, o + 0
% ’- % iu
4 ¢ i -
0 Gu — =Ty = T 0

where (X, X;)=X;/X,;. Therefore if necessary replacing J;; by —J;;, we may
assume (X, X)=X/X; (<g). Let Jis, Jici, voy i (01<duy +r+, <) be
generalized Jacobian varieties of curve C with respect to O-cycles Pi,+Pi, «--,
Py + Pj, vespectively. Then 7, (Xi, X5)=X0/ X, -+, t:i{Xixy, Xi)=Xie/ X by our
above assumption. By the first part of §3 we have the commutative diagram:

0 4 GiXGX X G s Sy s T =00
i iﬁ la ‘ il
Gm ']’ileﬁi"'iflikﬂ - J s O

where & is given by (X, X3, -+, X=X, Xi--- X0/ X, X oo+ - X5, o is the same
homomorphism as 7 in the diagram (8) and the extension G of J by G, in the
same diagram must be Ji;+---+Jix up to isomorphism. Therefore we have
proved following Theorem:

THEOREM. Let k be an algebraically closed field in the universal domain O,
and let (J, ¢) be Jacobian variety and canonical mapping of a complete nonsingular
curve C, all defined over the field k. Then the group of all extensions of J by
the group G, of the multiplication of wuniversal domain 2 is generated by the
generalized Jocobian varieties of C with respect to the cycles of type Pi+Ps
(Pi+P,) on the curve C.
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