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Introduction

We shall consider in this note some questions about the projective rep-
resentations of a finite group and related problems. In §1, we shall extend the
Hochschild-Serre’s exact sequence [3]

1 Hom (9, 2) — Hom (&, 2) — Hom (X, 2) — HX(H, 2) — HYS, )

associated to a central group extension of a group % by an abelian group %,
1-A—-G—-H—1, where &, D and A act on an abelian group & trivially, to get
the following exact sequence:

---—Hom (¥, 2)--H¥H, 2) —HS, 2) - H}O, 2)xP(S, A; ).

Here P(®,%; 2) means the group of all pairings @xN - £, Then we note that
the last term can be replaced, preserving the exactness of the sequence, by simpler
groups if £ satisfies some conditions. For example, if £ is infinitely divisible,
then we can replace the last term by P(®,%; 2). Also, if Hom (9, #)=1, then

the last term can be replaced by HXY, £2). Then considering the subgroup
HAS, @ ={ccH G, £); cJy=1}, we shall give another exact sequence:

cos HYD, Q) > HAG, 2)F—P(D, 9 £) - 1D, ).

in §2, using the results in §1, we shall consider the question of the existence
of a closed representation group of a given finite group . More precisely, this
question means the following. As was shown by Schur [4], for any finite group
9, there exists a finite group @ and a surjective homomorphism ¢ . $-D with
the following properties:

1) (8, ¢) is a central group extension of £, i.e. the kernel o of ¢ is a central
subgroup of &.

2) For any projective representation p of §, i.e. for any homomorphism

p:9-PGL(n, C)=GL(n,C)/3, ( is the center of GL (n, C)),
there exists a linear representation § of @, i.e. a homomorphism

p:8—GL(n,C)
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such that the following diagram is commutative:

® > GL (n, C)

H -5 PGL (n, )

(= is the natural projection).

Such a central extension (®,¢) is called by Schur a sufficient central extension
(hinreichend ergiinzte Gruppe) of $. (In the terminology of K. Yamazaki [7], (&, ¢)
is of surjective type.) A sufficient central extension is called a representation
group of § (Darstellungsgruppe, Schur [4]) if the order of (& is the least among
all sufficient central extensions of ®. A group 9 is called closed (abgeschlossen,
Schur {4]) if H®,C*)=1, where $ acts on C* trivially, Now for each central
group extension 1-—A-—-@->H-—1, there is associated the transgression map
r: Hom (¥, C*) — H¥(#, C*) appearing in the Hochschild-Serre’s exact sequence. In
this case, v ean be defined as follows (ef. Schur [1]): let u: & be any section
of the extension, i.e. any map H— & such that ¢-u=id. Let xHom (%, C*) and
P, Qc$H. Then the map (P, Q) —x(Ap, o), Ap, o=u(P)- uw(Q) - w(PQ) e, is a 2-cocycle
of  and its cohomology class (%) is independent of the choice of the section u.
Now, using the transgression map r, a criterion for the central group extension
(&, ¢) to be sufficient or to be a representation group is obtained (Schur [4], see
also K. Yamazaki [7]). Namely, (&, ¢) is sufficient if and only if = is surjective,
and (®,¢) is a representation group of $ if and only if z is bijective. We shall
prove in §2 that if § coincides with its commutator group, then any representa-
tion group of P is closed. (In this case, any two representation groups of £ are
isomorphic to each other, see Schur [5] or K. Yamazaki [7]). We may conjecture
that for any finite group £ there exists at least one closed representation group
of H. We shall give at the end of §2 few examples of groups § for which
H+#[H, D] and some representation group of £ is closed.

In 83, we shall construct an obstruction cocycle for the extension of a linear
representation p of a given group 9 to a linear representation g of a group &
which contains 9 as a normal subgroup. If p is extendable to &, p is clearly
self-conjugate, i.e. p~p’ for any g in & where p(n)=p(gng™*) for any = in R.
Thus we associate to each self-conjugate linear representation p of %t an element
e(p) in H¥®D,C*) where $=G/N. Then it is proved that p is extendable to & if
and only if c(0)==1. Using this obstruction, we shall prove that if @ is finite
and if the orders of M and D are relatively prime, then any self-conjugate linear
representation of N is extendable to .

In §4, we shall consider a particular case of §3 where § is finite and $=8/N
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is abelian. Then © acts naturally on the set RO of all classes of equivalent
irreducible linear representations of t over € and «\3:—-Hom (9, C*) acts on the set
R(®) of all classes of equivalent irreducible linear representations of &. It is
shown that there exists a natural bijective map between the quotient sets R(R)/H
and R(@)/SS. This is also valid in case where & is a compact group and 9 is a
closed normal subgroup with finite abelian quotient group. Using a property of
this bijection, a result of R. Frueht [2] about the uniqueness of irreducible pro-
jective representation with the given factor set for the case where the group is
ﬁnite abelian will be reproduced as a corollary.

In §5 we shall give miscellaneous examples about the existence of a central
simple algebra extensions of a finite group  (see for the definition of an algebra
extension of , K. Yamazaki [7]).

Acknowledgement. In preparing this note, the authors got many advantages
by the discussion with Mr. K. Yamazaki, to whom we express our thanks here.

§1. Let 1-%—G-25%—1 be a group extension of a group $ such that the
kernel % of the homomorphism ¢ is contained in the center of &. Let £ be any
abelian group (written multiplicatively) and we consider the cohomology groups
of &, N, H under the trivial action on 2. Then there exists an exact sequence of
Hochschild-Serre [3]:

1-HI(®, 2) 5 HY(S, 2) 25 HI, 2) — HA(D, 9) -2 HY (S, ©),

where i;, ¢» are the inflation maps and 7, is the restriction map and the trans-
gression map r is given as follows: let u:H-—-® be any section of the group
extension ¢ : B9, ie. ¢ou=identity, and A:HXH A the factor set of the
extension associated to u, i.e.

AP, Q)=u(PYu(@u(PQ)* for P,Q in H.

Let xeH'(Y, 2)=Hom (¥, £). Then ZoA is a £2-valued 2-cocycle on H and the
cohomology class () of %oA is independent of the choice of the section u. Now
we denote by P(®,U; 2) the abelian group consisting of all pairings GxA - 4.
(Note that a map f: X U— 2 is called a pairing if

SXY, A)=f(X, A)f(Y, A),
fX, AB)=f(X, A)f(X, B)
for any X,Y in &, and for any 4, B in %. The product of f1, £, in P(®,%; 0) is

defined by (fif)(X, A)=fu(X, A)fou(X,4) (X in & A4 in ).
Let ¢,: HY®, 2) - H*Y, £) be the restriction map. We now define a map
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s HY®, 2)—P(®,U; ) as follows: let f be any 2-valued 2-cocycle of (&, then
the map #.f: & xN—- & defined by

(X, A (X, Ap=f(X, A)f(4, X)) (XinG, Aind)

is a pairing of &x N into L. In fact, since f is a 2-cocycle, we have f(X, YZ)
SY,Z2)=Ff(X,Y)f(XY,Z) for any X,Y,Z in . Thus we get

(XY, Ayy=f(XY, Af(A, XY)!
=f(X, Y) ' f(X, YAS(Y, AS(X, Y) (A X)f(AX, Y
=f(X, YAS(Y, Af(A X) ' f(AX, Y
=f(X, AY)f(Y, Af(A X) ' f(XA, YY" (since AY=YA and XA=AX)
=f(4, Y)Y\ f(X, A)f (XA, Y) F(Y, A)-F(4, X) ' f(XA Y
=(X, Ay, (Y, Ay,

also similarly we have (X, AB);=(X, A);-(X,B); (X in G, A, B in ).

It is easy to check that two cohomologous cocycles give the same pairing. Thus
there is induced a homorphism #;: H¥(®, )P, U; £). Now we define the
homomorphism ¢ : H{®, £) — H2(, LYyxP(®, N, 2) by #=0,X0:.

ProrositioN 1.1. The sequence H(D, &) N H(S, 2 7_0~—>H'~’(’3I, OX PG, &

i3 exact.

Proor. Clearly we have Im (i) Ker (#). Now let us show Im(i:)DKer (#).
Let f be any £-valued 2-cocycle of & such that the cohomology class [f] of f
is in Ker (¢)), i.e. the restriction #,f of f on % is cohomologous to 1 and /:f=1,
Then there is a map go: N— & such that f(4, B)=gs(A)g:(4B) '9:(B) (4, B in ).
We may assume that f is normalized, ie. f(X,1=f(1, X)=1 for any X in G.
Let %:H & be any section such that u(1)=1, and we define a map g: & -2 by
g(Au(P)=go(A)f (4, uw(P)) " for A in W, P in . (Note that every X in & can be
uniquely expressed as X=Au(P), 4 in A, P in ). Obviously glu=g,. Now let
us consider the coboundary dg of g. We have

dg(A, w(P))=g(A)g(Au(P)) 'g(u(P))
=go(A)gs(A) " f(A, w(P))
= f(4, u(P)),
Sg(u(P), A)=g(u(P)g(u(P)A) 'g(4)
=go(A) ' f (4, w(P)go(4)
= f(4, w(P))
= f(u(P), 4) (since f.f=1).

Hence fi=f(3g)"' satisfies fuld, w(P)=f(w(P), A)=1 for any A in %, P in .
Also, clearly we have fi(4, B)=1 for any 4, B in A, Thus we have
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Si(A, Bu(P))=f(B, w(P)) ' fi(A, B)f(AB, w(P))=1
FlAWPY, B)=11(A, w(P)) 'F{4, W(P)B) f((P), B)=1

for any A4, B in %, P in . Hence, for any 4,B in %, P,@ in 9, we get

SilAu(P), Bu(@)=1(A, w(P)) ' fi(4, Bu(PYu(@)) f1(u(P), Bu(@))
=fi(u(P), Bu{Q))
= (@), B) ' (u(P), w(@)f (w(P)u(@), B)
= f(u(P), w(@)).

Thus the cohomology class [ f] of f is in Im(5.), Q.E.D.

Now we shall consider some particular case of Prop. 1.1 where the abelian
group X is infinitely divisible, i.e. for any positive integer m, the map a—a™ is
a surjective map from £ onto 2. In this case we have the following

LEmMma 1.2. Let U be a finitely generated abelian group and £ be an in-
finitely divisible abelian group. If a Q-valued 2-cocyle f of N satisfies f(A, B)
=f(B, A) for any A, B in U, then f is a coboundary.

Proor. see K. Yamazaki [7, §2.3.]

REMARK. By using Zorn’s Lemma, this lemma is also valid for any abelian
group .

Using this lemma, it is immediate that in Prop. 1.1, if £ is infinitely divisible
and U is finitely generated, then for ¢ in H¥(®, £), ¢#:(c)=1 implies #,{c)=1. Hence
we get the

PrOPOSITION 1.3. If 2 is infinitely divisible and U is finitely generated,
then the sequence

HA(H, 0) L HAG, 9)-25 P, % ©

18 exact.

Next we consider the case where H!(H, 9)=1 in Proposition 1.1.  Assume
that #([fD=1 for given [f] in H¥®, ©), then /,7(4, B)=1 for all A, B in 9.
Thus #,f induces a pairing (G/W)xA—L2. Now since Hom (D, ?)=1 by our as-
sumption, we have ¢,f(X, A)=1 for all X in &, 4 in A. Thus 0 ([ fD=1 implies
D=1 and we have

ProrosITION 1.4, If HY(D, @) =1, then the sequence

HA (9, 2) 0 HYG, 2) 25 HAY, ©)

is exact.

Now denote the kernel of ¢, : H¥G, 2)--HXY, ) by H%®, 2). Then . in-
duces a homomorphism ¢ : H¥®, 2)'— P(®, 9; £2) as we have seen above. Also it
is obvious that the sequence
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HY(®, 2) > HA®, 2 5P, %; )
is exact. We define a homomorphism p:P(9,%; 2)—H¥H, 2) as follows: let

u:9— be a map such that u(l)=1, ¢eu=id. and 4:HxP—A be the associated
factor set: u(P)u(Q)=A(P, Qu(PQ), for P,Q in . For f in P(,%; Q), put

()P, Q B)y=f(P,AQ,R) for P,Q,R in 9.

It is easily checked that pf is a 3-cocycle and its cohomology class is independent
of the choice of the section w. Thus p induces a homomorphism piP&,U; 2~
HYH, 2).

THEOREM 1.5, Let 1-%—®&-"596-—-1 be a central extension of a group
by an abelian group A. Let 2 be an arbitrary abelian group. Then the
sequence

1 HYD, £) 1 HI(®, 2)-T5 HIQ, )
L HD, 9) 2 HYG, 2) —L> P, A; 2) -2 HYD, 2)

s exact,

Proor. We have only to show that the sequence H2(®, 2): l—»P(@, A, 2)
~“>HYH, £) is exact. Let [f] be an element in HX®, 2):. Then there is a map
go: U2 such that f(A, B)=go(A)go(AB)'go(B) for all 4, B in A. We may as-
sume f is normalized, i.e. f(X, D)=/, X)=1 for any X in ®. Define an extension
of go to a map ¢g: 8— 2 by g(Au(@)=go(A)f(4, w(P))"! for Ain A, Pin . Then
as in Proposition 1.1, fi=f(0g)-! satisfies

H4,X)=1 for Ain% Xin®
(1 SilAu(P), BY=(P, B) for 4, Bin%, Pin
S(Au(P), Bu(@)=¢(P, B) fi(w(P), w(Q)) for A,B in %, P, Q in £,

where ¢=0fP(®,%; £). The cocycle condition for f;:
Ji((P), w(@)[r(u(P)u(Q), w(R) =1 (w(P), w(Q)u(R)) f1(w(Q), w(R))
implies by (1)
(2) WP, A@, R)) fi((P), W(QR)) f{(w(Q), u(R))
=f1(w(P), w(@) f:(w(PQ), u(R)).

Thus, defining a 2-cochain fi: HXH— 2 by AP, Q= Fiu(P), w(Q)), we obtain o)
;;(6‘_7})’ . Thus we get Im (") Ker (o).

Conversely let ¢&P(®,%; 2) be in Ker(r). Then there is a map fi:OXH— 2
such that p(¢)=(37)"". Define f,: GBxG— 2 by fi(Au(P), Bu@)=¢(P, B)f:(P, Q)
for A, B in X and P,Q in . Then it is easy to check that f, is a 2-cocycle and



Several remarks on projective representations 136
[fi1e HY®, 2)*. Moreover we have #f,=¢». Thus Ker cIm ), QE.D.

§2. As an application of §1, we shall prove the

THEOREM 2.1. Let O be a finite group and & a representation group of .
Then H¥B, C*) is isomorphic to a subgroup of P(H,M; C*), where M=H(D, C*).

Proor. Since & is a representation group of §, ® is a central extension of
$ by the abelian group M, 1 -M—-G—-H—1 (cf. Schur {4] or K. Yamazaki [7]).
Thus we may utilize the exact sequence of § 1 (Proposition 1.3)

HI(OR, C*) - HA($, C*) 20 HY(®, C*) 25 P(®, M; CH).

The map r is bijective since & is a representation group of & (cf. K. Yamazaki
[71). Hence i, is a zero-map and #. is an injective map. Now since r is injective,
[G,G]1DM (cf. Schur [4]). Thus we have the natural isomorphism: P(®, I C*)
=P(@/M,M; CH=PH,|M; C*), Q.E.D.

Cor. 2.2. Let O be a finite group and M=HYH,C*). If P®,M;CH)=1,
then any representation group & satisfies HYE, C*)=1.

REMARK. Let &/[9,91=Ze X+ XZe,, M=Zs X+ XZs, be direct product
decompositions of D/[H, ], M into cyclic factors respectively. Then the order
of P(D,M; C*) is equal to 7]7'.11‘ ']tq,ll(ef, [, where (e, f,) denotes the greatest common
divisor of e, f;. This is thze uJ;;per bound given by Schur [5] for the number of
non-isomorphic representation groups of £. Thus, if P(,M;C*)=1, § has only
one representation group up to an isomorphism.

Let us exhibit some examples of a finite group § for which P(D,M; C*)+1
but still there exists a representation group & such that H¥®, C*)=1.

ExaMPLE 1. H=D,=the dihedral group of order 2n.  is generated by P,
@ together with the fundamental relations P?=Q"=1, PQP-'=@ !. Now consider
a group & generated by P, @ together with the fundamental relations P?=Q",
Q¥=1, PQP-'=@"'. & is the generalized quaternion group of order 4n. Then
PP, @—Q defines a central extension & of H. It is easy to see that, if = is
even, & is a representation group of  and HX®, C*)=1. Here P(D,M; C*)=Z,xZ..

ExaMPLE 2. $=8,=the symmetric group of degree n. Then one of the
two representation groups given by Schur [6] has trivial 2-cohomology group.
Here P(9,M; C*)=Z,.

§3. In this section, let N be a normal subgroup of a group & and we denote
by © the factor group ®&/M and by x the canonical homomorphism &-2>§. Let
p: N —GL{m,C) be an irreducible linear representation of degree m of M. Then
for any g in &, a representation p?:M—GL(m,C) is defined by ¢'(z)=plgxg™?)
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(z in ). The rep. p is called to be self-conjugate if for any g in &, p’ is equi-
valent to p. Now let us consider the question when an irreducible linear rep.
p 90— GL(m,C) can be extended to a linear rep. p:&—GL(m,C) of ®. Clearly,
if p is extendable to a rep. of (&, then p is self-conjugate. Thus we shall construct
an obstruction cohomology elass ¢, in H¥®, C*) for any irreducible, self-conjugate
linear representation p of 1. Let p be such a rep. of . Then for each ¢ in 3,
there exists an element X, in GL(m, C) such that X,p(x)X,'=p"(z) (x in N). Let
us choose X, as follows: let G==U%Ng;=UgN be a coset decomposition of & w.r.t.
N (g;=1). Choose for each g, the; matri;c X,. such that X, -p(x)-X,"=p(x) for
any « in N. (X,.=1). Then for g=ag; in Ng;, put X,=pa)X,, (¢ in N). Then it
is easy to check that the map g--X, constructed above satisfies the following

(1)~(4).
(1) () = X p(x) X, (for ¢ in N, g in &)
(2) Xu=pla) (for @ in N)
(3) X.,=pa)X, (for ¢ in 9, g in ®)
(4) X=X, -pla) (for a in M, g in &)

We shall call a map g— X, from & into GL(m, C) a section for the homomorphism
p:N—GL{m,C) if it satisfies (1)~(4) above. Now let g— X, and g- ¥, be two
sections for p. Then p/(x)=X,-p(x)- X, =Y, px) Y, (x in N) and the irreducibility
of p imply the existence of a map g—¢, from ® into C* such that (,X,=Y, for
any ¢ in®. Clearly £,=1 (@ in %) and ., =&, (@ in R, g in G).

Now let g— X, be a section for an irreducible linear rep. p:%—GL(m,C).
Then for any #,% in ¢ there exists a scalar ¢, , in C* such that X, X,=c¢, ,X.,.
In fact X, @)X =payay'a V=X, oyay N X '=X.X,p(@)X,; ' X' implies that
X' XX, commutes with any g(a), @ in 9t. Thus by Schur’s lemma, the existence
of ¢, , is established. It is easy to see that the map (x,y)—c, , from B@x into
C* is a C*-valued 2-cocyele of . Also we have

(5) Coar, by =Cr, y (@,bin N, 2,y in G&).

In fact, X..Xuy=¢Cur, 13 Xur, and (3) imply that

'U(a‘)Xu'p(b)Xyzcm', hz/Xa-.rD‘r"-A‘I/:C«N‘, Wp(aa:bx")Xw *
ie. )X oYX X Xy = o, vy Pla-2b2 N Xy,

hence we have
pla)-p(abeN)e, y Xoy=Car sy plazbs )X, ,

which implies (5) immediately. Thus the cocycle (x,y)—¢, , of & induces a 2-
cocyele e* 1 (w, v)—c¥, of § such that ¢, .,=¢.y @ y=®). Now we shall verify
that the cohomology eclass [¢*] of ¢* is independent of the section g-— X, for p.
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In fact, if g— Y, is another section for p, then, as we noticed above, there is a
map g-—{, from & into C* such that

YVS:U'XU (g in Gj)x qul (a' in \)D,
Cww=8, (@ in N, g in G).

Now, let (x,%)—7. , be the 2-cocycle of & defined by the section g—Y,. Then

it is easy to see r,,,y:—%g’i c..y (for any z,% in @). Since ,=, (@ in M, gin (),
Wy
g—¢, induces a map u—{* from § into C* such that (¥.,=C. (¥ in ). Then
E3 £ 3
we have r,’f“:;{;ﬂ ¢*, (for any wu,vin ©), i.e. [e*}=[r*]. This cohomology class
Quv

will be denoted by ¢, and we shall call it the obstruction class for p.
PROPOSITION 3.1. An irreducible linear rep. p:9%i— GL{m, C) can be extended
to & if and only if c,=1.
ProoF. If p can be extended to a linear rep. o:®&—GL(m,C), then as a
section for p, we can take X,=a(g) (¢ in ®). It is obvious then ¢,=1. Con-

versely, suppose ¢,=1. Then, using above notations g— X, c.,,, ¢k, for p, there
L

o
from & into C* by &,=¢%,. Since cf,=c¥,;==1, we have (¥=1, {,=1 {(a in N).

Moreover, it is easy to see that &,,=(, (¢ in %, ¢ in &). Then the map g— Y,

exists a map u—¢* from » into C* such that c¥.= Define a map g,

:—C]irX,, is easily seen to be a section for p. Moreover, we have Y.Y,=Y,, for

any «,% in . Thus the map g— Y, is a homomorphism from & into GL(m,C)
extending p.

Cor. 3.2. Let %t be a normal subgroup of a finite & such that the order of
N is relatively prime to the index of Nin &. Then any self-conjugate trreducible
linear representation of N can be extended to a linear rep. of ®.

Proor. Let p be a self-conjugate irreducible linear rep. of %t. Let ¢ be the
order of the obstruction class ¢, in H%,C*), D=6/%. Then, ¢ is a divisor of
the order of § (cf. Schur [4]). Also, e is a divisor of the degree of p (cf. Schur
[4]). Hence e is a divisor of the order of %t. Thus, we have e¢=1 and ¢,=1,
q.e.d.

ReEMARK. Let N be a normal subgroup of a group & and p:N—GL(m,C)
be a self-conjugate irreducible linear representation of . If the obstruction class
¢, 18 of order e, then we see by a similar argument as in the proof of Proposition
3.1. that the representation p&---@p (e-times) can be extended to a representation
of &, For example, let §/N=E,. Here H¥E,,C*)=1 or Z, according to n<3 or
n>4 (ef. Schur [6]). Thus, for any self-conjugate irreducible representation p of
N, p&p can be extended to a representation of (.
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§4. Let & be a finite group and T a normal subgroup of ® with abelian
quotient group H=/%. We denote for a group & by R(®) the set of all irreducible
representation classes of 8. We ean also regard R(®) as the set of all classes of
isomorphic simple C[(]-modules, where C[®] is the group algebra of & over C.
Then £ acts on the set R(M) as follows: let m be a simple C[%]-module and ¢ in
®. Then a simple C[%}-module m? is defined as follows: as a module m?=rn.
For  in M, a new action of z on m is defined by zem=gzg-'m. Them m? is also
a simple C[M]-module. Clearly m=m, implies m{=mi Thus & acts on R(M).
However it is obvious that if g,¢, in &, g,=g. (mod. M), then for any simple
ClR}-module m, we have m7=mv: (as C[N]-modules). Thus, the action of & on
R(®) induces an action of H on RON).

Next we shall define an action of gﬁzHom (,C*) on R(®). Let 1t be a simple
Cl&]-module and f in §;> Then € is a C[®)-module by g-z=f(n(g)z (g in G, 2
in ) where = :®--»9 is the canonical homomorphism. Hence n’/ ~=nQC is also a
C[37]- modu e which is easily seen to be simple. Obviously n,=n, 1mphes ni=ng.
Thus 9 acts on R[B]. We denote for [n] in R(®) the isotropy group of [n] in
) by Eﬁ[n] .@[n]:{f&fj; [n] = [u]}:{fe«é;; n’z=n}. Also we denote for [m] in
R(N) the isotropy group of [m] in H by H[m]. Since @ is abelian, we have
éﬁl"]::ﬁny for any {[n] in R{(®) and for any f in fﬁ Similarly, we have 9,.,;=D.p
for any [m] in R(M) and for any & in H.

Let %t be a C[®]-module and 1 be a simple C[®]-module. Let f=n,+-+-+n,
be a direct sum decomposition of 9t into simple C[®]-modules uy, +--,1,. Then
we denote by (9:u) the number of n; which is isomorphic to n as C[®]-modules.
The number (9t:n) is independent of the decomposition Mt=n;+-+-+n,. Denote
by %3, %n the characters associated to the C[®]-modules 3, n respectively. Then
it is well known that

N 1 o
()= lGﬂ .__» m(g)Xn(g)-—u!Gry%@?lm(g)h(g)

where [ is the order of .

Similarly, if M, m are C[N]-modules and if m is simple, (M :m) is defined.
Now, if n is a simple C{&]-module and if m is a simple C[M]-module, the follow-
ing formula is also well known as Frobenius reciprocity :

(m* 2 )=(nly : m),

where m*=C{®] x\:]m is the induced C[&]-module and njy is the C[%]-module
Ci
obtained naturally from the C[®&]-module n.
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LEMMA 4.1. Let n be a simple C[®B]-module and m a }sz'mple C[W}-module.
Then

(i) (o s m)y=(jn:w"), for any & in 9.

(ii) (m* s wy=(m*:n'), for any f in \:7

. 1 1 I

Proor. (i) (ulm:m):—ﬁﬂ N an(n)m(n), (u!\n:m’*):»-m 3 () m{gng )
Hopen 2w N

where g is an element in & such that z(g)=Fk. Thus, since Xu{gng =1iux(n), we

have
R 1 N -t y -1
oy s m*)== ‘Iﬂ‘j{lw = mxn(gng Wmlgng Y=y : m).

(ii) By Frobenius reciprocity, we have (m*:n)=(n|x:m) and (m*:n/)=0"|y:m).
Now clearly we have n’{mw=ujyn, which completes the proof.

Now we denote by R(C“'))/SS the quotient set (the orbit set) obtained from
R(®) by identifying two points in R(®) in the same orbit of ‘5 Similarly we
denote by R(%)/D the quotient set obtained from R(J) by identifying two points
in R in the same orbit of . We denote by ¢:R($)— R(@)/S:j and ¢ : RO —
R(J)/H the canonical projections respectively.

Now let us eall [n] in R(®) and [m] in R(N) are incident if (u|q:m)=1l. By
Frobenius reciprocity, [n] and [m] are incident if and only if (m*:u)>1. For &
in®, fin 53, by lemma 4.1. we have (nfo:m)=(n]o: w")=(m")*: n)=(m")*:n).
Hence [1] and [m] are incident if and only if [n]/ and [m]* are incident. Thus
we may define an incidence relation between elements « in R((Sj)/z‘/fp and 8 in
RO)/H. Namely a and j are called to be incident if there exist incident [n]eR(®),
fm)eRO) such that ¢((n])=a, $([(m])=p. Our purpose here is to establish the
following two facts:

(1) For any ac=R(®)/9, there exists one and only one SERE)/H such that a
and 3 are incident.
(II} For any B&R(OD/H, there exists one and only one aER(G})/SB such that «
and 3 are incident.

Now (I) is nothing but a theorem of Clifford [1]. In fact, let aéR(@)/@
and a=¢((n]). n|n is decomposed into a direct sum of simple C[N]-modules:
nlg=my+--+-+m, By Clifford’s theorem, there exist, ¢, ¢ *++, ¢- in & such that
m,=gay (1=1, -++,7). Then it is easy to see m;=m{* (=1, .-+, 7). In other words,
for any [m] in R[9] such that (njsw:m)>1, we have ¢((m])=¢((m,]). Thus 5
exists uniquely and is given by F=¢{[m]).

To prove (II), we need several lemmas.

LEMMA 4.2. Let he®, [n]eR(@®). Then
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NV f(hy=- NEROS
Je ﬁgu;( ls_m _‘J(I) e

Proor. For any C-valued function F on ¢, we have easily

1 . 1 o 1 o
F S e 3 F).
K‘M u'zJ (g) ‘%l I%SQ wtl aea (k) (ZE)

Applying this eguality to the function F(g)=f(m(gN|in(g)}*, we get

l \ 1 2

xeT T

1

N (@2,
}?)! th PR‘ f(h) . ;(]I)I/I(Q)I

Since fE(@)tn(@){*=1nr(g)Zn(g), the left hand side is =1 (if n'=n), =0 (if n/ gn).
Thus, multiplying f(#) on both sides and summing up w.r.t. fin -Zﬁ we get

> f(h,)_T" 2 fF)S,
fc-zf;w{"} ‘JI he, fe ‘3

1 . . .
where S,= - ' |Zu(@)|. Thus by orthogonality relations of characters, we

_ PRI zeion
obtain

2] f(h’)“ (M wSh=8nt

fe\) ]

Since Si =Sk, Lemma 4.2. is proved.
LEMMA 4.3. Let [n]eR(®) and [m]eRO) be incident. Then

1D} 1D0ml = (n* )2 D],

Proor. Put h=1 in lemma 4.1. Then we have

If‘,‘?[u?‘ = P ().

1 o
N
I”Rf 71‘:{)1
Now let nfy==ny -« -bur, (n=m,) be a direct sum dccomposition of n|y into simple
C[%]-modules. Let k=(*:n)=(jy:m), r=[: HDru] and H= U SaLm h; be a coset
decomposion. Then s=kr and we may assume that m,w_uxm—_«mwzk;—,---;mim,l,k
(3=1, «++,7) and uy, +++, wm, are not isomorphic to each other. Then Xuju=Fk(Xm.+
«oe+%y,), and using the orthogonality relations of characters, we get

[0l == u* 1 (9 2 Hr],

which is to be proved.
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Cor. 4.4. njy is simple if and only if 33(:1;:1. In this case D=9 where
m=1q.

ProoF. nlw is simple if and only if k=r=1 using above notations, which is
equivalent to Qﬁsiu;:l. If this is the case, then r=1 implies D=5, Q.E.D.

LEMMA 4.5, Let [m]&RM) and @:igl& m1 k; be a coset decomposion, then

0, for M,
@ ()= {
[Orm - CL(@)+ - -+ 1)), for ac,
where m*=C[G] @ wm and X=X+ (T=1, -, 7).
‘_LJQ

Proor. This is immediate using the following well known formula for Zue:
Yy ()= 52[ >_.4 7111(1/»”"!/ H= \’Rl 711:”(-’11),

where 7%, is a function on & defined by

0o , for ze&MN
An(r)= {

Am(z), for zeM.

Cor. 4.6. Let [m]eR®Y). Then

l@l V |/m*(0)l ={Hrayl .

Proor. The left hand side is equal by lemma 4.5 and by lemma 4.3. to

b [m,”,:[é:)[ul'il-

. N =
Pl gy o

'@! -1 Homgl*

LEMMA 4.7. Let [m]eROY) and [u] be a simple C[&]-submodule of
m*=C[®] (i;)”m Then for any simple CL®-submodule W of m*, there exists an
element f in 3’) such that n'=n’,

Proor. Let m*=n;+-..-+4n, (n=n;) be a direct sum decomposition of m* into
simple C[®]-modules. Using lemma 4.1 we may assume that
(i) mny, .-+, 1, are not isomorphic to each other, where 3:[53 : -6;»";],

(1) M SN, = S, -nk (i.. -++,8), where i=(n*:n),

(i) mz=n (¢=1,..-8), where «Z)—- U bm 1f: 18 a coset decomposition.

@{iv) wmzn; for any i<ks, j>ks. !

Then of course we have ks<t. To complete the proof, it is eﬁough to show
that ks=t.

Now, by cor, 4.6, we have
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D= g 3 o= g 338 i 3 g 3 S ol

1
|' | o
l(?‘ gL iL/ilt(g)&Z l(?l E ‘ 2 /n,(g)lz\ I(sj‘ S" |12 /m(g)E-_kZS__\é:’ m: I

(% 221 gy Foks

by lemma 4.3. Hence we obtain t=ks, Q.E.D.

By lemma 4.7, the proposition (II) raised above was proved. Thus, we established
a bijective mapping R((B)/:fi -+ R(N)/% which associates to each « in R(@B)/;‘fS a uni-
quely determined incident element 8 in ROU/D.

Cor. 4.8. Let [m]eROD. Then m*=C[®] @ m is simple if and only if
Hrmi=1. In this case @m~§?, where n=m*, !

Proor. Obvious by the proof of lemma 4.7.

Now we shall give some other properties of the bijection R(Gﬁ)/@ﬂR(”R)/&).

LivMa 4.9. Let [n]€R(®) end [m]1€RO) be incident. Then £ O,
where Oiwi={fed; fF(R)=1 for all kb in Him}.

Proor. Let 77 '(Hm)=®,. Then there exists an element [f] in R(®;) which
is inecident with both [n] and [m]. In fact any simple C[&]-submodule of nle,
can be taken as . Denote the factor group &/G;=9/Dm; by . Then we have
=1, In fact, let ge@® satisfy ¥=f. Then x(x)=%(gxg™') for any z in &,
hence for any x in 1. On the other hand, since m”=m for any ¢ in &, we
have Zilg=m-%m, where m=(fy:m). Thus mim()=mAu(grg-') for any z in %N.
Hence m?=m, and we get m(g)&Hrmy, .e. g&G. This means however §y)=1.

Now applying lemma 4.3 for the pair 8>@; and f, we obtain from Ryn=1
that ﬁmzﬁ* and (nlg:H=1. Let re(‘bgﬁm. Then y may be regarded as an element
of the character group of £/Drui, i.e. y may be regarded as an element of #. Then
‘\%’g n;:,:s‘? implies that w=n. Hence rC—.‘»ﬁnz. Thus @fi,,;céfa;,,; is proved.

Now in general &71";,,3::&3[“ 1 i8 false. By lemma 4.3, we have

Cor. 4.10. Let [n)eRE®) and [(m]eRM) be incident. Then

[«ijm : @{Lmﬂ =(m*:u)?.

Thus we have @m D fm1 &f and only if (m*:n)=1,

ExaMPLE. Let & be the dihedral group ®; of order 8, i.e. & is generated
by a, b together with the fundamental relations a®=b=1, aba '=>b"". Let M be the
commutator group of &. Then N is the center of & and N is a cyclic group of
order 2:M={1,5"}. Let N acts on m=C by b¢=-—& (§ in €). Then it is easy
to see that the induced module m* is decomposed into a direct sum of simple
C[®]-modules as follows: m*==u,+n., m=n.. Hence (m*:n)=2. Since [G:N]=4,
dimn, =2, Since & has only one irreducible representation of degree 2, we have
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@:xx,jzg. On the other hand, since 9t is the center of &, we have Hpy-=D. Thus
we have 9im;={1}% D

Now we shall give a condition for § where we have (m*:n)=1 for all incident
pair [n] in R(®), [m] in RO

LEMMA 4.11. Let §=8/N be a cyclic group and [m] in ROW). Then Pry=9H
if and only if the associated homomorphism p:N—GL(w) (the lincar represen-
tation of M) can be extended to a homomorphism & -GL(m).

ProOF. Clearly if the homomorphism g:9M—>GL(m) can be extended to a
homomorphism g:®—GL(m), then Hy=9. Conversely if Hry=9H, then o is
self-conjugate. Now since © is cyclic, we have H¥®,C*)=1 (cf. Schur [4)).
Thus the obstruction cohomology class of p is 1. Hence p can be extended to a
homomorphism &-»GL(m) (cf. §3).

LemMMA 412, Let $=8/N be a cyclic group. Then for any incident pasir
[n] in R(S®), [m] in R(R), we have (m* :n)=1. Thus also we have @ﬁm:@[“;.

Proor. Let 7 Y{Hm)=@, and take an [¥] in R(®,) which is incident with
both [n] and [m] as in the proof of lemma 4.9. Them m’=m (for all g in &)
implies that the associated homomorphism p:R-—-GL(m) can be extended to a
homomorphism £ : 8 — GL(m) (lemma 4.11). In this manner, m has also a C[®]-
module structure. When m is regarded as a C[®,]-module, we write m as .
Then [m,] in R(®) and [m] in R(MN) are incident. Hence by the uniqueness (II),
there is an element yin §, such that f=mj, where L=8y/N=Hm, Q=Hom (g, CH.
Now, since (mg:m)=1, we have (f:m)=1 and ¥N=m. Now let us show that
(G :H=1 and =1, where $=G/Go=9/Dim3). In fact, if g&® satisfies ¥=1,
then Zi(gxg~')=xr(2) for any z in & Hence %(grg - =xi(x) for any z in N, ie.
EM=HN, ie. m'=m. Hence r(@)&Him), ie. g, i.e. Mn=1. Therefore,
f*zC[@]C%)ﬂf is a simple C[®]-module by Cor. 4.8 and T™z=u by the uniqueness.
Thus (@ : H=(F*: n)==1.

Now let u|@o=¥%+---+1, (I=%) be a direct sum decomposition of n|®, into
simple C[@,]-modules. By (n|@,:)=1, we have %%}, for any 1<i#5<3s. Since
there exist g; in & (i=1, -+, 8) such that L= (i=1, ---, 5), we see that g.0; &,
for any 1<t#5<s and that every % is a simple C[N]-module. To complete the
proof, it is thus enough to show ¥|M4:1,|N (for any 1<i#5<s). Suppose ¥, =1, |9
Then t:|R=t%|N. Hence (F|Mz:i=(fN)9s, i.e. mozmes. Hence m(ggr?) is in Dy
i.e. ggr! is in . Then i=7 as we have seen above, Q.E.D.

Let us finally resume our results above in a theorem as follows:

THEOREM 4.13. Let & be a finite group and N be a normal subgroup of &
such that the factor group D=8/9% is abelian. (i) Then for any simple C[G)-
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module n, there is a simple C{N)-module m such that (n|R:m)=(m*:n)=1 (where
m*=ClB] @ m). m is unique up to the action of H. Also for any stmple C{R]-
¢

)
module m, there is a simple C[Gl-module n such that (n*:n)>=1. n 1s unique

up to the action of «@zHom (9,C*). Thus there 13 a natural bijection between
R(@)/%; and ROO/S. (i) If [n]eR@), [m]eROY) correspond each other (ie. if
(n*:m)>1), then Dol Brml=(n* 0Dl Also Bu>Himy ond  [Hray: Him ]
=(m* : )%, where &)(Lm 18 the annihilator of Him in $. Gil) If © 1s cyclie, then
for any corresponding pair [n] in R(®), [m] in R(N), we have (m*:n)=1 and
éiilﬂ = g’f‘ﬁu .

ReEMARK, If & is a compact topological group and N is a closed normal sub-
group for which ®&/M iz finite and abelian, then the proofs of Theorem 4.13 is
easily checked to be valid when we consider finite-dimensional irreducible representa-
tions of & and 9t. ‘

As a corollary to Theorem 4.13, we shall prove the following theorem of
Frucht [2]. (ef. also K. Yamazaki [7] Th. 6.1, Cor.)

TurorREM 4.14. (Frucht [2]). Let D be a finite abelian group and c in
HD, C*). Then there exists one and only one (up to equivalence) trreducible
projective representation of D which has ¢ as ils factor set.

Proor. Let & be a representation group of &. Then there is a central sub-
group N of & such that G/N=9H and the transgression map ‘)AtzHom(‘ﬁ,C*) >
HY($H, C*) is bijective. Now let X be the element in b7 corresponding to ¢ in
HYH,C*). Then it is easy to see that any irreducible projective representation
of § with factor set ¢ is obtained by an irreducible linear representation p of &
which is incident with x* (=the induced representation of & by ¥), i.e. (¥*:p)>0.
Thus it is enough to show the following: let p;, p. be two irreducible linear re-
presentations of & such that (x*:p)>0, (X*:p)>0, then p, and p, induce on H
equivalent projective representations. Now by Theorem 4.13, there exists an
element f in $ such that pl=p. ie. @ (for)=p. where 7 : @ — & is the canonical
homomorphism. Since fer i3 a representation of & of degree 1, p, and p; induce
equivalent projective representations of 9, Q.E.D.

§5. Let § be a finite group and k be a field. Let r:9XH—k* be a k*-
valued 2-cocycle of § (under the trivial action of £ on %*). Then the vector
gpace . sz%‘k-up (where {up; P€$} is a base of .2) becomes an associative
algebra over &k w.r.t. the multiplication upug=7p gupe. (the crossed-product!).
This algebra will be denoted by 49, %, ) or simply by .i(r). If the cocycles r

and v are cohomologous, then _#(»)=. 4(r") as is easily seen. Thus we may define
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<Ae) for ¢ in BX(®, k*). (cf. K. Yamazaki {7; §4]) for the detail of the properties
of the algebra .i(c¢), which was called as an algebra extension of ©). In K.
Yamazaki {7: §6], for an abelian group D, the condition for the existence of e
in H¥®, k*) such that .i(¢) is central simple is given. We shall give in this sec-
tion some examples of non-abelian © which has an element ¢ in H(®, k*) such
that .7(c) is central simple. In all our examples © is solvable. Thus we may
raise the following question: let £ be a finite group. Let .i(c) be central simple
for some ¢ in HYH,C*). Is $ then solvable?

Now let p be the characteristic of the field k. If py|H|, then as in the case
of the group algebra k[H], .i(c) is semi-simple for any ¢ in HXD, k*). (ef. K.
Yamazaki [7; §4]). Hence in such a case, .i(c) is central simple over % if and
only if the center of ./(¢) coincides with k.

Now, if (i(c) is central simple for ¢ in HD, k*), u?(c)é;?ﬁ is also a central
simple algebra over %, where k is the algebraic closure of k. It is easy to see
that if we denote by ¢ the image of ¢ under the canonical homomorphism H($, k*)

—HXD, k&%), we have .. Y(G)OkMJ(‘s’), E, ¢). Thus, when we seek for the structure

of §, we may consider the case where k is algebraically closed. We also note
that if .7(c) is central simple for some ¢ in HX9, k*), then the order of O is a
square of some positive integer m:|D|=m*. Now,

LemMma 5.1, Let © be a finite group and k an algebraically closed field of
characteristic p, where p}f|9|. Then i(H,k, ¢) is central simple for some ¢ in
H2(D, k*) if and only if
i) iD|=m? for some positive integer m, and
i) % has an irreducible projective representation of degree m.

Proor. Necessity. Let .i(c) be central simple for some ¢. Then i) i8 clear
and . (c)=2 M, (k) (the total matric algebra of degree m over k), since k is alge-
braically closed. If w(c)m \‘ku,, UpUe=Tp oUry (Tr,¢ in k*), then the map

P—up from H into _ile) mduces an irreducible projective representation of £
over a minimal left ideal of _i(¢). Sufficiency. Let |P|=m?* and T'; H—-GL(m, k)
be a map which induces an irreducible projective representation of $. Then if
is the factor set of T, we see easily that Ji(r)=M.(k) (cf. K. Yamazaki [7; §57).

ExamMPLE 1. $=AxZ; (A,=the alternating group of degree 4, Z,=the eyelice
group of order 3). Here [H|=36, m=6. Now by H2(,x Z;, C*)=H? (g, C*y x HY(Z,
Cx P, Zs, C*) (cf. K. Yamazaki [7; §2.21), H2,C"=Z, (¢f. Schur [6]),
H%Z5, C*)=1 (cf. Schur [4]) imply that HX, xZs, C*)=Z,x PO, Zs, C*). Now
U,/ [, U] =Z;, hence PN, Z;, C*)=2Z;. Thus we have

HYU,xZ,, C*)=2Z.
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Let ¢ be any generator of H*(,xZ;, C*). Then since ¢ is of order 6, the degree
d of any irreducible projective representation p of ¥, xZ; which has ¢ as its factor
set ig divisible by 6. (cf. Schur [4}). On the other hand, since |9|=36, d=86.
Thus #(c¢) is central simple.

Remark. In example 1, we may construet a central simple _i{¢) for k=Q(w),
where Q is the field of rational numbers and w=exp 2(; . Because we can con-
struct an element ¢ in H*®, Q{w)*) such that the image é of ¢ in the homomorphism
HA(D, Q(e)*)— HE(D, C*) is of order 6.

ExamprLE 2. D=0, XU, A=Z., (D,=the dihedral group of order 8). Here
[D]==16, m==4, H®, C*)=H} (D, C*)xP(D,, A, C*). Now H(Ty, C*)=Z, (ef. Schur
B, DD, D) =DuzZyxZ,, hence HYUD, CH=Z.x(ZyxZ;). Let A={1,Y},
B=[Dy, D, ]={1,Z}—the center of T,, HYD,, C*)={1,¢,}. By Theorem 2.1, the
homomorphism ¢ : H¥(®,, C*)--P(D,/3, 3; C*) is injective. Take an element X in
D, such that #ey(X, Z)+1. Then take an element ¢#1 in P(D, A; C*) such that
¢(X, Y)=1. Then let ¢ be the element in H3$, C*) which corresponds to (co, ¢)
by the isomorphism H?(®, C*)=HYD,, C*)xP(D,A; C*). Then it is easy to show
that the center of the algebra _i(¢)=.i(,C, ¢) is of dimension 1. Thus ..(c) is
central simple. Also in this ease ¢ can be constructed in H%®H, Q*). Thus, there
is also an element ¢ in H¥®, Q*) for which .4«(D,Q,c) is a central simple algebra
over Q.

REMARK. Analogous construction is possible also for H=T,;xD,, and we
obtain a central simple (4(9, Q, ¢).

University of Tokyo
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