Several remarks on projective representations of finite groups

By Nagayoshi Iwahori and Hideya Matsumoto Dedicated to Professor Masao Sugawara

Introduction

We shall consider in this note some questions about the projective representations of a finite group and related problems. In §1, we shall extend the Hochschild-Serre's exact sequence [3]

$$1 \to \text{Hom}(\mathfrak{H}, \Omega) \to \text{Hom}(\mathfrak{H}, \Omega) \to \text{Hom}(\mathfrak{H}, \Omega) \to H^2(\mathfrak{H}, \Omega) \to H^2(\mathfrak{H}, \Omega)$$

associated to a central group extension of a group \mathfrak{D} by an abelian group \mathfrak{A} , $1 \rightarrow \mathfrak{A} \rightarrow \mathfrak{D} \rightarrow \mathfrak{D} \rightarrow 1$, where \mathfrak{B} , \mathfrak{D} and \mathfrak{A} act on an abelian group \mathfrak{Q} trivially, to get the following exact sequence:

$$\cdots \to \operatorname{Hom}(\mathfrak{A}, \Omega) \to \operatorname{H}^{2}(\mathfrak{F}, \Omega) \to \operatorname{H}^{2}(\mathfrak{B}, \Omega) \to \operatorname{H}^{2}(\mathfrak{A}, \Omega) \times \operatorname{P}(\mathfrak{B}, \mathfrak{A}; \Omega).$$

Here $P(\mathfrak{G}, \mathfrak{A}; \Omega)$ means the group of all pairings $\mathfrak{G} \times \mathfrak{A} \to \Omega$. Then we note that the last term can be replaced, preserving the exactness of the sequence, by simpler groups if Ω satisfies some conditions. For example, if Ω is infinitely divisible, then we can replace the last term by $P(\mathfrak{G}, \mathfrak{A}; \Omega)$. Also, if $Hom(\mathfrak{G}, \Omega)=1$, then the last term can be replaced by $H^2(\mathfrak{A}, \Omega)$. Then considering the subgroup $H^2(\mathfrak{G}, \Omega)^{\sharp} = \{c \in H^2(\mathfrak{G}, \Omega); c \mid_{\mathfrak{A}} = 1\}$, we shall give another exact sequence:

$$\cdots \to H^2(\mathfrak{H}, \Omega) \to H^2(\mathfrak{H}, \Omega)^{\sharp} \to P(\mathfrak{H}, \mathfrak{A}; \Omega) \to H^3(\mathfrak{H}, \Omega).$$

In § 2, using the results in § 1, we shall consider the question of the existence of a closed representation group of a given finite group \mathfrak{H} . More precisely, this question means the following. As was shown by Schur [4], for any finite group \mathfrak{H} , there exists a finite group \mathfrak{H} and a surjective homomorphism $\varphi: \mathfrak{H} \to \mathfrak{H}$ with the following properties:

- 1) (\mathfrak{G}, φ) is a central group extension of \mathfrak{F} , i.e. the kernel \mathfrak{N} of φ is a central subgroup of \mathfrak{G} .
 - 2) For any projective representation ρ of δ , i.e. for any homomorphism

$$\rho: \mathfrak{H} \to \mathrm{PGL}(n, \mathbb{C}) = \mathrm{GL}(n, \mathbb{C})/\mathfrak{z},$$
 (3 is the center of $\mathrm{GL}(n, \mathbb{C})$),

there exists a linear representation $\tilde{\rho}$ of \mathfrak{G} , i.e. a homomorphism

$$\tilde{\rho}: \mathfrak{G} \to \mathrm{GL}(n, \mathbb{C})$$

such that the following diagram is commutative:

$$\begin{array}{ccc} & \stackrel{\tilde{\rho}}{\longrightarrow} \operatorname{GL}(n,C) \\ & \downarrow & \downarrow^{\pi} & (\pi \text{ is the natural projection}). \\ & & \stackrel{\rho}{\longrightarrow} \operatorname{PGL}(n,C) \end{array}$$

Such a central extension (\mathfrak{G}, φ) is called by Schur a sufficient central extension (hinreichend ergänzte Gruppe) of \mathfrak{B} . (In the terminology of K. Yamazaki [7], (\mathfrak{G}, φ) is of surjective type.) A sufficient central extension is called a representation group of & (Darstellungsgruppe, Schur [4]) if the order of (3 is the least among all sufficient central extensions of S. A group S is called closed (abgeschlossen, Schur [4]) if $H^2(\mathfrak{H}, \mathbb{C}^*)=1$, where \mathfrak{H} acts on \mathbb{C}^* trivially. Now for each central group extension $1 \rightarrow \mathfrak{A} \rightarrow \mathfrak{A} \rightarrow \mathfrak{A} \rightarrow \mathfrak{A}$, there is associated the transgression map $\tau: \text{Hom}(\mathfrak{A}, \mathbf{C}^*) \to \mathbf{H}^2(\mathfrak{H}, \mathbf{C}^*)$ appearing in the Hochschild-Serre's exact sequence. In this case, τ can be defined as follows (cf. Schur [1]): let $u: \mathfrak{H} \to \mathfrak{G}$ be any section of the extension, i.e. any map $\mathfrak{H} \to \mathfrak{G}$ such that $\varphi \circ u = \mathrm{id}$. Let $\chi \in \mathrm{Hom}(\mathfrak{N}, \mathbb{C}^*)$ and $P, Q \in \mathfrak{H}$. Then the map $(P, Q) \to \chi(A_{P, Q}), A_{P, Q} = u(P) \cdot u(Q) \cdot u(PQ)^{-1} \in \mathfrak{A}$, is a 2-cocycle of \mathfrak{H} and its cohomology class $\tau(\mathfrak{X})$ is independent of the choice of the section u. Now, using the transgression map τ , a criterion for the central group extension (\mathfrak{G},φ) to be sufficient or to be a representation group is obtained (Schur [4], see also K. Yamazaki [7]). Namely, (\mathfrak{G}, φ) is sufficient if and only if τ is surjective, and (\mathfrak{G},φ) is a representation group of \mathfrak{G} if and only if τ is bijective. We shall prove in §2 that if \$\delta\$ coincides with its commutator group, then any representation group of $\mathfrak P$ is closed. (In this case, any two representation groups of $\mathfrak P$ are isomorphic to each other, see Schur [5] or K. Yamazaki [7]). We may conjecture that for any finite group & there exists at least one closed representation group of S. We shall give at the end of §2 few examples of groups S for which $\mathfrak{H} \neq [\mathfrak{H}, \mathfrak{H}]$ and some representation group of \mathfrak{H} is closed.

In § 3, we shall construct an obstruction cocycle for the extension of a linear representation ρ of a given group \Re to a linear representation $\widetilde{\rho}$ of a group \Im which contains \Re as a normal subgroup. If ρ is extendable to \Im , ρ is clearly self-conjugate, i.e. $\rho \sim \rho^g$ for any g in \Im where $\rho^g(n) = \rho(gng^{-1})$ for any n in \Re . Thus we associate to each self-conjugate linear representation ρ of \Re an element $c(\rho)$ in $H^2(\Im, \mathbb{C}^*)$ where $\Im = \Im/\Re$. Then it is proved that ρ is extendable to \Im if and only if $c(\rho) = 1$. Using this obstruction, we shall prove that if \Im is finite and if the orders of \Re and \Im are relatively prime, then any self-conjugate linear representation of \Re is extendable to \Im .

In § 4, we shall consider a particular case of § 3 where S is finite and S=S/R

is abelian. Then $\mathfrak D$ acts naturally on the set $R(\mathfrak R)$ of all classes of equivalent irreducible linear representations of $\mathfrak R$ over $\mathfrak C$ and $\mathfrak D=\operatorname{Hom}(\mathfrak D, \mathbb C^*)$ acts on the set $R(\mathfrak B)$ of all classes of equivalent irreducible linear representations of $\mathfrak B$. It is shown that there exists a natural bijective map between the quotient sets $R(\mathfrak R)/\mathfrak D$ and $R(\mathfrak B)/\mathfrak D$. This is also valid in case where $\mathfrak B$ is a compact group and $\mathfrak R$ is a closed normal subgroup with finite abelian quotient group. Using a property of this bijection, a result of R. Frucht [2] about the uniqueness of irreducible projective representation with the given factor set for the case where the group is finite abelian will be reproduced as a corollary.

In §5 we shall give miscellaneous examples about the existence of a central simple algebra extensions of a finite group \mathfrak{P} (see for the definition of an algebra extension of \mathfrak{P} , K. Yamazaki [7]).

Acknowledgement. In preparing this note, the authors got many advantages by the discussion with Mr. K. Yamazaki, to whom we express our thanks here.

§ 1. Let $1 \to \mathfrak{N} \to \mathfrak{S} \xrightarrow{\varphi} \mathfrak{H} \to 1$ be a group extension of a group \mathfrak{H} such that the kernel \mathfrak{N} of the homomorphism φ is contained in the center of \mathfrak{G} . Let \mathfrak{Q} be any abelian group (written multiplicatively) and we consider the cohomology groups of $\mathfrak{G}, \mathfrak{N}, \mathfrak{H}$ under the trivial action on \mathfrak{Q} . Then there exists an exact sequence of Hochschild-Serre [3]:

$$1 \to H^{1}(\mathfrak{H}, \Omega) \xrightarrow{i_{1}} H^{1}(\mathfrak{H}, \Omega) \xrightarrow{r_{1}} H^{1}(\mathfrak{H}, \Omega) \xrightarrow{\tau} H^{2}(\mathfrak{H}, \Omega) \xrightarrow{i_{2}} H^{2}(\mathfrak{H}, \Omega).$$

where i_1, i_2 are the inflation maps and r_1 is the restriction map and the transgression map τ is given as follows: let $u: \mathfrak{H} \to \mathfrak{G}$ be any section of the group extension $\varphi: \mathfrak{G} \to \mathfrak{H}$, i.e. $\varphi \circ u = \text{identity}$, and $A: \mathfrak{H} \times \mathfrak{H} \to \mathfrak{M}$ the factor set of the extension associated to u, i.e.

$$A(P,Q)=u(P)u(Q)u(PQ)^{-1}$$
 for P,Q in \mathfrak{H} .

Let $\alpha \in H^1(\mathfrak{N}, \Omega) = \operatorname{Hom}(\mathfrak{N}, \Omega)$. Then $\alpha \circ A$ is a Ω -valued 2-cocycle on H and the cohomology class $\tau(\alpha)$ of $\alpha \circ A$ is independent of the choice of the section α . Now we denote by $P(\mathfrak{S}, \mathfrak{N}; \Omega)$ the abelian group consisting of all pairings $G \times A \to \Omega$. (Note that a map $f: \mathfrak{S} \times \mathfrak{N} \to \Omega$ is called a *pairing* if

$$f(XY, A) = f(X, A)f(Y, A),$$

$$f(X, AB) = f(X, A)f(X, B)$$

for any X, Y in \mathfrak{G} , and for any A, B in \mathfrak{A} . The product of f_1, f_2 in $P(\mathfrak{G}, \mathfrak{A}; \Omega)$ is defined by $(f_1 f_2)(X, A) = f_1(X, A) f_2(X, A)$ $(X \text{ in } \mathfrak{G}, A \text{ in } \mathfrak{A})$.

Let $\theta_1: H^2(\mathfrak{G}, \Omega) \to H^2(\mathfrak{A}, \Omega)$ be the restriction map. We now define a map

 $\theta_2: H^2(\mathfrak{G}, \mathcal{Q}) \to P(\mathfrak{G}, \mathfrak{A}; \mathcal{Q})$ as follows: let f be any \mathcal{Q} -valued 2-cocycle of \mathfrak{G} , then the map $\theta_2 f: \mathfrak{G} \times \mathfrak{A} \to \mathcal{Q}$ defined by

$$\theta_2 f: (X, A) \rightarrow \langle X, A \rangle_f = f(X, A) f(A, X)^{-1}$$
 (X in \mathfrak{B} , A in \mathfrak{A})

is a pairing of $\mathfrak{G} \times \mathfrak{N}$ into \mathfrak{Q} . In fact, since f is a 2-cocycle, we have $f(X, YZ) \cdot f(Y, Z) = f(X, Y) f(XY, Z)$ for any X, Y, Z in \mathfrak{G} . Thus we get

also similarly we have $\langle X, AB \rangle_f = \langle X, A \rangle_f \cdot \langle X, B \rangle_f$ (X in \mathfrak{G} , A, B in \mathfrak{A}). It is easy to check that two cohomologous cocycles give the same pairing. Thus there is induced a homorphism $\theta_2 : H^2(\mathfrak{G}, \Omega) \to P(\mathfrak{G}, \mathfrak{A}; \Omega)$. Now we define the homomorphism $\theta : H^2(\mathfrak{G}, \Omega) \to H^2(\mathfrak{A}, \Omega) \times P(\mathfrak{G}, \mathfrak{A}, \Omega)$ by $\theta = \theta_1 \times \theta_2$.

PROPOSITION 1.1. The sequence $H^2(\mathfrak{H}, \mathcal{Q}) \xrightarrow{iz} H^2(\mathfrak{G}, \mathcal{Q}) \xrightarrow{\theta} H^2(\mathfrak{N}, \mathcal{Q}) \times P(\mathfrak{G}, \mathfrak{N}; \mathcal{Q})$ is exact.

PROOF. Clearly we have $\operatorname{Im}(i_2) \subset \operatorname{Ker}(\theta)$. Now let us show $\operatorname{Im}(i_2) \supset \operatorname{Ker}(\theta)$. Let f be any Ω -valued 2-cocycle of $\mathfrak S$ such that the cohomology class [f] of f is in $\operatorname{Ker}(\theta)$, i.e. the restriction $\theta_1 f$ of f on $\mathfrak N$ is cohomologous to 1 and $\theta_2 f = 1$. Then there is a map $g_0: \mathfrak N \to \Omega$ such that $f(A, B) = g_0(A)g_0(AB)^{-1}g_0(B)$ $(A, B \text{ in } \mathfrak N)$. We may assume that f is normalized, i.e. f(X, 1) = f(1, X) = 1 for any X in $\mathfrak S$. Let $u: \mathfrak S \to \mathfrak S$ be any section such that u(1) = 1, and we define a map $g: \mathfrak S \to \Omega$ by $g(Au(P)) = g_0(A)f(A, u(P))^{-1}$ for A in $\mathfrak N$, P in $\mathfrak S$. (Note that every X in $\mathfrak S$ can be uniquely expressed as X = Au(P), A in $\mathfrak N$, P in $\mathfrak S$). Obviously $g|_{\mathfrak N} = g_0$. Now let us consider the coboundary δg of g. We have

$$\delta g(A, u(P)) = g(A)g(Au(P))^{-1}g(u(P))$$

$$= g_0(A)g_0(A)^{-1}f(A, u(P))$$

$$= f(A, u(P)),$$

$$\delta g(u(P), A) = g(u(P))g(u(P)A)^{-1}g(A)$$

$$= g_0(A)^{-1}f(A, u(P))g_0(A)$$

$$= f(A, u(P))$$

$$= f(u(P), A) \qquad \text{(since } \theta_2 f = 1\text{)}.$$

Hence $f_1 = f(\partial g)^{-1}$ satisfies $f_1(A, u(P)) = f_1(u(P), A) = 1$ for any A in \mathfrak{A} , P in \mathfrak{A} . Also, clearly we have $f_1(A, B) = 1$ for any A, B in \mathfrak{A} . Thus we have

$$f_1(A, Bu(P)) = f_1(B, u(P))^{-1} f_1(A, B) f_1(AB, u(P)) = 1$$

 $f_1(Au(P), B) = f_1(A, u(P))^{-1} f(A, u(P)B) f(u(P), B) = 1$

for any A, B in \mathfrak{A}, P in \mathfrak{D} . Hence, for any A, B in \mathfrak{A}, P, Q in \mathfrak{D} , we get

$$f_1(Au(P), Bu(Q)) = f_1(A, u(P))^{-1} f_1(A, Bu(P)u(Q)) f_1(u(P), Bu(Q))$$

$$= f_1(u(P), Bu(Q))$$

$$= f(u(Q), B)^{-1} f(u(P), u(Q)) f(u(P)u(Q), B)$$

$$= f(u(P), u(Q)).$$

Thus the cohomology class [f] of f is in $Im(i_2)$, Q.E.D.

Now we shall consider some particular case of Prop. 1.1 where the abelian group Ω is infinitely divisible, i.e. for any positive integer m, the map $\alpha \to \alpha^m$ is a surjective map from Ω onto Ω . In this case we have the following

LEMMA 1.2. Let \mathfrak{A} be a finitely generated abelian group and \mathfrak{A} be an infinitely divisible abelian group. If a \mathfrak{A} -valued 2-cocyle f of \mathfrak{A} satisfies f(A, B) = f(B, A) for any A, B in \mathfrak{A} , then f is a coboundary.

PROOF. see K. Yamazaki [7, § 2.3.]

REMARK. By using Zorn's Lemma, this lemma is also valid for any abelian group \mathfrak{A} .

Using this lemma, it is immediate that in Prop. 1.1, if Ω is infinitely divisible and \Re is finitely generated, then for c in $H^2(\mathfrak{G}, \Omega)$, $\theta_2(c)=1$ implies $\theta_1(c)=1$. Hence we get the

Proposition 1.3. If Ω is infinitely divisible and $\mathfrak A$ is finitely generated, then the sequence

$$H^2(\mathfrak{H}, \Omega) \xrightarrow{i_2} H^2(\mathfrak{G}, \Omega) \xrightarrow{\theta_2} P(\mathfrak{G}, \mathfrak{U}; \Omega)$$

is exact.

Next we consider the case where $H^1(\mathfrak{H}, \mathcal{Q})=1$ in Proposition 1.1. Assume that $\theta_1([f])=1$ for given [f] in $H^2(\mathfrak{H}, \mathcal{Q})$, then $\theta_2f(A, B)=1$ for all A, B in \mathfrak{A} . Thus θ_2f induces a pairing $(\mathfrak{H}/\mathfrak{A})\times\mathfrak{A}\to\mathcal{Q}$. Now since $\operatorname{Hom}(\mathfrak{H}, \mathcal{Q})=1$ by our assumption, we have $\theta_2f(X, A)=1$ for all X in \mathfrak{H} , A in \mathfrak{A} . Thus $\theta_1([f])=1$ implies $\theta_2([f])=1$ and we have

Proposition 1.4. If $H^1(\mathfrak{H}, \Omega) = 1$, then the sequence

$$H^2(\mathfrak{H}, \Omega) \xrightarrow{i_2} H^2(\mathfrak{G}, \Omega) \xrightarrow{\theta_1} H^2(\mathfrak{A}, \Omega)$$

is exact.

Now denote the kernel of $\theta_1: H^2(\mathfrak{G}, \mathcal{Q}) \to H^2(\mathfrak{N}, \mathcal{Q})$ by $H^2(\mathfrak{G}, \mathcal{Q})^{\mathfrak{p}}$. Then θ_2 induces a homomorphism $\theta: H^2(\mathfrak{G}, \mathcal{Q})^{\mathfrak{p}} \to P(\mathfrak{H}, \mathfrak{N}; \mathcal{Q})$ as we have seen above. Also it is obvious that the sequence

$$H^2(\mathfrak{H}, \mathcal{Q}) \xrightarrow{i_2} H^2(\mathfrak{G}, \mathcal{Q}) : \xrightarrow{\theta} P(\mathfrak{H}, \mathfrak{U}; \mathcal{Q})$$

is exact. We define a homomorphism $\rho: P(\mathfrak{H}, \mathfrak{A}; \mathcal{Q}) \to H^3(\mathfrak{H}, \mathcal{Q})$ as follows: let $u: \mathfrak{H} \to \mathfrak{G}$ be a map such that u(1)=1, $\varphi \circ u=\mathrm{id}$. and $A: \mathfrak{H} \times \mathfrak{H} \to \mathfrak{A}$ be the associated factor set: u(P)u(Q)=A(P,Q)u(PQ), for P,Q in \mathfrak{H} . For f in $P(\mathfrak{H}, \mathfrak{A}; \mathcal{Q})$, put

$$(\rho f)(P, Q, R) = f(P, A(Q, R))$$
 for P, Q, R in §.

It is easily checked that ρf is a 3-cocycle and its cohomology class is independent of the choice of the section u. Thus ρ induces a homomorphism $\rho: P(\mathfrak{H}, \mathfrak{U}; \Omega) \to H^3(\mathfrak{H}, \Omega)$.

THEOREM 1.5. Let $1 \to \mathfrak{A} \to \mathfrak{A} \to \mathfrak{B} \to 1$ be a central extension of a group \mathfrak{B} by an abelian group \mathfrak{A} . Let \mathcal{Q} be an arbitrary abelian group. Then the sequence

$$1 \to H^{1}(\mathfrak{H}, \mathcal{Q}) \xrightarrow{i_{1}} H^{1}(\mathfrak{G}, \mathcal{Q}) \xrightarrow{r_{1}} H^{1}(\mathfrak{A}, \mathcal{Q})$$

$$\xrightarrow{r} H^{2}(\mathfrak{H}, \mathcal{Q}) \xrightarrow{i_{2}} H^{2}(\mathfrak{G}, \mathcal{Q})^{\sharp} \xrightarrow{\ell} P(\mathfrak{H}, \mathfrak{A}; \mathcal{Q}) \xrightarrow{\ell} H^{3}(\mathfrak{H}, \mathcal{Q})$$

is exact.

PROOF. We have only to show that the sequence $H^2(\mathfrak{G}, \Omega)^2 \xrightarrow{\theta} P(\mathfrak{F}, \mathfrak{A}, \Omega)$ $\xrightarrow{\rho} H^3(\mathfrak{F}, \Omega)$ is exact. Let [f] be an element in $H^2(\mathfrak{G}, \Omega)^2$. Then there is a map $g_0: \mathfrak{A} \to \Omega$ such that $f(A, B) = g_0(A)g_0(AB)^{-1}g_0(B)$ for all A, B in \mathfrak{A} . We may assume f is normalized, i.e. f(X, 1) = f(1, X) = 1 for any X in \mathfrak{G} . Define an extension of g_0 to a map $g: \mathfrak{G} \to \Omega$ by $g(Au(p)) = g_0(A)f(A, u(P))^{-1}$ for A in \mathfrak{A} , P in \mathfrak{F} . Then as in Proposition 1.1, $f_1 = f(\partial g)^{-1}$ satisfies

(1)
$$\begin{cases} f_1(A, X) = 1 & \text{for } A \text{ in } \mathfrak{A}, X \text{ in } \mathfrak{B} \\ f_1(Au(P), B) = \psi(P, B) & \text{for } A, B \text{ in } \mathfrak{A}, P \text{ in } \mathfrak{B} \\ f_1(Au(P), Bu(Q)) = \psi(P, B) f_1(u(P), u(Q)) & \text{for } A, B \text{ in } \mathfrak{A}, P, Q \text{ in } \mathfrak{B}, \end{cases}$$

where $\psi = \theta f \in P(\mathfrak{H}, \mathfrak{N}; \Omega)$. The cocycle condition for f_1 :

$$f_1(u(P), u(Q))f_1(u(P)u(Q), u(R)) = f_1(u(P), u(Q)u(R))f_1(u(Q), u(R))$$

implies by (1)

$$\psi(P, A(Q, R)) f_1(u(P), u(QR)) f_1(u(Q), u(R))$$

$$= f_1(u(P), u(Q)) f_1(u(PQ), u(R)).$$

Thus, defining a 2-cochain $\widetilde{f}_1: \mathfrak{H} \times \mathfrak{H} \to \Omega$ by $\widetilde{f}_1(P,Q) = \widetilde{f}_1(u(P), u(Q))$, we obtain $\rho(\psi) = (\partial \widetilde{f}_1)^{-1}$. Thus we get $\operatorname{Im}(\theta) \subset \operatorname{Ker}(\rho)$.

Conversely let $\phi \in P(\mathfrak{H}, \mathfrak{N}; \Omega)$ be in $\operatorname{Ker}(\rho)$. Then there is a map $\widetilde{f}_1 : \mathfrak{H} \times \mathfrak{H} \to \Omega$ such that $\rho(\phi) = (\delta \widetilde{f}_1)^{-1}$. Define $f_1 : \mathfrak{H} \times \mathfrak{H} \to \Omega$ by $f_1(Au(P), Bu(Q)) = \phi(P, B)\widetilde{f}_1(P, Q)$ for A, B in \mathfrak{N} and P, Q in \mathfrak{H} . Then it is easy to check that f_1 is a 2-cocycle and

 $[f_1] \in H^2(\mathfrak{G}, \Omega)^{\sharp}$. Moreover we have $\theta f_1 = \psi$. Thus $\operatorname{Ker}(\rho) \subset \operatorname{Im}(\theta)$, Q.E.D.

§ 2. As an application of § 1, we shall prove the

THEOREM 2.1. Let \mathfrak{H} be a finite group and \mathfrak{H} a representation group of \mathfrak{H} . Then $H^2(\mathfrak{G}, \mathbb{C}^*)$ is isomorphic to a subgroup of $P(\mathfrak{H}, \mathfrak{M}; \mathbb{C}^*)$, where $\mathfrak{M} = H^2(\mathfrak{H}, \mathbb{C}^*)$.

PROOF. Since \mathfrak{B} is a representation group of \mathfrak{D} , \mathfrak{B} is a central extension of \mathfrak{D} by the abelian group \mathfrak{M} , $1 \to \mathfrak{M} \to \mathfrak{B} \to 1$ (cf. Schur [4] or K. Yamazaki [7]). Thus we may utilize the exact sequence of §1 (Proposition 1.3)

$$H^1(\mathfrak{M}, \mathbf{C}^*) \xrightarrow{\tau} H^2(\mathfrak{H}, \mathbf{C}^*) \xrightarrow{i_2} H^2(\mathfrak{G}, \mathbf{C}^*) \xrightarrow{\theta_2} P(\mathfrak{G}, \mathfrak{M}; \mathbf{C}^*).$$

The map τ is bijective since \mathfrak{G} is a representation group of \mathfrak{H} (cf. K. Yamazaki [7]). Hence i_2 is a zero-map and θ_2 is an injective map. Now since τ is injective, $[G,G]\supset M$ (cf. Schur [4]). Thus we have the natural isomorphism: $P(\mathfrak{G},\mathfrak{M};C^*)\cong P(\mathfrak{G}/\mathfrak{M},\mathfrak{M};C^*)=P(\mathfrak{H},\mathfrak{M};C^*)$, Q.E.D.

COR. 2.2. Let $\mathfrak D$ be a finite group and $\mathfrak M=H^2(\mathfrak D,C^*)$. If $P(\mathfrak D,\mathfrak M;C^*)=1$, then any representation group $\mathfrak B$ satisfies $H^2(\mathfrak B,C^*)=1$.

REMARK. Let $\mathfrak{H}/[\mathfrak{H},\mathfrak{H}]=\mathbf{Z}_{e_1}\times\cdots\times\mathbf{Z}_{e_r},\ \mathfrak{M}=\mathbf{Z}_{f_1}\times\cdots\times\mathbf{Z}_{f_s}$ be direct product decompositions of $\mathfrak{H}/[\mathfrak{H},\mathfrak{H}],\ \mathfrak{M}$ into cyclic factors respectively. Then the order of $P(\mathfrak{H},\mathfrak{M};\mathbf{C}^*)$ is equal to $\prod_{i=1}^r\prod_{j=1}^s(e_i,f_j)$, where (e_i,f_j) denotes the greatest common divisor of e_i,f_j . This is the upper bound given by Schur [5] for the number of non-isomorphic representation groups of \mathfrak{H} . Thus, if $P(\mathfrak{H},\mathfrak{M};\mathbf{C}^*)=1$, \mathfrak{H} has only one representation group up to an isomorphism.

Let us exhibit some examples of a finite group \mathfrak{F} for which $P(\mathfrak{F}, \mathfrak{M}; C^*) \neq 1$ but still there exists a representation group \mathfrak{G} such that $H^2(\mathfrak{G}, C^*) = 1$.

EXAMPLE 1. $\mathfrak{H}=\mathfrak{D}_n=$ the dihedral group of order 2n. \mathfrak{H} is generated by P, Q together with the fundamental relations $P^2=Q^n=1$, $PQP^{-1}=Q^{-1}$. Now consider a group \mathfrak{H} generated by \overline{P} , \overline{Q} together with the fundamental relations $P^2=\overline{Q}^n$, $Q^{2n}=1$, $P\overline{Q}P^{-1}=\overline{Q}^{-1}$. \mathfrak{H} is the generalized quaternion group of order 4n. Then $\overline{P}\to\overline{P}$, $\overline{Q}\to Q$ defines a central extension \mathfrak{H} of \mathfrak{H} . It is easy to see that, if n is even, \mathfrak{H} is a representation group of \mathfrak{H} and $H^2(\mathfrak{H}, \mathbb{C}^*)=1$. Here $P(\mathfrak{H}, \mathfrak{M}; \mathbb{C}^*)=\mathbb{Z}_2\times\mathbb{Z}_2$.

EXAMPLE 2. $\mathfrak{H}=\mathfrak{S}_n=$ the symmetric group of degree n. Then one of the two representation groups given by Schur [6] has trivial 2-cohomology group. Here $P(\mathfrak{H},\mathfrak{M};C^*)=\mathbb{Z}_2$.

§ 3. In this section, let \Re be a normal subgroup of a group \Im and we denote by \Im the factor group \Im/\Re and by π the canonical homomorphism \Im/\Re . Let $\rho: \Re \to GL(m, \mathbb{C})$ be an irreducible linear representation of degree m of \Re . Then for any g in \Im , a representation $\rho^g: \Re \to GL(m, \mathbb{C})$ is defined by $\rho^g(x) = \rho(gxg^{-1})$

(x in \mathfrak{H}). The rep. ρ is called to be self-conjugate if for any g in \mathfrak{H} , ρ^g is equivalent to ρ . Now let us consider the question when an irreducible linear rep. $\rho: \mathfrak{R} \to GL(m, \mathbb{C})$ can be extended to a linear rep. $\widetilde{\rho}: \mathfrak{G} \to GL(m, \mathbb{C})$ of \mathfrak{H} . Clearly, if ρ is extendable to a rep. of \mathfrak{H} , then ρ is self-conjugate. Thus we shall construct an obstruction cohomology class c_p in $H^2(\mathfrak{H}, \mathbb{C}^*)$ for any irreducible, self-conjugate linear representation ρ of \mathfrak{H} . Let ρ be such a rep. of \mathfrak{H} . Then for each g in \mathfrak{H} , there exists an element X_g in $GL(m,\mathbb{C})$ such that $X_g\rho(x)X_g^{-1}=\rho^g(x)$ (x in \mathfrak{H}). Let us choose X_g as follows: let $\mathfrak{H}=\bigcup_i \mathfrak{H} g_i=\bigcup_i g_i \mathfrak{H}$ be a coset decomposition of \mathfrak{H} w.r.t. \mathfrak{H} ($g_1=1$). Choose for each g_i the matrix X_{g_i} such that $X_{g_i} \cdot \rho(x) \cdot X_{g_i}^{-1} = \rho^{g_i}(x)$ for any x in \mathfrak{H} . ($X_{g_i}=1$). Then for $g=ag_i$ in $\mathfrak{H} g_i$, put $X_g=\rho(a)X_{g_i}$ (a in \mathfrak{H}). Then it is easy to check that the map $g \to X_g$ constructed above satisfies the following (1) \sim (4).

- (1) $\rho^{g}(x) = X_{g}\rho(x)X_{g}^{-1} \quad \text{(for } a \text{ in } \mathfrak{R}, \ g \text{ in } \mathfrak{S})$
- (2) $X_a = \rho(a)$ (for a in \Re)
- (3) $X_{ag} = \rho(a) \cdot X_g \quad \text{(for } a \text{ in } \Re, g \text{ in } \Re)$
- (4) $X_{ga} = X_g \cdot \rho(a) \quad \text{(for } a \text{ in } \Re, g \text{ in } \Re)$

We shall call a map $g \to X_g$ from $\mathfrak G$ into $GL(m,\mathbb C)$ a section for the homomorphism $\rho: \mathfrak R \to GL(m,\mathbb C)$ if it satisfies (1)~(4) above. Now let $g \to X_g$ and $g \to Y_g$ be two sections for ρ . Then $\rho^g(x) = X_g \cdot \rho(x) \cdot X_g^{-1} = Y_g \cdot \rho(x) Y_g^{-1}$ ($x \text{ in } \mathfrak R$) and the irreducibility of ρ imply the existence of a map $g \to \zeta_g$ from $\mathfrak G$ into $\mathbb C^*$ such that $\zeta_g X_g = Y_g$ for any $g \text{ in } \mathfrak G$. Clearly $\zeta_a = 1$ ($a \text{ in } \mathfrak R$) and $\zeta_{ag} = \zeta_g$ ($a \text{ in } \mathfrak R$, $g \text{ in } \mathfrak G$).

Now let $g \to X_g$ be a section for an irreducible linear rep. $\rho: \mathfrak{R} \to GL(m, \mathbb{C})$. Then for any x,y in \mathfrak{S} there exists a scalar $c_{x,y}$ in \mathbb{C}^* such that $X_x X_y = c_{x,y} X_{xy}$. In fact $X_{xy} \rho(a) X_{xy}^{-1} = \rho(xyay^{-1}x^{-1}) = X_x \cdot \rho(yay^{-1}) X_x^{-1} = X_x X_y \rho(a) X_y^{-1} X_x^{-1}$ implies that $X_{xy}^{-1} X_x X_y$ commutes with any $\rho(a)$, a in \mathfrak{R} . Thus by Schur's lemma, the existence of $c_{x,y}$ is established. It is easy to see that the map $(x,y) \to c_{x,y}$ from $\mathfrak{S} \times \mathfrak{S}$ into \mathbb{C}^* is a \mathbb{C}^* -valued 2-cocycle of \mathfrak{S} . Also we have

$$(5) c_{ax,by}=c_{x,y} (a,b in \mathfrak{R}, x,y in \mathfrak{R}).$$

In fact, $X_{ax}X_{by}=c_{ax,by}X_{axby}$ and (3) imply that

$$\begin{array}{ll} \rho(a) X_x \! \cdot \! \rho(b) X_y \! = \! c_{ax,\;by} X_{a \! \cdot xbx^{-1} \! \cdot xy} \! = \! c_{ax,\;by} \! \cdot \! \rho(axbx^{-1}) X_{xy} \; , \\ \text{i.e.} \qquad \qquad \rho(a) X_x \! \cdot \! \rho(b) X_x^{-1} \! \cdot \! X_x X_y \! = \! c_{ax,\;by} \! \cdot \! \rho(a \! \cdot \! xbx^{-1}) X_{xy} \; , \end{array}$$

hence we have

$$\rho(a)\cdot\rho(xbx^{-1})c_{x,y}X_{xy}=c_{ax,by}\cdot\rho(axbx^{-1})X_{xy},$$

which implies (5) immediately. Thus the cocycle $(x, y) \to c_{x, y}$ of $\mathfrak S$ induces a 2-cocycle $c^*: (u, v) \to c_{u, v}^*$ of $\mathfrak S$ such that $c_{\pi(x), \pi(y)}^* = c_{x, y}(x, y \in \mathfrak S)$. Now we shall verify that the cohomology class $[c^*]$ of c^* is independent of the section $g \to X_y$ for ρ .

In fact, if $g \to Y_g$ is another section for ρ , then, as we noticed above, there is a map $g \to \zeta_g$ from $\mathfrak G$ into C^* such that

$$Y_g = \zeta_g \cdot X_g$$
 (g in S), $\zeta_a = 1$ (a in N),
 $\zeta_{ag} = \zeta_g$ (a in N, g in S).

Now, let $(x,y) \to r_{x,y}$ be the 2-cocycle of $\mathfrak B$ defined by the section $g \to Y_v$. Then it is easy to see $r_{x,y} = \frac{\zeta_x \zeta_y}{\zeta_{xy}} c_{x,y}$ (for any x,y in $\mathfrak B$). Since $\zeta_{ag} = \zeta_g$ (a in $\mathfrak R$, g in $\mathfrak B$), $g \to \zeta_g$ induces a map $u \to \zeta_u^*$ from $\mathfrak B$ into C^* such that $\zeta_{u(x)}^* = \zeta_x$ (x in $\mathfrak B$). Then we have $r_{u,v}^* = \frac{\zeta_u^* \zeta_v^*}{\zeta_{uv}^*} c_{u,v}^*$ (for any u,v in $\mathfrak B$), i.e. $[c^*] = [r^*]$. This cohomology class will be denoted by c_g and we shall call it the obstruction class for ρ .

PROPOSITION 3.1. An irreducible linear rep. $\rho: \mathfrak{R} \to GL(m, \mathbb{C})$ can be extended to \mathfrak{G} if and only if $c_{\rho}=1$.

PROOF. If ρ can be extended to a linear rep. $\sigma: \mathfrak{G} \to GL(m, \mathbb{C})$, then as a section for ρ , we can take $X_g = \sigma(g)$ $(g \text{ in } \mathfrak{G})$. It is obvious then $c_\rho = 1$. Conversely, suppose $c_\rho = 1$. Then, using above notations $g \to X_\rho$, $c_{x,y}$, $c_{u,v}^*$, for ρ , there exists a map $u \to \zeta_u^*$ from \mathfrak{G} into \mathbb{C}^* such that $c_{u,v}^* = \frac{\zeta_u^* \zeta_v^*}{\zeta_{uv}^*}$. Define a map $g \to \zeta_y$ from \mathfrak{G} into \mathbb{C}^* by $\zeta_g = \zeta_{u(g)}^*$. Since $c_{1,v}^* = c_{v,1}^* = 1$, we have $\zeta_1^* = 1$, $\zeta_u = 1$ $(a \text{ in } \mathfrak{R})$. Moreover, it is easy to see that $\zeta_{uy} = \zeta_g$ $(a \text{ in } \mathfrak{R}, g \text{ in } \mathfrak{G})$. Then the map $g \to Y_g$ $= \frac{1}{\zeta_g} X_g$ is easily seen to be a section for ρ . Moreover, we have $Y_x Y_y = Y_{xy}$ for any x, y in \mathfrak{G} . Thus the map $g \to Y_g$ is a homomorphism from \mathfrak{G} into $GL(m, \mathbb{C})$ extending ρ .

Cor. 3.2. Let \Re be a normal subgroup of a finite \Re such that the order of \Re is relatively prime to the index of \Re in \Re . Then any self-conjugate irreducible linear representation of \Re can be extended to a linear rep. of \Re .

PROOF. Let ρ be a self-conjugate irreducible linear rep. of \Re . Let e be the order of the obstruction class c_{ρ} in $H^{2}(\mathfrak{D}, \mathbb{C}^{*})$, $\mathfrak{D}=\mathfrak{G}/\Re$. Then, e is a divisor of the order of \mathfrak{D} (cf. Schur [4]). Also, e is a divisor of the degree of ρ (cf. Schur [4]). Hence e is a divisor of the order of \Re . Thus, we have e=1 and $c_{\rho}=1$, q.e.d.

REMARK. Let \Re be a normal subgroup of a group \Im and $\rho: \Re \to GL(m, \mathbb{C})$ be a self-conjugate irreducible linear representation of \Re . If the obstruction class c_{ρ} is of order e, then we see by a similar argument as in the proof of Proposition 3.1. that the representation $\rho \otimes \cdots \otimes \rho$ (e-times) can be extended to a representation of \Im . For example, let $\Im / \Re \cong \Im$. Here $\operatorname{H}^{2}(\Im_{n}, \mathbb{C}^{*})=1$ or \mathbb{Z}_{2} according to $n \leqslant 3$ or $n \geqslant 4$ (cf. Schur [6]). Thus, for any self-conjugate irreducible representation ρ of \Re , $\rho \otimes \rho$ can be extended to a representation of \Im .

§ 4. Let \mathfrak{B} be a finite group and \mathfrak{N} a normal subgroup of \mathfrak{B} with abelian quotient group $\mathfrak{B}=\mathfrak{B}/\mathfrak{N}$. We denote for a group \mathfrak{B} by $R(\mathfrak{B})$ the set of all irreducible representation classes of \mathfrak{B} . We can also regard $R(\mathfrak{B})$ as the set of all classes of isomorphic simple $C[\mathfrak{B}]$ -modules, where $C[\mathfrak{B}]$ is the group algebra of \mathfrak{B} over \mathfrak{C} . Then \mathfrak{B} acts on the set $R(\mathfrak{N})$ as follows: let \mathfrak{M} be a simple $C[\mathfrak{N}]$ -module and g in \mathfrak{B} . Then a simple $C[\mathfrak{N}]$ -module \mathfrak{M}^g is defined as follows: as a module $\mathfrak{M}^g = \mathfrak{M}$. For x in \mathfrak{N} , a new action of x on \mathfrak{M} is defined by $x \circ m = gxg^{-1}m$. Them \mathfrak{M}^g is also a simple $C[\mathfrak{N}]$ -module. Clearly $\mathfrak{M}_1 \cong \mathfrak{M}_2$ implies $\mathfrak{M}_1^g \cong \mathfrak{M}_2^g$. Thus \mathfrak{B} acts on $R(\mathfrak{N})$. However it is obvious that if g_1, g_2 in \mathfrak{B} , $g_1 \equiv g_2 \pmod{\mathfrak{N}}$, then for any simple $C[\mathfrak{N}]$ -module \mathfrak{M} , we have $\mathfrak{M}^g \cong \mathfrak{M}^{g_2}$ (as $C[\mathfrak{N}]$ -modules). Thus, the action of \mathfrak{B} on $R(\mathfrak{N})$ induces an action of \mathfrak{B} on $R(\mathfrak{N})$.

Next we shall define an action of $\widehat{\mathfrak{D}}=\operatorname{Hom}\,(\mathfrak{H},\mathbf{C}^*)$ on $R(\mathfrak{G})$. Let \mathfrak{n} be a simple $C[\mathfrak{G}]$ -module and f in $\widehat{\mathfrak{H}}$. Then C is a $C[\mathfrak{G}]$ -module by $g\cdot z=f(\pi(g))z$ (g in \mathfrak{G} , z in \mathfrak{G}) where $\pi:\mathfrak{G}\to\mathfrak{H}$ is the canonical homomorphism. Hence $\mathfrak{n}^f=\mathfrak{n}\otimes C$ is also a $C[\mathfrak{G}]$ -module which is easily seen to be simple. Obviously $\mathfrak{n}_1\cong\mathfrak{n}_2$ implies $\mathfrak{n}_1'\cong\mathfrak{n}_2'$. Thus $\widehat{\mathfrak{D}}$ acts on $R[\mathfrak{G}]$. We denote for $[\mathfrak{n}]$ in $R(\mathfrak{G})$ the isotropy group of $[\mathfrak{n}]$ in $\widehat{\mathfrak{D}}$ by $\widehat{\mathfrak{D}}[\mathfrak{n}]:\widehat{\mathfrak{D}}[\mathfrak{n}]=\{f\in\widehat{\mathfrak{D}}; [\mathfrak{n}]^f=[\mathfrak{n}]\}=\{f\in\widehat{\mathfrak{D}}; \mathfrak{n}^f\cong\mathfrak{n}\}$. Also we denote for $[\mathfrak{m}]$ in $R(\mathfrak{M})$ the isotropy group of $[\mathfrak{m}]$ in $\widehat{\mathfrak{D}}$ by $\widehat{\mathfrak{D}}[\mathfrak{m}]$. Since $\widehat{\mathfrak{D}}$ is abelian, we have $\widehat{\mathfrak{D}}_{[\mathfrak{n}]}=\widehat{\mathfrak{D}}_{[\mathfrak{n}]}$ for any $[\mathfrak{n}]$ in $R(\mathfrak{G})$ and for any f in $\widehat{\mathfrak{D}}$. Similarly, we have $\mathfrak{D}_{[\mathfrak{m}]}=\mathfrak{D}_{[\mathfrak{m}]}$ for any $[\mathfrak{m}]$ in $R(\mathfrak{M})$ and for any f in $\widehat{\mathfrak{D}}$.

Let $\widetilde{\mathfrak{R}}$ be a $C[\mathfrak{G}]$ -module and \mathfrak{n} be a simple $C[\mathfrak{G}]$ -module. Let $\widetilde{\mathfrak{R}}=\mathfrak{n}_1+\cdots+\mathfrak{n}_r$ be a direct sum decomposition of $\widetilde{\mathfrak{R}}$ into simple $C[\mathfrak{G}]$ -modules $\mathfrak{n}_1,\cdots,\mathfrak{n}_r$. Then we denote by $(\widetilde{\mathfrak{N}}:\mathfrak{n})$ the number of \mathfrak{n}_i which is isomorphic to \mathfrak{n} as $C[\mathfrak{G}]$ -modules. The number $(\widetilde{\mathfrak{R}}:\mathfrak{n})$ is independent of the decomposition $\widetilde{\mathfrak{R}}=\mathfrak{n}_1+\cdots+\mathfrak{n}_r$. Denote by $\mathfrak{X}_{\widetilde{\mathfrak{N}}},\mathfrak{X}_{\mathfrak{n}}$ the characters associated to the $C[\mathfrak{G}]$ -modules $\widetilde{\mathfrak{N}},\mathfrak{n}$ respectively. Then it is well known that

$$(\widetilde{\mathfrak{N}}:\mathfrak{n}) = \frac{1}{|\mathfrak{G}|} \sum_{g \in \mathfrak{G}} \chi_{\widetilde{\mathfrak{N}}}(g) \chi_{\overline{\mathfrak{n}}}(g) = \frac{1}{|\mathfrak{G}|} \sum_{g \in \mathfrak{G}} \chi_{\widetilde{\mathfrak{N}}}(g) \chi_{\mathfrak{n}}(g)$$

where |S| is the order of S.

Similarly, if \mathfrak{M} , \mathfrak{m} are $C[\mathfrak{N}]$ -modules and if \mathfrak{m} is simple, $(\mathfrak{M}:\mathfrak{m})$ is defined. Now, if \mathfrak{m} is a simple $C[\mathfrak{M}]$ -module and if \mathfrak{m} is a simple $C[\mathfrak{M}]$ -module, the following formula is also well known as Frobenius reciprocity:

$$(m^*:n)=(n|_{\mathfrak{N}}:m),$$

where $\mathfrak{m}^*=\mathbb{C}[\mathfrak{G}]\underset{\mathbb{C}[\mathfrak{N}]}{\otimes}\mathfrak{m}$ is the induced $\mathbb{C}[\mathfrak{G}]$ -module and $\mathfrak{n}|_{\mathfrak{N}}$ is the $\mathbb{C}[\mathfrak{N}]$ -module obtained naturally from the $\mathbb{C}[\mathfrak{G}]$ -module \mathfrak{n} .

LEMMA 4.1. Let n be a simple $C[\mathfrak{G}]$ -module and m a simple $C[\mathfrak{N}]$ -module. Then

- (i) $(\mathfrak{n}|_{\mathfrak{N}}:\mathfrak{m})=(\mathfrak{n}|_{\mathfrak{N}}:\mathfrak{m}^h), \text{ for any } h \text{ in } \mathfrak{D}.$
- (ii) $(\mathfrak{m}^* : \mathfrak{n}) = (\mathfrak{m}^* : \mathfrak{n}^j), \text{ for any } f \text{ in } \widehat{\mathfrak{D}}.$

PROOF. (i)
$$(\mathfrak{n}|_{\mathfrak{N}}:\mathfrak{m}) = \frac{1}{|\mathfrak{N}|} \sum_{n \in \mathfrak{N}} \chi_{\mathfrak{n}}(n) \chi_{\mathfrak{m}}(n), \ (\mathfrak{n}|_{\mathfrak{N}}:\mathfrak{m}^{n}) = \frac{1}{|\mathfrak{N}|} \sum_{n \in \mathfrak{N}} (\chi_{\mathfrak{n}}(n) \chi_{\mathfrak{m}}(gng^{-1}))$$

where g is an element in $\mathfrak S$ such that $\pi(g)=h$. Thus, since $\chi_{\mathfrak U}(gng^{-1})=\chi_{\mathfrak U}(n)$, we have

$$(\mathfrak{n}|_{\mathfrak{N}}:\mathfrak{m}^h) = \frac{1}{|\mathfrak{N}|} \sum_{n \in \mathfrak{N}} \chi_{\mathfrak{n}}(gng^{-1}) \chi_{\mathfrak{m}}(gng^{-1}) = (\mathfrak{n}|_{\mathfrak{N}}:\mathfrak{m}).$$

(ii) By Frobenius reciprocity, we have $(\mathfrak{m}^* : \mathfrak{n}) = (\mathfrak{n}|_{\mathfrak{R}} : \mathfrak{m})$ and $(\mathfrak{m}^* : \mathfrak{n}^f) = (\mathfrak{n}^f|_{\mathfrak{R}} : \mathfrak{m})$. Now clearly we have $\mathfrak{n}^f|_{\mathfrak{R}} \cong \mathfrak{n}|_{\mathfrak{R}}$, which completes the proof.

Now we denote by $R(\mathfrak{G})/\widehat{\mathfrak{D}}$ the *quotient set* (the orbit set) obtained from $R(\mathfrak{G})$ by identifying two points in $R(\mathfrak{G})$ in the same orbit of $\widehat{\mathfrak{D}}$. Similarly we denote by $R(\mathfrak{R})/\mathfrak{D}$ the quotient set obtained from $R(\mathfrak{R})$ by identifying two points in $R(\mathfrak{R})$ in the same orbit of \mathfrak{D} . We denote by $\varphi: R(\mathfrak{G}) \to R(\mathfrak{G})/\widehat{\mathfrak{D}}$ and $\varphi: R(\mathfrak{R}) \to R(\mathfrak{R})/\mathfrak{D}$ the canonical projections respectively.

Now let us call $[\mathfrak{u}]$ in $R(\mathfrak{G})$ and $[\mathfrak{m}]$ in $R(\mathfrak{N})$ are incident if $(\mathfrak{u}|\mathfrak{N}:\mathfrak{m})\geqslant 1$. By Frobenius reciprocity, $[\mathfrak{n}]$ and $[\mathfrak{m}]$ are incident if and only if $(\mathfrak{m}^*:\mathfrak{n})\geqslant 1$. For h in \mathfrak{H} , by lemma 4.1. we have $(\mathfrak{n}|\mathfrak{N}:\mathfrak{m})=(\mathfrak{n}|\mathfrak{N}:\mathfrak{m}^h)=((\mathfrak{m}^h)^*:\mathfrak{n})=((\mathfrak{m}^h)^*:\mathfrak{n})=((\mathfrak{m}^h)^*:\mathfrak{n})$. Hence $[\mathfrak{n}]$ and $[\mathfrak{m}]$ are incident if and only if $[\mathfrak{n}]^f$ and $[\mathfrak{m}]^h$ are incident. Thus we may define an incidence relation between elements α in $R(\mathfrak{G})/\mathfrak{H}$ and β in $R(\mathfrak{N})/\mathfrak{H}$. Namely α and β are called to be incident if there exist incident $[\mathfrak{n}]\in R(\mathfrak{G})$, $[\mathfrak{m}]\in R(\mathfrak{N})$ such that $\varphi([\mathfrak{n}])=\alpha$, $\psi([\mathfrak{m}])=\beta$. Our purpose here is to establish the following two facts:

- (I) For any $\alpha \in R(\mathfrak{G})/\mathfrak{H}$, there exists one and only one $\beta \in R(\mathfrak{N})/\mathfrak{H}$ such that α and β are incident.
- (II) For any $\beta \in R(\mathfrak{R})/\mathfrak{H}$, there exists one and only one $\alpha \in R(\mathfrak{H})/\mathfrak{H}$ such that α and β are incident.

Now (I) is nothing but a theorem of Clifford [1]. In fact, let $\alpha \in R(\mathfrak{G})/\mathfrak{H}$ and $\alpha = \varphi([\mathfrak{n}])$. $\mathfrak{n}|_{\mathfrak{N}}$ is decomposed into a direct sum of simple $C[\mathfrak{N}]$ -modules: $\mathfrak{n}|_{\mathfrak{N}} = \mathfrak{m}_1 + \cdots + \mathfrak{m}_r$. By Clifford's theorem, there exist, g_1, g_2, \cdots, g_r in \mathfrak{G} such that $\mathfrak{m}_i = g_i \mathfrak{m}_1$ ($i = 1, \dots, r$). Then it is easy to see $\mathfrak{m}_i \cong \mathfrak{m}_i^{g_i}$ ($i = 1, \dots, r$). In other words, for any $[\mathfrak{m}]$ in $R[\mathfrak{N}]$ such that $(\mathfrak{n}|_{\mathfrak{N}} : \mathfrak{m}) \geqslant 1$, we have $\psi([\mathfrak{m}]) = \psi([\mathfrak{m}_1])$. Thus β exists uniquely and is given by $\beta = \psi([\mathfrak{m}_1])$.

To prove (II), we need several lemmas.

LEMMA 4.2. Let $h \in \mathfrak{H}$, $[\mathfrak{n}] \in \mathbb{R}(\mathfrak{G})$. Then

$$\sum_{f \in \hat{\mathfrak{H}}[\mathfrak{N}]} f(h) = \frac{1}{|\mathfrak{N}|} \sum_{x \in \pi^{-1}(h)} |\chi_{\mathfrak{N}}(x)|^2.$$

PROOF. For any C-valued function F on \mathfrak{G} , we have easily

$$\frac{1}{|\mathfrak{G}|} \sum_{g \in \mathfrak{G}} F(g) = \frac{1}{|\mathfrak{D}|} \sum_{h \in \mathfrak{H}} \frac{1}{|\mathfrak{R}|} \sum_{x \in \pi^{-1}(h)} F(x).$$

Applying this equality to the function $F(g)=f(\pi(g))|\chi_n(g)|^2$, we get

$$\begin{split} \frac{1}{|\mathfrak{G}|} \sum_{g \in \mathfrak{G}} f(\pi(g)) |\chi_{\mathfrak{I}}(g)|^2 &= \frac{1}{|\mathfrak{H}|} \sum_{h \in \mathfrak{H}} \frac{1}{|\mathfrak{N}|} \sum_{x \in \pi^{-1}(h)} f(\pi(x)) |\chi_{\mathfrak{I}}(x)|^2 \\ &= \frac{1}{|\mathfrak{H}|} \sum_{h \in \mathfrak{H}} \frac{1}{|\mathfrak{N}|} f(h) \sum_{x \in \pi^{-1}(h)} |\chi_{\mathfrak{I}}(x)|^2. \end{split}$$

Since $f(\pi(g))|\chi_{\mathfrak{n}}(g)|^2 = \chi_{\mathfrak{n}'}(g)\chi_{\mathfrak{n}}(g)$, the left hand side is =1 (if $\mathfrak{n}' \cong \mathfrak{n}$), =0 (if $\mathfrak{n}' \not\cong \mathfrak{n}$). Thus, multiplying f(h') on both sides and summing up w.r.t. f in $\widehat{\mathfrak{h}}$ we get

$$\sum_{f \in \hat{\mathbb{Q}}_{[\Pi]}} f(h') = \frac{1}{|\hat{\mathbb{Q}}|} \sum_{h \in \hat{\mathbb{Q}}, f \in \hat{\mathbb{Q}}} f(h) f(h') S_h$$

where $S_h = \frac{1}{|\Re|} \sum_{x \in \pi^{-1}(h)} |\chi_n(x)|^2$. Thus by orthogonality relations of characters, we obtain

$$\sum_{f \in \widehat{\mathfrak{H}}_{(n)}} \widehat{f(h')} = \sum_{h \in \widehat{\mathfrak{H}}} \delta_{h,h'} S_h = S_{h'}.$$

Since $\hat{S}_{h'} = S_{h'}$, Lemma 4.2. is proved.

LEMMA 4.3. Let $[n] \in R(\mathfrak{G})$ and $[m] \in R(\mathfrak{N})$ be incident. Then

$$|\widehat{\mathfrak{H}}_{[\mathfrak{m}]}| \cdot |\mathfrak{H}_{[\mathfrak{m}]}| = (\mathfrak{m}^* : \mathfrak{n})^2 \cdot |\mathfrak{H}|.$$

PROOF. Put h=1 in lemma 4.1. Then we have

$$|\widehat{\mathfrak{D}}[\mathfrak{n}]| = \frac{1}{|\mathfrak{N}|} \sum_{n \in \mathfrak{N}} |\mathsf{X}\mathfrak{n}(n)|^2.$$

Now let $\mathfrak{n}|_{\mathfrak{N}}=\mathfrak{m}_1+\cdots+\mathfrak{m}_s$ ($\mathfrak{m}=\mathfrak{m}_1$) be a direct sum decomposition of $\mathfrak{n}|_{\mathfrak{N}}$ into simple C[\mathfrak{N}]-modules. Let $k=(\mathfrak{m}^*:\mathfrak{n})=(\mathfrak{n}|_{\mathfrak{N}}:\mathfrak{m}),\ r=[\mathfrak{H}:\mathfrak{H}_{[\mathfrak{m}]}]$ and $\mathfrak{H}=\bigcup_{i=1}^r\mathfrak{H}_{[\mathfrak{m}]}h_i$ be a coset decomposion. Then s=kr and we may assume that $\mathfrak{m}_i\cong\mathfrak{m}_{i+k}\cong\mathfrak{m}_{i+2k}\cong\cdots\cong\mathfrak{m}_{i+(r-1)k}$ $(i=1,\cdots,r)$ and $\mathfrak{m}_1,\cdots,\mathfrak{m}_r$ are not isomorphic to each other. Then $\mathfrak{X}_{\mathfrak{n}}|_{\mathfrak{N}}=k(\mathfrak{X}_{\mathfrak{m}_1}+\cdots+\mathfrak{X}_{\mathfrak{m}_r})$, and using the orthogonality relations of characters, we get

$$|\widehat{\mathfrak{D}}_{(n)}| = k^2 r = (\mathfrak{m}^* : \mathfrak{n})^2 [\mathfrak{D} : \mathfrak{D}_{(\mathfrak{m})}],$$

which is to be proved.

Cor. 4.4. $\mathfrak{n}|_{\mathfrak{N}}$ is simple if and only if $\widehat{\mathfrak{H}}_{[\mathfrak{n}]}=1$. In this case $\mathfrak{H}_{[\mathfrak{m}]}=\mathfrak{H}$ where $\mathfrak{m}=\mathfrak{n}|_{\mathfrak{N}}$.

PROOF. $n|_{\mathfrak{R}}$ is simple if and only if k=r=1 using above notations, which is equivalent to $\widehat{\mathfrak{D}}_{[n]}=1$. If this is the case, then r=1 implies $\mathfrak{D}=\mathfrak{D}_{[m]}$, Q.E.D.

LEMMA 4.5. Let $[m] \in R(\Re)$ and $\mathfrak{H} = \bigcup_{i=1}^r \mathfrak{H}_{[m]}$ h_i be a coset decomposion, then

$$x_{\mathfrak{m}^*}(x) = \begin{cases} 0, & \text{for } x \in \mathfrak{N}, \\ |\mathfrak{H}_{[\mathfrak{m}]}| \cdot (\chi_1(x) + \dots + \chi_r(x)), & \text{for } x \in \mathfrak{N}, \end{cases}$$

where $\mathfrak{m}^* = \mathbb{C}[\mathfrak{G}] \underset{\mathbb{C}[\mathfrak{R}]}{\otimes} \mathfrak{m}$ and $\chi_i = \chi_{\mathfrak{m}^{h_i}}$ $(i = 1, \dots, r)$.

PROOF. This is immediate using the following well known formula for XIII.

$$\chi_{\mathfrak{m}^{\bullet}}(x) = \frac{1}{|\mathfrak{N}|} \sum_{y \in \mathfrak{S}} \chi_{\mathfrak{m}}^{0}(yxy^{-1}) = \frac{1}{|\mathfrak{N}|} \sum_{y \in \mathfrak{S}} \chi_{\mathfrak{m}^{y}}(x),$$

where χ_{10}^0 is a function on \otimes defined by

$$\chi_{\mathfrak{M}}^{0}(z) = \begin{cases} 0, & \text{for } z \in \mathfrak{N} \\ \chi_{\mathfrak{M}}(z), & \text{for } z \in \mathfrak{R}. \end{cases}$$

Cor. 4.6. Let $\lceil \mathfrak{m} \rceil \in \mathbb{R}(\mathfrak{R})$. Then

$$\frac{1}{|\mathfrak{G}|} \sum_{m=0!} |\chi_{\mathfrak{m}^*}(g)|^2 = |\mathfrak{H}_{\{\mathfrak{m}\}}|.$$

PROOF. The left hand side is equal by lemma 4.5 and by lemma 4.3. to

$$\frac{1}{|\mathfrak{G}|}|\mathfrak{H}_{[\mathfrak{M}]}|^2 \cdot r \cdot |\mathfrak{M}| = \frac{|\mathfrak{M}|}{|\mathfrak{G}|} \cdot |\mathfrak{H}_{[\mathfrak{M}]}|^2 \cdot \frac{|\mathfrak{H}|}{|\mathfrak{H}_{[\mathfrak{M}]}|} = |\mathfrak{H}_{[\mathfrak{M}]}|.$$

LEMMA 4.7. Let $[\mathfrak{m}] \in R(\mathfrak{R})$ and $[\mathfrak{n}]$ be a simple $C[\mathfrak{G}]$ -submodule of $\mathfrak{m}^* = C[\mathfrak{G}] \underset{C[\mathfrak{R}]}{\otimes} \mathfrak{m}$. Then for any simple $C[\mathfrak{G}]$ -submodule \mathfrak{n}' of \mathfrak{m}^* , there exists an element f in $\widehat{\mathfrak{G}}$ such that $\mathfrak{n}' \cong \mathfrak{n}'$.

PROOF. Let $\mathfrak{m}^* = \mathfrak{n}_1 + \cdots + \mathfrak{n}_t$ ($\mathfrak{n} = \mathfrak{n}_1$) be a direct sum decomposition of \mathfrak{m}^* into simple C[§]-modules. Using lemma 4.1 we may assume that

- (i) n_1, \dots, n_s , are not isomorphic to each other, where $s = [\widehat{\mathfrak{D}} : \widehat{\mathfrak{D}}_{\lfloor n_1 \rfloor}]$,
- (ii) $\mathfrak{n}_i \cong \mathfrak{n}_{i+k} \cong \mathfrak{n}_{i+2k} \cong \cdots \cong \mathfrak{n}_{i+(s-1)k}$ ($i=1,\dots,s$), where $k=(\mathfrak{m}^*:\mathfrak{n})$,
- (iii) $n_i \cong n^{f_i}$ (i=1, ...s), where $\widehat{\mathfrak{h}} = \bigcup_{i=1}^s \widehat{\mathfrak{h}}_{[n]} f_i$ is a coset decomposition.
- (iv) $n_i \neq n_j$ for any $i \leq ks, j > ks$.

Then of course we have $ks \le t$. To complete the proof, it is enough to show that ks=t.

Now, by cor. 4.6, we have

$$\begin{split} |\mathfrak{H}_{[\mathfrak{M}]}| &= \frac{1}{|\mathfrak{G}|} \sum_{g \in \mathfrak{G}} |\chi_{\mathfrak{M}^{\bullet}}(g)|^{2} = \frac{1}{|\mathfrak{G}|} \sum_{i=1}^{f} \sum_{g \in \mathfrak{G}} |\chi_{\mathfrak{H}}(g)|^{2} \geqslant \frac{1}{|\mathfrak{G}|} \sum_{i=1}^{sk} \sum_{g \in \mathfrak{G}} |\chi_{\mathfrak{n}_{i}}(g)|^{2} \\ &= \frac{1}{|\mathfrak{G}|} \sum_{g \in \mathfrak{G}} |\sum_{i=1}^{ks} \chi_{\mathfrak{n}_{i}}(g)|^{2} + \frac{1}{|\mathfrak{G}|} \sum_{g \in \mathfrak{G}} |\sum_{j>ks} \chi_{\mathfrak{n}_{j}}(g)|^{2} \geqslant \frac{1}{|\mathfrak{G}|} \sum_{g \in \mathfrak{G}} |\sum_{i=1}^{ks} \chi_{\mathfrak{n}_{i}}(g)|^{2} = k^{2}s = |\mathfrak{H}_{\mathfrak{M}}| \end{split}$$

by lemma 4.3. Hence we obtain t=ks, Q.E.D.

By lemma 4.7, the proposition (II) raised above was proved. Thus, we established a bijective mapping $R(\mathfrak{G})/\widehat{\mathfrak{D}} \to R(\mathfrak{R})/\mathfrak{D}$ which associates to each α in $R(\mathfrak{G})/\widehat{\mathfrak{D}}$ a uniquely determined incident element β in $R(\mathfrak{R})/\mathfrak{D}$.

Cor. 4.8. Let $[\mathfrak{m}] \in R(\mathfrak{N})$. Then $\mathfrak{m}^* = C[\mathfrak{G}] \underset{C[\mathfrak{N}]}{\otimes} \mathfrak{m}$ is simple if and only if $\mathfrak{H}[\mathfrak{m}] = 1$. In this case $\widehat{\mathfrak{H}}[\mathfrak{m}] = \widehat{\mathfrak{H}}$, where $\mathfrak{n} = \mathfrak{m}^*$.

PROOF. Obvious by the proof of lemma 4.7.

Now we shall give some other properties of the bijection $R(\mathfrak{G})/\widehat{\mathfrak{H}} \to R(\mathfrak{R})/\mathfrak{H}$.

LEMMA 4.9. Let $[\mathfrak{n}] \in R(\mathfrak{G})$ and $[\mathfrak{m}] \in R(\mathfrak{R})$ be incident. Then $\mathfrak{H}_{[\mathfrak{m}]}^{\perp} \subset \widehat{\mathfrak{H}}_{[\mathfrak{n}]}$, where $\mathfrak{H}_{[\mathfrak{m}]}^{\perp} = \{ f \in \widehat{\mathfrak{H}} : f(h) = 1 \text{ for all } h \text{ in } \mathfrak{H}_{[\mathfrak{m}]} \}$.

PROOF. Let $\pi^{-1}(\mathfrak{H}_{[\mathfrak{M}]})=\mathfrak{G}_0$. Then there exists an element $[\mathfrak{f}]$ in $R(\mathfrak{G}_0)$ which is incident with both $[\mathfrak{n}]$ and $[\mathfrak{m}]$. In fact any simple $C[\mathfrak{G}_0]$ -submodule of $\mathfrak{n}|_{\mathfrak{G}_0}$ can be taken as \mathfrak{f} . Denote the factor group $\mathfrak{G}/\mathfrak{G}_0=\mathfrak{H}/\mathfrak{H}_{[\mathfrak{m}]}$ by \mathfrak{R} . Then we have $\mathfrak{R}_{[\mathfrak{f}]}=1$. In fact, let $g\in\mathfrak{G}$ satisfy $\mathfrak{f}^g\cong\mathfrak{f}$. Then $\chi_\mathfrak{t}(x)=\chi_\mathfrak{t}(gxg^{-1})$ for any x in \mathfrak{G} , hence for any x in \mathfrak{R} . On the other hand, since $\mathfrak{m}^g=\mathfrak{m}$ for any g' in \mathfrak{G}_0 , we have $\chi_\mathfrak{t}|_{\mathfrak{R}}=m\cdot\chi_\mathfrak{m}$, where $m=(\mathfrak{f}|_{\mathfrak{R}}:\mathfrak{m})$. Thus $m\chi_\mathfrak{m}(x)=m\chi_\mathfrak{m}(gxg^{-1})$ for any x in \mathfrak{R} . Hence $\mathfrak{m}^g\cong\mathfrak{m}$, and we get $\pi(g)\in\mathfrak{H}_{[\mathfrak{m}]}$, i.e. $g\in\mathfrak{G}_0$. This means however $\mathfrak{R}_{[\mathfrak{f}]}=1$.

Now applying lemma 4.3 for the pair $\mathfrak{G} \supset \mathfrak{G}_0$ and \mathfrak{f} , we obtain from $\mathfrak{R}_{[\mathfrak{f}]}=1$ that $\widehat{\mathfrak{R}}_{[\mathfrak{n}]}=\widehat{\mathfrak{R}}$ and $(\mathfrak{n}|_{\mathfrak{K}}:\mathfrak{f})=1$. Let $\gamma \in \mathfrak{H}_{[\mathfrak{m}]}^{\perp}$. Then γ may be regarded as an element of the character group of $\mathfrak{G}/\mathfrak{H}_{[\mathfrak{m}]}$, i.e. γ may be regarded as an element of $\widehat{\mathfrak{R}}$. Then $\widehat{\mathfrak{R}}_{[\mathfrak{n}]}=\widehat{\mathfrak{R}}$ implies that $\mathfrak{n}^{\gamma}\cong\mathfrak{n}$. Hence $\gamma\in\widehat{\mathfrak{H}}_{[\mathfrak{n}]}$. Thus $\mathfrak{H}_{[\mathfrak{m}]}\subset\widehat{\mathfrak{H}}_{[\mathfrak{n}]}$ is proved.

Now in general $\mathfrak{H}_{[\mathfrak{M}]}^{\perp} = \widehat{\mathfrak{H}}_{[\mathfrak{M}]}$ is false. By lemma 4.3, we have Cor. 4.10. Let $[\mathfrak{M}] \in \mathbb{R}(\mathfrak{H})$ and $[\mathfrak{M}] \in \mathbb{R}(\mathfrak{H})$ be incident. Then

$$[\widehat{\mathfrak{H}}_{[\mathfrak{m}]}: \widehat{\mathfrak{H}}_{[\mathfrak{m}]}^{\perp}] = (\mathfrak{m}^* : \mathfrak{n})^2$$
.

Thus we have $\widehat{\mathfrak{H}}_{[\mathfrak{n}]} = \mathfrak{H}_{[\mathfrak{m}]}^{\perp}$ if and only if $(\mathfrak{m}^* : \mathfrak{n}) = 1$.

EXAMPLE. Let $\mathfrak B$ be the dihedral group $\mathfrak D_4$ of order 8, i.e. $\mathfrak B$ is generated by a,b together with the fundamental relations $a^2=b^4=1$, $aba^{-1}=b^{-1}$. Let $\mathfrak R$ be the commutator group of $\mathfrak B$. Then $\mathfrak R$ is the center of $\mathfrak B$ and $\mathfrak R$ is a cyclic group of order $2:\mathfrak R=\{1,b^2\}$. Let $\mathfrak R$ acts on $\mathfrak m=\mathbb C$ by $b^2\xi=-\xi$ (ξ in $\mathbb C$). Then it is easy to see that the induced module $\mathfrak m^*$ is decomposed into a direct sum of simple $\mathbb C[\mathfrak B]$ -modules as follows: $\mathfrak m^*=\mathfrak n_1+\mathfrak n_2$, $\mathfrak n_1\cong\mathfrak n_2$. Hence $(\mathfrak m^*:\mathfrak n_1)=2$. Since $[\mathfrak B:\mathfrak R]=4$, $\dim\mathfrak n_1=2$. Since $\mathfrak B$ has only one irreducible representation of degree 2, we have

 $\widehat{\mathfrak{D}}_{[\mathfrak{m}_i]} = \widehat{\mathfrak{D}}$. On the other hand, since \mathfrak{N} is the center of \mathfrak{B} , we have $\mathfrak{D}_{[\mathfrak{m}]} = \mathfrak{D}$. Thus we have $\mathfrak{D}_{[\mathfrak{m}]}^{\perp} = \{1\} \neq \widehat{\mathfrak{D}}_{[\mathfrak{m}_i]}$.

Now we shall give a condition for \mathfrak{S} where we have $(\mathfrak{m}^* : \mathfrak{n}) = 1$ for all incident pair $[\mathfrak{n}]$ in $R(\mathfrak{S})$, $[\mathfrak{m}]$ in $R(\mathfrak{R})$.

LEMMA 4.11. Let $\mathfrak{D} = \mathfrak{G}/\mathfrak{N}$ be a cyclic group and $[\mathfrak{m}]$ in $R(\mathfrak{N})$. Then $\mathfrak{D}_{[\mathfrak{m}]} = \mathfrak{D}$ if and only if the associated homomorphism $\rho: \mathfrak{N} \to GL(\mathfrak{m})$ (the linear representation of \mathfrak{N}) can be extended to a homomorphism $\mathfrak{G} \to GL(\mathfrak{m})$.

PROOF. Clearly if the homomorphism $\rho: \mathfrak{N} \to GL(\mathfrak{m})$ can be extended to a homomorphism $\widetilde{\rho}: \mathfrak{G} \to GL(\mathfrak{m})$, then $\mathfrak{G}_{[\mathfrak{m}]} = \mathfrak{G}$. Conversely if $\mathfrak{G}_{[\mathfrak{m}]} = \mathfrak{G}$, then ρ is self-conjugate. Now since \mathfrak{G} is cyclic, we have $H^2(\mathfrak{G}, \mathbb{C}^*) = 1$ (cf. Schur [4]). Thus the obstruction cohomology class of ρ is 1. Hence ρ can be extended to a homomorphism $\mathfrak{G} \to GL(\mathfrak{m})$ (cf. § 3).

LEMMA 4.12. Let $\mathfrak{H}=\mathfrak{G}/\mathfrak{R}$ be a cyclic group. Then for any incident pair $[\mathfrak{n}]$ in $R(\mathfrak{G})$, $[\mathfrak{m}]$ in $R(\mathfrak{R})$, we have $(\mathfrak{m}^*:\mathfrak{n})=1$. Thus also we have $\mathfrak{H}^{\perp}_{[\mathfrak{m}]}=\widehat{\mathfrak{H}}_{[\mathfrak{n}]}$.

PROOF. Let $\pi^{-1}(\mathfrak{S}_{[m]})=\mathfrak{S}_0$ and take an $[\mathfrak{k}]$ in $R(\mathfrak{S}_0)$ which is incident with both $[\mathfrak{n}]$ and $[\mathfrak{m}]$ as in the proof of lemma 4.9. Them $\mathfrak{m}^{\varrho}\cong\mathfrak{m}$ (for all g in \mathfrak{S}_0) implies that the associated homomorphism $\rho:\mathfrak{R}\to GL(\mathfrak{m})$ can be extended to a homomorphism $\widetilde{\rho}:\mathfrak{S}_0\to GL(\mathfrak{m})$ (lemma 4.11). In this manner, \mathfrak{m} has also a $C[\mathfrak{S}_0]$ -module structure. When \mathfrak{m} is regarded as a $C[\mathfrak{S}_0]$ -module, we write \mathfrak{m} as \mathfrak{m}_0 . Then $[\mathfrak{m}_0]$ in $R(\mathfrak{S}_0)$ and $[\mathfrak{m}]$ in $R(\mathfrak{R})$ are incident. Hence by the uniqueness (II), there is an element γ in $\widehat{\mathfrak{L}}$, such that $\mathfrak{k}\cong\mathfrak{m}_0$, where $\mathfrak{L}=\mathfrak{S}_0/\mathfrak{R}\cong\mathfrak{S}_{[\mathfrak{m}]}$, $\widehat{\mathfrak{L}}=\mathrm{Hom}\,(\mathfrak{L},C^*)$. Now, since $(\mathfrak{m}_0:\mathfrak{m})=1$, we have $(\mathfrak{k}:\mathfrak{m})=1$ and $\mathfrak{k}[\mathfrak{R})=1$. Now let us show that $(\mathfrak{m}|\mathfrak{S}_0:\mathfrak{k})=1$ and $\mathfrak{R}_{[\mathfrak{k}]}=1$, where $\mathfrak{R}=\mathfrak{S}/\mathfrak{S}_0=\mathfrak{F}/\mathfrak{S}_{[\mathfrak{m}]}$. In fact, if $g\in\mathfrak{S}$ satisfies $\mathfrak{k}^{\varrho}\cong\mathfrak{k}$, then $\chi_{\mathfrak{l}}(gxg^{-1})=\chi_{\mathfrak{l}}(x)$ for any x in \mathfrak{R}_0 . Hence $\chi_{\mathfrak{l}}(gxg^{-1})=\chi_{\mathfrak{l}}(x)$ for any x in \mathfrak{R}_0 , i.e. $\mathfrak{R}_{[\mathfrak{l}]}=1$. Therefore, $\mathfrak{l}^*=C[\mathfrak{S}]$ is a simple $C[\mathfrak{S}]$ -module by Cor. 4.8 and $\mathfrak{l}^*\cong\mathfrak{n}$ by the uniqueness. Thus $(\mathfrak{n}|\mathfrak{S}_0:\mathfrak{k})=(\mathfrak{l}^*:\mathfrak{n})=1$.

Now let $\mathfrak{n}|\mathfrak{G}_0=\mathfrak{f}_1+\cdots+\mathfrak{f}_s$ $(\mathfrak{f}=\mathfrak{f}_1)$ be a direct sum decomposition of $\mathfrak{n}|\mathfrak{G}_0$ into simple $\mathbb{C}[\mathfrak{G}_0]$ -modules. By $(\mathfrak{n}|\mathfrak{G}_0:\mathfrak{f})=1$, we have $\mathfrak{f}_i\#\mathfrak{f}_j$ for any $1\leqslant i\neq j\leqslant s$. Since there exist g_i in \mathfrak{G} $(i=1,\cdots,s)$ such that $\mathfrak{f}_i\cong\mathfrak{f}^{\sigma_i}$ $(i=1,\cdots,s)$, we see that $g_ig_j^{-1}\#\mathfrak{G}_0$ for any $1\leqslant i\neq j\leqslant s$ and that every $\mathfrak{f}_i|\mathfrak{N}$ is a simple $\mathbb{C}[\mathfrak{N}]$ -module. To complete the proof, it is thus enough to show $\mathfrak{f}_i|\mathfrak{N}\#\mathfrak{f}_j|\mathfrak{N}$ (for any $1\leqslant i\neq j\leqslant s$). Suppose $\mathfrak{f}_i|\mathfrak{N}\cong\mathfrak{f}_j|\mathfrak{N}$. Then $\mathfrak{f}^{\sigma_i}|\mathfrak{N}\cong\mathfrak{f}^{\sigma_j}|\mathfrak{N}$. Hence $(\mathfrak{f}|\mathfrak{N})^{\sigma_i}\cong (\mathfrak{f}|\mathfrak{N})^{\sigma_j}$, i.e. $\mathfrak{m}^{\sigma_i}\cong\mathfrak{m}^{\sigma_j}$. Hence $\pi(g_ig_j^{-1})$ is in $\mathfrak{G}_{(\mathfrak{m})}$, i.e. $g_ig_j^{-1}$ is in \mathfrak{G}_0 . Then i=j as we have seen above, Q.E.D.

Let us finally resume our results above in a theorem as follows:

THEOREM 4.13. Let \mathfrak{B} be a finite group and \mathfrak{N} be a normal subgroup of \mathfrak{B} such that the factor group $\mathfrak{B}=\mathfrak{B}/\mathfrak{N}$ is abelian. (i) Then for any simple $\mathbb{C}[\mathfrak{B}]$ -

module n, there is a simple $C[\mathfrak{R}]$ -module m such that $(\mathfrak{n}|\mathfrak{R}:\mathfrak{m})=(\mathfrak{m}^*:\mathfrak{n})\geqslant 1$ (where $\mathfrak{m}^*=C[\mathfrak{G}]\otimes\mathfrak{m}$). m is unique up to the action of \mathfrak{H} . Also for any simple $C[\mathfrak{R}]$ -module m, there is a simple $C[\mathfrak{G}]$ -module n such that $(\mathfrak{m}^*:\mathfrak{n})\geqslant 1$. n is unique up to the action of $\widehat{\mathfrak{H}}=\mathrm{Hom}\,(\mathfrak{H},C^*)$. Thus there is a natural bijection between $R(\mathfrak{G})/\widehat{\mathfrak{H}}$ and $R(\mathfrak{R})/\widehat{\mathfrak{H}}$. (ii) If $[\mathfrak{n}]\in R(\mathfrak{G})$, $[\mathfrak{m}]\in R(\mathfrak{R})$ correspond each other (i.e. if $(\mathfrak{m}^*:\mathfrak{n})\geqslant 1$), then $|\widehat{\mathfrak{H}}_{[\mathfrak{m}]}|\cdot |\mathfrak{H}_{[\mathfrak{m}]}|=(\mathfrak{m}^*:\mathfrak{n})^2|\mathfrak{H}|$. Also $\widehat{\mathfrak{H}}_{[\mathfrak{m}]}\supset \mathfrak{H}_{[\mathfrak{m}]}^\perp$ and $[\widehat{\mathfrak{H}}_{[\mathfrak{m}]}:\mathfrak{H}_{[\mathfrak{m}]}^\perp]=(\mathfrak{m}^*:\mathfrak{n})^2$, where $\mathfrak{H}_{[\mathfrak{m}]}^\perp$ is the annihilator of $\mathfrak{H}_{[\mathfrak{m}]}$ in $\widehat{\mathfrak{H}}$. (iii) If \mathfrak{H} is cyclic, then for any corresponding pair $[\mathfrak{n}]$ in $R(\mathfrak{H})$, $[\mathfrak{m}]$ in $R(\mathfrak{R})$, we have $(\mathfrak{m}^*:\mathfrak{n})=1$ and $\widehat{\mathfrak{H}}_{[\mathfrak{m}]}=\mathfrak{H}_{[\mathfrak{m}]}^\perp$.

REMARK. If \mathfrak{G} is a compact topological group and \mathfrak{N} is a closed normal subgroup for which $\mathfrak{G}/\mathfrak{N}$ is finite and abelian, then the proofs of Theorem 4.13 is easily checked to be valid when we consider finite-dimensional irreducible representations of \mathfrak{G} and \mathfrak{N} .

As a corollary to Theorem 4.13, we shall prove the following theorem of Frucht [2]. (cf. also K. Yamazaki [7] Th. 6.1, Cor.)

THEOREM 4.14. (Frucht [2]). Let \mathfrak{P} be a finite abelian group and c in $H^{\circ}(\mathfrak{P}, \mathbb{C}^{*})$. Then there exists one and only one (up to equivalence) irreducible projective representation of \mathfrak{P} which has c as its factor set.

PROOF. Let \mathfrak{B} be a representation group of \mathfrak{H} . Then there is a central subgroup \mathfrak{R} of \mathfrak{B} such that $\mathfrak{B}/\mathfrak{R}=\mathfrak{H}$ and the transgression map $\widehat{\mathfrak{R}}=\operatorname{Hom}(\mathfrak{R},\mathbb{C}^*)\to H^2(\mathfrak{H},\mathbb{C}^*)$ is bijective. Now let \mathfrak{X} be the element in $\widehat{\mathfrak{R}}$ corresponding to c in $H^2(\mathfrak{H},\mathbb{C}^*)$. Then it is easy to see that any irreducible projective representation of \mathfrak{H} with factor set c is obtained by an irreducible linear representation ρ of \mathfrak{B} which is incident with \mathfrak{X}^* (=the induced representation of \mathfrak{B} by \mathfrak{X}), i.e. $(\mathfrak{X}^*:\rho)>0$. Thus it is enough to show the following: let ρ_1 , ρ_2 be two irreducible linear representations of \mathfrak{B} such that $(\mathfrak{X}^*:\rho_1)>0$, $(\mathfrak{X}^*:\rho_2)>0$, then ρ_1 and ρ_2 induce on \mathfrak{B} equivalent projective representations. Now by Theorem 4.13, there exists an element f in $\widehat{\mathfrak{B}}$ such that $\rho_1'\cong\rho_2$ i.e. $\rho_1\otimes(f\circ\pi)\cong\rho_2$ where $\pi:\mathfrak{B}\to\mathfrak{B}$ is the canonical homomorphism. Since $f\circ\pi$ is a representation of \mathfrak{B} of degree 1, ρ_1 and ρ_2 induce equivalent projective representations of \mathfrak{B} , Q.E.D.

§ 5. Let \mathfrak{H} be a finite group and k be a field. Let $r: \mathfrak{H} \times \mathfrak{H} \to k^*$ be a k^* -valued 2-cocycle of \mathfrak{H} (under the trivial action of \mathfrak{H} on k^*). Then the vector space $\mathcal{H} = \sum_{P \in \mathfrak{H}} k \cdot u_P$ (where $\{u_P; P \in \mathfrak{H}\}$ is a base of \mathcal{H}) becomes an associative algebra over k w.r.t. the multiplication $u_P u_Q = r_{P,Q} u_{PQ}$. (the crossed-product!). This algebra will be denoted by $\mathcal{H}(\mathfrak{H}, k, r)$ or simply by $\mathcal{H}(r)$. If the cocycles r and r' are cohomologous, then $\mathcal{H}(r) \cong \mathcal{H}(r')$ as is easily seen. Thus we may define

 $\mathcal{A}(c)$ for c in $H^2(\mathfrak{H}, k^*)$. (cf. K. Yamazaki [7; § 4]) for the detail of the properties of the algebra $\mathcal{A}(c)$, which was called as an algebra extension of \mathfrak{H} . In K. Yamazaki [7: § 6], for an abelian group \mathfrak{H} , the condition for the existence of c in $H^2(\mathfrak{H}, k^*)$ such that $\mathcal{A}(c)$ is central simple is given. We shall give in this section some examples of non-abelian \mathfrak{H} which has an element c in $H^2(\mathfrak{H}, k^*)$ such that $\mathcal{A}(c)$ is central simple. In all our examples \mathfrak{H} is solvable. Thus we may raise the following question: let \mathfrak{H} be a finite group. Let $\mathcal{A}(c)$ be central simple for some c in $H^2(\mathfrak{H}, \mathbb{C}^*)$. Is \mathfrak{H} then solvable?

Now let p be the characteristic of the field k. If $p \nmid |\mathfrak{D}|$, then as in the case of the group algebra $k[\mathfrak{D}]$, $\mathcal{A}(c)$ is semi-simple for any c in $H^2(\mathfrak{D}, k^*)$. (cf. K. Yamazaki [7; §4]). Hence in such a case, $\mathcal{A}(c)$ is central simple over k if and only if the center of $\mathcal{A}(c)$ coincides with k.

Now, if $\mathcal{A}(c)$ is central simple for c in $H^2(\mathfrak{H}, k^*)$, $\mathcal{A}(c) \otimes \overline{k}$ is also a central simple algebra over \overline{k} , where \overline{k} is the algebraic closure of k. It is easy to see that if we denote by \overline{c} the image of c under the canonical homomorphism $H^2(\mathfrak{H}, k^*) \to H^2(\mathfrak{H}, \overline{k}^*)$, we have $\mathcal{A}(c) \otimes \overline{k} \cong \mathcal{A}(\mathfrak{H}, \overline{k}, \overline{c})$. Thus, when we seek for the structure of \mathfrak{H} , we may consider the case where k is algebraically closed. We also note that if $\mathcal{A}(c)$ is central simple for some c in $H^2(\mathfrak{H}, k^*)$, then the order of \mathfrak{H} is a square of some positive integer $m: |\mathfrak{H}| = m^2$. Now,

LEMMA 5.1. Let \mathfrak{H} be a finite group and k an algebraically closed field of characteristic p, where $p \not \models |\mathfrak{H}|$. Then $\mathcal{A}(\mathfrak{H}, k, c)$ is central simple for some c in $H^2(\mathfrak{H}, k^*)$ if and only if

- i) $|\mathfrak{S}| = m^2$ for some positive integer m, and
- ii) \mathfrak{H} has an irreducible projective representation of degree m.

PROOF. Necessity. Let $\mathcal{A}(c)$ be central simple for some c. Then i) is clear and $\mathcal{A}(c) \cong M_m(k)$ (the total matric algebra of degree m over k), since k is algebraically closed. If $\mathcal{A}(c) = \sum_{P \in \mathfrak{H}} k u_P$, $u_P u_Q = r_{P,Q} u_{PQ}$ ($r_{P,Q}$ in k^*), then the map $P \to u_P$ from \mathfrak{H} into $\mathcal{A}(c)$ induces an irreducible projective representation of \mathfrak{H} over a minimal left ideal of $\mathcal{A}(c)$. Sufficiency. Let $|\mathfrak{H}| = m^2$ and $T: \mathfrak{H} \to GL(m,k)$ be a map which induces an irreducible projective representation of \mathfrak{H} . Then if r is the factor set of T, we see easily that $\mathcal{A}(r) \cong M_m(k)$ (cf. K. Yamazaki [7; §5]).

EXAMPLE 1. $\mathfrak{G}=\mathfrak{A}_4\times \mathbf{Z}_3$ ($\mathfrak{A}_4=$ the alternating group of degree 4, $\mathbf{Z}_3=$ the cyclic group of order 3). Here $|\mathfrak{G}|=36$, m=6. Now by $H^2(\mathfrak{A}_4\times \mathbf{Z}_3, \mathbf{C}^*)\cong H^2(\mathfrak{A}_4, \mathbf{C}^*)\times H^2(\mathbf{Z}_3, \mathbf{C}^*)\times P(\mathfrak{A}_4, \mathbf{Z}_3, \mathbf{C}^*)$ (cf. K. Yamazaki [7; §2.2]), $H^2(\mathfrak{A}_4, \mathbf{C}^*)=\mathbf{Z}_2$ (cf. Schur [6]), $H^2(\mathbf{Z}_3, \mathbf{C}^*)=1$ (cf. Schur [4]) imply that $H^2(\mathfrak{A}_4\times \mathbf{Z}_3, \mathbf{C}^*)\cong \mathbf{Z}_2\times P(\mathfrak{A}_4, \mathbf{Z}_3, \mathbf{C}^*)$. Now $\mathfrak{A}_4/[\mathfrak{A}_4]\cong \mathbf{Z}_3$, hence $P(\mathfrak{A}_4, \mathbf{Z}_3, \mathbf{C}^*)\cong \mathbf{Z}_3$. Thus we have

$$H^2(\mathfrak{A}_4\times Z_3, \mathbb{C}^*)\cong Z_6$$
.

Let c be any generator of $H^2(\mathfrak{A}_4 \times \mathbb{Z}_3, \mathbb{C}^*)$. Then since c is of order 6, the degree d of any irreducible projective representation ρ of $\mathfrak{A}_4 \times \mathbb{Z}_3$ which has c as its factor set is divisible by 6. (cf. Schur [4]). On the other hand, since $|\mathfrak{H}|=36$, d=6. Thus $\mathcal{A}(c)$ is central simple.

REMARK. In example 1, we may construct a central simple $\mathcal{A}(c)$ for $k=\mathbf{Q}(\omega)$, where \mathbf{Q} is the field of rational numbers and $\omega=\exp\frac{2\pi i}{3}$. Because we can construct an element c in $H^2(\mathfrak{H},\mathbf{Q}(\omega)^*)$ such that the image \bar{c} of c in the homomorphism $H^2(\mathfrak{H},\mathbf{Q}(\omega)^*)\to H^2(\mathfrak{H},\mathbf{C}^*)$ is of order 6.

EXAMPLE 2. $\mathfrak{D}=\mathfrak{D}_4\times\mathfrak{N}$, $\mathfrak{N}\cong \mathbf{Z}_2$, $(\mathfrak{D}_4=$ the dihedral group of order 8). Here $|\mathfrak{D}|=16$, m=4. $H^2(\mathfrak{H},\mathbb{C}^*)\cong H^2(\mathfrak{D}_4,\mathbb{C}^*)\times P(\mathfrak{D}_4,\mathfrak{N},\mathbb{C}^*)$. Now $H^2(\mathfrak{D}_4,\mathbb{C}^*)\cong \mathbf{Z}_2$ (cf. Schur [5]), $\mathfrak{D}_4/[\mathfrak{D}_4,\mathfrak{D}_4]\cong \mathfrak{D}_2\cong \mathbf{Z}_2\times \mathbf{Z}_2$, hence $H^2(\mathfrak{H},\mathbb{C}^*)\cong \mathbf{Z}_2\times (\mathbf{Z}_2\times \mathbf{Z}_2)$. Let $\mathfrak{N}=\{1,Y\}$, $\mathfrak{J}=[\mathfrak{D}_4,\mathfrak{D}_4]=\{1,Z\}=$ the center of \mathfrak{D}_4 , $H^2(\mathfrak{D}_4,\mathbb{C}^*)=\{1,c_0\}$. By Theorem 2.1, the homomorphism $\mathscr{U}:H^2(\mathfrak{D}_4,\mathbb{C}^*)\to P(\mathfrak{D}_4/\mathfrak{J},\mathfrak{J};\mathbb{C}^*)$ is injective. Take an element X in \mathfrak{D}_4 such that $\mathscr{U}c_0(X,Z)\neq 1$. Then take an element $\varphi\neq 1$ in $P(\mathfrak{D}_4,\mathfrak{N};\mathbb{C}^*)$ such that $\varphi(X,Y)=1$. Then let c be the element in $H^2(\mathfrak{H},\mathbb{C}^*)$ which corresponds to (c_0,φ) by the isomorphism $H^2(\mathfrak{H},\mathbb{C}^*)\cong H^2(\mathfrak{D}_4,\mathbb{C}^*)\times P(\mathfrak{D}_4,\mathfrak{N};\mathbb{C}^*)$. Then it is easy to show that the center of the algebra $\mathscr{N}(c)=\mathscr{N}(\mathfrak{H},\mathbb{C},c)$ is of dimension 1. Thus $\mathscr{N}(c)$ is central simple. Also in this case c can be constructed in $H^2(\mathfrak{H},\mathbb{Q}^*)$. Thus, there is also an element c in $H^2(\mathfrak{H},\mathbb{Q}^*)$ for which $\mathscr{N}(\mathfrak{H},\mathbb{Q},c)$ is a central simple algebra over \mathbb{Q} .

REMARK. Analogous construction is possible also for $\mathfrak{H}=\mathfrak{D}_4\times\mathfrak{D}_4$, and we obtain a central simple $\mathcal{J}(\mathfrak{H},\mathbf{Q},c)$.

University of Tokyo

References

- [1] A. H. Clifford, Representations induced in an invariant subgroup. Ann. Math., 38 (1937), 533-550.
- [2] R. Frucht, Über die Darstellung endlicher Abelscher Gruppen durch Kollineationen. Crelles Journal, 166 (1931), 16-29.
- [3] G. Hochschild and J. P. Serre, Cohomology of group extensions. Trans. Amer. Math. Soc., 74 (1953), 110-134.
- [4] I. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene Substitutionen. Crelles Journal, 127 (1904), 20-50.
- [5] Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen. Crelles Journal, 132 (1907), 85-137.
- [6] Über die Darstellung der symmetrischen und der alternierenden Gruppen durch gebrochene lineare Substitutionen, Crelles Journal, **166** (1911), 155-250.
- [7] K. Yamazaki, On projective representations and ring extensions of finite groups. In this journal.

(Received October 26, 1963)