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Introduction.

The theory of projective representations (Darstellungen durch gebrochene
lineare Substitutionen) of finite groups over the complex number field was founded
and developed by I. Schur [1], [2], [3]. Schur [1] reduced the problem to
determine all projective representations of a finite group 9 to the determination of
all linear representations of a certain finite group extension & of 9, which is
called a representation-group of $. Also Schur [2] gave an estimation for the
number of non-isomorphic representation-groups. In [2] and [3], Schur deter-
mined all irreducible projective representations of &,, ., PGL(Z,F,), SL(2, F,)
and PSL(2,F,).

Then R. Frueht [4], {13] determined the irreducible projective representations
of finite abelian groups. For other basic fields, see K. Asano [5], K. Asano-K.
Shoda [7], K. Asano- M. Osima- M. Takahasi [9]. See also Y. Kawada [10] and
G.W. Mackey [14] for the projective representations of topological groups.

In this note, we shall give in §1 the fundamental concepts of projective
representations as preliminaries. We observe that the transgression H!'(Y, £)—
Hi($, 2) by G. Hochschild and J.-P. Serre [12] is essentially the same as the
mapping given by Schur when £=C*. (Note also that the method of Schur to
find the * multiplier” H2($, C*) using a representation-group is nothing but the
method given in S. Eilenberg - 8. MacLane [11] using the cup product reduction.)

In §2, we consider some useful relations between 2-cocycles and pairings.
Then 2-cohomology, for the trivial action on a coefficient group, of a finitely
generated abelian group is explicitly determined.

§3 is concerned with a cohomology theoretical consideration of various central
group extensions of a finite group. A fundamental exact sequence will imply the
existence of representation-groups and yield Schur’s estimation for the number of
these groups. It should be noted that the method used in this section is some-
what related to [7].

When the basic field is not algebraically closed, the multiplier is not necessarily
finite; we have thereby no finite representation-group. In this case, the concept
of ring extension will play a role of ‘‘linearization” of projective representations
(84, §5). The concept of ‘‘crossed product’ is nothing but a ring extension
under the faithful action. We shall call *‘algebra extension’ a ring extension
under the trivial action. This is a generalization of group algebra (Cf. [6], [7],
[9]). We shall take some automorphisms of an algebra extension and show that
it is necessary to consider an equivalence of modules w.r.t. these automorphisms.

In §6, we shall determine the structure of algebra extensions of a finite
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abelian group over a field of some type. A result of Frucht [4] on projective
representations is reproduced and generalized without any use of representation-
groups. Moreover, we get a necessary and sufficieni condition for the existence
of central simple algebra extensions of a finite abelian group. Those algebras are
closely related to faithful irreducible projective representations.

§7 is devoted to several applications. There are various representation-groups
of a finite group, e.g. the multipliers of these groups are in general different (Cf.
N. Iwahori - H. Matsumoto {157). However it can be proved that the group algebras
of all representation-groups of a finite group are isomorphic as algebra. We see
that the total matric algebras and the Kummer fields are typical examples of
algebra extensions of abelian groups. Also it is seen that the Clifford algebras
are algebra extensions of a special type. In addition, we shall give a remark on
algebra extensions of non-abelian groups (Cf. also [15]).

The author will conclude this introduction by acknowledging his thanks to
Prof. N. Iwahori for many suggestions and discussions, and referring to Iwahori-
Matsumoto [15]. '

§ 1. Preliminaries.

1.1. Cohomology groups of a group.

Let us recall the definition of ecohomology groups of any group £ which acts
on an abelian group 2. (Cf. S. Eilenberg-S. MacLane {11]) For later use ¢ is
written multiplicatively.

A function f of n variables defined on © and with values in £ is called an
n-cochain of D in £ (n=0,1,2,---).2 The set of all n-cochains becomes an abelian
group C*(H, #) under the multiplication of values. The coboundary of an n-cochain
f is defined to be the (n+1)-cochain Jf, where

(ﬁf)(Ph Yy P‘:Hl)
::l’;f(sz . .’P"*'l).”]’]if(Ph cee, PL.I)““ e, pn«l)(' x,if(Ph ...,1)“)!~ 1.uq|.

1t is easily verified that (Cf. [11])

(1) (f)=@E)8g), 6@f)=1>

The set Z"(D, £) of all n-cocycles f, for which 6f=1, constitutes a subgroup
of C9,2). The set B9, 2) of all n-coboundaries constitutes a subgroup of

1) This means that for each H<® and 1€ 8 there is determined an element 4z % such
that H(ap)=Hilly, PEQ=PQ}) and ‘i=4 (I is the unit element of ).

2) A O-cochain means an element of 2,

3) We denote by 1 the function taking the constant value 1.
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279, H.Y The n-cohomology group is defined to be
H'(®, 2)=2"(, £)/B"®, 2),

and its element is called a cohomology class. Any two cocycles contained in the
same cohomology class are called to be cohomologous.

An m-cochain f is said to be normalized if f(P, .-, P.)=1 whenever any
one of the P, is the unit element of H. It can be proved that every cocycle is
cohomologous to a normalized cocycle. A l-cocycle is always normalized. For a
2-cocycle f, if we define a 1-cochain g where

I, Iyt P=],
9(P)= {{( ) otherwise,
then f(3g) is normalized. Using only normalized cochains, cocycles and coboundaries,
we get isomorphie cohomology groups (Cf. [11]).

Now let #; and £. be abelian groups on which £ acts and ¢ be a $-homo-
morphism of #; into £, Then ¢ induces a homomorphism ¢ : H'(9, £,)— H"(, &)
naturally, 1If

(2) 1@ a9 -1
is an exact sequence, the we have clearly the exact sequence whieh is com-
patible with 4:
1-C"(®, 2)—C'®, 2)—C"(H, 2")~1 (nz0)
We easily see using only the property (1) that the following exact sequence is
naturally induced as usual topology.
(3) HAD, &) - H®, 2) - HYD, £27)— H{(D, ) —-H(®, 2)—-H' (D, )
o HED, 27— HE®, ©) - HAS, 27y — HY(D, ) — HHD, 2) =+ -+
In particular, if (2) splits, then we have the splitting exact sequence
(4) 1-HY$, 2)—H"(®, 2)—-H"(®, £")-1 (n>0).

Let £ be any abelian group and d a positive integer. We consider the
homomorphism ¢ of 2 into itself by ¢()=21¢. We shall denote by £* the image

of this homomorphism and by £.., the kernel. If 27=2, 2 is called to be d-
divisible. The following proposition will be used later.
ProrositioN 1.1. Let © be a group acting on an abelian group L.

1) If % is a finite group of order h, then we have
HY®, O=H"® D, @>0).

4 B®, £)=1{1}.
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2y If £ is d-divisible, then we have the surjective homomorphism
H'(®D, 2..)—~H"(®, 20, (220)

induced by the natural injection 2, 0,
Proor. 1) We assume n=2, but the following computation® is also valid
for any n>0. Let feZ(9H, £). We have

1=@f )P, Q, R)="f(Q, R)f(PQ, R) 'f(P, QR f(P, Q) !
for P, ¢, RH. We define g=Ci(H, ) by
g(H):I}L f(H, P) for He .

Then it follows easily that f"=dg. This completes the proof of 1).
2) By the assumption, we have the exact sequence
—2.5,051

1“‘“’.9(,1)

where ¢(4)=4?. This yields the following exact sequence.
HYD, 20) —» H'(D, ) L-HY®, 2)  (n20)
where @(c)=c? (ceH"(D, 2)). This completes the proof of 2).

1.2. Proejective representations of a group.

Let  be a group and V' be a finite dimensional vector space over a field K.
The group of all automorphisms of V is denoted by GL(V). The center of GI{V)
is equal to K*1,, where K*=K-—{0} and 1, denotes the identity mapping of V
onto itself. The factor group GL(V)/K*1, is denoted by PGL(V). This is the
group of projective transformations of the projective space P(V) associated to V.

A homomorphism p: 9 —>PGL(V) is called a projective representation of
in V. m=dimxzV is called the degree of p and V is called the represeniation
space of p. Two projective representations p,: $--PGL(V)) (1=1,2) are called to
be equivalent (in notation: py~p,) if there exists a linear isomorphism ¢: Vi—V.
such that @op;=p. where ¢ is the isomorphism PGL(V,)->PGL(V.) which is induced
by the isomorphism GL(V,))~GL(Vy): r—¢re™! (reGL{V)).

Let p be a projective representation of  in V and g be a projective re-
presentation of § in a subspace V, of V such that p,(H) is the restriction of
p(H) to P(V)) for all He®. Then p, is called a subrepresentation of p. p is called
to be irreducible if there is no proper subrepresentation of p, that is, there is no
proper © Yo(D))-invariant subspace of V where = is the natural projection of GL(V)
onto PGL(V).

5) This was given by Schur {1].
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A mapping T:9—GL(V) is called a section for p if =(T(H))=p(H) for any
Hce$. Any section T for p defines a mapping f: 9x9— K* satisfying

T(PYTQ)=f(P,QTPQ).
Then associativity of T(P), T(Q), T(R) (P, @, Re9) yields the relations
S Rf(P,Q)=f(P,QR)f(Q, R)

for all P, Q, B in §, i.e. f is a 2-cocycle of $ with values in K* (under the trivial
action of © on K*). This 2-cocycle f is called the factor set of p w.r.t. the sec-
tion T.

Let T be another section for p and f’ be the factor set of p w.r.t. T'.
Then there is a mapping ¢: 9D~ K* with T'(H)=tH)T(H) for any H=9 and we
have

S(P, Q)=UPYQUPQ) ' f(P,Q)

for all P, Q in 9§, i.e. f and f” are cohomologous. Thus the cohomology class c,
of f is independent on the choice of sections for p. We note that any cocycle in
¢, is a factor set of p w.r.t. a certain section for p. c¢,&H¥D, K*) is called the
cohomology class associated to the projective representation p. Also we shall
say that p belongs toc, If p,~p., we have ¢y, =c,.. A projective representation
p:H->PGL(V) has a section T which is a homomorphism $— GL(V) if and only
if ¢,=1.

When K is the field of all complex numbers C, the group H(®, C*) is called
the multiplier of § and is denoted by M(). Let H be a finite group. Then it
is proved by Schur [1] that (D) is a finite abelian group and for any ceM(H)
¢"==1 where h is the order of £. We shall prove a slightly more general fact
concerning this in §3.1.

ProrosiTion 1.2, (Schur [1]) Let $ be a finite group and K a field. Then,
Jor any ceHD, K*), there exists a projective representation p of § in a finite
dimensional vector space over K which belongs to ¢ i.e. ¢,=c.

Proor. Let f be a cocycle in ¢ and V be a vector space with a base {en}ircp.
We define a mapping T:9—GL(V) by

T(P)ee=f(P,Q) er, (P,QeD).
Then we have

TPYTQ) ex=T(P)f(Q, R) eon=f (P, QR)f(Q, R) epron
= f(P, Qf(PQ, R) eron=f(P, QT(PQ) er

for P, @, R, ie. T(PYT(Q)=f(P, Q)T(PQ). Hence T is a section of a projective
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representation g such that ¢,=e¢. This completes the proof.

1.3. Central group extension and Hochschild-Serre’s exact sequence.

Let § be a group. A pair (8, 7) of a group & and a surjective homomorphism
7:® -5 is called a group extension of . (¥, ) is called central if the kernel
% of = is included in the center of ®. Two group extensions (%, ;) (1==1,2) are
called to be equivalent (in notation: (&, 7\)~(®,, 7)) if there exists an isomorphism
7.8, —®. such that z,o0=7,. When the kernel of a group extension is fixed, it
is convenient to take more strong equivalence relation. Namely, let (8, =) (i=1,2)
be group extensions of © by the kernel . Then these are called to be strongly
equivalent if there exists an isomorphism «:®;—®. such that z.co==m, and the
restriction of ¢ to ¥ is the identity mapping.

A mapping u:9H—G is called a section for (O, =) if a(w(H))=H for any
He$., Then we have

A(P, Q)=u(P) u(Q) wW(PQ) '

for any P,Qe®. If (§, =) is central, then the mapping A: OXH N defined by
(P,Q)— A(P, Q) is an Y-valued 2-cocycle of © (under the trivial action of © on )
i.e. A=Z3$H,N). This cocycle is called the factor set of the extension (@, 7) w.r.t.
the section u. Let % be another section of (®, ) and A’ be the factor set w.r.t.
u’. Then A and A’ are cohomologous and the cohomology class C of A4 is independent
on the choice of sections. This cohomology class CeHH, %) is called the coho-
mology class associated to (&, ) and denoted by C(®,z). It is easily seen that
(&, 7;) (1=1,2) with the same kernel 9 are strongly equivalent if and only if
C(By, 7)=C(5,, m2). The following is well known,

PROPOSITION 1.3. Let © be a group and U an abelian group. Then, for
any CeHH$H, W), there exists a central group extension (&, =) of H such that
the kernel of = 15 N and C(S, »)=C.

Now let 2 be an abelian group on which 9, %, & act trivially. Then we have
an exact sequence of cohomology groups (Hochschild-Serre {12]):

(5) 1— HI($, 2) 25 HY(G, 2) 75 HQL, 0) - HA(D, £) -5 HY(, 2)

where 1, 7. are the inflation mappings and 7, is the restriction mapping. The
mapping + is called the transgression mapping” and is given as follows. Let u be
any section of (®,#) and A be the factor set of (¥, 7) w.r.t. u. Let zeH'(Y, 2.

6) Schur |27 introduced the equivalence relations of three kinds. This equivalence relation
is of the first kind.

7) The mapping given in [12] is x—«(x)"! (x&H'(U, 2)).
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Then the mapping Z+A:HDxH -4 given by (P, Q) 1(AP,Q)) is a 2-cocycle in
239, ) and the cohomology class ¢ of 7oA is independent on the choice of the
section. This cohomology class ceH*®, £) is the image of 7 by the transgres-
sion mapping =. It is easily seen that r depends only on the cohomology clasg
Ce H¥(H, Ay corresponding to (&, ). Hence we shall denote by r, the transgres-
sion mapping.

1.4. Linearization of a projective representation.

Let (8, ) be a central group extension of a finite group  with the kernel %.
Let V be a finite dimensional vector space over a field K and

I':®&—GL(V)

be a linear representation of & such that I')cK*1,. Then the restriction
7= belongs to Hom (A, K*)=H'(A, K*) if we identify K*1, with K* naturally.
Clearly if I",~["., then %;,,=%,.. Moreover [" induces naturally a projective re-
presentation

p=pr:H—PGL(V).

More explicitly, taking any section u of (®, =), p is given by p(H)=1I"(u(H)) mod
K*1, (He=9), which is independent on the choice of the section u. Clearly if
I'y~1I";, then pr,~pr,. We shall say that the projective representation g=p, of
9 is linearized by the linear representation I of &.

Now fix a field K. Let R(%,N) be the set of all equivalent classes of finite
dimensional linear representations of & over K such that the image of % by the
representation consists of scalar multiples of the identity transformation of the
representation space. Let W) be the set of all equivalent classes of finite
dimensional projective representations of © over K. Then we have, as stated
above, the mappings

7 1 NG, A) — D)
T G, ) — HIQ K%

which are defined by I"—>pr and I"— %, respectively. Also we have, as stated
in §1.2, the mapping

¥y PO HA(D, KY)
defined by p—c,. Furthermore we have, as stated in §1.3, the mapping
o HIQL, K*)— HYD, K*).

Thus we obtain the following fundamental diagram of mappings.
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(1]

H

R, ) L P
(6) tzi l
HIQY, K —> HY(D, K¥)

Then we have

PropPosITION 1.4. 1) The diagram (6) is conumutative i.e. ¥sell=zcelly,

2) Let xH'QLK*) and 7=P(D) such that «()=4.p). Then there exists
a FeNG,N) such that (T)=p and ¥,(M=2 (.e. 0 =p" and *r=3).

3y ¥, and ¥, are surjective.

4) IT is surjective if and only if  is surjective.

Proor. 1) Straightforward.

2) Let u be a section of (, =) with #(I)=I and T be a section of (o, V).
Let A be the factor set of u and f be the factor set of 7. Since ¥4 and f
are cohomologous, replacing 7 if necessary by a suitable section of p, we may

i.e. A and f are normalized. Hence T,=1,. We define the mapping I": 6 — GL(V)
by ['(AwH)=2(4) T(H) (A=Y, He9). Then it is easily seen that I" is a linear
representation of & in V, pr=p and Zr=%.

3), 4) are immediate consequences of 1), 2) and Proposition 1.2. q.e.d.

The image of IT means the classes of projective representations of © which
can be linearized by (®,z). Hence it is important to construct a central group
extension (®, n) such that /7 is surjective, or equivalently, r is surjective. When
K=C (complex numbers) and © is a finite group, it is proved by Schur [1] that
there exists a central group extension (&, x) of © such that r is bijective; such
a group & is called a representation-group of 9 (over a field K). In Schur’s case,
® is a finite group whose order is equal to [D:[][M(#®):1]. However, when
K is an algebraic number field, THH)=H*H, K*) is not necessarily finile even
if  is finite. In such a case there is no finite representation-group.

§ 2. 2-cohomology and pairings.
2.1. An operator on cocycles.
Let © be a group which acts on an abelian group 2. We take an element P

of  and any subgroup 3 of . For any feC*(9, £), we denote by f, the (n—1)-
cochain in C* (3, ©) defined by the formula

1
fl’(Xb fty XRI):}‘]UJ%XI’ ‘0t Xii I“);', Xlal) ‘rry anl)f'u“i

8) ¢ is a representative of an equivalence class 7 in B(®). Similarly [’ is also a repre-
sentative.



156 Keijiro YAMAZAK!

where Py=P, P,=(X,-+- X)) 'P(X,--- X)) 121i2n~1).
For n=1, we have
Se( )= f(P).
For m:==2, we have
(7) FilX)y=f(P, X (X, X 'PX)'. (X&3)
Then we have the followings respectively in the above cases.
B (XY= @)P, X)OfHX, Pt
=XV (PX)Y L f(PYf(P)  f(XP)F(X)
m= ¥ () e YO FX)?
(&f)l’(Xy Y):((‘)\f)(}), X; Y)((;f)(Xy PJ! Y) 1((3f)(X, Y1 Pﬂ)
=Tf(X, VYf(PX, Y)'f(P, XY )f(P, X)!
YFP, YYU(XP, YAX, P,Y)Y (X, P)
Y, P (XY, P (X, YP)f(X, Y )
=Y f(Py, Y)Y, Py ') H{ (P, XY ) (XY, Py) '}
{f(P, X)X, P HAX Y)AX, Yy
=4 e pr(V) (XY Fl X)X IAX, Y)Y
If f is a cocycle and the action of P is trivial, then we have
(8) Jo(XY) = Yfy 0 x(Y) fr(X)

In the following, we assume that the action of P is trivial and 3 is included
in the centralizer of P in ©. Then we have

(9) (6f)pdfr=1

for any feC*(®, #). This formula follows from the above computations for
n=1,2.2 Hence the mapping f-»fp induces a homomorphism

HY®, &) —-H"Y3, &) (nz=1);

we denote by ¢, the image of e H"(D, £) under this mapping.

2.2. 2-cohomology of the direct product of groups.

In the following wc assume that any group considered acts on an abelian
group £ trivially. Let £, and 9. be subgroups of a group 9 such that [, D.]={I}
ie. HiH.=H.H, for all He9, (1=1,2).

For any cocyele FeZ%$, &), we consider the mapping ¢: D xP:— £ defined
by the formula

9 We omit the proof of the formula (9) for n=3, since we shall not use it for nz 3.
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(10) C(Hy, H)y=f(H,, H) f(H, H)' (HiE9).

Then ¢ is a pairing of £, and £, into 2./ In fact, we have ¢(H,, H.)=fu(H>)
=fi(H) '. However, for any H,c9; 9; (j¥1) is included in the centralizer of
H, in © and fy, is In 2'(H,, H=Hom(H; 2). Moreover we see by (%) that ¢
depends only on the cohomology class of f. Thus we obtain a homomorphism

(1n HAD, 2) = Py, 25 9)

where P(9,, H:; 2) is the group of all pairings of £, and £, into £. Then we
have the following theorem.

THEOREM 2.1. Let a group $ be decomposed into the direct product of two
normal subgroups 9, and .. We denote by ¢; the restriction of c&HY(D, L) to
9, (1=1,2) and by ¢. the pairing which corresponds to ¢ by (11). Then, by the
mapping ¢— (¢, ¢, ¢o), we have the following isomorphism.

H(D, 2)=H¥(D,, D)X H(D:, 2)XP(H1, D25 £

PrROOF. Let f: be any normalized cocycle of £; (1=1,2) and ¢ in P(Dy, D25 ).
We define a 2-cochain f of D by the formula

F(PPs, Q@) =F1(Py, Q1) o Py, Q)¢ (Py, Qo)

for P, Q.€9; (i=1,2). Then it follows easily that f is a 2-cocycle of 9. More-
over its restriction to 9, is f; (1=1,2) and the corresponding pairing is ¢. This
proves that the homomorphism ¢— (¢, 3, ¢.) is surjective.

Let f be a 2-cocycle of © such that its restriction f, to ©; is a coboundary
of §; (i=1,2) and the corresponding pairing is trivial; we write fi=dg; where g,
is a l-cochain of §; (i=1,2). If we define a l-cochain ¢ of $ by the formula
(P Ps)==g,(P))g=(P,), then the restrictions of f(3g)~! to the , are trivial. Hence
we can assume that the f; are trivial i.e.

f(Ph Ql):f(P_g, Q_.):::]_
for P, Q:€9; (i=1,2).

Then we have

1=@f )PPy, Q1, Q) ' =f(Q1, Q2) ' f(PPaQy, Q) F (P Pe, @iQ2) ' f (PP, Q1)
1:(3f)(P1Q1, P, Qa)zf(sz Qz)f(Panpz, Q:)*lf(PxQn P.Q)f(P@y, Pt
1=(0f )Pz Pi, @) =1 (P1, QS (P2Py, Q) f (P, PQISf(P, Pr) '

Also we have

10) This means ¢(PQ:, Ho)=¢(P\, H)e(Qy, Hy) and ¢(H,, PQu)=¢(H,, Pae(I];, Q)
(Pir Q?’; Hie"bl)-
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L=g(Py, Py t=f(Py, P (P, Py)

From the above five equalities, it follows easily that
L= f(Pi Py, QiQ2) ' f(Q1, Q) f(Pi@1, PoQu) f(Py, Po) L.

Therefore we have f=4l when we define a l-cochain [ of $ by the formula
UP,Py)=f(P,, P:)'. This proves that the homomorphism ¢ (c,, ¢, ¢.) is injective.
q.e.d.

Theorem 2.1 ig easily generalized as follows. Let $ be a group which is
decomposed into the direct product of normal subgroups 9, 9., ---, 9,.. Then we
have an isomorphism

HAD, = VHAD, D)% 1T P(®, 9 2).
41 San

Isi<hs
This ean be proved by induction on m, since we have naturally
POX oo XD, D1 D)= U PD, D D).
F=1

Let us apply this to the case where each 9, is cyclic.

CorOLLARY. Lef £ be a finite abelian group which 1is decomposed into the
direct product of m cyeclic subgroups §; of order & (1<i<m). Then we have

B, D= H 2/2x I Dy,
e 1 Yijsksm

whe'r@ djkﬂ'(lfj, F&:).“)

Proor. Clearly we have P(D,, Dy; 2)=L2y,,. Moreover it is well known that
HA®,, @)= 0/%, since §, is cyclic of order ¢;. The corollary is thereby proved.

We shall give in Theorem 2.2 another description of H(9, 2).

2.3.  Abelian cocycles and anti-symmetric pairings.

Let  be a group and £ an abelian group fixed once for all. We shall ecall
a pairing of £ and » itself into £ simply a pairing of § into . We consider
the following condition on a pairing ¢ of  into £.
(12) ¢(H,H)=1 for all He .
This implies ¢(P, @)=¢(Q, P)~! for all P,QeH. In fact,

1=¢(PQ, PR)=¢(P, PQ)¢(Q, PQ)
=¢(P, P)p(P, Q¢(@, P)¢(Q, Q) =¢(P, Q)¢(Q, P) .

We call a pairing of  into £ satisfying (12) anti-symmetric; we denote by

11) See the notation in §1.1. ({e¢,, &) means the greatest common divisor of ¢; and ¢.
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P..<.($, 2) the group of all anti-symmetric pairings of 9 into 2.
In the following we shall consider abelian groups exclusively. Let H be an
abelian group. We consider the following condition on a 2-coeycle f of  in £.

(13) f(P,Q)=f@Q,P) forall P,Qed.

We call a 2-cocycle of  in £ satisfying (13) abelian; we denote by Hiva (D, D)
the subgroup of H%®, £) consisting of cohomology classes which contain abelian
cocycles. We note that any cocycle which is cohomologous to an abelian cocycle
is also abelian; we call e H:ve (D, &) an abelian cohomology class.'”

We have clearly

Hipe (D, O)=H¥H, £) for any cyelic group 9.
Moreover by the isomorphism in Theorem 2.1 we have
(14) Hiva &, o= Hiuo &, 2 X Hive (8, )

if © is decomposed into the direct product of abelian subgroups 9; (i=1, 2).
Therefore we have
ProrositioN 2.1. Let ¢ group D be decomposed into the direct product of
m eyclic subgroups of order & (1£i<m). Then we have

Heve (9, 2)= 11 0/0%.
g==1

Moreover, if 2 is also decomposed into the direct product of n eyelic subgroups
of order v, (1Sjsn), then we have
Hivet (9, &)= [I lI Zm o
iwl j=
where Z.,,,, denotes the cyclic group of order (¢, 7;).
Proor. The first part is clear by the above consideration. We easily see
that

This completes the proof.
Now let  be an abelian group. Then we have the homomorphism, as de-
fined in §2.2,
H¥D, ) — P9, H; 2)

by setting ;== in (11). The image of this homomorphism is included in
P (D, 9) because of (10). Thus we obtain the fundamental homomorphism

12) ThlS is equwalent to the condition that the group extension of $ by £ eorresponding
to ¢ is abelian,
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HAD, #) - Pas (9, ) for an abelian group 9.

It is easily seen that HZ,. (9, 2) is the kernel of this homomorphism. In detail,
we have the following.

THROREM 2.2. Let H be o finitely generated abelian group and 2 an arbitrary
abelian group. Then we have the splifting exact sequence

1— Hiva ("{?: —Q)“’ H‘_’('f)’ £y -+Pas, (Sji )1

defined by the natural homomorphisms.

Proor. Let ¢ be any anti-symmetric pairing of © into 2. Let  be the
direct product of m cyclic subgroups generated by S; (1=i£m) and we define a
pairing f of © into £ by the formula
1 if 157,
¢S, Sy if 1>4.

We note that any pairing f of a group  into £ is always a 2-cocycle of & in 2.

780 89=|

In fact,

@f)P, Q, R)=f@Q, R)f(PQ, B)'\f(P,QR)f(P, &)
=f(Q, R)f(P, R)"'f(Q, R) 'f(P,Q)f (P, R)f(P, Q)"
=1,

Hence we have a 2-cocycle f of § in 2 and easily see that ¢ corresponds to f,
which proves that the homomorphism H*®, £)—P.s (9, £) is surjective.

The splitting of the exact sequence follows by induction on m since the iso-
morphism in Theorem 2.1 induces the isomorphism (14). q.e.d.

As mentioned in the proof of Theorem 2.2, any pairing is a 2-cocycle; we
call such a 2-cocycle a pairing cocyele and denote by Hi.ic (), 2) the subgroup of
H3(®, £) consisting of cohomology classes which contain pairing cocyeles. Then
we have, from the proof of Theorem 2.2, the following.

COROLLARY 1. Let § be a finitely generated abelian group and 2 an arbitrary
abelion group. Then HXAD, Q) is generated by two subgroups Hivu (D, 2) and
Hiu (D, 2).

REMARK. If © contains no element of even order, then HX®, 2) is decomposed
into the direct product of Hiwa (D, £) and Hi. (D, £). In fact, by (14), we may
assume that $ is a eyclic group of odd order k. Let S be a generator of § and
f a pairing cocycle. Tf we set f(S,S)=w, we have »"=1. Since h(h—1)/2 is
divisible by 4,

it et GeD (z=1)

depends only on ¢ modulo &; we denote by g(S) this value. Thus we obtain a
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l-cochain g of £ in £ and easily see that f=(dg)!, which implies Hi.;. (D, £)=={1).
This completes the proof of the direct product decomposition.

COROLLARY 2. Let  be a finitely generated abelian group end 2 an in-
finitely divisible!® abelian group. Then we have

H?mir (‘{?9 -Q):: H:(@’ Q)E‘Pa.s. (‘5:), -Q)

by the natural mapping.
Proor. By the assumption and Proposition 2.1, we have Hiu (D, @)={1}.
Therefore the Corollary follows from Theorem 2.2 and Corollary 1.

§ 3. Central group extensions of a finite group.

3.1. The multiplier.

In §38, we shall consider a suitably large field K. For any positive integer
d, a field K is called d-divisible, if the multiplicative group K* is d-divisible (Cf.
§1.1.). We have the following proposition which will be used later only in the
case that =2 and the action is trivial.

PropPosITION 3.1. Let K be a field and D be a finite group of order h acting
on K* such that K is h-divisible i.e. the mapping A—2" AeK) is surjective.’®
Then, for any positive integer m, the followings hold.

1) ¢"=1 for any ceHY(H, K*).

2) H"(D, K*) is a finite abelian group whose order is not divisible by the
characteristic of K.

3) The following exact sequence splits.

1B, K*) -2, K*)—H"(H, K*)—1.

ProoF. 1) This follows from Proposition 1.1.1).

2) From 1), it follows that any ceH"(®, K*) has a finite order d dividing A
and K is d-divisible. Hence, by Proposition 1.1.2), ¢ contains a cocycle f of the
same order d. Since the values of this cocycle f have the orders not divisible by
the characteristic of K, d is not divisible by the characteristic of K. However
there are only a finite number of those cocycles, since the values are h-th root
of 1. Thus H*®, K*) is finite and its order is not divisible by the characteristic
of K. This completes the proof of 2).

3) Let ¢, --,c, be a base of the finite abelian group HY®, K*). We can
take a cocycle f.c; which has the same order as ¢, for each 4. Then Z*(H, K*)

13) This means that £"=% for any positive integer n. For example we can take U=K*
where K is an algebraically closed field.
14) This condition is valid for any algebraically closed field X,
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is decomposed into the direct product of B"($, K*) and the subgroup generated
by fu +++ f.. This completes the proof of 3). q.e.d.

‘ RuMARK. Suppose that the action of a finite group © is trivial. Let K be
any field and K be the algebraic closure of K. Then H%$, K*) is a finite abelian
group by Proposition 3.1. We have the exact sequence (§1.1 (3))

H(®, B H(D, K*/K*)—HAH, K*)—HH, K*).
Clearly H!(®, K*) is finite. Hence it follows that H*(H, K*) is finite if and only
if Hi(®, E*/K*)=Hom (9, K*/K*) is finite. In particular, if  coincides with its
commutator subgroup £, HXD, K*) is always finite for any field K. (Cf. [7]).
But if not, H¥(®, K*) is not necessarily finite. For example, let K be any algebraic
number field of finite degree. Then, H(®, K*) is infinite if Hx9'.

Under the trivial action on coefficient groups, we have the following pro-
position (Cf. [91) which will not be used later.

ProrosITION 3.2. Let K be an algebraically closed field of characteristic
p=0 and D be a finite group of order h. Let 2 be an h-divisible subgroup of K*
containing all h-th roots of 1. Then for any n>0 the structure of H'(9, 2)
depends only on O and p; we denote by MMND) this group. Moreover we have'

PEO=NGOYE (p>0)
where P is the p-Sylow subgroup of MGD).

Proor. For the former part, it is sufficient’® to prove that the natural homo-
morphism H*®, 2) - H"(H, K*) is bijective. The exact sequence 1 Z—K*~K*/Q
—1 yields the following exact sequence by (3).

H" (9, K*)—H*- (9, K*/2)—HY(D, 2)—H"(H, K*)—H"(H, K*/2)
It is easily seen that (K*/@),,={1} by the assumption. Therefore we have
H®, K*/9)={1} for nzz1, by Proposition 1.1. Thus we have
1-—-HY®, 2)—H (D, K*)—1 for nz=2.
For n=1, we have clearly the surjective homomorphism H*®, K*)—HY9, K*/2)
which implies that H!(®, 2)—H!(®, K*) is injective. This completes the proof of
the former part.
By the former part of Proposition, we have
M(@)=H"(H, W),
MUY =H D, W/ W) (p>0)
where W is the group of all roots of 1 in the complex number field and W, is

15) Of course MYD) is the multiplier of § in Schur’s sense.
16) Consider the algebraic closure of the prime field of characteristic p.
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the subgroup of W consisting of p*-th roots (¢+=0,1,2, --.). The splitting exact
sequence 1 ->W,,—W-W/W,,—1 yields the splitting exact sequence

1-H"®, W) RS, W)—>H"®, W/W,)—1.

H"(D, W) is a p-group and the order of H*(®, W/ W) is not divisible by p.
This completes the proof of the latter part.

3.2. Some types of central group extensions.

Let § be a finite group of order h and (8, 7) a central group extension of £
by the kernel . As stated in §1.4, linearizations of projective representations
of £ over a field K by (&, =) are closely related to the iransgression mapping

o, =y L HOL K#) — HY(D, K*) .

We shall define some types of central group extensions (,z) according to the
properties of re(g, =)

For the sake of simplicity, we fix a finite abelian group % and assume that
K satisfies the following two conditions. (Cf. Proposition 3.2.)

1) K s h-divisible. This means that the mapping of K into itself defined
by 21— 2" is surjective.

2) K is N-cycliec. This means that if ¥ has an element of order d, X con-
tains a primitive d-th root of 1, whence N=Hom (N, K*).

In the following, we fix such a field K. Moreover we denote by A the group
Hom (), K*)=H!(, K*) and by T() the group HAH, K*).

Let (8, 7) be a central group extension of § by ¥ and C be the cohomology
class in HX(®, N) associated to (@, ). We call (&, =) to be of bijective type, surjective
type, injective type respectively if the associated transgression mapping 7. is
bijective, surjective, injective. A central group extension of bijective type is
nothing but a representation-group (§ 1.4.). Furthermore we call (%, %) to be of
0-type (or abelian type) if r. is trivial i.e. the image of 7. consists of only the
unit element. We may generalize the concept of O-type as follows. Let 4. be
the natural homomorphism

(D) — MH®) (s=1,2,+--)

where £ is the s-th commutator subgroup of . Then we call (§, 7) to be of s-type
if Jsote 18 trivial.

Now we have the following lemma by the assumptions on K.

LeMmMA 3.1. The following sequence defined by the natural homomorphisms
18 exact.
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1— Hom (§, K*) -~ Hom (&, K*) — Hom (%, K*)— Hom (& NYA, K*)—1.""
This exact sequence and the Hochschild-Serre’s exact sequence (§1.3.) imply
the following.
PROPOSITION 3.3. Let (8,7) be a central group extension of D by N. Then
1) (®, =) 43 of s-type if and only +f G NA={I}.
2) (8, 7) is of injective type if and only if & DU
Proor. = induces an isomorphism

NS /N = H*

Hence we have a central group extension (UG, z|AGY) of H by A. By
Lemma 3.1, we have

AGDY = AGOY MW~ -1,
therefore we have

AG®) T (@ N0 -1,
Sinee J.0r¢ is the transgression mapping corresponding to (UG, z|AG®), we
have also

AG®) - AEMBS) .

The above two exact sequences imply 1). When s=0, these sequences imply

also 2). g.e.d.

We denote by H(H, M) the subgroup of HXH,N) consisting of all cohomology
classes associated to central group extensions of s-type. Now let (&, 7) be a
central group extension of § by ¥ and suppose that *'"={I}, Then (&,=z) is
of s-type if and only if 8“'V={I}. In particular, we have'”

(15) Hi(®/9, W=Hive (H/9', N} .
ProrosirioN 3.4. By the natural homomorphism, we hove
H}®/9¢ 0, W=HHDH, N  for any s=20.

Proor. Let CeHH/HE, ) and (G, %) a central group extension of H/H*Y
by ¥ to which € is associated. Then, as stated above, we have BV ={I}. Let
CeHA(H, ) be corresponding to C by the natural mapping and (§,7) a central
group extension of © by % to which C is associated. Then there exists a homo-
morphism ¢ : 8 —® such that the following diagram is commutative.

17) & is the commutator subgroup of &.
18) Cf. footnote 12).
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1A G- p—1

]

12— (B~ H/H 70— 1
Since GV NA=¢@ P NWc GV ={I}, it follows from Proposition 3.3 that
(®, =) is of s-type. Thus we obtain the natural homomorphism

(16) Hi(®/H 0, M — HiD, W) .

Now suppose that (®, =) splits. Then there exists a homomorphism ¢ : -+

such that 7zo=1., Also we have
(o)D) Ce@ )@ ={I}.

Therefore ¢o¢ induces a homomorphism ¢ : 9/H¢ 1 @ such that Fod=1 whence
(®, %) also splits. This proves that (16) is injective. We take any CcH(H, M)
and let (®,7) be a central group extension to which C is associated. We take
the factor group &=@/@'" and the natural homomorphism 7 : &—H/He' . We
easily see that the kernel of % is isomorphic to ¥ naturally since &0 NN={I}
by Proposition 3.3; we identify these groups. Then the cohomology class c
associated to (8, 7) is in HX®H/9¢*Y,A) and mapped to C by (16). This completes
the proof.

From (15) and Proposition 3.4, it follows that

1w Hive (9/9', W=HHD, N

by the natural homomorphism.

3.3. A fundamental exact sequence and its applications.

Let 9, %, K,ﬁ and DUH) be as stated in §3.2. Then the following theorem is
fundamental.

THEOREM 3.1. Let D be a finite group and N a finite abelian group. Then
we have the splitting exact sequence

1— Heper (9757, %) — HX(D, ) — Hom (2, M(DH)) — 1

defined by the natural homomorphisms.

ProorF. By (17), it is sufficient to prove that the homomorphism

H(9, %) — Hom (I, M(H)

is surjective and its kernel Hi(H,%) splits.'” We need the following lemma for

n=2,

19) This fact holds for any n>0 if we set DUD)=H™D, K*).
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LeEMMA 3.2. Let © be a group and %A, 2 be abelian groups. For any n-
cochain foC*(H, Hom (‘5{, 2, we define a homomorphism ¢&Hom (‘)NI, CH 9, &)
by the formula

AKXy, -y Xo)= (f(){n, e Xa))(A4)
(Ae¥; X, -+, X, e9).
Then the mapping f—»¢ is a bijection and induces naturally a bijection
Z"(9, Hom (%, 2)) - Hom (%, Z"(, 2))
and an injection
B"(®, Hom (¥, £)) — Hom (%, B'(9, £)) .
Proor. Straightforward.
Now we set 2=K* and %=% in the aE)ove lemma. Then we have the follow-
ing bijection and injection, since A=Hom (A, K*) naturally.
1 Z3(®, %) — Hom (2, Z(9, K*)—1,
e 1 BY($, %) — Hom (¥, B(H, K*) .

Moreover, by Proposition 3.1 3) and (4) in §1.1, we have the splitting exaet
sequence

(19 1—Hom (N, BX®, K*)) — Hom (N, ZA(%, K *))~>Hom (¥, H2(9, K*))~1.
Therefore the natural homomorphism
H2($, A) — Hom (A, HY(D, K+)

induced by (18) and (19), is surjective and its kernel splits. This completes the
proof of Theorem 3.1.

Now we shall give some applications of the above theorem. We recall the
agsumptions on O, N, K (§3.2.). By Theorem 3.1, we have the surjection

HY($, %) — Hom (2, M(D))

defined by the homomorphism C-»7¢.  Also we have U =9, Therefore the followings
are clear.

1) 'There exists a central group extension of bijective type of & by % if and
only if ¥ is isomorphic to T(D).

2) There exists a central group extension of surjective type of § by U if
and only if ¥ has a subgroup isomorphic to (D).

3) There exists a central group extension of injective type of by U if and
only if U is isomorphic to a subgroup of V(D).
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COROLLARY 1. (Schur [13}) Let © be a finite group of order h and K an
h-divisible field. Then there exists a (finite) representation-group of  over K.

PrOOF. By Proposition 3.1, M(®)=H®, K*) is a finite abelian group. More-
over, by Proposition 1.1 and h-divisibility of X, K is J(D)-cyelic (Cf. §3.2 for
the definition.). Hence the Corollary follows from the above 1).

COROLLARY 2. (Schur [21) Let © and K be as in Corvollary 1. Then the number
of equivalent classes of all representation-groups is equal to

H (e, 15)
i

where {&} and {7;} are the invariants of /% and (D) respectively.

Proor. First, we fix the kernel ¥ of central group extensions of bijective
type which is isomorphic to (). Then, by Theorem 3.1, the number of strong
equivalence classes of those group extensions (Cf. §1.3.) is equal to

[Hiver (9/97, %) : 1T{Aut @0 : 1]

where Aut () is the group of all automorphisms of . Now, when we do not
fix the kernel U, the equivalence relation among group extensions of bijective
type is weakened modulo Aut ()= Aut ((9)). Therefore the number of equivalence
classes of group extensions of bijective type i.e. representation-groups is equal to
the order of Hivu (9/9, DUD)). Hence the Corollary follows from Proposition 2.1.

Corollary 1 to Theorem 3.1 is generalized as follows.

ProPOSITION 3.5. Let ©,9, K be as in §3.2. Let (&, 7) be a central group ex-
tension of injective type of D by A. Then there exists a central group extension
(@, %) of ® such that (®, wo3) is a central group extension of bijective type of .

Proor. Let Ce< HX®H,N) be the cohomology class associated (®,z). Then
rc:"f[-ﬂﬂ(@) is injective. Hence there exists an abelian group extension 8 of
and an isomorphism

¢ 1B MD)
whose restriction to A coincides with 7e. Then we have the following commutative
diagram by the natural mappings.

1 - H2pa (9/9, B) — H¥(H, B) — Hom (‘/8, PMH) —1
! i L
1> Hiver (9/8, ) — H(®, %) — Hom (3, M(5)) 1
By Theorem 3.1, the horizontal sequences are exact. It is casily seen that
Hipa (979, B) — Hive (9/9, N) is surjective since B—A is surjective. Therefore
it follows easily that there exists a cohomology class CeH9, B) which is mapped
to €. It is sufficient to take a group extension to which C is associated. q.e.d.
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§ 4. Ring extensions of 2 finite group over a field.
4.1. Definition of ring extensions.

Let K be an arbitrary field. By a 7ring over K, we mean a ring .4 contain-
ing K as a subring and such that the unit element 1 of K is also the unit element
of 7. However it should be noted that we do not assume that K is contained in
the center of 4. Let § be a finite group. By a ring extenston of D over K, we
mean an object consisting of a ring 7 over K and a direct sum decomposition

A = 2 cﬂu
Heb

of i into a family of submodules .7, indexed by 9, such that
Rl) iy=Key=eyK for some e;%x0 (for any HeD),

R2) ipdp=Arg (for any P,Q&9);
the direet sum decomposition . 7= 2,% A will be ealled a structure of ring extension
Ifes
on . ’
Two ring extensions lengf/u and 9= 3 B, of § over K are said to be
(=) el

isomorphic if there is a ring isomorphism of .7 onto % such that ,— By (HED).

Let us show some elementary properties on ring extensions. We denote by
i¥ the set of all non-zero elements in ;. First we note Rl) is also valid for
any ey % (He®), and {ey}uep is a left and right K-base of 4. This shows
that

(20 ABAY = AFq (P, Qe 9).

Now we write
1= > an @nedn),
He sy

then we have a,%0 for some Pe$. Hence a1)=1§;,“ anap. Since ayep€ App, We
T

have a,0,=0 for any H=1 where I is the unit element of . Hence a,=0 for

any HaI by (20). Thus we have 1=a;& 4, which shows

(21) g/i[ == K.

Let & be the disjoint union of Jif (He®). From (20) and (21), it follows
that & is a group containing the group .i¥=K* under the multiplication in 4.
Let = be the natural homomorphism G-—9. Then (®,=z) is a group extension of
S by K*; we call this the group extension associated with the ring extension
= YV oy 4% is a coset of & modulo K* corresponding to HE®, and ey 4%

Rz 5y

yvields an automorphism of the field K

ayid—eydeq (811507?;)
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which does not depend on the choice of ¢y in _i%; we denote by % the element
on(A)eK for 2& K. The mapping

O':H"‘*(T/[

is a homomorphism of © into the group of automorphisms of the field K, that is,

$ acts on K. We shall say that the ring extension .i= 3! i, belongs to the
HES

action #. The group extension

I1-K¥—@—-H-1

determines a cohomology class in H¥(D, K*).2® More explicitly, we take a function
J of two variables on $:

f(P,Q)=¢ereqery, (P,Qe).

Then f is in Z*(%, K*) and its cohomology class ¢ does not depend on the choice
of eye.if. Moreover isomorphic ring extensions determine the same cohomology
class. Thus we obtain a correspondence between isomorphic classes of ring ex-
tensions of 9 over K belonging to o and cohomology classes in H¥®, K*). It can
be shown that this correspondence is bijective as follows.

Suppose that JzHEESS A and .(B:HZ.?.@,, determine the same cohomology class

3) =g
ceH¥®, K*). Then we have
ap Qg a;é =bpr b;lQ (P, QE'E")

for some ay€ i} and by} (HeD). So we define a mapping ¢ of .4 into @ as

follows.
o( D1 dua)= 3 Auby (AueK)
Hed Hed

It is easily seen that ¢ is a ring isomorphism and ¢( i,)=15, (H&®), therefore

hlz:}E A and .@zn}] %y are isomorphic. Next let us construct a ring extension
e e

corresponding to any cohomology class ce H¥®, K*).2” We take a family {u,}ucg

of indeterminates indexed by $. Let .4 be a left vector space over K such that

{ug}i=s is a base of .2. Then we have a direct sum decomposition L.,ilzzl}] A
N 1 8)

where ig=Kuy (He®). Now we introduce a law of multiplication into 4. Let
J be a normalized cocycle in ¢, and we define the multiplication as follows.

(2 ) 23 poug) = 35 Ap 1o f(P, Q) urg
PcH Qe Qe
20) o induces an action of © on K*; we denote it by the same symbol o. HE(®, K*)
means the cohomology group w.r.t. this action o.
21) When o is faithful, an intrinsic construction by a group extension is given in [Serre,
Théorie des algébres simples, Sem. de top. alg. (1950-1951)]. Also cf. [6], [7], [8], [9].
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The distributivity is clear. The associativity follows from the condition of cocycle.
Thus .7 becomes a ring. Clearly K u, is a subring of .4, and isomorphic to K by
the mapping 2—iu, since f(I,I)=1; we identify 2 with 4u,, hence 1=u,. Then
i is a ring over K and we have y=Kuy=uy K and Jp do=ipe (H, P,Q€9).
Hence «,,1::”'%%2“/1” is a ring extension of 9 over K. It is easily seen that this
ring extension corresponds to the given cohomology class ¢. This completes the
bijective correspondence between all isomorphic classes of ring extensions of
over K belonging to « and all cohomology classes in HX(®, K*).

Let ¢ be an action of H on K i.e. an homomorphism of 9 into the group of
automorphisms of K. Let 9 be the kernel of ~ i.e.

Ho={He®; "1=1 for all 2€K},
and k be the fixed subfield of » i.e.
k={AeK; "A=2 for all HeH}.

Then K is a Galois extension of k& whose Galois group is isomorphic to £/9..
Any ring extension belonging to & is an algebra over k of rank [H:711[H:He].

When o is faithful i.e. the mapping H-»o; is injective, we have $Ho={I}
and can identify &€ with the Galois group of K over k. In this case, the ring
extension is noting but the crossed product of § with K. On the contrary, when
o is trivial i.e.  acts on X trivially, we have K=Fk and call a ring extension 4
an algebra extension of  over K. Kspecially, if the cohomology class correspond-
ing to 4 is trivial, we obtain the group algebra of § over K by taking a base
{en}ucn such that epep=epy (P, QED).

4.2. Scmi-simplicity.

Let 9,0, K and H; be as in §4.1. With a ring extension J=u>:‘§ Ay belonging
ih
to ¢ is associated a subring .4, defined by

The ring 4 and the above direct sum decomposition constitute an algebra ex-
tension of £, over K. This algebra extension is called the restriction of the ring
extension .7 to .

LEMMA 4.1. If 4 is @ non-zero ideal of .1, then SN s also a mon-zero
ideal of 4.

Proor. For each element a= 1}'_‘, ay (aps i), we set E(@)={HeH; ay*x0}.
FIERS]
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Clearly €(a) is empty if and only if a=0. We take a non-zero element @ of 4
such that S(a) is minimal among {S(x)}s:+<y. Then we can prove that &(a) is
contained in a certain coset of © modulo $,. In fact, suppose that there exist
two elements P, @ in &(a) such that P-'Q&®,. Then, by the definition of £,
there exists an element A in K such that Ax#'¢), whence 723:%A, Since 4 is an
ideal containing @, the element b:”ia——alzl}:_‘; (‘Zay—ayd) is contained in 7.
However we have “Ja,—api=0, / ’2a0~aqi=(1'2~(;;153391\10. Therefore E(a) 2 S(b) .
This contradicts the minimality of S(a), and thus €(a) is contained in a certain
coset HE,. If we take an element e=.if-, we have A2eax0, and ©{ea) Dy,
Therefore 4N iy3eax0. This completes the proof.

The above lemma implies that if .4, is simple then .7 is simple (Theorem 4.2
1)). More generally we have the following theorem.

THEOREM 4.1. Let .1 be a ring extension of a finite group $ over a Jield
K, and §, be the kernel of the corresponding action. If the characteristic of
K does mot divide the order of ©,, then .7 is semi-simple.

Proor. If .7 has the non-zero radical ®, ®N_% is a non-zero nilpotent ideal
in .7 by Lemma 4.1. Hence it is sufficient to prove that .7 is semi-simple. So
we can assume that £ acts on trivially, whence . is an algebra extension of
over K, and the characteristic of K does not divide the order of $. Let ¢ be
the character (i.e. the trace function) of the regular representation of .7 over K.
We take e,=1, ey if (H=9), and set f(P, Q)==¢p ey e5y. Then the diseriminant

D of .7 w.r.t. the base {ex}ycy is computed as follows.
D=det (¢(er ep))=det (f (P, Q)¢ (erq))

=det (f(P, Q) ko, =1 sgn (,.,) 11 P, P %0,
where k is the order of . Therefore .7 is semi-simple.

4.3. The center.

Let 9, 90,0, K, 1 and 4, be as in §4.2.

LEMMA 4.2. The center of A is contained in the center of ;.

Proor. Let a= IE’@M @y Ax) be in the center of 4. It follows that

2 lay= 3} agh= 3} YAay, for all A& K. Therefore we have
Hed Hed) HeH

(22) Aay == ay, for all He 9, i K.

Let H be any element of $ not contained in 9. Then 41 for some icK.
Therefore, from (22), we have a,=0 for H¢:9, whence ac. 4. This completes
the proof.
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THEOREM 4.2. Let .4 be a ring extension of a finite group D over a field K,
k be the fizxed field of 9, and iy be the restriction of _i to the kernel D, of the
corresponding action. Then we have

1 If i is simple, then .7 is simple.

2) If the center of .4y is K, then the center of .7 is k.

Proor. 1) It follows immediately from Lemma 4.1.

2) From the assumption and Lemma 4.2, it follows that the center of i is
contained in K. Let A be any element of the center of .1 contained in K. We
have ley==e;2="2e, for ey} (HED), whence Ack. This completes the proof.

CorOLLARY. Let i be a ring extension of a finite group © over o field K.
If the corresponding action is faithful, then i is central simple over the fized
Jield of the action.

Proor. In this case, we have .iy=K. Therefore the corollary follows from
the theorem.

This corollary is well known, and .1 is of rank [9:I]2 over k. In the follow-
ing we shall study the center of a ring extension in detail.

Let .4 be a ring extension of a finite group § over K and ¢ the corresponding
cohomology class in -Hi($), K*) where ¢ is the action corresponding to .4 If the
action of an element P in § is trivial i.e. P€$,, we have the homomorphism

H®, K*)— Hi(8r, K*)
where 3, is the centralizer of P in 9, as stated in §2.1; we denote by ¢, the
image of ¢ under this homomorphism. We call P to be _i-normal or c-normal if
ep=1. We take a cocycle f in ¢ and define f»eCYH,K*) by (7) in §2.1. Then

an element P in & is .4-normal if and only if P is in §, and there exists an
element a,€ K* such that

(23) (X)) ="Yapar*  for all X&3,.

LemMA 4.3. Let P and Q be two conjugate elements of . If Pis  i-normal,
then @ s also _i-normal.

Proor. Let Q==H-'PH for some He% and P an ./i-normal element. Then
we have Qe and By=H"'3s» H, where 3, is the centralizer of @ in 9. Hence,
for any Y& 8y, we have X=HYH '3, and by 8) in §2.1,

Tl Yy ="f 11 pnr(Y)=f o (HY) fo(H) '=f 1 (XH) fp(H)
="fu(H) fo(X) fe(H) L.

This implies, by (23),
REa(Yy="fulH) Yap o' fu(H) .
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We set ao=""(arfr(H)). Then we have easily
foY) =Yayast for all Ye3,,

whence @ is . ~normal. q.e.d.
We call a conjugate class € of § _inormal, if 6 contains an .7-normal
element, or equivalently, if all elements of € are .7-normal.
THEOREM 4.3.°® Let .1 be a ring extension of a finite group H over a field
K and Z(.1) be the center of .2. For any _i-normal conjugate class 6 of D,
we set
ZE©) = Z(HN %_E; Ap .

Then we have
Z{( A = 5(;,‘ Z(8)
where € runs over all _i-normal conjugate classes of . Furthermore we have
[Z@): k] =[Kp: k] (Pe6)

where k is the fized field of $ and K, is the fized field of the centralizer 3, of
P in 9.

Proor. By Lemma 4.2, we have Z(.0)C.4. We take any element a of
Z(.4) and write it in the form

a=>las
[

where € runs over all conjugate classes of 9 contained in 9, and as is in 1'2& Ap.
Let e be in . Since eyae;'=a, we easily see that e, o¢e;'=as for 5}{ e,
whence ag is in Z(.4). This proves that Z(.7)=>!7(6) where 6 runs all conjugate
classes of 9 contained in 9,. ¥

Let us compute [Z(6):%k]. Let f be a cocycle corresponding to a base

{es}ucep. Then an element 5‘__,’/11: ¢p is contained in Z(6) if and only if
P

(24) R[rfp(H) = ”Z;[‘lpu fOr all PE(S, and HE!S:).

Now we fix an element P in ¢ and consider a k-linear mapping ¢ of () into K
as follows

[ E ZQ GQ“"A[:.
s

From (24), it follows that the mapping ¢ is injective. We shall prove that the
image of ¢ coincides with the k-space

22) Cf. {8] for the case of c=1.
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Ap={2eK; Afo(Z)="2 for all Z&3,}.

The image of ¢ is contained in A, because of (24). Let Ax0 be any element of

Ap and we define
(25) Ao = X"@Afp(X))

where Q=X"'PXc@. We have to show that (25) does not depend on the choice
of X. It is sufficient to show that (25) is invariant even if we substitute X by
ZX (Z<3y). From (8) in §2.1 and the definition of A,, it follows that
KAZNQf (LXK )y= X" 208 (X)X ()= QS (2 X (X)) =X A (X)),
This shows that 2, is well defined for any @&6. Thus we obtain an element
St Aseg. Then we have, for any Q&6 and He,

(#1511
"rsqu= "1 e pxn =" XA f (X H))
=X (XH) =" "R % fy-1px(H) f(X))
= XA (X)) fo(H)=Ao fo(H)

where @=X'PX. Hence, from (24), the element (L‘UXQ e; is contained in Z(6)
ST

and mapped to A< 4, by «. This eompletes the k-isomorphism
ZE) = Ap.

Now we compute the dimension of Ap over k. If € hence P is not 4-normal,
it follows from (23) that 4,={0}. Let € be .#normal. Then there exists a non-
zero element 1 4, An element Ae K is contained in Ay if and only if #(A/s)=(/p)
for all Zc3,. Therefore we have A,=pK, which implies [Z(€):k]=[A,:k]
=[K,:k]. This completes the proof.

4.4. The case of algebra extensions.
We consider an algebra extension 4 of a finite group $ over a field X. Let
f be a 2-cocycle of  in K* corresponding to .4. Then an element P in § is -
normal if and only if
J(P,X)= f(X,P) for all X3,

where 3, is the centralizer of P in . We have, by Theorem 4.3,
COROLLARY. Let 1 be an algebra extension of a finite group O over a field
K and 2(.2) be the center of 4. Then, for any .i-normal conjugate class € of

8, there exists an elment exx0 in 3 JAp such that
Pl

Z(A) = %] Keg

where € runs over all i-normal conjugate classes of .
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From the corollary, it follows that the dimension of 2(.4) is equal to the
number of .J-normal conjugate classes of . In addition, it can be proved that
this number is equal to

(V/in:1) 3 f(PQ) QP!
PQ=QP
P, Qe
if K is of characteristic 0.2 In fact, we have

- [Bp:1] if P is _Z-normal,
Al —
\2‘@ ,,f"(X) - { 0 otherwise,

since fp is a homomorphism of 3, into K*. Therefore we have

3 PR P)Y= 3 3 fr(X)= 3 [3e:]
PG=QP FEDH XE63p

€ Finormal

= 23 [9:3.08,:11=[9:1] X 1

¢ :normal (¢ :normal
which completes the proof.

In the following, we assume that © is abelian. In this case, any conjugate
class of 9 consists of a single element and 3,=9 for any P&, Let .4 be an
algebra extension of © over a field K, ¢ the corresponding cohomology class and
¢ the anti-symmetric pairing corresponding to ¢ (Cf. Theorem 2.2.); we shall say
that ¢ corresponds to .4. Then an element P in $ is .f-normal if and only if

¢P,X)=1 for all X&9.

Hence the set it of all #-normal elements of $ coincides with the annihilator of
¢, whence M is a subgroup of 9.

If ¢ is non-degenerate i.e. #={I}, then we have an isomorphism of £ into
@:Hom ®, K*) : H—~¢, where ¢,(X)=¢(H, X). It follows that the characteristic
of K does not divide the order of . Now we have, by Corollary to Theorem 4.3,

fZ(uq) = E L.)qN .
Net

Therefore we have, by Theorem 4.1, the following.

ProrosiTioN 4.1. Let 4 be an algebra extension of a finite abelian group
9 over a field K, ¢ be the corresponding anti-symmetric pairing and R be the
annikilator of ¢. Then the center of i s given as follows.

2((./7) == 2 JN'
NeRt

Movreover A is central simple if and only if ¢ is non-degenerate.
In §6, we shall study the structures of algebra extension of abelian groups
in detail.

23) This fact was noted by N. Iwahori.
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§ 5. Projective representations and modules.
8,1. An equivalence of .7-modules.

Let .7 be an algebra extension of a finite group 9 over a field K. We consider
the finite abelian group H=Hom (9, K*). For each zeg, we have an algebra
automorphism % of ./ defined by

W ay)= 3 2(H)ay
Hed T

The mapping %— ¥ is an injective homomorphism of § into the group of algebra
automorphisms of .7 i.e. ‘i) acts on the algebra .7 faithfully. Furthermore the %
are linearly independent over K, since the y are linearly independent over K.

In the following we always assume that .i-modules are finite dimensional over
K. Two .4-modules Vi and V, are called to be equivalent if there exist an element
Zegj and a K-isomorphism ¢ : V,—V, such that

(28) ¢(av) = X(a)p(v) for all a4, v&V,;

we denote by Vi~ V.. Clearly the relation ~ is an equivalence relation. If V,
and V., are .7-isomorphic, then they are equivalent.

By Theorem 4.1, .7 is semi-simple if the characteristic of K does not divide
the order of ®. So we assume that .7 i3 semi-simple. Then .7 is decomposed
into the direct sum of all minimal (two-sided) ideals:

A=A+ At oo+ .
Hence we easily see that any Zeé’?) induces a permutation of the set { i} icism
i.e. § acts on { h=izm; 4 and oi; are called to be equivalent if X(.4)=.7; for
some ZG:SS. It is well known that any simple .7-module is isomorphic to a minimal
left ideal of some .7, as left .7-module. It is easily seen that .7, and .4; are
equivalent in the above sense if and only if minimal left ideals of .4; and i; are
equivalent as .#modules.?”

5.2. Representation spaces and .7-modules.

Let us consider the relation between the projective representations of a finite
group © and .i-modules where .7 is an algebra extension of $ over a field K.
Let ¢ be the cohomology class in H*(®, K*) corresponding to 7 (Cf. §4.1.). Let
M 1 be all equivalent classes of _r-modules and P. be all equivalent classes of
projective representations belonging to ¢ i.e. the inverse image of ¢ under the
mapping ¥ (Cf. §1.4.) In the following, we shall establish a bijective correspon-
dence between M : and P.

24) Note that minimal left ideals of % and 4; are not isomorphic as /-modules if ixj.
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Let V be an .i-module. For each He®, we define T(H)&GL(V), where V
is regarded as a vector space over K, as follows.

TH): v—eyzv (enEb).

The mapping T : H— T(H) determines the mapping
o:H—-PGL(V)

which is independent of the choice of e; (HE®). We easily see that (p, V) is a
projective representation of © belonging to ¢. Let Vi (i=1,2) be equivalent -
modules and (¢, Vi) be the projective representations defined by the .-modules
V, as above. Then there exists a character XES; and a K-isomorphism ¢:V,—V,
satisfying (26). We take sections T; for p; (¢=1,2) defined by the same base {e,}
of .I. Then we have ¢@T\(H)=(H) T.(H))-¢, whence gom=p (Cf. §1.2.) i.e.
pi~p:. Thus we obtain the mapping
@n M- P, .

We shall show that this mapping is injective. Suppose that (g, Vi) defined
by the i-modules V; are equivalent. There exists a K-isomorphism ¢ :V,-V;
such that gop,=p,. We take sections T; for p; (¢=1,2) which define the same
cocyele fezc. Then we have ¢oT\(H)=2y T2(H)eop for some 1, K*. Hence

¢oT(P) Ts(@)=f(P, Q) 9o Ti(PQ)=F(P, Q) 2ng To(PQ)o¢=2re To(P) T2(Q)¢ .
Also we have
¢oTi(P) Ty(@)=2p To(P)opo Ti(Q)=2r Ao To(P) To(Q)o¢ .
Therefore we have Ap¢=21pA¢ whence the mapping
X:H—ly (He®)
is an element of «SSzHom (9, K*). Then
(o Ty(H))w)=(X(H) To(H)og)(w)=(x(H) en)¢(v)

for all Hed, veV,. This implies ¢{a v)=%(a) ¢(v) for all ve V), whence V,~ V..

Next, we shall show that the mapping (27) is surjective. Let (n, V) be any
projective representation belonging to ¢, and T be a section for p which defines
a cocycle fee. We take a base {ey} of 1 (ep& i}) which defines the same
coeyele . Then we define a structure of _#-module on V as follows.

av= 3,y T(H)v for veV,

He s

where azHZ}_ duen AueK). It is clear that this .7-module defines (v, V) by the
=5
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above mentioned manner. This completes the proof of the bijectivity of the
mapping (27).

It is easily seen that the equivalence classes of simple -modules and the
equivalence classes of irreducible projective representations belonging to ¢ cor-
respond under the mapping (27). Moreover the semi-simplicity of algebra extensions
impies the complete reducibility of projective representations.?” Thus the problem
to determine all projective representations of a finite group © over a field K is
reduced, in some sense, to the problem to determine all algebra extensions of 9
over K and the actions of § on these algebras. In §6, we shall solve this problem

for any abelian group 9 and H-cyclic field.

5.3. Faithful representations and simple algebra extensions.

Let .4 be an algebra extension of a finite group © over a field K, and ¢ be
the corresponding cohomology class in H%*#, K*). The left .4-module 7 defines a
projective representation (¢-, ) where .1 is regarded as a representation space.
This is nothing but the representation given in the proof of Proposition 1.2.

Let us consider the case that .7 is simple. Then we have a direct sum de-
composition

J:V1+V2+"'+Vn
where V; are minimal left ideals. There exist .i-isomorphisms
(Pi:Vi“"Vl (’i:1,2,---,n)

The simple .7-module V, defines an irreducible projective representation (o, V).
Let H=$ be in the kernel of p,. Then e, v,=1v, for some i K, e, e 4% and

all »,&V,. Therefore we have
¢ien v)= ey ¢V =Api(v) = ¢:(Av))
for all v, V.. Hence we have
e, v =2A4v; for all v,eV,

which implies eyv=2Av for all ve.2. It follows that H=I, since p. is faithful.
Thus we have the following.

PROPOSITION B.1. Let 1 be an algebra extension of a finite group  over a
field K corresponding to ceH¥D, K*). If .1 is stmple, then all irreducible pro-
jective representations of © over K belonging to ¢ are equivalent and faithful.

25) The direct sum of projective representations cannot be defined if the associated coho-

mology classes are different. Even if the cohomology classes coincide with each other,
the direct sum is not necessarily unique,
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The converse is, in general, not true (Cf. Remark after the Corollary to Pro-
position 5.2.). However we have

PROPOSITION 5.2. Let 1 be an algebra extension of a finite group $ over
an algebraically closed field K corresponding to c=HYS, K*). If there exists a
Saithful irreducible projective representation belonging to ¢, then any .4-normal
element of © is not contained in the center of O except the unit element.

Proor. Suppose that there exists an .i-normal element NI contained in
the center of . Then we have, for fee,

SN, H) f(H, N)'=1 for all He 9.

Let (o, V) be any irreducible projective representation belonging to ¢, and 7 a
section for p. We have

T(N)T(H)=T(H)T(N) for all Hed.,

By the usual Schur’s lemma, it follows that 7'(V) is in K*1,, whence P(N)=1,
This means that p is not faithful. Proposition is thereby proved.

Proposition 4.1, Proposition 5.1 and Proposition 5.2 imply the following.

COoROLLARY. Let 4, ¢, K be as in Proposition 5.2 and D be a finite abelion
group. Then there exists a faithful irreducible projective representation belonging
to ¢, if and only if 4 is central simple.

REMARK. It is not essential in Corollary that £ is abelian. In fact, there
exist central simple algebra extensions for suitable non-abelian groups (Iwahori-
Matsumoto [15]). However such a finite group should have a square order, since
a central simple algebra is of square rank. Therefore a finite simple group whose
order is not square, has no central simple algebra extension but a faithful irreducible
projective representation.

In §6.2, we shall determine the finite abelian groups which have central simple
algebra extensions.

§ 6. Algebra extensions of finite abelian groups.

6.1. The action of the character group.

In this section, we consider a finite abelian group § exclusively. We assume
that a field K is P-cyclic, or equivalently, $=H=Hom (9, K*) (Cf. §3.2).
acts on any algebra extension of $ over K, as stated in §5.1.

THEOREM 6.1. Let £ be a finite abelian group and K a $H-cyclic field.
Then any algebra extension A of © over K is semi-simple; A i3 decomposed

into the direct sum of all minimal ideals:

JZ=._/Z1+JF2+ b "f‘vqm .
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The followings hold.

1) The .1, (1s1i5m) are mutually isomorphic simple algebras over K.

2) The center L; of .1 18 @ Kummer extension®™ over K for each 1.

3) D=Hom (D, K*) acts on { i izi-m transitively.

4) gm{zgg;f(u@)m(ﬂi} 18 a subgroup of i} wndependent of 1 such that
[«53 gl=m. ¢ induces all automorphisms of L; over K.

BY ge={re&q; Z(xy=x for all zcL,} 18 o subgroup of g independent of 1 such
that {@o:11=[4,: L. @, acts on the central simple algebra i; over L; faithfully
Jor each 1.

Proor. The characteristic of K does not divide the order of 9, since K is
D-cyelic. Therefore .4 is semi-simple by Theorem 4.1. We note that 3) implies
1) and the former part of 4) since 9 is abelian. Furthermore 1), 2), 3), 4) imply
5). Thus it is sufficient to prove 2), 3) and the latter part of 4).

Let 9t be the set of all .i-normal elements in . Then N is a subgroup of
$ and the center of .4 is decomposed into the direct sum as follows (Cf. §4.4.).

() = 2}y
Nt

The center Z(.i) has the structure of algebra extension of R over K. Suppose that
the theorem holds for commutative algebra extensions. Then Z(.4) is decomposed
into the direct sum of all minimal ideals as follows.

F(A=Ly+ Lot oo+ L,

where the L; are isomorphic Kummer extensions over K. Moreover ft=Hom (R, K*)
acts on {L;}i1<ism transitively, and g={x E*ﬁ; X(L)=L;}, which is independent of
1, induces all automorphisms of L, over K. We take elements e, L, such that
1=¢+e;4+++-+e, Then the e, are primitive orthogonal idempotents in the
center of a gsemi-simple algebra 2. Therefore 1 is decomposed into the direct
sum of ideals (4,=d4¢;, which are simple. Clearly L, is the center of .i; for each
1, whenee 2) holds. Any &M is extendible to x’ei‘a\, since K is $-eyclic. There-
fore the action ¥ (xe‘)}) on 7(.4) is the restriction of the action ¥’ (z’ez@) on J
to Z(.7). This implies 3) and the latter part of 4).

Thus we can assume that .4 is commutative. In this case, we use the induec-
tion on the number of generators of . First, let D be a cyclic group generated
by S of order n, and .2 be an algebra extension of § over K. We take an
element esc ¥, Then e is in K*: we denote by o this element. It follows
that the assignment X —e; induces an algebra isomorphism

26) This means that L; is a Kummer extension of Ke; where ¢; is the unit element of .4;.
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) KX/ X" ~a)=u1

where K[X] is the polynomial algebra of one variable X, and (X" —a) is the
ideal generated by X*—a. For any /C‘;;, we have an automorphism of K[X]
such that

FX) = fleX) fX)eK[X],

where w=%(S). Clearly this induces an automorphism of K{X}/(X"-a) which
corresponds to ¥ by the isomorphism (28). Now we identify K{X}/(X"—a)
and 1 by (28). We fix a generator ¥ of 3‘3, then w=x(S) is a primitive n-th
root of 1. Let d be the order of & modulo K**” Then n=dm for an integer
m. For some b K*, we have a=b" and the factorization

det
X" g (X~ by,
i=1

whose factors are all irreducible in K[X]. Therefore we have a decomposition
into a direct sum of ideals:

A=K[X1/(X =a)= 311
=1

where .1, is naturally isomorphic to K[X /(X' — " b)=K (% b) which is a Kummer
extension of K. If we take a polynomial f.(X) which represents the unit element
of .4, we have

n

1 Eg}lf,;(X) mod. (X*—a),
fX)=6: mod. (X¢—w'b),
By the automorphism % : f(X)— f(0X),
[ X) = flwX)=d,;  mod. (XT—w" V")

Eai -1, f mod. (X'l — ! b):s’

Therefore we have Z(.4)=.%; 1, whence ,2) acts on {7 }1-i-m transitively, and
Z"(A)=A;. Moreover the subgroup g of ?;) generated by 2™ acts on .7, faithfuily.
Then ¢ induces all automorphisms of .; over K since [g:1]==[c4;: K1==d. This
completes the proof of the theorem for a cyclic group . Moreover g is isomorphic
to the Galois group of .i; over K.

Next, let a finite abelian group £ be decomposed into a direct product of two
subgroups as H=9HP xH?®, and .1 be an algebra extension of  over K which is
eommutative. Then we have two subalgebras

27) d is equal to the order of the cohomology class. corresponding to .
28) Let 7,7 run modulo m.
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x/(;j{l) o= E u)l/f, 3 u’l(")} = E cj?[[:
Hye 5t ez

which are algebra extensions of Y and 92 respectively. Furthermore we see
that .7 is naturally isomorphic to the tensor product J“’?{)JZ‘?’ since {1 is com-
mutative; we identify these algebras. Now suppose that‘the theorem holds for
At and 7, If Zczé) corresponds to x“”eé‘\” naturally (i=1,2), we have 2=

20 %%, Therefore the proof of the theorem has been reduced to the proof of
the following proposition.*®

PrRoPOSITION 6.1, Let 71 be a commutative algebra over o field K and b be
a finite group acting on the algebra A. If the following three conditions hold,
we call the pair (U4,4) regular.

1) o4 is decomposed into the direct sum of all minimal ideals .y, Ja, v+ v, n
where the i, are mutually isomorphic Galois extensions over K.

2} 4 acts on {Adiziom transitively.

3) The group g={x€h; L. A)= 03" is naturally isomorphic to the Galois
group of .7 over K (1Sism).

Now let two pair (A0, aP) and (A%, ¢P) be regular. Then ¢ XxXg® acts
naturally on uZ‘“@JI‘”, and the pair (AP & A9, ¢ xg®) 18 regular.

Proor. Let . ﬂ“’—-},b/«“) and 4‘”*}_, P be the direct sum decompositions

satisfying 1). Then we have the direct sum decomposition

A n(’)_z} ,](1)® r(")

¥

where (V. 1" are ideals but not necessarily simple. ¢V xg® acts naturally on
{0196 #9Y transitively, and the subgroup of a'V xg® consisting of all elements
e xa® such that X( £V 7™ = uPeo 8% is equal to af”xq". Therefore we
can assume that 7 and .7 are Galois extensions over K. In this case, we
have a decomposition into a direct sum of ideals:

.

AP P = DIV L

=]
where the L; are isomorphic Galois extensions over K. Moreover h=q" Xq*® acts
on {L;}1; w transitively, and

g={tegt xq; 1(L)=L}

induces all automorphisms of L; over K. Since [h:q.]=m, we have [g.:1]=[L,: K].
Therefore ¢, is naturally isomorphic to the Galois group of L, over K. This completes

20) When b is abelian, 4; is independent of <.
30) x denotes the automorphism induced by
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the proof of Proposition 6.1.

Theorm 6.1. implies immediately the following (Cf. §5.).

COROLLARY.®” Let © be a finite abelian group and K a D-cyclic field. Then
there exists only one equivalence class of irreducible projective representations of
$ over K belonging to each cohomology class in HY(H, K*).

6.2. Characterization of the center.

Let 9, K, 1 be as in Theorem 6.1 and ¢ be the
corresponding anti-symmetric pairing in the sense | ; o :

of §4.4. Then we have the center of .7 as follows. | ! ; :
N flo Z{ ) L;

Z()y = X Jx | i |

NEw
; T M Ke; Ke;
where M is the annihilator of ¢. We note that the

group g, defined in Theorem 6.1 coincides with the }

P Dy

group of all E&S such that ¥ fix any element of
2(.1); we call g; the fized group of Z(. 7). We easily see that

N={HeD; w(H)=1 for all xeq]},

whence we have naturally
N

W=H/M,  dimg Z(D=[R:T1=[H:q] .
In the following we characterize the subgroup g in 55, in other words, the subgroup
R in H.

We shall eall a finite abelian group of ‘‘symmetric type” if it can be de-
composed into a direet product of two isomorphic subgroups.

THEOREM 6.2. Let ® be a finite abelian group and K a H-cyclic field. Then, for
any algebra extension 1 of © over K, the fixred group g, of the center Z(.1) 18
of symmetric type. Comversely, for any subgroup g, of symmetric type of S:’,
there exists an algebra extension A of D over K such that g, coincides with the
fixed group of the center Z(.1).

Proor. Let .1, ¢, R, g0 be as above, then qnz@//\‘ﬁ. Therefore ¢y is of sym-
metric type if and only if /% is of symmetric type. Moreover ¢ induces a non-
degenerate anti-symmetric pairing of /% into K*, and conversely such a pairing
is obtained by an anti-symmetric pairing of © into K* whose annihilator coincides
with . Thus Theorem is reduced to the following proposition, since anti-symmetric
pairing of © into K* corresponds to some algebra extension of $ over K (Theorem

31) When K=C (complex numbers), Frucht [4] proved this fact using the representation-
groups. Also ef. [15].
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2.2 and §4.1.).

ProrosITION 6.2. Let © be a finite abelian group and K a field. Then the
Jollowing two conditions are equivalent.

1) There exists o non-degenerate anti-symmetric pairing of 9 into K*.

2) H 18 of symmetric type and K is D-cyclic.

Proor. 1)=32). Let ¢ be a non-degenerate anti-smmetric pairing of  into K*.
For P=%, we set

e X)=¢P, X) (X&)

Then we have an injective homomorphism of 9 into r?,) defined by P—yp.
However [H:7] ].Z’Li/p 1], therefore this homomorphism is bijective and K is
H-cycelic.

Now we take an element S in § whose order 7 is the maximum in $. Then
the order of ¢ is also equal to ». Since the orders of all elements in © divide »,
there exists an element 7 in © such that its order is equal to n and ¢(T)=w is
a primitive n-th root of 1. Namely we have

¢S, S)=¢(T, T)=1,
&) { oS, T=w, ¢(T,S)=w™".

If S‘=T/ for some 7 and 7, we have
o =9(S, TY' =¢(S', T)=¢(T', T)=¢(T, T)’=1.

Therefore 4 is divisible by n, whence Si=T7Y=], This shows that the subgroup , of
$ generated by S and T is decomposed into a direct product of two eyelic subgroups
of the same order n. Hence ), is of symmetric type.

Next, we take another subgroup of © defined by
D:={Xe®,; ¢(H, X)=1 for all HeH,}.
Let 877 be in §$1N9.. Then we have
30) ¢(S, S TH=¢(T, 8 T7)=1.

From (29) and (30), it follows that w’==w '=1. Therefore ¢ and j are divisible
by » whence S!TV=1I. This yields ,NH.={7}. Furthermore . is the annihilator
of the subgroup of 3;3 corresponding to &, by the isomorphism H-—¢,. Therefore
we have [9.:77=[D:9,]. Thus we obtain the direct product decomposition

H=H XD

Moreover ¢ induces a non-degenerate anti-symmetrie pairing ¢. of . into K*, since
¢(H,, H)=1 for all H;&9, (i==1,2). Therefore the inductive argument deduces that
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H is of symmetric type.

2)=>1). Let . and 9. be finite abelian groups of symmetric type such
that there exists a non-degenerate anti-symmetric pairing ¢: of £, into K* for
each i. If we define an anti-symmetric pairing ¢ of the direct product X%
into K* by

(r,’\(Pl P‘.’y Ql Qﬂ)x‘r'\l(ph Ql) &”‘.’.(P;.’; Ql) (I)i' th—'i)) ?

it is easily seen that ¢ is non-degenerate. On the other hand any finite abelian
group of symmetric type is decomposed into a direct produet of subgroups 9, 1 <i=m)
such that each 9, is a direct product of two isomorphie eyclic subgroups. Therefore
it is sufficient to prove 2)=1) for a group © which is a direct product of two
isomorphic eyclic subgroups generated by S and T respectively.

Let »n be the order of S and 7. We can define a pairing ¢ of £ into K* by
(29), where w is a primitive n-th root of 1. Clearly ¢ is anti-symmetric. If
¢(X,S'T)=1 for all X&, we have (30). Therefore, by (29) and (30), we have
w' =w =1 as before, whence S'7TV==I. Namely we see that ¢ is non-degenerate.
This completes the proof of 2)=>1). Proposition 6.2 is thereby proved.

THEOREM 6.3.52 Let © be a finite abelian group and K a field. Then there
exists a central simple algebra extension of $ over K if and only if D 45 of
symmetric type and K is D-cyclic.

ProoOF. Any anti-symmetric pairing of § into K* corresponds to an algebra
extension of © over K. Therefore Theorem follows from Proposition 4.1 and the
above Proposition 6.2.

Proposition 5.1, Corollary to Proposition 5.2 and the above Theorem 6.3 imply
immediately the following.

COROLLARY. Let D be a finite abelian group and K a H-eyclic field. Then
there exists a faithful irreducible projective representation of D over K, if O is
of symmetric type. Moreover, the converse holds if K is algebraically closed.

§ 7. Applications and examples of algebra extensions.
7.1. Jsotypical components of a module.

In this section, we consider a canonical decomposition of any faithful linear
representation of a finite abelian group as a preliminary for §7.2 and §7.4.

Let % be a finite abelian group and V a vector space over an A-cyclic field (Cf.
§3.2.); we note that the characteristic of K does not divide the order of %. Assumc
that 2 acts on V faithfully; we denote by v—4v the action of A(weV, Ac¥).

32) This was suggested by N. Iwahori, and he proved ‘‘if " part by another method.
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For cach 7&%A=Hom (U, K*), we take an A-invariant subspace of V defined by
V,={veV; “w=%(4)v for all AcU}.

Now we define a sum®®
S, vy=1/1U)) L:HZ(A“) ‘v
Ad

where || denotes the order of .

ProrosiTiON 7.1, Let %, K, V, V, and S(z, v) (zéﬂ, v& V) be as above. Then
we have

1) V is decomposed into the direct sum of all V, (xe).

2) The mapping v—S(%, v) coincides with the projection of V onto V, w.r.t.
the above direct sum decomposition.

Proor. We easily see that

S(x, “v)y=4850, v)=x%(A4) S, v)

since % is abelian and % is a homomorphism, Therefore the mapping v—S(%, ») is
%-linear and the image is contained in V, for each % . Let v be any element
of V, (ZCE.‘)O. Then we have

S, v)=(1/U) .\_})[Z’(A”‘) ”v=(1/l?U)AE‘x’(A“‘) xWA)v
AN =
m{ v if W=x,
Tl if Wax
for 7. From this, it follows that V is decomposed into the direct sum of all
V, xe). In fact, if

S v,=0 (v,&eV),

"

U

then we have
0=8@, S v)=v, for all ¥ed.
X
For any »e: V, we have

XS u=1/1A) 2 X (A
1 rea A
=(1/]AD 23 ( X} 2(A) ) v=v.
A e
This completes the proof.
We note that V is a semi-simple %-module and V, is an isotypical component

33) This a generalization of the classical Gauss’s sum, when K is not assumed to be %-
eyclic.
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of A-module V for each 2. In addition, when K is not assumed to be H-eyelic,

}_’}\ V, is not necessarily equal to V.
z=A

7.2. Group algebras of central group extensions.

Let 9 be a finite group. There exist generally several non-isomorphic re-
presentation-groups of . For example, let  be a non-cyclic group of order 4 (which
is isomorphic to Z.xZ,). Then the multiplier M =HH,C*) is of order 2.
Therefore there exist four non-equivalent representation-groups of £ which are
of order 8 (Corollary 2 to Theorem 38.1). Three of them are isomorphic to the
dihedral group ®,, and the other is isomorphic to the quaternion group. These
two groups are of course not isomorphic. However it is well known that the
group algebras of these two groups are isomorphic. We can prove such a fact
for any finite group 9 (Corollary to Theorem 7.1). More generally, we have the
following.

TurorReM 7.1. Let  be a finite group, U a finite abelian group and (&, =)
a central group extension of © by A. Then the group algebra K{®] of & over
an N-cyclic field K is decomposed into a direct sum of ideals as follows.

K[(®]= 3 4,
ZE‘S‘.
where A, is isomorphic to the algebra extension of  corresponding to ¢, e HY(®, K*)
which is the image of % by the transgression mepping  (Cf. §1.3 and §1.4.),
Jor each 2% =Hom A, K*).

Proor. % acts faithfully on V=K[®1, which is regarded as a vector space over
K, by the left multiplication in the group algebra. Therefore, by Proposition 7.1,
we have the direct sum decomposition

K[®]= }_‘, Ay
re
where .1,={veK[®]; Av=x(4)v for all AcU}. The .7, are not only -invariant
but also ideals in K[®). In fact, for any Ae¥, G&® and ve. 1, we have

A(GV)=G(Av)=x(A)Gv)
A(WG)={Av)G=1(A)(vG) .

Therefore G. 7, and . 4,G are contained in . i, for any G&®, whence . 7, is an ideal
of K{®] for each z&l.

Now we shall introduce structures of algebra extension into the algebras
.4, Let u be a section of the group extension (4, 7) where u{l)=1, and we set

AP, Q=uP)u(@) wPQ) 'cU (P,Q@e9H). Using the notation in §7.1, we define
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€y, u =S, w(H)) .
Then we have

G3)) e, = (1/1%) ~2,})(7!(/& YAu(H)=e,  w(H)
A

and easily sce that the e, ,(HeD) are linearly independent over K for a fixed 7,

whence dim. 7,2 [9:1]. However we have [(:]]=dim K[&]= }] dim . %, These
reM

show that dim.7,=[9:1] for cach 7%, Therefore the family {e, n}uco is a
base of .7, for ecach 7. If we set .4, ,=Ke, ,, we have the direct sum de-
composition

3w 1 j
AN
PSS

where dim. 7, ,=1 and .7, p. 1, g==.4, 1o. More explicitly, ¢,,; is the unit element
of .4, since for any ve&. 4, we have

ve, ==e, yve=(1/]] }_J‘) 1A NAv=1/N]) 3 A H2(Av=v.
A Al
Moreover we have, from (31),

e r o=, WP) e, u(@)=e, ; w(P)u(Q)=e, , AP, Q) u(PQ)
=A(P, Q) e, 1 w(PQ)=2(A(P, Q) e, , w(PQ)=(A(P, Q) e,, 1y

Thus A, is isomorphic to the algebra extension of § over K corresponding to the
cocyele {X(A(P, @))}. This completes the proof.

COROLLARY 1. Let § be a finite group, A a finite abelian group and K an
U-cyclic field. Then the structure of group algebra of a central group extension
of $ by A over K depends only on 9, K, the image of the transgression mapping
£ 9 He (%, K*), and the order of 9.

For the sake of simplicity, we assume that K is an algebraically closed field
of characteristic 0. Then we have immediately the following.

CoroLLARY 2. Let K be an algebraically closed field of characteristic 0. Let
D be a finite group and & any representation-group of . Then the group
algebra of & over K is isomorphic to the direct sum of all non-isomerphic algebra
extensions of H over K.

7.3, 'Total matric algebras and others.

In §6, we studied the structures of algebra extension of a given finite abelian
group and a condition for the existence of central simple algebra extensions. In the
present and next sections, we shall start from simple algebras without any
structure of algebra extension, and try to introduce such a structure into these



Projective representations and ring extensions 189

algebras. First, we have the following.

PrROPOSITION 7.2. Let K be a field and K., the total matric algebra of degree
n over K. K, 138 isomorphic to an algebra extension of a finite abelian group
over K if and only if K contains a primitive p-th root of 1 for every prime
divisor p of n.

Proor. Let K, be isomorphic to an algebra extension of a finite abelian group
$ over K. By Theorem 6.3, K is $-cyelic. Since the order of £ is equal to »%,
K contains a primitive p-th root of 1 for every prime divisor p of .

Conversely, suppose that K containg a primitive p-th root w, of 1 for every
prime divisor » of n. We denote by % the direct product group of two cyclic
groups of order p generated by S and T respectively. We define a pairing f of
HP into K* by the following relations.

fS,8)=A(T, T)=1,
f(sr T):")py j‘(T, S):l .

Since f is a 2-cocyele of H in K*, we have an algebra extension .17 of £
over K corresponding to f. [ determines an anti-symmetric pairing ¢ satisfying
(29) in the proof of Proposition 6.2, where w=w,. Therefore ¢ is non-degenerate
which implies 1% is central simple over K. We take a base {egisi}o4 jop cOT-
responding to f. Then we see ei=1, since f(S,S)=1. Therefore we have
(I—e)(1+es+ei+ -+ +e57)=0,

whence 1—eg is a zero-divisor in 1. Since .17 is central simple of rank p*
where p is a prime number, it follows that 7" is isomorphic to the total matric
algebra K, of degree p over K.

Now we decompose # into the product of prime divisors py, ps, -+, p, and consider

the algebra extensions .4») over K as above. Then we have an algebra extension
A of P=H) X HP) X ... X HP) over K defined by

A= APOE) AP G (D s
which is isomorphic to Kp, 0 K, Q- ® K, = K,,.
This completes the proof.

Next, we consider semi-simple algebras of some type (Cf. Theorem 6.1.). Let
S be an algebra extension of a finite group  over K and .7 be a direct sum of
ideals .4; (1<£i<m) which are all isomorphic to S. Suppose that we can take a
finite abelian group M of order m such that K is *Dl-cyclic. Then we have

A=8CT
K
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where '/ is the group algebra of W over K. Moreover the algebra Se‘ﬁ}y“ has
naturally a structure of an algebra extension of Dx M over K. For the sake of
simplicity, we assume that K is algebraically closed of characteristic 0. Then we
have

ProrositioN 7.3, Let .7 be an algebra of finite rank over an algebraically
closed field K of chuaracteristic 0. Then .J is isomorphic to an algebra extension
of a finite abelian group if and only if .1 is decomposed into a direct sum of
ideals which are all isomorphic to the same total matric algebra.

REMARK. Proposition 7.3 characterize the structure of algebra extensions of
abelian groups. On the contrary, for non-abelian groups, simple components of
algebra extensions are not necessarily isomorphic. For example, &, (the symmetric
group) has two algebra extensions over the above field. The one is isomorphic to
K+ K+ K.+ K;+ K, (group algebra) and the other is isomorphic to K.+ K.+ K,.

7.4. The canonical structure of algebra extensions on simple algebras.

In this section, we consider a simple algebra over a fizld X with an abelian
group of automorphisms. For a typical example, we have any Kummer extension
of K; we can introduce into this extension a structure of algebra extension
of the character group of the Galois group canonically. More generally we have

THEOREM 7.2. Let .1 be an algebra over a field K and N be a finite abelian
group of auwtomorphisms of .4 over K such that any element of i fixed by U is
contained in K. Furthermore we assume that one of the following two conditions
is satisfied.

1) .71 is a central stmple algebra.

2) 118 a Kummer extension of K. 1i.e. .71 is a commutative field and K is
N-cyelie,

Then the family of submodules .i,={as.i1; ‘a=2x(s) a for all =N} (Zez‘?f)
18 a structure of algebra extension of 9 =Hom LK) on 4.

Proor. When K is W-cyclic, by Proposition 7.1, we have the direet sum

decomposition . 7= >} . 1,. Since A is a group of algebra automorphisms, it is
xe'
casily seen that .7, 4, C. 4y, Therefore it is sufficient to prove that K is W-cyclie,

that . ¥} contains an regular element of .7 in the case 1), and that dimg . 4,=1
in the both cases.

Case 1). Since .7 is central simple over K, there exist regular elements e, in
.4 {oe) such that

‘a=e,ae;’  for all as q.
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We note that any element ¢, satisfying the above property is contained in K* e,
for each o, In fact, if e,ae;'=¢'ae/ "' for all ac. 7, we have ae’le =¢clc’a
for all a=.1. It follows that e;'e/= K* since .1 is central over K.

We see that

flo,v)=e,0.8]}

is contained in K*. Moreover we easily see that f is a 2-coeycle of N in R*.
(Note that e,e.e;'=e;'e,e..) Thus we obtain an anti-symmetric pairing ¢ of %
into K* defined by

¢la, 0)=flo,7) f(r,0) '=e,e.¢]" !

(o, r=M). If we set ¢ (s)=¢(o, v), the mapping r—¢. is an injective homomorphism
of A into ‘Sf In fact, suppose that ¢.(¢)=1 for all s&WN. Then we have ¢,¢. ;¢ =1
for all o<W, that is, e.=e. for all r&MN. It follows that e.< K * by the assumption
on .1, whence r is the identity automorphism. Therefore the mapping r—. is
injective, and thereby bijective. This implies that K is %-eyclic.

Now for any xe, we take r&% such that ¢.=%. Then we have

e, =¢,e. e =%m e, for all N,

whence ¢,&.7,. Namely .4, containg a regular element, and dimg . .7,=1. Let ¢
be any element of .4,. Then we have

‘a=x{g)a=‘e.e'a for all oc¥.

Hence we have “(ecla)=¢;la for all o=¥. It follows that e¢!a=K by the
assumption. Therefore we have dimy .7,=1.

Case 2). Clearly we have dimy .7, <1 by the similar way as above, since any
non-zero element of .7 is regular. Hence it follows that dimy.7,=1 for every
1N This completes the proof.

7.5. A generalization of the Clifford algebra.

In this section, we define a special kind of an algebra extension which is a
generalization of the usual Clifford algebra.’®

Let n be a positive integer =2 and K a field containing a primitive n-th root
w of 1. Let £ be an abelian group decomposed into a direct product of m cyclic
subgroups of the same order n which are generated by S; (¢t=1,2,---,m) re-

34) The existence of non-zero elements in .4, is closely related to the fact that H'(Y, .4)
is trivial.

35) Cf. C. Chevalley [Theory of Lie groups I. (1946)] and Y. Kawada - N. Iwahori {On the
structure and representations of Clifford algebras, J. Math. Soc. Japan 2 (1950), 84-48.].
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spectively :
H=(S) XSy X+ x(S.) .
We define a pairing f of § into K* as follows.

w if 127,

F(Ss Sf):{ 1 if z>§
Since f is a 2-coeycle of § in K*, f determines an algebra extension .45 of
over K.

ProrogITION 7.4. If m 15 even, the algebra i is central simple. If m is
odd, the center of 450 is of dimension n.

Proor. Let ¢ be the corresponding anti-symmetric pairing. Namely we define
¢ by ¢(P,Q)=f(P,QS@Q,P)" (P,Q=9). Then we have

w (E<h
¢S, 8)={1 (=1
wl (@>7).

Let us determine the annihilator M of ¢ and the center of (i’ (Cf. §4.4.).
Let H:= ill S be any element of §. Then H is contained in R if and only if
il

‘;([’][IS{",S])xl for jzl,z,...’m.

Hence H is contained in It if and only if

T et = II.m“r’J for j=1,2,---,m.

i<y k>j

Since « i3 a primitive n-th root of 1, this condition is equivalent to the following.

(32) }:}u,;:’};_} vi (mod. m) for j=1,2,---,m.
i >

This implies that

vityi=0  (=L2,--¢,m~1)

vitvat e b =0 } (mod. n).

If m is even, we have all ;=0 (mod. n). This shows that R={I}, whence .2’
is central simple. If m is odd, we have

PITE PR e o ZE Y, TR e Py B e P TR 00 0 ZE —yy, (mod. n)

which implies (32). This shows that ! is generated by the element N =
S8, It S;', whose order is equal to 7. This completes the proof of Pro-

itodd U even

position 7.4.
ReMARK., When m is odd, in detail, the following two cases occur (Cf.
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Theorem 6.1.).

Case 1). n=0 (mod. 2), m=1 (mod. 4) and K contains no primitive 2n-th root
of 1. In this case, i is decomposed into the direct sum of %/2 isomorphie simple
ideals whose centers are isomorphic to the quadratic field K(/ w).

Case 2). Otherwise. 1% is decomposed into the direct sum of » izomorphic
central simple ideals.

Now we take a base {en}nep of _i” which determines the above coeycle f
and let e; denote e, for each 4. In particular, if n=2, then we have

6?—_—""1, e,~e,~+ejeE=0,

and {ei---e5} (1<3,< -+ <i=m) with 1 constitute a base of _i7’. Namely . &P
is nothing but the Clifford algebra. In general, the algebras .1’ may be defined
in such a form. Let V be an m-dimensional vector space over a field K. Suppose
that an algebra .1 is generated by V as algebra over K and satisties the following
two conditions. (w denotes a primitive n-th root of 1.)

1) There exists a base {e;h1zigm of V such that

ejei:(l)egej (7:>j)
geK*1
2) dlm]; JA=n".
Clearly .45 is such an algebra. Then the following equality holds, similarly as
usual Clifford algebras,

(Sthey=S ek for all kK.
=1 5=

The proof is reduced to the following lemma, by induction on m.
LeEMMA. Let K be a field containing a primitive n-th root @ of 1 and .7 an
algebra over K. Then the equality xy=wyz (x,y&. 1) implies (@+y) ==x"+y".

7.6. A remark on algebra extensions of nen-abelian groups.

In §6.2, we saw that there exist always central simple algebra extensions
of finite abelian groups of symmetric type. There exist also those extensions
of some solvable groups (Iwahori-Matsumoto [15]). However, for many kinds of
non-abelian groups, there is no central simple algebra extension. In the following,
for the sake of simplicity, we assume that K is an algebraically closed field of
characteristic 0. Then we have

PROPOSITION 7.5. Let 9, be a non-abelian finite group satisfying one of the
Following conditions. Then any algebra extension of XD, over K where £, s
an arbitrary finite group, is not simple.
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1) H¥®, K*)={1}

2) D=9}, and there is no simple algebra extension of D, over K.

3) There exists an element P in D! such that H¥3,, K*)={1} where 3, is the
centralizer of P in D,.

Proor. Any one of the three conditions implies that, for any algebra extension
A of 8§y, there exists an element P,%7 in $] which is .4,-normal.®® Let .1 be
any algebra extension of ;X 9. and ¢ the corresponding cohomology class in
H2(9, x5, K*). We take elements ¢, HYD, K*), c;&H¥ D, K*) and ¢<P(Dy, D:;
K*) corresponding to ¢ (Cf. Theorem 2.1.), and let .4, be the algebra extension
of £, corresponding to ¢;. Then, as mentioned above, there exists an element
Pix1 in ) which is .4,-normal. It is sufficient to prove that P, xXJe€H, xH, is
J-normal. Let f be a normalized cocycle in ¢ and f; the corresponding cocycles
in ¢; (=1,2). Then, for @, XQ:€3p, x1=3p, XH,y, we have

F(PixI, @i X @) fQy X Qg PyxI)
= f1(Py, @) 2L, Q2) (P, Q2) £1(Q1, Py) ' folQe, I) (@4, I)!
=@(Py, Q) .

Since P, is contained in i, we have ¢(P,, @,)=1. Therefore P,xI is _i-normal.
This completes the proof.

Applying the above proposition, it follows that M, x® (n=5) and &, xH n=3)
have no stmple algebra extension where N, is the alternating group, ©, is the
symmetric group of degree m and D is an arbitrary finite group. In fact, %,
(nz5) satisfles the condition 2) since the order of W, is not a square, and &, (n=8)
satisfies the condition 3) for P=(1,2,---,n) (if » is odd) or P=(1,2,---,n—1) (if
n i3 even). Note that 3, is a eyclic group and K is algebraically closed.

REMARK 1. There exists a simple algebra extension of 9, x%; (see [157).

Remark 2. %, and ©, (n>4) don't satisfy the condition 1) of Proposition 7.5
{see [3]).
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