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§0. Introduction.

We shall consider in this note the structure of the Hecke ring (G, B) of a
Chevalley group G over a finite field F, with respect to a Borel subgroup B of G.
The notion of a Hecke ring or the ring of double cosets given in G. Shimura [5]
(L’algébre des transformations) coincides in this case with the commutor algebra
of p(G) where p is the linear representation of G determined by the permutation
representation of G on G/B (see §1) since the group G is finite. Our main result
is to provide a characterization of the ring .%(G, B) in terms of its generators
and defining relations (§4). It turns out that the generators and the defining
relations of (G, B) are closely related with those for the Weyl group W of G,
or, with those for the group ring Z[W]. More precisely, if w,,---, w; denote the
reflections in W associated to simple roots ay,---, a;, then it is well known (gee
[4, Expose 14], [8]. Also a proof is given in § 2.) that W is generated by w,,---, w,
together with the defining relations

wi=1, (z=1,---,1)
W W;=W; W, if #,=r/2,
(1) W W W= W,; W, Wy , if g;=22/3,
(w;w ) =(w; w)?, if ¢,;=3z/4,
(wyw P =(w,w,;)?, if #;;=5z/6.

where ¢;; means the angle between «; and a,. On the other hand, if we denote
by wi,+++, @, the elements in G which induce w,---, w, respectively, then the
double cosets S;=B ;B (t=1,++-,1) regarded as elements in (G, B) generate the
ring (G, B) together with the defining relations

St=q-14(q¢—-1)S;, (t=1,---,1),

S:S;=8;8:, it Gy=r/2,
(2) S:S;8:=8,8:8;, if ¢,=2z/3,

(8:8,)*=(8;8., if 0y=3r/4,

(S:8,°=(8;8.)%, if Gy;=5z/6.
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Thus .%(G, B) may be thought of as a ‘deformation’ of Z[G]. In this respect
a theorem of R. Steinberg [6] establishes the triviality of the deformation when
G is of type A;:

(3) G, BY=9(G, B)%"QEQ[W] .

Actually Steinberg’s result is much stronger: for any parabolic subgroup H of
G,GHoHHB,

(4) Il Gy H)= (W, W)

where W, is the subgroup of W associated to H. So it seems natural to conjecture
the validity of (8), (4) for every semi-gsimple algebraic group. We hope to treat
this question some day in the future.

In 81, to make this note self-contained, we give the definition of the Hecke
ring %(G, H) given in [5] associated to a group G and a subgroup H of G which
is commensurable with any conjugate 2z !Hz. But we gave the definition of
J(G,H) in a slightly different form using some measure on G and the convolution
product w.r.t. this measure. Also several basic properties of .%(G, H) are stated.

In §2, a theorem about the Weyl group is given. Firstly we define a notion
of the reduced expression of an element w in W. The expression w=1w; - W,
is called reduced (with respect to the generators w,,---, w,) if » is the least integer
for w among these expressions. Now denote by n(w) the number of positive roots
which are sent into negative roots by w. Then it is shown that w=1w; - -w;. is
a reduced expression if and only if m(w)=7. (This result seems to be not new
but we provide a proof for the sake of completeness.) Then our main result in
82 (Theorem 2.6) is the following: let £ be any associative semi-group and
Ao, e 2. Suppose i, ee, d, satisfy the relations (1) except gf=1 (¢==1,---,1).
Then for any two reduced expressions

Wz Wiy e Wi, =Wy * Wiy

of w, we have i »v A=A+« d;,.

Thus we can separate off the relations wi=1 in (1) from others. This provides
a main tool for the characterization of (G, B) in §4. Also using above theorem
we give a proof of the characterization of the Weyl group W by (1)

In §3, for a Chevalley group G over a finite field F,, we consider the Hecke
ring 4(G, B) of G where B is a Borel subgroup of G. By Bruhat decomposition
(see [2]). G is a disjoint union of B-double cosets Bw(w)B, where w(w) is an
element in G inducing we W. Using the properties of this decomposition given
in 2], we shall show that every double coset Bo(w)B is equal to Si+++S; in the
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ring % (G, B), where w=1w;,++-w;. i3 any reduced expression for w (Theorem 3.2).
Thus S,,---, S; generate (G, B). Then (2) is proyed easily (Theorem 3.2).
In §4, the main theorem is proved. The proof is a simple combination of
theorems in §2, §3. In §5, several applications of the main theorem are given.
Finally I should like to thank Professors O. Goldman and R. Steinberg for
the suggesting and helpful conversations and eriticisms while I was a member at
the Institute for Advanced Study in 1960-62.

§1. (Hecke rings.

Let G be a group and H a subgroup of G. If a subset A of G is H-left
invariant, i.e. if HA=A, then A is decomposed into a disjoint union of H-cosets:
A= Hz,. The set consisting of H-cosets Hx in A is denoted by H\A. In the

follo(&ring the cardinality of a set S is denoted by |S|. Now for 2&G, let K=
Hna ' Hxr. Then the map

¢: K\H- H\HzH

defined by ¢(Kh)=Hzh (heH) is bijective. In fact, it is clearly surjective, and
we have for h, W e H,

Kh=Kh &= Mh'eK &= W h'er  Hry &= Hah=Hzh'.

Thus we have |[K\H|=[H:K]=|H\HzH| (x=G). We shall denote this index
[H:Hnz 'Hz] by indy(2) or simply by ind(z). It is easy to see that

ind (hahY=ind (x) (for any x€@, heH, VeH).
Now we assume that the following condition (A) is satisfied for the pair G, H:
(A) [H:Hne'Hzl<oo for any veG.

(in other words, H is commensurable with & 'Hz for any z€G). Denote by
H\G/H the set of all double cosets of G of type HaH, x=G. Let 4(G, H) be the
free Z-module generated by the elements of H\G/H. Then under the assumption
(A), a multiplication is defined on 4(G, H) which makes J(G, H) a ring over Z
(see [5]). %(G, H) is called the Hecke ring of the pair G, H. We shall give here
however another (but equivalent) definition of the ring % (G, H).

Let us denote by M the set consisting of all H-left invariant subsets of G.
A measure z2 on M is defined by p(A)=|H\A| for AcI. Clearly s« is a completely
additive measure on M. Moreover s is right invariant, i.e. if A€(G, and geG,
then AgeIM and nx(Ag)=(A).

Now denote by L(G,H) the space of all complex-valued, M-measurable, p-
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summable functions f defined on G such that

(1) Frgh=f(g) for any heH, e H, g6,
(2) H(S(f)<oo where S(f)={xeG; flx)+0}.

Then I(G,H) is a vector space over the complex number field € and is closed
with respect to the convolution product, i.e. if £, f:eL(G, H) then the function
Sfi+f: defined by

~

(fl*ﬁzx:c)::j”fmxyﬂ)fz(y)dﬂ(y) (xeG)

is also in L(G, H). In fact (1) is clear and (2) is checked as follows. We have
S(fi+fc S(f1) S(f2). Now S(fx)‘:ingxi, S(fz):jglﬂyj imply 1(S(f1) S(f2))< 0
by the condition (A). Hence we get u(S(fi+f2))<oo. Because of the right invariance
of the measure y, the convolution product is associative. Hence L(G, H) is an
associative algebra over C.

Now denote by %, the characteristic function of a subset 4 of G:
1 for x4
0 for 2 4.
Then for any double coset A=HaH (¢&G), %, is in L(G, H) by the condition (A).
It is easy to see that {X,; A H\G/H} is a base of the vector space L(G, H).
Thus we may identify the free Z-module 9(G, H) generated by A= H\G/H with
the Z-submodule of L(G, H) generated by the {%,, A= H\G/H}. Therefore in the
following we shall regard J(G, H)c L(G, H).

ProrosITiON 1.1. The structure constants of the associative algebra L(G, H)
with respect to the base {2,; AcH\G/H} are non-negative integers.

Henee 9(G, H) ts & subring of L(G,H) and L(G, H)= %G, H )@C.

Proor. Let A, BeH\G/H and X #%p=375 4% (finite sum) “fith 145 sC.
Let ¢ be any element in €. Then

2a(x)= {

(3) 1354 igx,ai*zll)(c) = X(‘ Zailex Y Xp(x) dp(x)=p(A e N B).

Hence 25,5 is a non-negative integer, Q.E.D.
REMARK. nf , is positive if and only if ccAB i.e. if and only if Cc AB.
Clearly %, is the unit element of the ring % (G, H). Now let us prove the
equivalence of the convolution product with the multiplication 4, B of two double
cosets A, B given in Shimura [5]. In fact, let

A=UHa,, B=UHb,

be disjoint unions, then A '¢=Ua;!He is also a disjoint union and
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A'enB= U (a7'HenHby).
2.2

Now we have

Hb;c Ale &= be A e &= byea; ! He for some ¢
&= Ha;b;= He for some 1.

Thus we get
(4) £ 5= (A7 N B) =3\ u(A-'e N Hb)= X1 s(Ha,b, 0 He)
4

kel
i.e. 15 » is equal to the number of (¢, j) such that Ha;b,=He. Hence the equivalence
was proved. Using (4), it is immediate that if N is a normal subgroup of G such
that GODH>ON, then we have

J(G, HY=9%(G/N, H/N) canonically.
Now the map L(G, H)— C defined by f «j f@)dp(z) is clearly an algebra-

(€1
homomorphism. The value of this integral for f=yy., (@€G) is equal to p(HaH)
=ind(a). Thus we denotes Sflx)du(x) also by ind(f). We shall also denote by
G

ind(A4) instead of ind(x,) for A= H\G/H.

LeEmMMA 1.2. Let a,beG and A=HaH, B=HbH, C=HabH. Then

Xa¥Ap=%c €= ind{ab)=ind(a) ind(d) .
Proor. Put ZA*ZB:'%/IB.BxDo Clearly #5.5>0. Now we have
ind(4) ind(B)Z%}pﬂ pind(D) .

Hence 24 ;>0 implies that ind(4)ind(B)=ind(D). Now ¥ +x5=%; implies that ind(ab)
=ind(a) ind(b) obviously. Conversely, if ind(eb)=ind(a)ind(b), then we get ind(4)
X ind(B)=ind(C). Consequently s ,=0 for any DeH\G/H, D+C. Thus we
have x *xz=1x¢, Q.E.D.

We shall use later the following formula for 45 ,.

Lemma 1.3. Let A,B,CeH\G/H and A=\ Ha, (disjoint union), B=HbH,
C=Hc¢H. Then

¢ At B)= 140 4 . =
(5) tip=pmAcNB)= nd(e) ${i; Ha,bH=HcH}.
Proor. Let K=HNb'Hb and H=UKh; be a disjoint union. Then, as was
7
noted above, HszgHble is a disjoint union, Now we have Ha,bH=HcH if

7
and only if Ha;bh; H=HcH. Hence
£{(,7); Ha;bh;H=HcH}=ind(b)$ {7; Ha,bH=HcH}.
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On the other hand, if C= U He, is a disjoint union, then we have

4
Ha,bh; H=HcH <= a;b-h;& HcH ¢=> a;b-h;& He,. for some k
&= Ha,;bh;=He, for some k.

Then we get
£{(,); Ha:bh,H=HeH}=318{(, 7); Ha,bh;=He.)
f
=200 (by ()

Since He, H=He, H=---=C, this i3 equal to ind(c)- 25 5, Q.E.D.

Let us observe that when G is a locally compact topological group and H is
an open compact subgroup of G, then the condition (A) is satisfied and that with
respect to the convolution product using the right invariant Haar measure dz on

G normalized by . de=1, L{(G, H) is also an associative algebra, and actually this
J#H
convolution product coincides with the eonvolution product defined above using the

measure s, Because we have p{(HaH )r—-j dz for every a€G.
u

Ha

In particular when H is finite, the discrete topology on G makes H open and
compact. Hence, in the group algebra C[G], if we put e=|H I“hg;lh, then we
have ¢*=¢ and L(G, H)=e-C[G]-e. We have moreover ZMHZ:IHI‘:@%‘,‘;H% (e is
the unit element of (G, H)). This shows that L(G, H) is a semi-simple associative
algebra over € when G is a finite group. We shall close this section by the
following proposition which seems to be well-known.

ProrosITION 1.4, Lel G be a finite group and H o subgroup of G. Let K be
a field and p the representation of G over K induced by the trivial representation
of H, i.c. pis the representation of G given by the K[{G]-module V:K[GJJ'QID’ K.
Suppose that the characteristic of K does not divide the order of H. ‘L’I‘}Sen
(G, H)=3(G, H )(i;»K is 1somorphic to the commutor algebra A of p(G) in End(V).

N.B. A={ccEnd(V); a-p(x)=p(x)-0 for every zcG.}

Proor. V can be identified in an obvious manner with the vector space over
K spanned by the cosets xH(xeG) as its base. Or V can be identified with the
subspace K[Gl-e of K[G] where e=|H ]“hg_}{h. Now the linear map ¢ : S—S{e)
from A into V is injective. In fact, if S(¢)=0, then for any weV we have
S(u)==S(ue)=uS(e)==0. Now since e*=¢ we have S(e)=eS(e)ceK[Gle=4x(G, H).
Thus ¢ is a linear map from 4 into (G, H). ¢ is surjective. In fact, let
ae Jix(G, H). Then we have ¢(S,)=a, where S, is an element of A defined by
S(w)=ua(ue V). Also we have ¢(S,S:)=¢(S2)¢(S,). Hence ¢ is an anti-iso-
morphism between two algebras A and %x(G, H). On the other hand, it is easy
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to see that the anti-involution z—xz! of G induces an anti-involution of . x(G, H).
Thus A= Jix(G, H), Q.E.D.

COROLLARY 1.5. We use the same notations as in Proposition 1.4.

(i) Let K=C and p=m,p+---+m.p, be a decomposition of the represen-
tation p into irreducible representations p,,-+,p. with multiplicities m,,- -+, m,
respectively. Then Hc(G, H) is isomorphic with the direct sum of total matric
algebras of degree my,--+,m,:

(,‘,l('(,‘(G, H)EMHH(C)\;J\MM!_(C)@) e @ﬂ{znr(C) .

(ii) If the characteristic of the field K does not divide the order of G,
then 90:(G, H) is a semi-simple algebra.

ReEMaARK. It is seen similarly that for subgroups H,, H: of a finite group G,
we have
G ~ [SNH |- [RNH
H\G/Hy|=S"mn= 0 31 A
NG/ =2m= g ) 2]
where m; and n; are multiplicities of an irreducible representation p; in the induced

representations C{G] & € and C[G] 6\3 C respectively and & ranges over the
' clinh) CLIT)

set of all conjugate classes of G.

§2. A property of the Weyl group of a complex semi-simple Lie algebra.

Let g be a complex semi-simple Lie algebra and § a Cartan sub-algebra of g.
Let 4 be the root system of g with respect to [y and /7 a fundamental root system.
Let W be the Weyl group of ¢ with respect to ). For each w4, we denote by w.
the reflection with respect to the hyperplane {Heb; a(H)=0}. Let T={a;,---, a.},
then w,-:+, w, generate W, where w;=w. (i=1,---,1). (see [4]). Denote the
subset 1, wy,+++, w, of W by ©. Then we have

{1} =E'ce'c&c...cW, U&=W,
4.

where &' =G"1€ (i=2,8,-++), &' =6, Then for any element w& W, there is one
and only one integer 7, =0, such that we&'—&*!1. (We put & '=¢=the empty
set.) Let us denote this number 7 by l(w). Note that l(w)=r means that w can
be written as a product of r w’s but can not be written as a product of fewer
number of the w,'s.

Now denote by 4(47) the set of all positive (negative) roots in 4 (with respect
to a linear ordering which makes every root in I7 positive). Denote also for an
element w of W by 4t the subset w47 )N 4" of 4*. Denote by n{w) the cardinality
of the set 4;. The following lemma is well known (see [4]).
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Lemma 2.1, (1) wid' —{a})=4"—{a}.
(it) If n(w)y=0, then w=1.
Now we shall show that n(w)=l(w) for any we W.

LeMma 2.2, (i) widi—{a})=4db,,—{a} for any weW and i=1,---,L
(ii) For any weW and for any i, 121, a; is contained in 45 or in 4.,
Moreover, a; is contained only in one of the 45, 4i.. We have also

n(w)—l=n(ww), if asdi,
n(w)+1=n(ww;), if aEd),

(i) n@w)=lw) for any weW.

Proor. (i) If aed!—{«;}, then by Lemma 2.1 we have wi{a)=4*. Since
wwwla)=wlw)Ed™ we get wila)ed),,. Moreover, wila)#a; because of a% —a;
=wle;). Thus we obtained wi(dj-—{a;})Cdy.,,—~{a:}. Applying this inclusion
relation for ww, we get wi(d,, —{a})Cdi—{a}, ie. A;wiu{ai}cwi(ﬁl‘;m{m}).
Thus we proved that wi(di—{w})=45.,,—{a:}.

(ii) Assume w4 and w;e4).,. Then ww)ed", wwla)ed . Thus —wla)sd,
which is a contradiction. Similarly, if we assume a4} and a;¢ 45, then we
have a contradiction. Thus a; belongs to one and only one of the 4§, 4;.. If
@G5, then a G dl., le. A, =4, —{a:}. Hence we get n(w)—1=n(ww;) by
(i). Similarly if a;Ed), then a,e4;, and we get n(w)+1l=nlww,).

(iii) Let k=n(w). If k=0, then w=1 by Lemma 2.1. Hence [(w)=0=n(w). Now
let us complete the proof by the induction on k. Assume n(w)=Il(w) is valid for
we W with n(w)sk—1. Now let weW, nw(w)=k>0. Then w=1. Therefore
there exists a root as4d* such that w(w)ed- by Lemma 2.1, (ii). Now « is a
linear combination of ay,-«-, @, with non-negative integral coefficients: a=m, a4+
cvv+mie;. Then some w(w,) must be in 4. Hence a;&4}. Let w=ww, Then
e,y implies n(w)=n{w)—1=k~1 by (ii). Hence we have n(w')=l{w")=k-1 by
our induction assumption. Then w'&S* ! and we get w=w"w;=S". Thus we get
1) Sk=n{w). So we have only to show that n(w)<l(w). Put l{(w)=4. Then w can
be written as w=wj, - w;; for some %+, %, such that 1£4,++,4;50. Now for
any we W and for any 4, 154!, we have n(uw)=n(u)+1 by (ii). Hence we get
n(w)xg=l{w), QE.D.

We shall call an expression w=w;, wi -+ wi, 1S4y, %=<1) of we W reduced
if k=n(w)=1(w).

LEMMA 2.3. Let weW. Then there exists a reduced expression of w, w=
Wiy ewi With =1, if and only if aediNT.

Proor. If w=w, -+ wi is a reduced expression with 7.=1, then w' =1w;,- - Wi,
is also a reduced expression for w'=ww, In fact, if w'=1wi,---wi., is not reduced,
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then n(w')<k—1 and we have n{w)<k which is a contradiction. Hence we have
n{w)=n(w)—1. Then by Lemmasa 2.2 (ii) we have a;&Jd:NII.

Conversely, let a,ed:n7. Put w'=ww. Then n(w)=n{w)-1 by Lemma
2.2, (i), Let w'=w;---wi., (k=n{(w)) be any reduced expression for w’. Then
W=wW;, +» Wi, w; 15 a reduced expression for w because of n(w)=k, Q.E.D.

Let us denote by ¢;; the angle between two vectors a;, a;. As is well known,
[4], as for the values of #,;, only the following four cases are possible:

(i) #Oy=x/2. Then w,w;=w;w..

(ii} #;=2z/3. Then w;w;w;=w;w w,.

(iit) #:;=3z/4. Then (w,w,)=(w,;w)"

(iv) #;;=5bz/6. Then (w,w;)*=(w;w;)>.

It is also known that these relations together with w!=1 (¢=1,---,1) form a
system of defining relations for the Weyl group W with respect to the generators
Wy, -+, Wi, (see [4],[8]). We shall give another proof of this fact at the end of
§2.

We shall use later the following

LEMMa 2.4. (i) If ti;==/2, then n{w,w)=n{w,w)=2 and A= {as, ey}
(il) If 0:;=2=/3, then n(w;w,;w;)=n(w,;w;w,)=3 and Dy ={tts, @, a4}
(i) If 0y=38z/4 and lai>la,l, then n((wiw))=n{(w,w))=4 and di,.
{ay, ajy ai+aj, a4 20}

() If 0:;=5z/86 and |a:|>la,ll, then n{(w,w,))=n((w,w))=6 and di.yp=a;
a;, aitay, ai+20;, ai+3a;, 20,4 3a;).
Proor. (i) Since w,w;&€? we have n(w,w)=lw,w;)S2. On the other

e

J

hand it is easy to check that a;€E45,,,. Hence n(w;w)=2 and we get also
n(w;w;)=2 and 45.,={a; a;}. (i), (ii}), (iv) are also proved similarly.

REMARK. The cases (ii), (iii), (iv) are explained by the following root diagrams.

M (&) O:) o(t_q-?os. Civ)

ol
. *, :
& \
\ \\‘ .. 4+ 30t
% - \\ C(L. +ox;
- ; -l ’ D S
:’i I”
7 e d
/ ) ' ps 1 a
/ yd i o 3t
J # !
o o ¥

From these pictures and analogous considerations as in Lemma 2.4 it is easy
to determine the set 4} for any element w in the subgroup of W generated by
two elements w; and w; (this subgroup is a dihedral group of order 4, 6, 8, 12
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respectively according to cases (1), (ii), (iii), (iv).) In particular we have the
LeEMma 25, (i) If 0,=x/2, then wlayed.

(il)y If 0,=27/3, then wiaped®, wywla)ed*.

(il If #,;=3x/4, then wia)ed’, wwlajed", w,w;wla)Ed".

(iv) If 0,=52/8, then wlaped’, wywlayed, w,wywla)ed, (w,w)a)ed,

(wow P wilayed.

Now in order to state some universality property of W, we define several
notations. Let us call a finite sequence (i;,++-, %) of integers admissible if 1<4;,
cee 2l and n(wi, e wi)=r. We denote by ¥ the set of all admissible sequences.
Let us define a map 2—w(d) from ¥ into W by w(d)=w,,---w: where 2=(i;, -, 1,).
This map is clearly surjective. We shall call two elements 1 and ;s in & equivalent
(in notation A~p) if w()=w(z). Obviously ~is an equivalence relation in §. If
A=(3g,++, %), p={j,*++,7,) are equivalent admissible sequences, then we have
(Wi, Wiy Wi, Y=n{W), Wi wi)=8. We shall call » the length of A=(4(,- -, i.).

THEOREM 2.6. Let 2 be an associative semi-group and 4y, ---, 4, be elements
in £ such that for any distinet integers 1, J between 1 and | the following relations
are valid:

(1) ddy=4d;4,, if 0y=r/2,

(1) did;di=d,4,4;, if 6,=22/3,

Qi) (4d)=(d, 4,  if 0i=31/4,

(v) (did)=(d;4:)*, if Hi;=5x/86,

where Uy is the angle between the simple roots «; and a; Let A—-d(2) be the
map from 5 into @ defined by ) =4, for A=, -, i, )&F. Then we have
AD=4(s) 1f 2~p.

Proor. Let A=(p, -, p) and p=(g,,---,qx) be in § and A~pu If k=1, we
have clearly A(Q)=4(x). We shall prove the theorem by the induction on the
length k of 4. Suppose k22 and the theorem is valid for all 1, #&% which are
equivalent and of length<k. If p.=gq., then from w,, - -wp =1wy - W, We have
Wi Wpeot ™ Wy * * *Wyr.,. Hence by the induction assumption we get dy -+ Ay,
sy, oAy, and consequently A)=4(7). Thus we may assume that pi#qu.
Denote by ¢ the angle between a,. and «,;. Then since p.#qx, & is one of the
following four values: =/2, 2z/3, 3x/4, 5x/6.

Now since wp, -+« W, =Wq---Wq, and these are reduced expressions, we have

by Lemma 2.3,
Wyyr e ?qu(ﬂ’pk) ed .

Hence there is an integer ¢ with 2<i<k such that wy - wglay)ed’ and
Wi Wy wglag)ed . Then wy - -wele,) must coincide with ay., by Lemma
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2.1, (i): we; - wylap)=aq... This implies that (wy;«« - we )W Wy, w04 =Wy,
i.e.
(1) W+ Wy W= Wey Wy s+ Wy

We distinguish two cases here according to 1>2 or i=2. Suppose ¢>2. Then
both side of (1) are of the same length<k and the right hand side is clearly a
reduced expression. Hence we see that (g;---,q:. ») is also in ¥ and by our
induction assumption we get

(2 ) Hgi ==y dpp=dy;y dgi + s
Now (1) and wp, - - Wp,=wWy, + » < Wy imply that
Wyt Waieo Woyt * * War Wpr =Wy, * * " War=Wp,* * * Wpy

L. Wy s Wo; o Woy =+ * We, =Wp,+ -~ Wpi.,. Both side of the above equation are of the
same length k—1 and reduced. Hence we get by our induction assumption that

(3) Aqn"'Aamdu»'"Auk‘—“ﬁm'“-dm»-: .
From (2) and (3) we get

HA)=dp,++ cdpr="Ly, - dgioa g+ - Ao dpy
=gy Ay Ay 'Al’l»‘{':d(/‘)

as desired.

Thus we may assume in the following that ¢=2 in (1). We have then
(4) Wpy** * Wpp="Wg,* ** Wap=Wege* * * War Wps .
Hence we have also wp, -+ Wpp.,=Wq,* + » Wy, which implies that
Api+Dppy=din + + g
Thus to prove A(A)=4(y) it is sufficient to show
(%) dgyo o By Dpp= A+ + + Ay,

Now let us distinguish two cases here aceording to #:=7/2 or >=/2.

Suppose #==/2. Then (4) and Wy, Wyr=Wy; Wy, imply that
Waz* * * War.s Wpp==Wy,* * * Wag.y «
Hence by induction assumption we get
(5) day - dapoy App=dg,+ + + Ay, .

Then using 4p, dgi= g Aoy, (Since 0=7/2), (5) gives (+) immediately. Therefore in
the following we may assume that ¢>=z/2. Then 8 is equal to 2z/3 or 3z/4 or
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57/6. Hence by Lemma 2.5 we have wp (o )4, wapwplag)s4 . Moreover we
get from (5) using Lemma 2.3,
Wy W, Wl gr) EA™ .
Then we see as before that there is an integer 5 with 2<7<k such that
(6) Waje* Wy Wpr Wy, ™ Wag Waje  » Wer Wpy
We distinguish here again two cases according to j>3 or 7=8. Suppose j>3.
Then both sides of (6) are of length k—7+4-3<k and are reduced. We have then
by our induction assumption
( 7 ) Arz;i' * 'AQA'AI)IL*AW;:AIU-—I Aqi' * 'dakﬁm .
Now (6) and (4) imply that

Wiy« e W =W = *Waj.a Waj* - Wys Wpr War. 4

ie. Way**  Wap, = Weaa* * * Wag s Wojse * * War Wor «
Hence by the induetion assumption we get
( 8) dyyo v gy =g 'Aaj»e daj' <oy .

From (7) and (8) we get (x) easily.
Thus in the following we may assume that j=38 in (6). We have then

(9 Wpy s » Wpp== Wy * * - Wy
= Ware s War Wi
=Weays* * * Wap Wpr War .
Henee we have Wy« Wypy = Wey * * * War Wy, Which gives in turn
(10) Hyge v dgps =y« dygr D
We distinguish here two cases according to ¢/=2x/3 or ¢>2/8.
Suppose #=2z/3. Then we have Wy, Wy, Wer= Wy Wyr Wpr, Which combined with
) gives
Wya* = Wyroy Wpe™ Wyp* * * Wapey -
Then we get by our induetion assumption
(11) gy - 'Aukmx dpy=dg, -+ L2 PP
On the other hand we have 4y, dow dpv=4dy dpydg, since 0=27/3. Then we get
easily from (11)
gy gy dax dppdgs=dgs» ++ gy Bar Aps s

which gives (*) when combined with (10).
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Therefore we may assume in the following that #>2:/3. Then we have by

Lemma 2.5
Woltrp) €A, W Weap)E A", Wo Wa Walap)ED" .

Moreover we have by (9) wgy- - - Wor Wpr Welern) €417, Hence there exists as before
an integer t with 4<t<k such that

(12) Wey o« Wap Wpy War W™ Wy Wyt War Wy Wy o

We distinguish two cases here according to t>4 or t=4.
Suppose ¢>4. Then, using our induction assumption twice, (+) is proved in a
similar way as before, taking (10) into account.
Thus in the following we may assume ¢=4 in (12). We have then
(13) Wpy* o Wp= Wyy* * - W
= Weet ot War W
= Wyy e *  War Wpr Woy
= Wayr s War Wor, War Wor:
Hence we have wy,+« «War,=Wq,* * * W W, which gives in turn

(14) e Ay =Ly~ dgr dpy; .

We distinguish two cases here according to 6=38r/4 or #>3=/4.
Suppose now (0=37/4. Then (WeWp) = (W wy)* and (18) imply

Wae** * Wars Wpr™= Way = * *Wor_y »
Hence we have Ly +» Ay dp=4dg,++ dy.,. Now we have (g i) = (dpp i)’
gince §=3=/4. Thus we get
dygr o gy (g Api) = s+ + + gy Ay Ay«
Then we get (x) using (14) and (10).

Therefore, in the following we may assume that #>3z/4, Then we have
t=57/6. Hence we have by Lemma 2.5
Wp{Ag) EL®, War Worl@ar) EL®, Wpi Way, Wi g) EL”, (War W) ) EA" .
Moreover we have Wy, « * Wapo(Wor Woi) @) E 4~ by (13). Hence there is an integer
s with 5<s<k such that

(15) Way* * * Waor(Wor Waer) = Was_r* * * Wap. i (War Wpr)

Let us distinguish two cases here according to s>5 or s=5.
Suppose s>5. Then analogous computation as before yields (). Therefore
in the following we may assume s=5. We have then
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(16) Wy r s W= Wy, * Wy
= Wy o Wy W
T Wy * 0 Wey Wy, Wy
=Wt + Wapes(Wep W)

=Wyt Wol{Wpr Way )2 .
Hence we have also wy,. - W, = Wys e+ Wy Wre  Thus we get
(17) Ar/a b 'A!J»’:»J ::d,»,, i 'sz Ai::.- .
Now since #/==5z/6, we have by Lemma 2.5
Walttps) €A, Wie Wailp) E L, W Wor Wolap) =",
(Wpr Wery (@p) A", Wal Wpe Wi (Wp)EA" .

On the other hand we have by (16) wq,«« - Wyl Wo)Xan)= 4. Then there is an
integer h with 65A <k such that

18) Wan* * * Wl Wt Wan P W= Wan_, W+ * Wrl W War)?
Le.
(19) Wan *  Wae Wk Wor)* = Wan_* W (W Wpr)*Wer «

We distinguish two cases here according to A>6 or h=6.
Suppose #>6. Then we obtain (+) by using our induction assumption.
Therefore, finally we may assume 2=6 in (19). We have then
(20) Wy Wpp=Wa;* * * Way
=Wy v War Wor
= W+ +  Wee Woe Wae
= Wae * * Warr(War W)
= Was e+ W o (War Wy )2 Wy,
== Wy + * Warer (War W)
Hence we have Wy« Wy, Wo Wp, == Wq,* + *Wy,.,. Thus we get

(21) Ay 'Arz/.»l’m:dm SRRV PIN

Now we have (W W) =(wp wy,)® since #=5z/6, hence we get from (20) w,---
W Wiz War) = Wye+ + * Wy  Thus we get

(22) Lage ‘duz:-x Apkdfn :Aqs " ‘A(Ik .

On the other hand we have (4, 4,)3= (44 d5) since §=52/6. Then we have
easily from (22) dy- Ao (Jpdp)=dys ol dp: 4):. Then we get (») using
the equations (21), (17), (14) and (11), Q.E.D.
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COROLLARY 2.7. Let O be the group generated by L symbols d,,- - -, o, together
with the defining relations:

(i) 4i=1, i=1,..,1

(ii) Ad;=4,4,, if b,==/2,
() Ad,d=4;4,4,, if U,=22/3,
V) (d:dy=,4, if 0,=3z/4,
(v) (4:a4P=(d;4), if i;=5:/6,

where 0:; is the angle between two simple roots «, and o

Let ¢ :0—W be the homomorphism defined by ¢(J)=1w, for i=1,-+-,1. Then
¢ 18 bigective and we have = W.

Proor. Let ¥, be a subset of § such that the map A—w(2) from ¥ onto W
is bijective on §o. Denote by @, the subset of © consisting of 1 and the (1),
AEFs, where A(4) means -+ if A=(4,---,4). Since ¢(1)=1, ¢(ID))=w(d), ¢
is bijective on 6. Hence it is sufficient to show that @=6, Now since every
is contained in @, it is enough to show that @, is a subgroup of &.

Let A=(%1,+++,9)E®. Then w(l)'=w(y) where pi=(1,,-+-,4,). Since n(w(A)Y)
=n(w@A)=r, ¢ is in §F. Hence there exists an element v in &, such that s~v.
By Theorem 2.6, we have then A(x)=(v). Hence A '=6,.

Thus it is enough to show that Z(A)- ()6, for any two elements 4, sz in .
This will be the case if we show that 4(3)-4,6, for any 1&® and for any 4,
1=igl. Let A=(iy,-++,%,) and suppose #'=:(%),---,1%,1) is an admissible sequence.
Then there exists an element xE{, such that I'~pu. Henee we get A(R)d==A)
=) E60. Suppose A'=(i1,+--, 1, 1) is not admissible. By Lemma 2.2 and Lemma
2.3 there exists an element g in § such that A~p, 1i=(j,,---,7.), 5.=1. Hence
we have

A(A)A,:A“ . .‘djr—l Aidizdﬁ b 'dj;...l

Since f/=(ji,*++,Jr-1) is clearly admissible, there is an element v in §, such that
1/ ~v, Then we have by Theorem 2.6 4j,-- -4, =40)e6,, QE.D.

§3. The Hecke ring of a Chevalley group over a finite field with respect fo a
Borel subgroup.

Let g be a complex semi-simple Lic algebra. We use the same notations
b, 4,1, W ete. as in §2. Let K be a field. C. Chevalley constructed in [2] for
the pair g, K a group G. In the following we use the notations in [2]. In particular,
the subgroups U, % and {2.(2); t€K}=X, (the one parameter subgroup associated
to the root a) of G will play important roles. Also we fix a map w-+w(w) from
W into the subgroup 28 of G which satisfies ((w(w))=w (we W) where £: 18- W
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is the homomorphism defined in [2 p. 37]. Now we consider the case where K is
a finite field F, consiting of ¢ elements.

Let us denote by B the subgroup 19 of G (the Borel! subgroup) and consider
the Hecke ring (G, B).

Lrmma 3.1, For any element x in G, there exists one and only one element
w i W such that BxB=Buw(w)B. Moreover we have

ind (x)=q""
where n(w)=|d4}].
Proor. G can be expressed as a disjoint union:

G= U UDHw(w)l

we W
(the Bruhat decomposition. see [2, p. 42]). Since W/ cllc B, we have Gi.Hme(w)B'
Now this is a disjoint union. In fact, if Baw(w)B=Bw(w')B, then (l)(zb;):bl(z)(w)bz
for some by, b; in B, Put by=hu, he9, ucll. Then since Dw(w)=w(wW)D (cf. [2,
p. 3617) we may write w(w)h=~w(w) for some K'eH. Put u=u'u", v ll,, 'l
Then by @), w(w) 'l (ef. [2, p. 42]), we have w(w)u' =u, w(w) for some u, 1.
Hence
(W) =b b o(w)w w”’ =b, k' uy w(w)u’ .

Now clearly b, u; is in B=119, Henee by the uniqueness of the decomposition
of an element in UHw(w)Y as a product of elements in 11, 9, w(w) (ef. [2, Th.
27) we have
b/ ui=1, ao(w)=ww), w'=1.
Since o : W satisfies Cew=1id., we have w'=1w.
To show that ind (z)=¢**’ for x& Bw(w)B, it is enough to show that ind(w(w))
=@t gince ind (bad’)-==ind (x) for any b, Ve B, (ef. §1) Now we have
BN ax(w)Baw(w) ' =H1 N w(w)(OU, 1) w(w) !
= HU N Do, W w(w) L.
Put K'=w()ll, w(w)!, K"=w(w)lw(w). Then we have
Bnw(w)Bo(w) '=9UNHK' K.
By the formulas (ef. [2, p. 36, p. 35]) ’
)R ) =zlt{e)t) @(W)T () w(W) =Ty (),
HK’ is a subgroup of DIl and K’ is a normal subgroup of HK’. Also K" is a
subgroup of ¥. Hence we have

Bna(w)Bo(w)y '=HKYHUNK").
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Now since DUNV=1 (cf. {2, p. 42]), we have
ind (w() )=[B: K J={11: K’ ={1: W, ]= [N 1]=¢"".

On the other hand, w(w)'&Dw(w ). Thus we get ind{wlw N=¢"“ for any
we W. Now di-1=—w 4} implies that n(w)=n{w Y which completes the proof.

In the following, we shall denote the element %gu...n of (G, B) (in the
notation of §1) by S(w). Also we denote S(w.) by Si.. The unit clement S(1) of
4(G, B) is denoted by 1. Also for the sake of simplieity, we omit the symbol =
in the convolution product when we consider the product in the ring .#(G, B). We
have then ind (S(w))=¢""" (for any we W).

THEOREM 3.2. (i) The S(w), weW, form a base of the free Z-module
(G, B).

(it) If w=w; - w. s a reduced expression for we W, then
S(w)y=8:--+8S;,.

Consequently 1,8,,-++, S, generate the ring 4 (G, B).
(iiil) The generators 1,S:,++-, S, satisfy the following relations.

1-S,=8:-1=S;, Gi=1,--,1)
Sf=q-1+(q—1)-S:, (i=1,--+,1)
S:S;=8,8S;, if Oy=7/2,
(%) S:S;8:=8;S:S;, tf 0:;=2xz/3,
(S:S)yF=(8,;8), if 0:,=37/4,
(8:8,°=(8;S)°, if 0,;=57/6.

Proor. (i) Obvious by Lemma 3.1.
(i) Put vy=wi, ve=wiy Wi+, V,=w; - w;,=w. Then these arc reduced ex-
pressions for vy, vs,---, v, respectively (Lemma 2.2 and Lemma 2.3.). Then we
get n(v)=1% (¢=1,-+-, 7). Then we have by Lemma 8.1, ind (ew(v))=¢" for i=1,.-+, 7,
Now since w(v)=w(w;): - w(wi;) mod. D, we have

ind (w(w;,)- - -(4)(W9:j)):qi:ind ({wiy)* + ~(wiz.)) - ind ((U(?/Uij)) .
Then by Lemma 1.2, we get
Sy S(wisy=S8w,;) for j=2,---,7r.

Hence we have S(w)=S; Si---Si,, Q.E.D.

(iii) By (ii) and Lemma 2.4, these relations are obvious except Sf=¢-14-(g—1)-S..
Let K=Bnw(w) *Bw(w,). Then since w=1, we have w(w;)) '=o(w) mod. H and
K=BnNww)Bo(w) ' =Ha(w), w(w) ! (see the proof of Lemma 3.1.). Now I,
is generated by the 2,() («&d" —{a}, teF). Then we have w(w)l, wlw) -1,
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since w(d'—{a;})=4"'~{a;}. Thus we have K=59Hll,,. Hence by U=, 117, we

fact, if hu'=u" for some he$H, wWell,, w”ell, then h=u"u'"! and we get
h=y'=u"=1 since HNU=1, W, MWL =1 (cf. [2, p. 41~42])). Thus we get the
following disjoint unions:

B= L;l Kz«(t), Bo(w)B= ('J Bo(w)z.(t) (teF,).
Hence
Baw)BBw(w:)B = Bw(w)Bw(w)B = Ba(w)2u«{t)w(w;)B
= L{J B(u(w.;)x(ri(t)(:)(wét)*‘B = !;JBmw"i(t)B .

since w(w) 'OD=w(w)H and w(w)z H)w(w,) '=2_o(+t). Now z-_.(t)cBw(w,)B
if £s£0. In fact, using the homomorphism

¢, : SL2, F )G (see (2, p. 36])

(1 wt\<t 0)(1 O)(l —t“‘)(—l 0)_(0 1>
01 0 £\t 1/\0 1 0 -1/ \=-10/"
190 . 0 1 ¢
we  have w“"i(t):%s(t 1)63({)('&008 since (/)"i((z) z_1>ee§), ¢(ri<0 1>=x,.y(t),

ba 2y o )= okw) mod. . Thus Bu(w)BBw(w)B=BU Bu(w)B. From this and

(Ba{w)B) '=Bw(w;) 'B=Bw(w;)B we see that BUBm(w)B is a subgroup of G.
Also by §1, we see that ’

and

S¢2=A‘1+/I'S|t y
where 4, /¢ are positive integers. Let us determine 1 and x using Lemma 1.3. Firstly

3. nd (e(w))

ind () FltEFs; Bow)unBow)B=B}=q,

because we have Bow(w)x« (t)w(w)B=Bw(w)z{t)w(w,)'B and this is equal to B
if and only if =0 (since w(w)z«(Bw(w,) '=x-a(££). Secondly we have

__ ind (w(w)))

"= ind (w(w)

= #{teF,; ow)z.,Eulw) '€ Ba(w)B} .

-f{teF,; Bo(w)za,t)w(w)B=Bw(w)B}

As we have seen above, t#0 implies that w(w)za,()w(w) '=2_a (£8)EBw(w)B.
Of course tx0 implies that w(w)a.(Hw(w;)'eB. Thus we get p#=¢—1, which
completes the proof.

ReMARK. (1) Theorem 8.2 is also valid for the pair G', B/, where G’ is the
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group denoted also by G’ in Chevalley {2, p. 47] and B’ is the corresponding Borel
subgroup, i.e. B'=&1U, where &  is the subgroup of £ defined in [2, p. 47].

(ii) Theorem 3.2 is also valid for the pair 4, B, where J is the group recently
constructed by R. Steinberg [7]. Because all the tools needed to prove Theorem
3.2 exist also in this case.

§4. A characterization of the ring J/(G, B) in terms of gencrators and defining

relations.

In §3 we have shown that .%(G, B) is generated over Z by 1,5,,:-+, S, and
these generators satisfy (%) of §3. Of course by Theorem 3.2 (i) the rank of the
free Z-module (G, B) is equal to the order of the Weyl group W.

In this section we shall prove that (#) form the defining relations for the
ring (G, B). Namely, let & be the ring over Z generated by 1, 4,,-+-, 4, together
with the defining relations (%). (Of course each S; should be replaced by 4; in
(4).) Then there is a homomorphism ¢:&--4(G, B) such that ¢(1)=1, ¢(4)=8,
(i=1,-++,1). We shall show that ¢ is a bijective map.

Let §, be a subset of the set § of all admissible sequences such that the map i—
w(d) from § onto W (defined in §2) induces a bijection from T onto W. Let &
be the Z-submodule of § spanned by {1}U{4(d); A=}, where the map A—LA)
from ¥ into § is defined by dX)=4; - -di. for 2=(, -, %, )EHF. Then the re-
striction ¢|f, of ¢ on f is a bijective map from &, onto J(G, B). In fact, if we
have

v-l+ }_J v dD=0, (,wel)

e o

then taking ¢-images, we have w»:1+ }_, S -S()=0, where S@)=8;---S; for
A=(t;,+++,1). Now, since 1 and the S(X) XC‘FO form a basis of the free Z-module
(G, B), we have v==0 and v;==0 for all 2&%,. Hence ¢|5 is injective. By Theorem
3.2, ¢|f, is also surjective. Thus ¢|®, is bijective. So we have only to show
that £,=8.

Now since 1, dy,+++, 4, are all contained in &, it is enough to show that §f is
a subring of §. Let us show that JQ). 4.8, for any 1€ and for any integer
i between 1 and I. (Then we have clearly d(A)-A(p)ef, for any 2, ¢ in o) Let
A=(iy,+-, )=, If the sequence A'=(iy,---,1, 1) is admissible, then there is an
admissible sequence sz in &, such that A~y Then by Theorem 2.6 we have
AX)y=4(z). Hence we get JA)-Li=A})=f,. Now suppose that the sequence
¥=(4y,-++,%,,1) is not admissible. Then by Lemmas 2.2, 2.3 the simple root a;
belongs to 4; where w=1w;,--+w;. Hence there exists an element p=(J1,+ -, J»
in §¥ such that i~p and j,=¢. Then we get
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A Dy M) A==y« - A5, A
=gy e di (g-14(g—~1)4)
:‘Z(I'Aiix . 'Ajr»i ‘f‘(qml)d(ﬂ) .

Now since g/« (4y,+++, 7 .) is also admissible, there exists an admissible sequence
v in ¥ such that s/~y. Then we have

Aa)di=q- )+ (g —1)- HHER, .

Thus we have proved the main theorem of this note:

TuroreMm 4.1. The Hecke ring .9(G, B) is generated by 1,8,,---, S, together
with the defining relations (§).

CoroLLARY 4.2. The elements S(w) of (G, B) satisfy the following relations.

Sw)S;=q -S(ww)+(q—-1)-Stw), if w.ed.,
S(w)Si=S(ww,) , if a5,

Proor. Obvious from the proof of Theorem 4.1.

§5. Applications.

THrorEM 5.1, Let Sp(n, F)) be the symplectic group of degree 2n over the
finite field F,:Spn, F)={xeGL2n, F); '«Jr=J} where J=(a;;) is @ matriz of
degree 2n given by

—1 of i+i=2n+1, n+lsi<2n

1 if i+7=2n+1, 1Zisn
[ {
0 otherwise.

Let B be the subgroup of Spin, F,) defined by B=Spn, F)NT@2n, F,), where
T(2n, F,) is the subgroup of GL(2n, F,) consisting of all upper triangular matrices.
Let SO@2n+-1, F) be the special orthogonal group of degree 2n-+1 over F, defined
by SO@u+1, F)={xcSL2n+1, F); ‘aJ's=J'} where J'=(b;) is ¢ matriz of
degree 2n--1 defined by

b”:{ 1 if i+j=2n+2

Y10 otherwise.
Let B’ be the subgroup of SO@n+1, F,)) defined by B'=S0@n+1, F)NT@n+1, F).

Then J0(Sp(n, F)), By=4(SO@2n+1, F,), B"). if 2}q.

Proor. As we have remarked in §1, if N is a normal subgroup of G such
that GOH>ON, where H is a subgroup of G satisfying the condition (A), then we
have (G, HY=29(G/N, H/N) canonically. Thus Theorem 4.1 is still valid for
J(Spn, ), B) and for #(SO@n+1, F)), B') because the corresponding Chevalley
groups are obtained from Sp(n, F), SO@2n+1, F,) by taking the quotient groups
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with respect to the center (see E. Abe [1], R. Ree {3]).

Now by the well known inversion relation between the root systems of B,,C,
i.e. that of Dynkin diagrams gives the same relation for the generators w,,---, 0,
of their Weyl groups. Hence the corresponding generators of the Hecke ring
satisfy the same relations. Thus we get the isomorphism of the llecke rings,
Q.E.D.

COROLLARY 5.2. Let p be the complex linear representation of Sp(n, F,)
induced by the trivial representation of B and let p=m0i+mopst+«-+m,p, be
the decomposition of p into irreducible representations py, -+ -, p, with multiplicities
My e, m,. Also let o be the complex linear representation of SO@n-+1, F,)
nduced by the trivial representation of B and let o=mio+miost -+ mlo,
be the decomposition of o into irreducible representations o, -+, o, with multi-
plicities mi,---, ml. Then r=3 and we have my=mi,---, m,=m) for a suitable
ordering of indices,

Proor. Since Yc(Sp(n, F), B)=9(S0@2n+1, F,), B"), this is a immediate con-
sequence of Cor. 1.5.

As the second application of Theorem 4.1, we shall determine the set
Hom (9¢(G, B),C). (The homomorphism considered here should map the unit element
of (G, B) into the unit element of C.) Let sgn be the map which sends S; into
—1 for all 7. Then it is easy to verify that sgn preserves all the relations in
(#). Thus sgn is in the set Hom (9/(G, B),C).

If the complex semi-simple Lie algebra ¢ is decomposed into a direct sum of
simple Lie algebras ¢;,+ -, ¢,, then it is easy to see that the corresponding Chevalley
group G is decomposed into the direct product of corresponding Chevalley groups
Gi,-+-,G, and the Borel subgroup B is also decomposed into direct product of
corresponding Borel groups B,,---, B,. Hence we get easily

I(G, By=9(G, Bl)C?ﬂ[(Gz, B,) C;,) . -Q;).f/(((},., B).

Thus we may consider only the case where g is simple. Then uging Theorem 4.1,
we get easily the

THEOREM 5.3. (i) If ¢ is of type A(=1), D(z4), E(=6,7,8), then
Hom (J(G, B), C) consists of two elements ind and sgn.
(i1} If g is of type B(1=2), C(1=28), Gy, Fy, then Hom (#(G, B),C) consisls of
Sfour elements ind, sgn, ¢ and ¢. More precisely

{ PS)=++=¢(S;.1)g, ¢S)=-1
PS)= =S )=~1, ¢SH=q

{#?(Sx):q, ¢(Sz) =1
¢S=-1, ¢(S)=¢q

(if g is of type B, C)

(if ¢ is of type Gi)
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S =Sy = —1,  P(Ss)=(Ss)=¢

We shall give finally an involutive automorphism of the ring J6(G, B) which
interchanges ind and sgn, and also ¢ and ¢ if they exist. This involution is
due to 0. Goldman.

Put §=(q—1)-1—S; (i=1,---,1). Then we have S;=-¢-S7" in Jo(G, B) and
it is easy to verify that S,,S, gatisfy the relation (). Thus we get a homo-
morphism of the ring 4(G,B) which maps S; to :S'E for 1=1,-+--,1. We denote
this homomorphism by S—S (S€.4(G, B)).

THEoREM b.4. (1) SD»§ 18 an involutive automorphism of the ring (G, B):
S=8
(ii) S/(z\u)::usgn (S(w)) ind (S(w)) S(w) ! for every weW. (in the ring 4G, B).)
(ili) ind (S):sgn (S), sgn (:9)'::ind (S) for every S=J(G, B).

(v) If G is of simple type and of type B, C, G, Fy, then
¢(8)=¢(S), ¢(8)=¢(S).

Proor. (i) It is enough to show that Si=S; for i=1,---,l. But this is

immediate from the definition of S..
(ii) Let w=1w;,---w: be any reduced expression of w. Then we have by Cor. 4.2,
S(w)=S8;,---Si,. Then we get S/(?v):*(~l)'q’ St S =sgn (S(w)) ind (S(w)) S(w) .
(iiiy It is sufficient to show these formulas for S=8; (i=1,---,1). But this is
immediate from the definition of §i.

(iv) is proved similarly as in (iii). University of Tokyo
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