On traces of Hecke operators¹³

By Hideo Shimizu

Let G be the group of all $g=(g^{(1)},\dots,g^{(n)})$ with $g^{(i)}\in GL(2R)$ and \mathfrak{F}_n the set of all $z=(z^{(1)},\dots,z^{(n)})$ with $z^{(i)}\in C$. Im $z^{(i)}\neq 0$. We consider G as a group of transformations in \mathfrak{F}_n , putting

$$gz = (g^{(1)}z^{(1)}, \cdots, g^{(n)}z^{(n)})$$

$$g^{(i)}z^{(i)} = \frac{a^{(i)}z^{(i)} + b^{(i)}}{c^{(i)}z^{(i)} + d^{(i)}}, g^{(i)} = \begin{pmatrix} a^{(i)}b^{(i)}\\c^{(i)}d^{(i)} \end{pmatrix}.$$

Let Γ be a subgroup of G operating on \mathfrak{F}_n discontinuously and satisfying (A1), (A2) in §1. Let α be an element in G such that Γ and $\alpha\Gamma\alpha^{-1}$ are commensurable. Let χ be a unitary representation of the subgroup of G generated by Γ and α . Let $\{k_i\}_{i=1}^n$ be the set of positive integers. Under a certain condition on χ ((R1) in §1) we shall define the space of cusp forms of type $(\Gamma, \{k_i\}, \chi)$, and associate the double coset $\Gamma\alpha\Gamma$ with a linear transformation $\mathfrak{T}(\Gamma\alpha\Gamma)$ in this space. The trace of $\mathfrak{T}(\Gamma\alpha\Gamma)$ can be calculated by means of Selberg's trace formula (Selberg [8, 9]).

§1 is concerned with preliminary statements. In §\$2-3 an explicit formula for the trace of $\mathfrak{T}(\Gamma \alpha \Gamma)$ will be given (Theorem 1). In §4 we shall apply Theorem 1 to the operator $\mathfrak{T}(\mathfrak{q})$ defined in Shimura [7] giving a formula for the trace of $\mathfrak{T}(\mathfrak{q})$. This will be carried out by following Eichler [3, 4].

Notation. Z, Q, R, C, K denote the ring of rational integers, the field of rational numbers, the field of real numbers, the field of complex numbers, the division ring of quaternions over R, respectively. If R is a ring, R^* , $M_n(R)$ denote the group of all invertible elements in R, the ring of all matrices of degree n with coefficients in R, respectively.

§1. An operator of Hecke.

1.1. Let $G = GL(2R) \times \cdots \times GL(2R)$ be the product of n copies of GL(2R). An element of G will be written in the form

$$g=(g^{\scriptscriptstyle (1)},\cdots,g^{\scriptscriptstyle (n)})$$

with $g^{(i)} \in GL(2R)$. Let \mathfrak{F}_n be the set of all $z = (z^{(1)}, \dots, z^{(n)})$ with $z^{(i)} \in C$, Im $z^{(i)} \neq 0$. Putting

1) This work is supported by the National Science Foundation U. S. A.

(1)
$$g(z) = (g^{(1)}z^{(1)}, \dots, g^{(i)}z^{(i)}),$$

$$g^{(i)}z^{(i)} = \frac{a^{(i)}z^{(i)} + b^{(i)}}{c^{(i)}z^{(i)} + c^{(i)}}, g^{(i)} = \begin{pmatrix} a^{(i)}b^{(i)}\\c^{(i)}d^{(i)} \end{pmatrix}$$

for $g \in G$, $z \in \mathfrak{F}_n$, we consider G as a group of transformations in \mathfrak{F}_n . g induces the identity transformation in \mathfrak{F}_n if and only if g is contained in the center Z(G) of G.

Let I' be a subgroup of G operating discontinuously on \mathfrak{F}_n . ι being the canonical homomorphism of G onto G/Z(G), this is equivalent to saying that $\iota(\Gamma)$ is discrete in $\iota(G)$. Let G^0 be the group of all $g \in G$ such that $\det g \hookrightarrow 0$ $(1 \leq i \leq n)$ and set $I'^0 = I' \cap G^0$, $Z(I') = I' \cap Z(G)$. It is assumed throughout this parper that

(Al) $\iota(I^{\circ 0})$ is an irreducible subgroup of $\iota(G^{\circ 0})$ such that $\iota(G^{\circ 0})/\iota(I^{\circ 0})$ is of finite measure.

We first prove the following:

LEMMA 1.1. Let G', G'' be partial factors of G such that $G = G' \times G''$, $G \neq G'$, $G \neq G''$. Write an element in G in the form g = (g', g'') with $g' \in G'$, $g'' \in G''$. Let g_0 be an element in G such that I' and $g_0 I' g_0^{-1}$ are comensurable. If $\iota(g_0) = 1$, then we have $\iota(g_0'') = 1$, $\iota(g_0'') = 1$.

PROOF. Suppose that $\iota(g_0'')=1$. $\iota(\Gamma g_0\Gamma)$ is a discrete subset of $\iota(G)$ since it is the finite union of the cosets of $\iota(\Gamma)$. Let $\iota(G')^0$ be the connected component of the identity in $\iota(G')$. Let U' be an open neighbor-hood of the identity in $\iota(G')^0$ such that

(2)
$$\iota(\Gamma g_0 \Gamma) \cap U' \iota(g_0) U'^{-1} = \{\iota(g_0)\}.$$

Let ξ be an arbitrary element in U'. By our assumption (Al) and by virtue of [1, Corollary 4, 3], there exists a sequence $\{\gamma_{\nu}\}$ of elements in Γ such that $\iota(\gamma_{\nu}')$ converges to ξ . Since U' is open, we may assume that $\iota(\gamma_{\nu}') \in U'$ for all ν . Then it follows from (2) that $\iota(\gamma_{\nu}'g_0\gamma_{\nu}'^{-1}) = \iota(g_0)$ for all ν and hence that $\xi\iota(g_0)\xi^{-1} = \iota(g_0)$. Now U' generates $\iota(G')^0$. Consequently, $\iota(g_0)$ commutes with all elements in $\iota(G')^0$ and hence $\iota(g_0)=1$. This is a contradiction.

- 1.2. Hereafter we shall assume, besides (Al), that
- (A2) $\iota(\Gamma^0)$ satisfies the assumption (F) in [6].

We fix once and for all an element α in G such that $\alpha \Gamma \alpha^{-1}$ is commensurable with Γ and denote by Γ' the subgroup of G generated by Γ and α . Let \mathcal{I} be a representation of Γ' by unitary matrices. In the case where $\iota(G^0)/\iota(\Gamma^0)$ is not compact, we assume that

(R1) the kernel Γ_{χ} of χ in Γ is of finite index in Γ . Let k_1, \dots, k_n be positive integers. In the same notation as in (1) we put

(3)
$$j(g,z) = \prod_{i=1}^{n} (c^{(i)}z^{(i)} + d^{(i)})^{-k_i} |\det g^{(i)}|^{\frac{k_i}{2}}$$

By a cusp form of type $(\Gamma, \{k_i\}, \chi)$ we understand a function f(z) on \mathfrak{F}_n taking values in the representation space of χ , which satisfies the following conditions:

- (S1) f(z) is holomorphic on each connected component of \mathfrak{F}_n .
- (S2) $f(\gamma z) = j(\gamma, z)^{-1} \chi(\gamma) f(z)$ for $\gamma \in \Gamma$.
- (S3) In case $\iota(G^0)/\iota(\Gamma^0)$ is not compact, f(z) is regular at every parabolic point x of Γ_z and the constant term in the Fourier expansion of f at x vanishes (cf. [6, §4]).

The set of all such f(z) is denoted by $S(\Gamma, \{k_i\}, z)$ or simply by S. For the reason stated in [7, §3.3] we lose no generality by assuming that

(R2)
$$\chi(\varepsilon) = \prod_{i=1}^{n} (\operatorname{sgn} \varepsilon^{(i)})^{k_i} \text{ for } \varepsilon \in Z(\Gamma).$$

We now define a linear transformation $\mathfrak{T}(\Gamma a \Gamma)$ in S. Let $\Gamma a \Gamma = \bigcup_{k=1}^{d} \alpha_k \Gamma$ be a disjoint sum. For $f \in S$ we set

(4)
$$(\mathfrak{I}(\Gamma \alpha \Gamma)f)(z) = \sum_{\nu=1}^{d} j(\alpha_{\nu}^{-1}, z) \mathfrak{I}(\alpha_{\nu}) f(\alpha_{\nu}^{-1}).$$

We shall calculate the trace of $\mathfrak{I}(\Gamma \alpha I)$ in the following section.

§ 2. Selberg's trace formula.

2.1. Let \Re_1, \dots, \Re_{2^n} be the connected components of \Re_n . Each $\gamma \in \Gamma$ induces a permutation of $\{\Re_\nu\}_{\nu=1}^{2^n}$ and this permutation is the identity if and only if $\gamma \in \Gamma^0$. Therefore the quotient group Γ/Γ^0 is identified with a subgroup of permutations of $\{\Re_\nu\}_{\nu=1}^{2^n}$. We fix a subset, say $\{\Re_1, \dots, \Re_f\}$, of $\{\Re_\nu\}_{\nu=1}^{2^n}$ such that every \Re_ν is mapped by the elements in Γ/Γ^0 to one and the only one of $\{\Re_\mu\}_{\mu=1}^f$. If Γ_μ is a fundamental domain of Γ_0 in \Re_μ , the union

$$F = \bigcup_{\mu=1}^f F_\mu$$

is obviously a fundamental domain of Γ in \mathfrak{F}_n . By (A2) we may assume that F_μ is of the form described in the assumption (F), or that F is given in the following way.

x being a parabolic point of I, let $I_x^{(1)}$ be the group of all $\gamma \in I$ leaving x fixed and I_x the group consisting of all parabolic transformations in $I_x^{(1)} \cap I^{(0)}$. Let $x_\nu(1 \le \nu \le s)$ be a complete system of I0-inequivalent parabolic points of I1. Taking a $\rho_\nu \in G$ such that $\rho_\nu x_\nu = \infty$, we put

²⁾ By a parabolic point of Γ we understand a parabolic point of $\iota(\Gamma^{e})$.

³⁾ If $g \in G^0$, we say that g is elliptic, hyperbolic, parabolic, or mixed according as e(g) is of the corresponding type. cf. [6, §1].

$$U_{\nu}' = \{\rho_{\nu}^{-1}z; \prod_{\ell=1}^{n} |\operatorname{Im} z^{(\ell)}| > d_{\nu}\}_{n} (\bigcup_{\mu=1}^{\ell} \Re_{\mu}),$$

 d_{ν} being a suitable positive number. Let V_{ν}' be a fundamental domain of $(\Gamma^0)_{x_{\nu}}^{(1)}$ in U_{ν}' . Then F is of the form

$$F = F_0' \cup V_1' \cup \cdots \cup V_s'$$

where F_0 is relatively compact in \mathfrak{F}_n .

For our later use it is convenient to group together all the V_{ν}' such that x_{ν} are Γ -equivalent. Suppose x_{1}, \dots, x_{n} are all the Γ -equivalent points to $x_{1}: \gamma_{\nu}x_{1} = x_{\nu}$ $(1 \le \nu \le a)$ with $\gamma_{\nu} \in \Gamma$. For any $\gamma \in \Gamma$, γx_{1} is a parabolic point of Γ so that there exist a $\partial \in \Gamma^{0}$ and a $x_{\nu}(1 \le \nu \le s)$ such that $\gamma x_{1} = \partial x_{\nu}$. We have necessarily $1 \le \nu \le a$. Hence γ is written in the form $\gamma = \partial \gamma_{\nu} \varepsilon$ with $\varepsilon \in \Gamma_{x_{1}}^{(1)}$. It follows that the permutation of $\{\widehat{M}_{\nu}\}_{\nu=2}^{2n}$ induced by Γ are all obtained from the elements in $\gamma_{\nu}\Gamma_{x_{1}}^{(1)}(1 \le \nu \le a)$. It is then easy to see that the union of $V_{\nu}'(1 \le \nu \le a)$ is Γ -equivalent to V_{1} up to a relatively compact set in \widehat{w}_{ν} , where, for each ν , V_{ν} is a fundamental domain of $\Gamma_{x_{1}}^{(1)}$ in

$$U_{\nu} = \{ \rho_{\nu}^{-1} z; \prod_{i=1}^{n} |\operatorname{Im} z^{(i)}| > d_{\nu} \}.$$

Therefore, if we assume after reordering the indices that $\{x_{\nu}\}_{\nu=1}^{\ell}$ is a complete system of Γ -inequivalent parabolic points of Γ , F is written as

$$F = F_0 \cup V_1 \cup \cdots \cup V_r$$

with a relatively compact subset F_0 in \mathfrak{F}_n .

2.2. Let (u, v) be the inner product in the representation space of x such that

$$(\chi(\gamma)u, \chi(\gamma)v) \simeq (u, v)$$
 for $\gamma \in I^{\gamma}$.

Put $||u|| = (u, u)^{1/2}$. For $z, z' \in \mathfrak{F}_n$, we put

(5)
$$k(z,z') = \begin{cases} \prod_{i=1}^{n} \left(\frac{z^{(i)} - z^{(i)}}{2\sqrt{-1}}\right)^{-k_i} & \text{if } z,z' \text{ are in the same} \\ \text{connected component of } \mathfrak{F}_n, \\ 0 & \text{otherwise.} \end{cases}$$

Then we have

$$k(z, z') = \overline{k(z', z)}$$

 $k(gz, gz') = k(z, z')j(g, z)^{-1}\overline{j(g, z')}^{-1}\sigma(g)$

for $g \in G$, where $\sigma(g) = \prod_{i=1}^{n} (\operatorname{sgn} \det g^{(i)})^{k_i}$. Call $H^2(\Gamma, \{k_i\}, \chi)$ (resp.: $H^{\infty}(\Gamma, \{k_i\}, \chi)$) the space of all functions f on \mathfrak{F}_n satisfying (S1), (S2) and

$$\begin{split} & \|f\|_2 \! = \! \bigg[\int\limits_{F} |k(z,z)|^{-1} \|f(z)\|^2 dz \bigg]^{1/2} \! < \! \infty \\ & (\text{resp}: \|f\|_{\infty} \! = \! \sup\limits_{z \in F} |k(z,z)|^{-1/2} \|f(z)\| \! < \! \infty). \end{split}$$

Here we have put

(6)
$$dz = \prod_{i=1}^{n} \frac{dx^{(i)}dy^{(i)}}{y^{(i)2}}, \ z^{(i)} = x^{(i)} + \sqrt{-1} y^{(i)}.$$

 $H^{2}(\Gamma, \{k_{i}\}, \mathbb{Z})$ (resp: $H^{\infty}(\Gamma, \{k_{i}\}, \mathbb{Z})$) forms a Banach space with respect to $\|\cdot\|_{2}$ (resp: $\|\cdot\|_{\infty}$), and we have $H^{\infty}(\Gamma, \{k_{i}\}, \mathbb{Z}) \subset H^{2}(\Gamma, \{k_{i}\}, \mathbb{Z})$. By an analogue of [6, Lemmas 8, 9 and Theorem 10] we conclude that $S(\Gamma, \{k_{i}\}, \mathbb{Z})$ coincides with $H^{\infty}(\Gamma, \{k_{i}\}, \mathbb{Z})$ and that this one is a closed subspace of $H^{2}(\Gamma, \{k_{i}\}, \mathbb{Z})$. Put

$$egin{aligned} a(\{k_i\}) = & (4\pi)^{-n} \prod_{j=1}^{\infty} (k_i - 1), \ K(z,z') = & \sum_{x \in T: x \text{ mod } Z \in T'} k(z,\gamma z') \, \widetilde{j}(\gamma,z') \sigma(\gamma) ar{\gamma}(\gamma). \end{aligned}$$

for $z, z' \in \mathfrak{F}_n$. Then it follows from [10, Exposé 8, Théorème 1 and Exposé 10, Théorème 8] that, if $k_i > 2(1 \le i \le n)$,

$$f(z) \rightarrow (Kf)(z) = \alpha(\lbrace k_i \rbrace) \int_{\mathcal{C}} \frac{K(z, z') f(z')}{k(z', z')} dz'$$

is an operator of Hibert-Schmidt type in $H^2(\Gamma, \{k_i\}, \mathbb{X})$ and Kf = f if and only if $f \in H^{\infty}(\Gamma, \{k_i\}, \mathbb{X})$.

From now on we assume $k_i > 2(1 \le i \le 2)$. Now, in the notation in §2.1, we have

$$\begin{split} \mathfrak{T}(\Gamma a \Gamma) f(z) &= a(\{k_i\}) \int_{\Gamma} \frac{\sum_{\nu=1}^{id} j(\alpha_{\nu}^{-1}, z) \chi(\alpha_{\nu}) K(\alpha_{\nu}^{-1}z, z')}{k(z', z')} f(z') dz' \\ &= a(\{k_i\}) \int_{\Gamma} \left[\sum_{\nu=1}^{id} \sum_{\gamma \in \Gamma_{+}, \gamma \text{ mod } Z \in \Gamma_{>}} \frac{k(z, \alpha_{\nu} \gamma z') j(\alpha_{\nu} \gamma, z')}{k(z', z')} \sigma(\alpha_{\nu} \gamma) \chi(\alpha_{\nu} \gamma) f(z') \right] dz'. \end{split}$$

Consequently we have

$$\operatorname{tr} \mathfrak{T}(\Gamma \alpha I') = a(\{k_i\}) \int_{L'} \left[\sup_{g \in \Gamma \alpha I', \ g \bmod Z(I')} \frac{k(z, gz)j(g, z)}{k(z, z)} \operatorname{tr} \mathbb{X}(g) \right] dz.$$

2.3. Before going further we have to prove a few lemmas which are analogues of [6, Lemma 12]. For the sake of simplicity we write $B=\Gamma\alpha I$. Here we are interested only in the case where Γ contains parabolic transformations. If x is a parabolic point of Γ , we put

$$B_x^{(1)} = \{g \in B; gx = x\},$$

$$B_x = \{g \in B_x^{(1)}; g \text{ is parabolic}\}.$$

In the following lemmas it is assumed that ∞ is a parabolic point of Γ .

Lemma 2.1. The notation being the same as in (1), there exists a positive constant κ such that

$$\left|\prod_{i=1}^{n}\left|\frac{c^{(i)^2}}{\det g^{(i)}}\right|\right| \ge \kappa$$

for all $g \in B - B_{\infty}^{(1)}$.

PROOF. We remark first that, if $g\Gamma g^{-1}$ is commensurable with Γ and if x is a parabolic point of Γ , then gx is also a parabolic point of Γ . Let $B=\cup \alpha_{\nu}\Gamma$ be a disjoint sum and let $g=\alpha_{\nu}\Gamma$ be an element of B. Since $\alpha_{\nu}^{-1}(\infty)$ is a parabolic point of Γ by the above remark, we can apply [6, Lemma 5] to our case putting $x_1=\infty, x_2=\alpha_{\nu}^{-1}(\infty)$. The proof there shows that if

$$|e^{(i)^2}(\det g^{(i)})^{-1}\mu_1{}^{(i)}\mu_2{}^{(i)}| < 1(1 \le i \le n)$$

for $\mu_{\nu} \in M_{x_{\nu}}$, $\mu_{\nu} \neq 0$ ($\nu = 1, 2$), then we have $g \in B_{\infty}^{(1)}$. Therefore, our lemma holds by virtue of Minkovski's theorem, if we take $d(M_{x_1})^{-1} \prod_{j=1}^{l} |\mu_2^{(l)}|^{-1}$ for κ , μ_2 being any non-zero element of M_{x_2} .

Lemma 2.2. Let D be a compacts subset of \mathfrak{F}_n . There exists a constant M such that

$$\prod_{i=1}^{n} |\operatorname{Im}(g^{(i)}z^{(i)})| < M$$

for all $g \in B - B_{\infty}^{(1)}$, $z \in D$.

PROOF. Since

$$|\operatorname{Im} z^{(i)} \cdot \operatorname{Im} (q^{(i)} z^{(i)})| \le |\det q^{(i)} c^{(i)-2}|.$$

this follows from Lemma 2.1.

Lemma 2.3. For $\varepsilon > 0$, we have

$$\sum_{i=1}^{n} \frac{1}{e^{(i)^2} (e^{(i)^2} + 1)^{\epsilon}} < \infty,$$

g running over all the representatives of $\Gamma_{\infty}\backslash(B-B_{\infty}^{(1)})/\Gamma_{\infty}$.

PROOF. Let D be a compact subset of \mathfrak{F}_n . Writting D' for the union of all gD with $g \in B - B_{\infty}^{(1)}$, we get

$$\int_{D} \left[\int_{y: T_{\infty}^{(1)} \setminus B - B_{\infty}^{(1)}} \prod_{i=1}^{n} \left| \frac{y^{(i)} \det g^{(i)}}{(c^{(i)}z^{(i)} + d^{(i)})^{2}} \right|^{1+\epsilon} \right] dz \leq l \int_{T_{\infty}^{(1)} \setminus D'} \prod_{i=1}^{n} |y^{(i)}|^{1+\epsilon} dz,$$

where l is the number of $\xi \in (B^{-1}B)$ such that $\xi D \cap D \neq \phi$. Since D' is contained

in the set of all $z \in \mathfrak{F}_n$ such that $\prod_{i=1}^n |y^{(i)}| < M$, the integral on the right hand side exists. It follows in particular that the series in the above inequality converges for all $z \in \mathfrak{F}_n$. Hence Lemma 2.3 is proved in exactly the same way as in the proof of [6, Lemma 12].

LEMMA 2.4. For $\varepsilon > 0$, we have

$$\sum_{ij} \prod_{i=1}^{n} \left(\frac{|\det g^{(i)}|^{1/2}}{|a^{(i)} + d^{(i)}|} \right)^{\epsilon} < \infty,$$

g running over all the representatives of $B_{\infty}^{(1)}/\Gamma_{\infty}$.

PROOF. We use the notation in the proof of Lemma 2.1. If $g=\alpha_{\nu}\gamma$ is an element of $B_{\infty}^{(1)}$, we may assume that $\alpha_{\nu} \in B_{\infty}^{(1)}$, replacing α_{ν} by $\alpha_{\nu}\gamma$. By doing so for all cosets $a_{\nu}\Gamma$ containing an element of $B_{\infty}^{(1)}$, we get

$$B_{\infty}^{(1)} = \bigcup_{a_{\nu}(\infty) = \infty} \alpha_{\nu} I_{\infty}^{(1)}$$

Then, the lemma follows from [6, Lemma 12, 2°].

2.4. We set

$$I(z) = \prod_{i=1}^{n} |\operatorname{Im} z^{(i)}|,$$

 $j_0(g, z) = \prod_{i=1}^{n} (c^{(i)}z^{(i)} + d^{(i)})^{-2} |\det g^{(i)}|$

On account of Lemmas 2.3, 2.4, we can proceed just as in [6, No. 14] and obtain

$$a(\{k_i\})^{-1}\operatorname{tr}\mathfrak{T}(\Gamma\alpha\Gamma) = \sum_{\substack{g \text{ finit } Z(\Gamma) \\ g \in B-C}} \int_{\Gamma} \frac{k(z, gz)j(g, z)}{k(z, z)} \operatorname{tr} \chi(g)dz$$

$$+ \lim_{s \to +0} \sum_{\nu=1}^{t} \sum_{\substack{g \text{ finit } Z(\Gamma) \\ g \in B_{x_{\nu}}^{(1)} - Z(B)}} \left[\int_{\Gamma-V_{\nu}} \frac{k(z, gz)j(g, z)}{k(z, z)} \operatorname{tr} \chi(g)dz + \int_{V_{\nu}} \frac{k(z, gz)j(g, z) \operatorname{tr} \chi(g)}{I(z)^{s} |j_{0}(\rho_{\nu}, z)|^{s} k(z, z)} dz \right].$$

Here we have put $Z(B)=B\cap Z(G)$, $C=\bigcup_{x=1}^{t}B_{x_{x}}^{(1)}-Z(B)$.

We now classify the elements in ${\cal B}$ with respect to the following equivalence relation:

(7)
$$g \sim g' \iff g' = \varepsilon \gamma g \gamma^{-1} \text{ for } \gamma \in \Gamma, \ \varepsilon \in Z(\Gamma),$$

The class containing g is denoted by [g]. Let $\Gamma(g)$ be the group of all $\gamma \in \Gamma$ such that $\gamma g \gamma^{-1} = \varepsilon g$ for some $\varepsilon \in Z(\Gamma)$ and F_g a fundamental domain of $\Gamma(g)$ in \mathfrak{F}_n . Let $\{g_0\}$ be a full system of representatives of the above equivalence classes in B and, for each g_0 , $\{\hat{o}\}$ a system of representatives of $\Gamma/\Gamma(g_0)$. We set

$$F_{00}^* = F_{00} - \bigcup_{\nu=1}^{t} (\bigcup_{\delta g_0 \delta^{-1} \in B_{\nu}^{(1)}} \hat{\sigma}^{-1} V_{\nu}).$$

In this notation we have

(8)
$$a(\{k_i\})^{-1} \operatorname{tr} \mathbb{I}(\Gamma \alpha I') = \underbrace{\sum_{g_0 \in \{g_0\}_{i} \in \Gamma \in \mathcal{S}_{i}\}} \int_{\Gamma_{g_0}} k(z, g_0 z) j(g_0, z)}_{\{g_0 \in \Gamma_{g_0}\}} \operatorname{tr} \chi(g_0) dz$$

$$+ \lim_{s \to \rho_0} \underbrace{\sum_{g_0 \in \{g_0\}_{i} \in \Gamma_{g_0}\}} \int_{\Gamma_{g_0}} k(z, g_0 z) j(g_0, z)}_{\{g_0 \in \Gamma_{g_0}\}} \operatorname{tr} \chi(g_0) dz$$

$$+ \underbrace{\sum_{\nu=1}^{\prime} \sum_{g_{\nu} \in g_0 \in \Gamma_{g_0}} \int_{\Gamma_{g_0}} k(z, g_0 z) j(g_0, z)}_{\{g_0 \in \Gamma_{g_0}\}} \operatorname{tr} \chi(g_0) dz}_{\{g_0 \in \Gamma_{g_0}\}}$$

Remark. By virtue of [10, Exposé 10, No. 6]

$$\frac{K(z,\,z')}{\|k(z,\,z)\|^{1/2}\|k(z',\,z')\|^{1/2}}$$

is bounded on $\mathfrak{F}_n \times \mathfrak{F}_n$. Therefore,

$$\frac{1}{2} \frac{|j(\alpha_{\nu}, z)| \chi(\alpha_{\nu}) K(\alpha_{\nu}^{-1}z, z)}{|k(z, z)|}$$

is bounded on \mathfrak{F}_n . It follows that all the integrals in (8) are absolutely convergent.

§3. An explicit formula for $\operatorname{tr} \mathfrak{I}(\Gamma \alpha \Gamma)$.

- 3.1. In this section we shall calculate the integrals in (8). Since $k(z, g_0 z) = 0$ if $g_0 \notin G^0$, it is enough to consider those g_0 contained in $G^0 \cap B$. By Lemma 1.1 such a g_0 is of one of the following types.
- i) $g_0 \in Z(B)$. ii) g_0 is elliptic iii) g_0 is hyperbolic and no fixed point of g_0 is a parabolic point of I. iv) g_0 is hypabolic and one of the fixed points of g_0 is a parabolic point of I. v) g_0 is parabolic. vi) g_0 is mixed.

Remark. Put $I^{0}(g_{0})=I(g_{0})\cap I^{0}$. If g_{0} is of type i), we have $\iota(I^{0}(g_{0}))=\iota(I^{0})$. If g_{0} is of type ii), $\iota(I^{0}(g_{0}))$ is a finite abelian group. In other case $\iota(I^{0}(g_{0}))$ is a free abelian group. It is of rank n-r except for the case where g_{0} is of type iv), r being the number of $g_{0}^{(r)}$ such that $g_{0}^{(r)}$ is elliptic. If g_{0} is of type iv), $\iota(I^{0}(g_{0}))$ is of rank n-1.

This is a consequence of absolute convergence of the integrals in (8), as we see by writing out these integrals explicitly, (c.f. [6, §5]).

In particular, the fixed point of g_0 of type v) is necessarily a parabolic point of Γ , for all the elements in $\Gamma_0(g_0)$ are parabolic transformations having the same fixed point as g_0 .

3.2. Case i). Suppose that $Z(B) = \phi$ and let g_0 be an element in Z(B). Then $B = \Gamma g_0 \Gamma = g_0 \Gamma$ and $Z(B) = g_0 Z(\Gamma)$. Consequently, Z(B) consists of a single equivalence class. We have

(9)
$$\begin{split} \int_{F_{\leq 0}} &= \int_{F} \prod_{i=1}^{n} (\operatorname{sgn} g_{0}^{(F)})^{k_{i}} \cdot \operatorname{tr} \mathbb{X}(g_{0}) dz \\ &= \prod_{i=1}^{n} (\operatorname{sgn} g_{0}^{(F)})^{k_{i}} \cdot \operatorname{tr} \mathbb{X}(g_{0}) v(F). \end{split}$$

Case ii). Let γ_i , ζ_i be the eigenvalues of $g_0^{(i)}$ and suppose that we have

$$\frac{g_{0}^{(i)}z^{(i)} - z_{0}^{(i)}}{g_{0}^{(i)}z^{(i)} - z_{0}^{(i)}} = \gamma_{i} \cdot \zeta_{i}^{-1} \frac{z^{(i)} - z_{0}^{(i)}}{z^{(i)} - z_{0}^{(i)}} (1 \le i \le n).$$

Here z_0 is the fixed point of g_0 with $\operatorname{Im} z_0^{(i)} > 0$ $(1 \le i \le n)$. If \Re_{ν} is defined by

(10)
$$\operatorname{Im} z^{(i)} > 0 \qquad (1 \leq i \leq p)$$

$$\operatorname{Im} z^{(j)} < 0 \qquad (p+1 \leq j \leq n),$$

we have

$$\int_{F_{0,0}\cap G_0} = \frac{(-1)^{n-p} \operatorname{tr} \chi(g_0)}{a(\{k_i\})[\Gamma(g_0):Z(\Gamma)]} \prod_{i=1}^n (\det g_0^{(\Gamma)})^{1-\frac{k_i}{2}} \cdot \prod_{i=1}^p \frac{\zeta_i^{k_i-1}}{\gamma_i - \zeta_i} \cdot \prod_{j=n+1}^n \frac{\gamma_j^{k_j-1}}{\gamma_j - \zeta_j}.$$

Summing up the above equality for $\nu=1, 2, \dots, 2^n$, we obtain

(11)
$$\int_{F_{g_0}} = \frac{(-1)^n \operatorname{tr} Z(g_0)}{a(\{k_i\})[\Gamma(g_0): Z(\Gamma)]} \times \prod_{i=1}^n \frac{\chi_i^{k_i-1} - \zeta_i^{k_i-1}}{\chi_i - \zeta_i} \cdot (\det g_0^{-i})^{1-\frac{k_i}{2}}.$$

Case iii). By a calculation similar to the calculation in [6, No. 19], we get

$$\int_{F_{ab}} = 0.$$

3.3. Case iv). In view of the argument in [6, No. 20] we may assume that g_0 leaves each of ∞ and 0 fixed, and that both of them are parabolic points of Γ . By the remark in the beginning of [6, No. 20] any fixed point of g_0 other than ∞ and 0 cannot be a parabolic point of Γ . In the notation in §2.1, let us suppose that x_{ν} and $x_{\nu'}$ are Γ -equivalent to ∞ and 0, respectively. Put $x_{\nu} = \varepsilon(\infty)$, $x_{\nu'} = \varepsilon'(0)$ with ε , $\varepsilon' \in \Gamma$. If $\partial g_0 \partial^{-1} \in B_{\varepsilon \mu}^{(1)}$ for $1 \le \nu \le t$, $\partial^{-1} x_{\mu}$ is a parablic point of Γ which is left fixed by g_0 . Hence $\partial^{-1} x_{\mu}$ is either ∞ or 0; accordingly ∂ is contained in $\Gamma_{\varepsilon \nu}^{(1)} \varepsilon$ or in $\Gamma_{\varepsilon \nu}^{(1)} \varepsilon'$. Therefore it is enough to calculate the integrals

(12)
$$\int_{E_{zz} \cap E} \frac{k(z, g_0 z) i(g_0, z) \operatorname{tr} \chi(g_0)}{I(z)^{\circ} |j_0(\rho_z \varepsilon, z)|^{\circ} k(z, z)} dz,$$

(13)
$$\int_{F_{0,0} \sim E} \frac{k(z, g_0 z) j(g_0, z) \operatorname{tr} \chi(g_0)}{|I(z)| j_0(\rho_{\nu} \varepsilon', z)|^s k(z, z)} dz,$$

(14)
$$\int_{F_{g_0}} \frac{k(z, g_0 z) j(g_0, z)}{k(z, z)} \operatorname{tr} \chi(g_0) dz,$$

where $E=\varepsilon^{-1}\Gamma_{x_{\nu}}^{(1)}V_{\nu}=\{z:\prod_{i=1}^{n}|\operatorname{Im}z^{(i)}|>\kappa\},\ E'=\varepsilon'^{-1}\Gamma_{x_{\nu}}^{(1)}V_{\nu'}=\{z:\prod_{i=1}^{n}|\operatorname{Im}z^{(i)}|^{-2}>\kappa'\},\ F_{y_0}^*=F_{y_0}-E-E',\ \kappa,\ \kappa'$ being suitable positive numbers. We now consturct F_{ε_0} in the following way. Fix, say, \Re_1,\cdots,\Re_q such that every $\Re_{\nu}(1\leq\nu\leq 2^n)$ is mapped by $\Gamma(g_0)$ to one and the only one of \Re_1,\cdots,\Re_q . By the remark in § 3.1 $\Gamma^{0}(g_0)$ is generated as a group of transformations in \Im_n by n-1 independent elements $\gamma_1,\cdots,\gamma_{n-1}:(\gamma_jz^{(i)})=\lambda^{(i)}z^{(i)}\ (1\leq i\leq n,1\leq j\leq n-1)$). Set $U_j^{(i)}=\log \lambda_j^{(i)}\ (1\leq i\leq n,1\leq j\leq n-1)$ and $U_n^{(i)}=1/n(1\leq i\leq n)$. For $z\in \Im_n$, write $z^{(i)}=r^{(i)}e^{\sqrt{-1}q^{(i)}}$ and $z\in U_n^{(i)}=U_nU_n^{(i)}+\cdots+U_nU_n^{(i)}$ with $u_i\in R$. We can take for F_{y_0} the set of all $z\in U_n$ such that $0< u_i< 1$ $(1\leq i\leq n-1), -\infty< u_n<\infty$. As it is proved in [6, No. 20], the integrals (12), (13) vanish. Now, let \Re_{ν} be given in (10). Writing

$$g_0^{(i)} = \begin{pmatrix} a^{(i)} & 0 \\ 0 & d^{(i)} \end{pmatrix},$$

we have

$$\int_{P_{g_0}^* Q_b} = \operatorname{tr} \chi(g_0) |\det(l_j^{(i)})| \prod_{i=1}^n \frac{(2\sqrt{-1})^k |\det g_0^{(i)}|^{\frac{k_i}{2}}}{d^{(i)k_i}} \int \cdots \int_{\log \epsilon^{n} |\operatorname{Im}| \sin \theta^{(i)}|^{-1}} du_n \\
\times \prod_{i=1}^n \frac{(\sin \theta^{(i)})^{k_i - 2}}{(e^{\sqrt{-1}\theta^{(i)}} - a^{(i)} d^{(i)^{-1}} e^{-\sqrt{-1}\theta^{(i)}})^{k_i}} d\theta^{(1)} \cdots d\theta^{(n)} \\
= \operatorname{tr} \chi(g_0) |\det(l_j^{(i)})| \cdot \prod_{i=1}^n \frac{(2\sqrt{-1})^{k_i} |\det g_0^{(i)}|^{\frac{k_i}{2}}}{d^{(i)k_i}} \int \cdots \int_{i=1}^n \log (\kappa \kappa' \prod_{i=1}^n |\sin \theta^{(i)}|^{-2}) \\
\times \prod_{i=1}^n \frac{(\sin \theta^{(i)})^{k_i - 2}}{(e^{\sqrt{-1}\theta^{(i)}} - a^{(i)} d^{(i)^{-1}} e^{-\sqrt{-1}\theta^{(i)}})^{k_i}} d\theta^{(1)} \cdots d\theta^{(n)}.$$

The integral on the right hand side is extended over $0 < \theta < \pi (1 \le i \le p)$, $\pi < \theta^{(i)} < 2\pi$ $(p+1 \le i \le n)$. By [6, (30)] we see that, if n > 1, the integral (15) vanishes for each ν .

Suppose that n=1. In this case we write simply $k_1=k$, $a^{(1)}=a$, $d^{(1)}=d$. Since $\Gamma^0(g_0)=Z(\Gamma)$, we can assume $F_{y_0}=\Re_1\cup\Re_2$ or \Re_1 according as $[\Gamma(g_0):Z(\Gamma)]=1$ or 2. By a direct calculation we get

(16)
$$\int_{F_g^*} = -\frac{8\pi}{k-1} \frac{\operatorname{tr} \chi(g_0) (\det g_0)^{1-\frac{k}{2}} (\operatorname{Min}\{|a|, |d|\})^{k-1}}{[\Gamma(g_0) : Z(\Gamma)] |a-b|}$$

3.4. Case v). All $g \in G_{x_{\nu}}^{(1)}$ are written in the form

(17)
$$\rho_{\nu}^{(i)} g^{(i)} \rho_{\nu}^{(i)-1} = \begin{pmatrix} a^{(i)} & b^{(i)} \\ 0 & d^{(i)} \end{pmatrix} (1 \le i \le n).$$

We have $g \in G_{x_n}$ if and only if $a^{(i)} = d^{(i)} (1 \le i \le n)$. Put

$$\lambda(g) = (\lambda(g^{(1)}), \cdots, \lambda(g^{(n)})),$$

$$\mu(g) = (\mu(g^{(1)}), \cdots, \mu(g^{(n)}))$$

with $\lambda(g^{(i)}) = a^{(i)}d^{(i)-1}$, $\mu(g^{(i)}) = b^{(i)}d^{(i)-1}$.

We now state

LEMMA 3.1. Set $N_{x_{\nu}} = \{u(g); g \in B_{x_{\nu}}\}, M_{x_{\nu}} = \{u(g); g \in \Gamma_{x_{\nu}}\}, A_{x_{\nu}} = \{\lambda(g); g \in \Gamma_{x_{\nu}}^{(1)}\}.$ Then $M_{x_{\nu}}$ is a discrete subgroup of R^n of rank n. $A_{x_{\nu}}$ is a discrete subgroup of $(R^*)^n$ of rank n-1 and we have $\prod_{i=1}^n |\lambda(g^{(i)})| = 1$ for all $\lambda(g) \in A_{x_{\nu}}$. $N_{x_{\nu}}$ is the union of a finite number of cosets of $M_{x_{\nu}}$. If $\mu(g) \in N_{x_{\nu}}$, $\lambda(g_1) \in A_{x_{\nu}}$, then

$$\lambda(g_1)\mu(g) = (\lambda(g_1^{(1)})\mu(g^{(1)}), \cdots, \lambda(g_1^{(n)})\mu(g^{(n)}))$$

is contained in $N_{x_{\nu}}$.

PROOF. The first two statements follow from [6, Theorem 3]. Since we have

$$\mu(g|g') = \mu(g) + \mu(g') \quad (g, \in B_{x_y}, g' \in \Gamma_{x_y}),$$

$$\mu(g_1 g g_1^{-1}) = \lambda(g_1)\mu(g) \quad (g \in B_{x_y}, g_1 \in \Gamma_{x_y}^{(1)}),$$

the other statements follow from the definition.

We classify the elements in $N_{x_{\nu}}$ putting $\mu(g)$, $\mu(g') \in N_{x_{\nu}}$ into the same class if $\mu(g) = \lambda(g_1)\mu(g')$ with $\lambda(g_1) \in A_{x_{\nu}}$. The class of $\mu(g)$ is denoted by $\overline{\mu(g)}$.

LEMMA 3.2. Let L_{ν} be a complete system of inequivalent elements in B_{ν} . Then $\overline{\mu(g)}(g \in L_{\nu})$ runs oves all the classes in $N_{x_{\nu}}$, each of which being repeated the same number of times.

PROOF. Let g, g' be elements in $B_{x_{\nu}}$. We have $\overline{\mu(g)} = \overline{\mu(g')}$ if and only if $g = \partial \gamma g' \gamma^{-1}$ with $\gamma \in \Gamma$, $\partial \in Z(G)$. If this is the case, we get $\partial B = B$, for $B = \Gamma g \Gamma = \Gamma g' \Gamma$. Let Z_1 be the group of all $\partial \in Z(G)$ such that $\partial B = B$. Let $B \cdot B^{-1} = \Gamma \alpha \Gamma \alpha^{-1} \Gamma$ $= \bigcup_{\nu=1}^{c} \partial_{\nu} \Gamma$ be a disjoint sum. We can assume that $\partial_{\nu} \in Z(G)$ if $\partial_{\nu} \Gamma \cap Z(G) \neq 0$. Then $B B^{-1} \cap Z(G)$ is the union of $\partial_{\nu} Z(\Gamma)$ such that $\partial_{\nu} \in Z(G)$. It follows that $Z(\Gamma)$ is a subgroup of finite index, say e_1 , in Z_1 . It is then clear that $\mu(g)$ $(g \in L_{\nu})$ takes every class in $N_{x_{\nu}}$ exactly e_1 times.

By the remark in §3.1, $L_{\nu}(1 \le \nu \le t)$ jointly form a complete system of inequivalent elements of type v) in B.

Fix one of the x_{ν} 's, say x_i , and assume that $x_1 = \infty$, $\rho_1 = 1$. Let g be an element in $B_{x_1} \cdot \Gamma(g)$ is generated as a group of transformations in \mathfrak{F}_n by n independent elements $\gamma_1, \dots, \gamma_n$. Write $z^{(i)} = x^{(i)} + \sqrt{-1} y^{(i)}$ and $x^{(i)} = v_1 \mu(\gamma_1^{(i)}) + \dots + v_n \mu(\gamma_n^{(i)})$ with $v_i \in \mathbb{R}$. Then, the set of all $z \in \mathfrak{F}_n$ such that $0 < v_i < 1 (1 \le i \le n)$ forms a fundamental domain F_g of $\Gamma(g)$. Set

(18)
$$d(g) = |\det (\mu(\gamma_j^{(i)}))|.$$

Besides, we put

(19)
$$m(g) = \prod_{i=1}^{n} |\mu(g^{(i)})|.$$

It is to be noted that d(g) and F_g do not depend on g so long as g is in B_{x_1} . Put $E = \{z \in \mathfrak{F}_n : \prod_{i=1}^n |\operatorname{Im} z^{(i)}| > d_1\}$. Then, the contribution of $g \in L_1$ to (8) is equal to

$$w = \lim_{s \to +0} \sum_{g \in I_1} \left[\int_{F_g}^{s} \frac{k(z, gz)j(gz)}{k(z, z)} \operatorname{tr} \chi(g) dz + \int_{F_g \cap E} \frac{k(z, gz)j(gz)}{I(z)^s k(z, z)} \operatorname{tr} \chi(g) dz \right]$$

$$= \lim_{s \to +0} \sum_{g \in I_1} \int_{F_g}^{s} \frac{k(z, gz)j(gz)}{I(z)^s k(z, z)} \operatorname{tr} \chi(g) dz$$

$$= \frac{(-1)^n}{a(\{k_i\})(2\pi)^n} \lim_{s \to +0} \left(e^{\frac{\pi}{2}(s-1)} - e^{-\frac{\pi}{2}(s-1)} \right)^n \sum_{g \in I_1} \prod_{k=1}^n (\operatorname{sgn} a^{(k)})^{k_1} \cdot \frac{d(g) \operatorname{tr} \chi(g)}{m(g)^{1+s}}.$$

Now, Lemmas 3.1, 3.2 imply that the series in the last equality has at most a pole of order 1 at s=0. It follows that w=0 if n>1. If n=1, putting $k_1=k$, $a^{(1)}=a$, we can write

(20)
$$w = -\frac{2\pi}{k-1} \lim_{s \to 0} s \sum_{g \in L_1} (\operatorname{sgn} a) \operatorname{tr} \operatorname{Z}(g) \left(\frac{d(g)}{m(g)} \right)^{1+s}.$$

3.5. Case vi). We have

$$\int_{F'_{N_2}} = 0$$

by the same argument as in [6, No. 22].

We state the result as

THEOREM 1. If $k_i > 2$ ($1 \le i \le n$), the trace of $\mathfrak{T}(\Gamma \alpha \Gamma)$ is given in the following formulas.

i) n > 1.

$$\begin{split} \operatorname{tr} \mathfrak{T}(I'\alpha I') &= v(F) \operatorname{tr} \chi(g_0) \prod_{i=1}^n (\operatorname{sgn} g_0^{(i')})^{k_i \left(\frac{ki-1}{4\pi} \right)} \\ &+ \sum_{j \in \mathcal{C}_1} \frac{(-1)^n \operatorname{tr} \chi(g)}{\|I\|} \prod_{i=1}^n \frac{\zeta(g^{(i)})^{k_i-1} - \zeta(g^{(i)})^{k_i-1}}{\zeta(g^{(i)}) - \zeta(g^{(i)})} (\operatorname{det} g^{(i)})^{1-\frac{k_i}{2}}. \end{split}$$

ii) n=1. In this case we write k for k_1 .

$$egin{align*} \operatorname{tr}\, \mathfrak{T}(I'lpha I') &= v(F) \operatorname{tr}\, \chi(g_0) \left(\operatorname{sgn}\, g_0
ight)^{k \left(rac{k-1}{4\pi}
ight)} \\ &= -\sum\limits_{g \in G_2} \frac{\operatorname{tr}\, \chi(g)}{|I'(g):Z(I')|} \cdot rac{\zeta(g)^{k-1} - \gamma(g)^{n-1}}{\zeta(g) - \gamma(g)} (\det g)^{1-rac{k}{2}} \\ &= -\sum\limits_{g \in G_2} \frac{2 \operatorname{tr}\, \chi(g)}{|I'(g):Z(I')|} \cdot rac{(\operatorname{Min}\{|\zeta(g)|, |\gamma(g)|\})^{k-1}}{|\zeta(g) - \gamma(g)|} (\det g)^{1-rac{k}{2}} \end{split}$$

$$-\lim_{s\to 0}\frac{s}{2}\sum_{g\in \mathfrak{f}_s}(sgn\;\zeta(g))\operatorname{tr} \chi(g)\left(\frac{d(g)}{m(g)}\right)^{1+s}.$$

Here g_0 is an arbitrary element in $\Gamma \alpha \Gamma \cap Z(G)$. \mathfrak{S}_1 (resp: \mathfrak{S}_2 ; \mathfrak{S}_3) is a complete system of inequivalent elliptic elements (resp: hyperbolic elements leaving a parabolic point of Γ fixed; parabolic elements) in $\Gamma \alpha \Gamma$ with respect to the equivalence relation (7). $\Gamma(g)$ is the group of all $\gamma \in \Gamma$ such that

$$g = \varepsilon \gamma g \gamma^{-1}$$
 for some $\varepsilon \in Z(\Gamma)$.

v(F) denotes the volume of a fundmental domain of Γ in \mathfrak{F}_n relative to dz (see (6)). For $g \in GL(2\mathbf{R})$ $\zeta(g)$, $\zeta(g)$ denote the eigenvalues of g. Let g be a parabolic element in $\Gamma \alpha \Gamma$ and x the fixed point of g. Let ρ be an element in G such that $\rho x = \infty$. Then, d(g), m(g) are defined by (17)-(19) substituting ρ for ρ_{ν} .

§ 4. A formula for $\operatorname{tr} \mathfrak{I}(\mathfrak{q})$.

4.1. Let A be an indefinite quaternion algebra over a totally real number field Φ of degree m over Q. Writing $\Phi^{(i)}(1 \le i \le m)$ for the completion of Φ with respect to the infinite valuation \mathfrak{p}_{∞_i} of Φ , we get

$$A \otimes_{Q} R = A^{(1)} \oplus \cdots \oplus A^{(m)},$$
$$A^{(i)} = A \otimes_{\emptyset} \mathcal{P}^{(i)}.$$

For $\alpha \in A$, $\alpha^{(i)}$ is defined by $\alpha = \sum_{r=1}^{m} \alpha^{(i)}$ with $\alpha^{(i)} \in A^{(i)}$ and for every $\alpha \in A$ (resp: $A^{(i)}$) the reduced norm of α from A to ϕ (resp: from $A^{(i)}$ to $\phi^{(i)}$) is simply denoted by $N(\alpha)$. We assume once and for all that $A^{(i)} = M_2(R)$ for $1 \le i \le n$ and $A^{(i)} = K$ for $n+1 \le i \le m$.

We denote by $\mathfrak g$ and E_0 the ring of all integers in Φ and the group of all units in $\mathfrak g$, respectively. Let $\mathfrak P$ be a prime ideal in $\mathfrak g$. We put

$$A_{\rm p} = A \otimes_{\sigma} \phi_{\rm p}$$

 Φ_{ν} being the completion of Φ with respect to ν . Denote by \mathfrak{g}_{ν} the valuation ring in Φ_{ν} . For a normal g-lattice \mathfrak{M} in A, we write \mathfrak{M}_{ν} for the \mathfrak{g}_{ν} module in A_{ν} generated by \mathfrak{M} . $N(\mathfrak{M})$ denotes the norm of \mathfrak{M} .

Let $\mathfrak L$ be a maximal order in A and I' the group of all units in $\mathfrak L$. The projection from A to $\sum_{i=1}^{n} A^{(i)}$ maps I' isomorphically onto a subgroup of GL(2R) $\times \cdots \times GL(2R)$ (n times), which is again denoted by I'. Then I' satisfies our assumption (A1), (A2). $\iota(G^0)/\iota(I^0)$ is not compact if and only if $A=M_0(\Phi)$.

Let $\mathfrak A$ be an integral two sided $\mathfrak D$ -ideal. Let $\mathcal A(\mathfrak A)$ be the set of all $\alpha \in A^*$ such

⁴⁾ d(g)/m(g) does not depend on a choice of ρ .

that α is a unit in $\mathbb{O}_{\mathfrak{p}}$ for all \mathfrak{p} dividing $N(\mathfrak{A})$. Let ρ be a unitary representation of $(\mathbb{O}/\mathfrak{A})^*$ and φ_i $(n+1\leq i\leq m)$ a unitary representation of K^* . Since $(\mathbb{O}/\mathfrak{A})^*$ is the direct product of $(\mathbb{O}_{\mathfrak{p}}/\mathfrak{A}_{\mathfrak{p}})^*(\mathfrak{p}|N(\mathfrak{A}))$, ρ may be considered as a representation of $\Delta(\mathfrak{A})$ in a natural manner. We put

(21)
$$\chi(\alpha) = \rho(\alpha) \otimes \varphi_{n+1}(\alpha^{(n+1)}) \otimes \cdots \otimes \varphi_m(\alpha^{(m)})$$

for $\alpha \in \mathcal{A}(\mathfrak{A})$. Then \mathfrak{A} satisfies our assumption (R 1). We assume that \mathfrak{A} satisfies also (R,2). We can now define the linear transformation $\mathfrak{T}(\Gamma \alpha \Gamma)$ in $S(\Gamma, \{k_i\}, \mathfrak{A})$ for any $\alpha \in \mathcal{A}(\mathfrak{A})$. If \mathfrak{A} is an integral ideal in \mathfrak{A} prime to $N(\mathfrak{A})$, we put

(22)
$$\mathfrak{T}(\mathfrak{q}, \mathfrak{D}) = \Sigma \mathfrak{T}(I \alpha I),$$

the sum being extended over all the double cosets $\Gamma \alpha \Gamma$ such that $\alpha \mathcal{D}$ is an integral right \mathcal{D} -ideal of norm \mathfrak{q} .

4.2. Let $B(\mathfrak{q})$ be the union of all the double cosets $\Gamma \alpha I'$ appearing in (22). It is clear that we have

(23)
$$B(\mathfrak{q}) = \{\alpha \in \mathfrak{O}, \ N(\alpha)\mathfrak{g} = \mathfrak{q}\}.$$

Hence $B(\mathfrak{q}) \neq \phi$ only if \mathfrak{q} is a principal ideal, and $Z(B(\mathfrak{q})) \neq 0$ only if \mathfrak{q} is of the form $\mathfrak{q} = q_0^2 \mathfrak{q}$ with $q_0 \in \mathfrak{q}$. Fixing such a q_0 , we get $Z(B(\mathfrak{q})) = q_0 E_0$.

We define \mathfrak{E}_1 , \mathfrak{E}_2 , \mathfrak{E}_3 in the same way as in Theorem 1, taking $B(\mathfrak{q})$ for $\Gamma \alpha \Gamma$. In order to obtain an explicit formula for $\operatorname{tr} \mathfrak{T}(\mathfrak{q}, \mathfrak{D})$, we want to determine \mathfrak{E}_1 and, besides, \mathfrak{E}_2 , \mathfrak{E}_3 in case n=1.

First we are going to determine \mathfrak{E}_1 . Since the following argument is quite analogous to the argument in $[6, \S 6]$, we shall omit the details.

Let J be the set of all elliptic elements in $B(\mathfrak{q})$ and α an element in J. Let $\Phi(\alpha)$ denote the subfield of A generated by α over Φ and put $\mathfrak{o} = \Phi(\alpha) \cap \mathfrak{D}$. $\Phi(\alpha)$ is then a totally imaginary maximal subfield of A and \mathfrak{o} is an order in $\Phi(\alpha)$. Let α' be another element in J and define \mathfrak{o}' as above by means of α' . If $\alpha' = \varepsilon \gamma \alpha \gamma^{-1}$ for $\gamma \in I'$, $\varepsilon \in E_0$, we have $\mathfrak{o}' = \gamma \mathfrak{o} \gamma^{-1}$. Let $\widetilde{\mathcal{Q}}$ be the set of all subrings \mathfrak{o} of A with the following properties.

- 1° $K=\phi(\mathfrak{d})$ is a totally imaginary maximal subfield of A.
- 2° $\mathfrak{o}=K\cap\mathfrak{O}.$

Let δ be the discriminant of A over Φ . Then, we obtain

Lemma 4.1. Let $\widetilde{\mathcal{Q}}_0$ be the set of all \mathfrak{o} (taken up to isomorphisms) with the following properties.

- 1° \mathfrak{o} is an order in a totally imaginary quadratic extension of Φ , in which all the prime divisors of \mathfrak{d} do not split.
 - 2° the conductor of v is prime to b.

Then $\widetilde{\Omega}_0$ forms a full system of representatives of the isomorphism classes in $\widetilde{\Omega}$.

The proof is the same as that of [6, Lemma 19]. It is to be noted that, if $\mathfrak{o} \in \Omega_0$, \mathfrak{o} can be embedded in A so that we have $\mathfrak{o} = \Phi(\mathfrak{o}) \subset \mathfrak{D}$, and hence $\widetilde{\Omega}_0$ can be thought of as a subset of $\widetilde{\Omega}$.

We say that $\mathfrak{o}_1, \mathfrak{o}_2 \in \widetilde{\mathcal{Q}}$ are conjugate if there is a $\gamma \in \Gamma$ such that $\mathfrak{o}_2 = \gamma \mathfrak{o}_1 \gamma^{-1}$. Fixing an \mathfrak{o} in $\widetilde{\mathcal{Q}}_0$, we now count the number of the conjugate classes contained in the isomorpeism class of \mathfrak{o} . Let $\mathfrak{o}_1 = \mu_1 \mathfrak{o} \mu_1^{-1}(u_1 \in A^*)$ be an element in $\widetilde{\mathcal{Q}}$ isomorphic to \mathfrak{o} . By [4, Satz 7] we have

$$\mathfrak{D}\mu_1 = \mathfrak{Ma}$$

where \mathfrak{M} is a two sided ideal of \mathfrak{O} and \mathfrak{a} is an ideal of \mathfrak{o} (the word 'an ideal of \mathfrak{o} ' or 'o-ideal' should be understood in the sense stated in [4, §3]).

Put $K=\phi(\mathfrak{o})$. Let T be the group of all the two sided \mathbb{O} -ideals and T' the subgroup of T consisting of all two sided ideals generated by \mathfrak{o} -ideals. Let $\{\mathfrak{M}\}$ be a full system of representatives in T of T/T' and $\{\mathfrak{a}\}$ a full system of representatives of the ideal classes in \mathfrak{o} . We take and fix an element \mathfrak{e} in A such that the automorphism $x \to \mathfrak{e} x \mathfrak{e}^{-1}$ of A induces on K the isomorphism of K over Φ which is not the identity. In this notation we can attach to the conjugate class of $\mathfrak{o}_{\mathfrak{q}}$ two couples $(\mathfrak{M}_0, \mathfrak{o}_0)$, $(\mathfrak{M}_1, \mathfrak{o}_1)$ which are defined by

$$\mathfrak{D}_{\alpha_1\ell^{\nu}}=\mathfrak{M}_{\nu}\mathfrak{a}_{\nu}\xi$$
, $\xi\in K$, $\nu=0$, 1.

 $(\mathfrak{M}_0, \mathfrak{a}_0)$ and $(\mathfrak{M}_1, \mathfrak{a}_1)$ coincide if and only if we have

(24)
$$\mathfrak{D}_{i}\mu_{1}\ell = \mathfrak{D}\mu_{1}\hat{\varsigma} \text{ for some } \hat{\varsigma}\in K.$$

Conversely, let \mathfrak{M} , \mathfrak{a} be as above and assume that $\mathfrak{M}\mathfrak{a}$ is a principal ideal of \mathfrak{D} : $\mathfrak{M}\mathfrak{a} = \mathfrak{D}\mu_1$. Put $\mathfrak{a}_1 = \mu_1\mathfrak{a}\mu_1^{-1}$. By [4, Satz 7] we have $\mathfrak{a}_1 \in \mathcal{Q}$, and the conjugate class of \mathfrak{a}_1 is uniquely determined by $(\mathfrak{M}, \mathfrak{a})$. Now, if (24) holds, the conjugate class of \mathfrak{a}_1 shall be conuted with a multiplicity 1/2. It turns out that the number of the conjugate classes (in the above sense) contained in the isomorphism class of \mathfrak{a} is equal to

(25)
$$\frac{h(\mathfrak{o})}{2h} \coprod_{\mathfrak{p} \mid \mathfrak{o}} \left(1 - \left(\frac{\mathfrak{o}}{\mathfrak{p}}\right)\right),$$

where h is the class number of A, $h(\mathfrak{o})$ is the class number of \mathfrak{o} and $\begin{pmatrix} \mathfrak{o} \\ \mathfrak{p} \end{pmatrix}$ stands for the Artin symbol $\begin{pmatrix} K \\ \mathfrak{p} \end{pmatrix}$.

4.3. \mathfrak{o}_1 being as above, let $E(\mathfrak{o}_1)$ be the group of all units in \mathfrak{o}_1 . Let α , α' be elements in $\mathfrak{o}_1 \cap J$. If $\alpha' = \varepsilon \gamma \alpha \gamma^{-1}$ with $\gamma \in \Gamma$, $\varepsilon \in E_0$, we have $\Phi(\alpha') = \gamma \Phi(\alpha) \gamma^{-1}$, and hence $\mu_1 K \mu_1^{-1} = \gamma \mu_1 K \mu_1^{-1} \gamma^{-1}$. Therefore, $\mu_1^{-1} \gamma \mu_1 = \overline{\varepsilon}$ or $\varepsilon \overline{\varepsilon}$ with $\xi \in K$. If (24) does not hold,

we must have $\mu_1^{-1}\gamma\mu_1=\xi$, hence $\gamma\in\mathfrak{d}_1$, $\epsilon\alpha=\alpha'$. In this case we see also that $\Gamma(\alpha)=E(\mathfrak{d}_1)$. Assume that (24) holds. There exists a $\gamma_1\in\Gamma$ such that $\mu_1\epsilon=\gamma_1\mu_1\xi_1$ with $\xi_1\in K$. Then, we have $\gamma\in\mathfrak{d}_1$ or $\gamma\in\gamma_1\mathfrak{d}_1$; $\alpha'=\epsilon\alpha$ or $\alpha'=\epsilon\gamma_1\alpha\gamma_1^{-1}$. It follows that

$$ec{arGamma}(lpha) = \left\{ egin{aligned} E(\mathfrak{o}_1) \cup \gamma_1 E(\mathfrak{o}_1)) \ & ext{if } lpha = \pm \gamma_1 lpha \gamma_1^{-1} \ E(\mathfrak{o}_1) & ext{otherwise.} \end{aligned}
ight.$$

Note that we have $[\Gamma(\alpha): E(\mathfrak{o}_1)] = 2$ in the first case.

4.4. Let \mathfrak{P} be a prime ideal in \mathfrak{g} . If \mathfrak{P} is prime to \mathfrak{h} , every two sided $\mathfrak{C}_{\mathfrak{P}}$ -ideal is a power of $\mathfrak{PC}_{\mathfrak{P}}$. Consequently, if $N(\mathfrak{R})$ is prime to \mathfrak{h} for an integral two sided \mathfrak{D} -ideal \mathfrak{R} , \mathfrak{R} is contained in T'. We may therefore assume that all \mathfrak{R} in $\{\mathfrak{M}\}$ are integral two sided \mathfrak{D} -ideals such that every prime divisor of $N(\mathfrak{M})$ divides \mathfrak{h} . Then, if $N(\mathfrak{R})$ is prime to \mathfrak{h} , $N(\mathfrak{M})$ is prime $N(\mathfrak{R})$ for all \mathfrak{M} . We assume also that all \mathfrak{g} in $\{\mathfrak{g}\}$ are integral \mathfrak{p} -ideals such that prime to $N(\mathfrak{R})$.

Suppose that $\mathfrak{Ma} = \mathfrak{D}\mu_1$ and $\mathfrak{o}_1 = \mu_1 \mathfrak{o} \mu_1^{-1}$. The elements in $\mathfrak{o} \cap J$ are in one-to-one correspondence with the elements in $\mathfrak{o}_1 \cap J$ by $\alpha \mapsto \alpha_1 = \mu_1 \alpha \mu_1^{-1}$. Since μ_1 is contained in $\Delta(\mathfrak{A})$ by our choice of $\{\mathfrak{M}\}$, $\{\mathfrak{a}\}$, we have $\rho(\alpha_1) = \rho(\alpha)$. For the sake of simplicity we write

(26)
$$\Psi(\alpha) = \operatorname{tr} \chi(\alpha) \prod_{i=1}^{n} \frac{\eta(\alpha^{(i)})^{k_i-1} - \zeta(\alpha^{(i)})^{k_i-1}}{\eta(\alpha^{(i)}) - \zeta(\alpha^{(i)})} N(\alpha^{(i)})^{1-\frac{k_i}{2}}$$

for $\alpha \in J$. It is then obvious that $\Psi(\alpha_1) = \Psi(\alpha)$.

4.5. By the consideration in §4.3, if $\{\alpha_1\}$ denotes a representative system of the equivalence classes in $\mathfrak{o}_1 \cap J$, we have

$$\frac{\sum_{i=1}^{t} \mathcal{V}(\alpha_{i})}{\lceil I'(\alpha) \colon E_{0} \rceil} = \left(\frac{1}{2}\right) \underbrace{\sum_{\substack{\alpha \text{ nive} E_{0} \\ \alpha \in \emptyset_{1} \cup J}} \mathcal{V}(\alpha)}_{\lfloor E(\emptyset_{1}) \colon E_{0} \rceil}.$$

The factor $\binom{1}{2}$ oppears only if (24) holds. Together with the results in §§ 4.2, 4.4, we get

$$\sum_{\alpha \in \mathfrak{S}_1} \frac{\varPsi(\alpha)}{\lfloor \varGamma(\alpha) : E_0 \rfloor} = \frac{1}{2h} \sum_{\mathfrak{g} \in \mathfrak{S}_2} \frac{h(\mathfrak{g})}{\lfloor E(\mathfrak{g}) : E_0 \rfloor} \sum_{\mathfrak{g} \in \mathfrak{S}} \left(1 - \left(\frac{\mathfrak{g}}{\mathfrak{g}}\right)\right)_{\alpha \bmod L_{\mathfrak{g}, \alpha} \in \mathfrak{g}_{\alpha}, J} \varPsi(\alpha).$$

- 4.6. In this section we assume that n=1. \mathfrak{G}_2 , \mathfrak{G}_3 are empty if A is a division algebra. Therefore, we restrict ouselves to the case where $A=M_2(\mathbf{Q})$. We can assume $\mathfrak{D}=M_2(\mathbf{Z})$; then \mathfrak{N} is written in the form $\mathfrak{N}=N\mathfrak{D}$ with $N\in \mathbf{Z}^{(5)}$. In this case there exists only one equivalence class of para bolic points of Γ , which is
 - 5) If $A = M_2(\theta)$, any maximal order in A is isomorphic to the ring of all $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, d\epsilon a, \epsilon \epsilon a, b\epsilon a^{-1}$, a being a certain member of a given representative system of the ideal classes in ϵ . Cf. [2].

represented by ∞ .

LEMMA 4.2. Write $q=q\mathbf{Z}$ with $q\in\mathbf{Z}$, q>0. Then we can take for \mathfrak{G}_2 the set of all α such that

$$\alpha = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}, \ a, b, d \in \mathbb{Z}$$

$$ad = q, \ 0 < a < d, \ 0 \le b \le \frac{d-a}{2}.$$

Furthermore, we have

$$[\Gamma(\alpha): E_0] = \begin{cases} 2 & 2b \equiv 0 \mod (a-d) \\ 1 & otherwise. \end{cases}$$

PROOF. Let $\alpha_1 = \begin{pmatrix} a_1 & b_1 \\ 0 & d_1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} a_2 & b_2 \\ 0 & d_2 \end{pmatrix}$ be elements of type iv) in B(qZ). Let $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an element of Γ . If $\epsilon' \gamma \alpha_1 \gamma^{-1} = \gamma_2$ for $\epsilon' = \pm 1$, we have

$$\varepsilon \varepsilon' a = ada_1 - c(ab_1 + bd_1),$$

 $\varepsilon \varepsilon' b_2 = -ada_1 + a(ab_1 + bd_1),$
 $\varepsilon \varepsilon' d_2 = -bca_1 + a(cb_1 + dd_1),$
 $c(da_1 - cb_1 - dd_1) = 0.$

Here $\varepsilon = ad - bc = \pm 1$. Consequently, if c = 0, then we have $\varepsilon' a_2 = a_1$, $\varepsilon' d_2 = d_1$; if $da_1 - ca_1 - dd_1 = 0$, then we have $\varepsilon' a_2 = d_1$, $\varepsilon' d_2 = a_1$.

Suppose that, for given α_1 and α_2 , we have $\epsilon'a_2=d_1$, $\epsilon'd_2=a_1$. Put $e=(d_1-a_1,b_1)$ and find $a,b\in \mathbb{Z}$ such that

$$(d_1-a_1)b+d_1a=e$$
.

Putting $d_1=b_1/e$, $c=-(d_1-a_1)/e$, we get $da_1-cb_1-dd_1=0$, ab-bc=1. Hence, after replacing α_1 by a suitable element equivalent to α_1 , we can assume that $\epsilon'a_2=a_1$, $\epsilon'd_2=d_1$. Then, it is easy to see that α_1 is equivalent to α_2 if and only if $b_1=\pm b_2$ mod (a_1-d_1) . Putting $\alpha_1=\alpha_2$, we see also that there exists a $\gamma\in\Gamma(a_1)$, $\gamma\ne 1$ if and only if $b_1=-b_1$ mod (a_1-d_1) . Therefore Lemma 4.2 follows.

4.7. Under the same assumptions as in § 4.6, \mathfrak{E}_3 is not empty if and only if \mathfrak{q} is of the form $\mathfrak{q}=q_0{}^2Z$ with $q_0{}\in Z$, $q_0{}>0$. This being so, we have

LEMMA 4.3. We can take for \mathfrak{E}_3 the set of all α such that

$$\alpha = \begin{pmatrix} q_0 & b \\ 0 & q_0 \end{pmatrix}$$
, be Z , $b > 0$.

Furthermore, $d(a)/m(a) = q_0/b$ for all α .

The proof is so easy that we omit it. Since $\rho(\alpha)$ depend only on $b \mod N$, we see that the contribution of $\alpha \in \mathbb{F}_3$ to $\operatorname{tr} \mathfrak{T}(\mathfrak{q}, \mathfrak{D})$ is

$$\begin{split} -\lim_{s\to 0} \frac{s}{2} \sum_{\alpha \in (\mathbf{r}_s)} \operatorname{tr} \mathbf{Z}(\alpha) \bigg(\frac{d(\alpha)}{m(\alpha)} \bigg)^{1+s} \\ = & -\frac{q_0}{2N} \sum_{0 \le b \le N} \operatorname{tr} \rho \binom{q_0-b}{0-q_0}. \end{split}$$

4.8. Summing up, we obtain

THEOREM 2. Suppose $k_i > 2(1 \le i \le n)$. Let δ be the discriminant of A over Φ . If $N(\mathfrak{A})$ is prime to δ , the trace of $\mathfrak{T}(\mathfrak{g}, \mathfrak{D})$ is given in the following formulas.

i) A is either a division algebra or $M_2(\phi)$ with $\phi = Q$.

$$\begin{split} \operatorname{tr} \mathfrak{T}(\mathfrak{q}, \, \mathfrak{D}) = & \delta(\mathfrak{q}) v(F) \operatorname{tr} \mathbf{Z}(q_0) \prod_{i=1}^n \binom{k_i-1}{4\pi} (\operatorname{sgn} \, q_0^{(i)})^{k_i} \\ + & \frac{(-1)^n}{2h} \sum_{\mathfrak{o} \in \widetilde{\mathcal{U}_0}} \frac{h(\mathfrak{o}) \prod_{\mathfrak{p} \mid \mathfrak{d}} \left(1 - \binom{\mathfrak{o}}{\mathfrak{p}}\right)}{[E(\mathfrak{o}) \colon E_0]} \sum_{\substack{\alpha \in \widetilde{\mathcal{J}}(\mathfrak{o}) \\ \alpha \text{ final } E_0}} \Psi(\alpha). \end{split}$$

Here h is the class number of A. $\widetilde{\mathcal{Q}}_0$ and $V(\alpha)$ are defined in Lemma 4.1 and in (26), respectively. $J(\mathfrak{o})$ is the set of all $\alpha \in \mathfrak{o}$ such that $\alpha \notin \Phi$, $N(\alpha)\mathfrak{q} = \emptyset$. $h(\mathfrak{o})$, $E(\mathfrak{o})$ denote the class number of \mathfrak{o} , the group of all units in \mathfrak{o} , respectively. $\left(\frac{\mathfrak{o}}{\mathfrak{p}}\right)$ denote the Artin symbol $\left(\frac{K}{\mathfrak{p}}\right)(K=\Phi(\mathfrak{o}))$. $\partial(\mathfrak{q})=1$ if $\mathfrak{q}=q_0^2\mathfrak{g}$ for some $q_0\in \mathfrak{g}$ and otherwise $\partial(\mathfrak{p})=0$.

ii) $A=M_2(Q)$. In this case we put $\mathfrak{D}=M_2(Z)$, $\mathfrak{A}=N\mathfrak{D}$, $\mathfrak{q}=qZ(N,q\in Z)$.

$$\begin{split} \operatorname{tr} \mathfrak{T}(q\boldsymbol{Z}, \mathfrak{D}) = & \delta(q) v(F) \operatorname{tr} \boldsymbol{\chi}(q_0) \frac{k-1}{4\pi} - \frac{1}{2} \sum_{\substack{\mathfrak{D} \in \widetilde{g}_0 \\ 0 \leq b \leq d-a}} \frac{h(\mathfrak{o}) \prod_{\substack{\mathfrak{D} \in \mathcal{D} \\ \mathfrak{D} \text{ is } b}} \left(1 - \left(\left(\frac{\mathfrak{D}}{\mathfrak{D}}\right)\right) \sum_{\substack{a \in J(\mathfrak{D}) \\ a \text{ mod } E^0}} \boldsymbol{W}(\alpha) \right. \\ & - q^{1 - \frac{k}{2}} \sum_{\substack{a d = q, 0 \leq u < \sqrt{q} \\ 0 \leq b \leq d-a}} \frac{a^{k-1}}{d-a} \operatorname{tr} \rho \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} - \delta(q) \frac{q_0}{2N} \sum_{0 \leq b \leq N} \operatorname{tr} \rho \begin{pmatrix} q_0 & b \\ 0 & q_0 \end{pmatrix}. \end{split}$$

The notation is the same as in i). If $q=q_0^2$, q_0 is supposed to be positive.

COROLLARY. $\operatorname{tr} \mathfrak{T}(\mathfrak{q}, \mathfrak{D}) = 0$ if \mathfrak{q} is not a principal ideal of the form $q\mathfrak{g}, q$ being a totally positive element in \mathfrak{g} .

Remark. 1) If ρ is the identity representation, our formula ii) coincides with the formula given in [8, p. 85] up to a factor $q^{1-k/2}$. 2) Though $\widetilde{\mathcal{Q}}_0$ is not a finite set, there exist only a finite number of $\mathfrak{o}\in\widetilde{\mathcal{Q}}_0$ such that $J(\mathfrak{o}) \neq \emptyset$ for a given \mathfrak{q} . 3) Apparently, $\operatorname{tr} \mathfrak{T}(\mathfrak{q}, \mathbb{O})$ does not depend on \mathbb{O} . However, it might not be the case if ρ is not the identity representation, for an embedding of $\mathfrak{o}\in\widetilde{\mathcal{Q}}_0$ in A is restricted by a condition $\mathfrak{o}=\mathcal{O}(\mathfrak{o})\cap \mathbb{O}$.

4.9. Let Γ_1 be the group of all $\gamma \in \Gamma$ with $N(\gamma)=1$. By [3, Satz 5] we have $[\Gamma: E_0\Gamma_1]=2^m/[E_0: E_0']$. Here E_0' is the group of all $\epsilon \in E_0$ such that $\epsilon^{(i)}>0$

 $(n+1 \le i \le m)$. By [6, (53)] we get

(27)
$$v(F) = \frac{2^{n-m+1}D_0^{3/2}h_0\zeta_0(2)}{\pi^{2m-n}h} \prod_{\mathfrak{p}|\mathfrak{p}} (N_{\Phi/Q}\mathfrak{p}-1),$$

where D_0 , h_0 , $\zeta_0(s)$ denote the discriminant of Φ over Q, class number of Φ , the zetafunction of Φ , respectively.

4.10. Let $\varphi_{\lambda}(1 \leq \lambda \leq h)$ be representatives of the equivalence classes of right \mathbb{O} -ideals. Let \mathbb{O}_{λ} be the left order of φ_{λ} and Γ_{λ} the group of all units in \mathbb{O}_{λ} . If we take $\varphi_{\lambda p} = \mathbb{O}_{p}$ for all p dividing $N(\mathfrak{N})$, Γ_{λ} is contained in $\mathfrak{I}(\mathfrak{N})$. Therefore we can define $\mathfrak{T}(q, \mathbb{O}_{\lambda})$ for each λ . Let $\mathfrak{T}(q)$ be the linear transformation defined in [7, §3]. It is immediately seen that

(28)
$$\operatorname{tr} \mathfrak{T}(\mathfrak{q}) = \sum_{i=1}^{h} \operatorname{tr} \mathfrak{T}(\mathfrak{q}, \mathfrak{D}_{i}).$$

Therefore, we obtain a formula for tr I(q) by Theorem 2.

Institute for Advanced Study Princeton and College of General Education University of Tokyo

References

- [1] A. Borel: Density properties for certain subgroups of semi-simple groups without compact components, Ann. Math., 72 (1960), 179-188.
- [2] C. Chevalley: L'arithmetique dans les algèbres des matrices, Act. Sci. Ind. No. 323, Paris (1936).
- [3] M. Eichler: Allgemeine Kongruenzklasseneinteilungen der Ideale einfaher Algebren über algebraischen Zahlkörper und ihre L-Reichen, J. Reine Angew. Math., 179 (1938), 227 -251.
- [4] : Zur Zahlentheorie der Quaternionen Algebren, J. Reine Angew. Math., 195 (1955), 127-151.
- [5] ---: Über die Darstellbarkeit von Modulformen durch Thetareihen, ibid., 156-171.
- [6] H. Shimizu: On discontinuous groups operating on the product of the upper half planes, Ann. Math., 77 (1963), 33-71.
- [7] G. Shimura: On Dirichlet series and abelian varieties attached to automorphic forms, Ann. Math., 76 (1962), 237-294.
- [8] A. Selberg: Harmonic analysis and discontinuous groups on weakly symmetric riemannian spaces with applications to Dirichlet series, International Colloquium on Zeta-functions, Bombay, 1956, 47-89.
- [9] ———: Automorphic functions and integral operators, Seminars on analytic functions (Institute for Advanced Study, Princeton, N. J. and U. S. Air Force, Office of Scientific Reseach, 1957), vol. 2, 152-161.
- [10] Séminaire Henri Cartan, 1957-58. Fonctions automorphes.

(Received June 12, 1963)