On traces of Hecke operators”

By Hideo Saimizu

Let G be the group of all g=(g*',---, gv") with g""'¢«GLE2R) and &, the set
of all 2=(2%,+++, 2"") with 27¢C, Im 27 0. We consider (G as a group of trans-
formations in ¥,, putting

gr=(g 2, e g2 )

gz = a‘f"z“‘“% b’ g f'a“‘b“‘)

et gd 7T e

Let I" be a subgroup of G operating on . discontinuously and satisfying (Al),
(A2) in §1. Let « be an element in G such that I” and «l"¢ ! are commensurable,
Let % be a unitary representation of the subgroup of G generated by /' and .
Let {k:}7.. be the set of positive integers. Under a certain condition on % ((R1)
in §1) we shall define the spaee of cusp forms of type (I', {k.}, %), and associate
the double coset I'al” with a linear transformation 3(I"al’) in this space. The
trace of T(I"al”) can be calculated by means of Selberg’s trace formula (Selberg
[8, 99,

§1 is concerned with preliminary statements. In §82-3 an explicit formula for
the trace of ("ol will be given (Theorem 1). In 84 we shall apply Theorem 1
to the operator 3(q) defined in Shimura {7] giving a formula for the trace of
3(q). This will be carried out by following Eichler 3, 4].

Netation. Z,Q, R, C, K denote the ring of ’rational integers, the field of
rational numbers, the field of real numbers, the field of complex numbers, the
divigion ring of quaternions over R, respectively. If R isa ring, R*, M. (K) denote
the group of all invertible elements in R, the ring of all matrices of degree n
with coefficients in R, respectively.

$1. An operator of Hecke.

1.1. Let G=GLE2R)x---xXGL(2R) be the product of n copies of GL{EZR).
An element of G will ke written in the form
g=(g", - 9"
with ¢ eGLEZR). Let 5, be the set of all z=(z'",---, 27) with 277¢C, Imz" #0.
Putting

1) This work is supported by the the National Science Foundation U. 5. A.
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for geG, 2%, we consider G as a group of transformations in &,.. ¢ induces the
identity transformation in 3%, if and only if gy is contained in the center Z(G) of
G.

Let I" be a subgroup of G operating discontinuously on %,. ¢ being the eanonical
homomorphism of G ento G/Z(G), this is equivalent to saying that (") is diserete
in «{G). Let G° be the group of all ¢gcG such that det g° >0 (1<{7=Zn) and set
P=0I'nG° ZUM=1I"NZ(G). It is assumed throughout this parper that

(Al) 1'% 18 an irreducible subgroup of (G° such that (G°)/(I") is of finite

measure.
We first prove the following :

Levmma 1.1, Let G/, G” be partial factors of G such thot G=G'XG", G=G,
G+G". Write an clement in G in the form g=(g¢’, ¢") with g'«G’, g''<G”. Let
go be an element tn G such that I' and gol ge! are comensurable. If {gg)=1,
then we have «(g¢)x1, d(gs) =1,

Proor. Suppose that (go")=1. «(I'gol”) is a discrete subset of «G) since it
is the finite union of the cosets of (/7). Let «(G’)° be the connected component
of the identity in (G’). Let U’ be an open neighbor-hood of the identity in (G")°
such that

(2) (I"gel )N U'd(go) U™ ={c(g0)}.

I.et ¢ be an arbitrary element in U’. By our assumption (Al) and by virtue of
{1, Corollary 4. 3], there exists a sequence {y,} of elements in I” such that «(;.’)
converges to £. Since U’ is open, we may assume that ./ )elU”’ for all v. Then
it follows from (2) that . ger. ")=t¢(go) for all v and hence that £{g.)é = (go).
Now UV generates «(G')°. Consequently, «gy) commutes with all elements in {G")°
and hence «(gy)=1. This is a contradiction.

1.2. Hereafter we shall assume, besides (Al), that

(A2) I™) satisfies the assumption (F') in [6].
We fix once and for all an element « in G such that «I'a"! is commensurable
with 1" and denote by I the subgroup of G generated by I” and «. Let 7 be a
representation of I by unitary matrices. In the case where (G%)/(I™) is not
compact, we assume that

(R1) the kernel I', of x in I' is of finite index wn I,
Let k-, k, be positive integers. In the same notation as in (1) we put
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(3) iy, 2)= 11 ¢z +d ) Fidet g | X
it

By a cusp form of type (/7, {k}, %) we understand a function f(z) en 3. taking
values in the representation space of #, which satisfies the following conditions:
(S1) f{z) is holomorphic on each connected component of &..
(82) fG2)=j(, 2) i) z) for yel'.
(83) In case G%)/:(I"% is nct compact, fiz) is regular at every parabolie point
x of I', and the constant term in the Fourier expansion of 1 at @ vanishes
(ef. [6, 843).7
The set of all such f(2) is denoted by S{/7, {k;}, %) or simply by S. IFor the reason
stated in {7, §3.3] we lose no generality by assuming that

(R2) 7(:)=11(sgn &'7)i for scZ(I).
il

i
We now define a linear transformaticn I({'al" in 8. Let I'l™== Ul be a
vl
disjoint sum. Tor fcS we set

(4) EaDH =20 wjle ', @) ol

We shall calculate the trace of I(f"a/’) in the following section.

§2. Selberg’s trace formula.

2.1. Let -+, %= be the connected components of §,. Each yeI” induces a
permutation of {%,})", and this permutation is the identity if and only if yel™.
Therefore the quotient group [/ is identified with a subgroup of permutations
of {¥.,11%,. We fix a subset, say {My,---, 5}, of {®.}", such that every s, is
mapped by the elements in I"/I" to one and the only cne of {8, }.... If I, isa
fundamental domain of I’ in &, the union

J
F=UF,
as]

is obviously a fundamental domain of I” in §,.. By (A2) we may assume that F,
is of the form described in the assumption (F), or that F is given in the following
way.

x being a parabolic point of 17, let I%" be the group of all yef' leaving z
fixed and I'. the group consisting of all parabolic tranoformations in 577
Let x.(1=<-<s) be a complete system of I-inequivalent parabolic points of I,

Taking a p.G such that p.z.=c0, we put

9) By a parabholic point of /" we understand a parabolic point of (/™).
3) If geG® we say that g is elliptic, hyperbolic, parabolic, or mixed according as «(y) is of
the corresponding type. ¢f. [6, §11.
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d. being a suitable positive number. Let V. be a fundamental domain of (/™);.
in U, Then F is of the form

FZJZ’Q’Q’U V;’U M U V,,’
where Iy is relatively compact in §..

For our later use it is convenient to group together all the V.’ such that =,
are ['-equivalent. Suppose z;,---, z, are all the I'-equivalent points to z: y. 2, =2,
(1=
a 0cl™ and a 2,(1<, <ls) such that yz,=dz.. We have necessarily 1:5::<a. Hence

=) with yel”. For any yel”, i, is a parabolic point of I” so that there exist

7 is written In the form ;=32 with ¢/}, It follows that the permutation of
{817, induced by I’ are all obtained from the elements in 1.I" V1< <a). It is
then easy to see that the union of V./(1=r=a) is I™-equivalent to V, up to a
relatively compact set in ¥, where, for each », V. is a fundamental domain of
I in
U,={p 21| Imz"|>d.}.
izl
Therefore, if we assume after reordering the indices that {z.}. ., is a complete
system of ['-inequivalent parabolic points of I, ' is written as
F“::FOU VIU"'UV!
with a relatively compact subset Fy in %..
2.2. Let (4, ¥) be the inner product in the representation space of ¥ such that
(G, #GHv) == (u, vy for jel™.
Put fJul=(u, w)'°. For z, 2'¢¥.. we put

of Ll
PYIYE I

‘]‘».
~ ¢ . .
if 2,2’ are in the same
A |

(5) 15 z,:«:’)::! I”[(

R

connected component of ¥.,

0 otherwise.
Then we have

k(z, )=k, 2)

k(gz, g2")=kz, 2)i(g, &) '3(g, 2) 'a(g)

for ¢g<G. where a{g)= 1 (sendet gy, Call H¥, {k.}, %) (resp: A=, {k.}, 7))
w1

:

the space of all functions f on &, satisfying (S1), (S2) and
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[ [
w=sup (k(z, 2 VAR o),
s 4
Here we have put
» dxDdy
(6) de=11 % 0, 2w Ly
i=1 1
H-C, {k, 7y (resp: H2(, {k;}, %)) forms a Banach space with respect to | s
S I i
(resp:] !.). and we have H™({", {k.}, 0 H, {k.}, %). By an analogue of (6,

Lemmas 8, 9 and Theorem 10] we conclude that S, {k.}, ¥) coincides with
HI, {k:}, %) and that this cne is a closed subspace of H*(I7, ik, 0. Put

alth =) 11,
o1

Kz, )= N bz, 72V G 2 )00

AN TIVN o

for z, 2’¢¥.. Then it follows from {10, Kxposé 8, Théoreme 1 and Exposs 10, Thio-

réeme 8] that, if kb >201 <050,

~ Kz »r’\j"’w'\
s [ RGOS
S KRR =aliy) [0
‘//j‘ l,(/.,;u

is an operator of Hibert-Schmidt type in H¥/", {£1, %) and Ki=f if and only if
FEHAT, {3, 7).

From new on we assume &, >2(1-

=2). Now, in the notation in §2.1, we

have
Al f2)=allk)) ['\‘; gl '—;)/7((1’ )A;(,r,‘f’,:’. 2y Py
HE-
~at (k) [ s RIS e i,
..
Consequently we have
N lelz, 92)3(g, 2)

tr #(q) {'lz.

g&lal,,mul/r f’f(?}, Z)

fr Il = a(fk)} [
yal

2.3. Before going further we have to prove a few lemmas which ave analogues
of {6, Lemma 121, For the sake of simplicity we write B=0'«/’. ere we are
interested only in the case where I contains parabolic transformations. If © is a
parabolic point of 77, we put

B ={y:B; gu
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B.={gcBi"; g is parabolic},
In the following lemmas it is assumed that oo is a parabolic point of I'.
LemMA 2.1, The notation being the same as in (1), there exists a positive
constant « such that

! ¢

il<ll, det g 52_
for all gcB—BJ.

Proor. We remark first that, if g/'g ' is commensurable with /" and if 2 is
a paraholic point of I, then gz is also a parabolic point of I". Let B=Uw.I" be
a disjoint sum and let g=a.7 be an element of B. Since «;'(co) is a parabolic
point of I” by the ahove remark, we can apply {6, Lemma 5] to our case putting

=00, o=, ' (o). The proof there shows that if

le©¥det gP) i O <11 L1 0)
for peM., 1n.%0@=1,2), then we have geB{. Therefore, our lemma holds by
virtue of Minkovski’s theorem, if we take d(M,,,)“ilj.!il,ug"j’!" for «, v, being any

non-zero element of A7,,.
LEMMA 2.2. Let D be a compacts subset of .. There exists a constant M
such that

11 Im (¢920)| < M
=1

for all geB— B, zeD.
Proor. Since

lIlll z(i)_hn (g(.")za})% :3 Idet g(i)(l,(z‘}uzl’

this follows from Lemma 2.1.
LemMa 2.8, For ¢>0, we have

\;1.""[ ST LT OO’
T[Aal C”“'“(Cu’"‘fl)é <
g running over all the representatives of I'w\(B—BP)/I ...
Proor. Let D be a compact subset of §,. Writting D’ for the union of all

9D with geB— B, we get
i w | “ Jet @ 1r ey ” _
” s o yl deto” | szglf Ly @ |t edz,
. L i=1
D

Q ‘1;_.';;?;»:1}(C(i’z(f)%*d‘z")?‘ f )
rig

where [ is the number of &&(B"!'B) such that éDND=x¢. Since IY is contained
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in the set of all z¢§, such that H [y <M, the integral on the right hand side
exists, [t follows in particular that the series in the above inequality converges
for all 2¢%,. Hence Lemma 2.3 is proved in exactly the same way as in the proof
of [6, Lemma 127,

LEMMA 24, For £>0, we have

fdetq SIS
%i]:ll( [ . d“‘{ ) < oe,

g running over all the representatives of B /I ..

Proor. We use the notation in the proof of Lemma 2.1. If g=a,y is an
element of B, we may assume that a.cBY, replacing o, by a.y. By doing so
for all cosets a.I” containing an element of B, we get

B = U el

a, (o)

Then, the lemma follows from [6, Lemma 12, 2.
2.4. We set

I(z):_}jil, [Tm 20},
jo(g, Z)= f,[ (c(i)zcn_{__d(i))-’_’idet gu‘) i
i=1

On account of Lemmas 2.3, 2.4, we can proceed just as in [6, No. 14] and obtain

a{k ) trITal)= S f kG 82)i(9, 2) 2g)dz
oAz k(z 2)

< [ k(z, 92)j(g, 2) kz, 92)i(g, 2) tr 2(g) ;. 1

+lim X ke OB +[ 1) 15lon, 2) | eCe, 2)

80 b=l g MmOl Z(ID
gen{Dozim F~Vu
t Y
Here we have put Z(B)=BNZ(G), C= qlB;i’wZ(B).
We now classify the elements in B with respect to the following equivalence
relation:

(1) g~y <=>g'=eygy”* for yel', e Z(I").
The class containing g is denoted by [¢]. Let I'(g) be the group of all yel” such
that ygr '=eg for some e€Z(I") and F, a fundamental domain of I'(g) in §,.. Let

{go} be a full system of representatives of the above equivalence classes in B and,
for each g,, {0} a system of representatives of I'/I'(g,). We set

Fr=F, _U( U o'V,

v=1 a1 5D

In this notation we have
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klz, 90233(g0, 2)

alfk ) " tr Il Y= ! : tr 2(yy)dz
6. Tadot 2, Iz, z)
£, o
. ; UKz, 902)5(g0, 2)
4 i h ‘ / R e T R
(8) s eonge LTl ) k(z, 2) Gojdz
/ o
NN [‘MaggMWm@h%wdwi
T J Ty e ) Rz )

Remark. By virtue of 110, Exposé 10, No. 6]

Kz 2 o
Helz, 2) |2 (2, 20y

is bounded on %,x %, Thercfore,

Oy B, o) Kol 'z, 2)
et [k(z, 2)]
~

is bounded on ¥,. It follows that all the integrals in (8) are absolutely convergent.

*

83, An explicit formula for tr 3(1'wl").

3.1, In this section we shall caleulate the integrals in (8). Since k(z, goz)=0
if g0 G° it is enough to consider those g, contained in G°NB. By Lemma 1.1
such a g0 is of one of the following types.

1) goeZ(B). i) gy is elliptic iii) gy is hyperbolic and no fixed point of ¢, is a
parabolic point of 7", iv) g, is hypabolic and one of the fixed points of g, is a
parabolic point of 7", +) g, is parabolic. vi) g, is mixed.

Remark,  Put I'go)=D(gdNT° U gy is of type 1), we have /g, = (1),
If go is of type i), «(/"(gy) is a finite abclian group. In other casc {IMgeh) 1s a
free abelian group. It is of rank n—+ exeept for the case where gs 18 of type
iv), » being the number of " such that ¢f is elliptic. If gy is of type iv),
(I%gy)) is of rank n 1.

This is a conssquence of absolute convergence of the integrals in (8), as we
sce by writing out thess integrals explicitly, (e.f. 76, §57).

In particular, the fixed point of g, of type v) is necessarily a parabelic point
of I', for all the elements in I'\(g,) are parabolic transformations having the same
fixed point as g,.

3.2. Case i). Suppose that Z(B):¢ and let g, be an element in Z(B). Then
B=I'gol'=g,1" and Z(B)=g,Z(I"). Consequently, Z(B) consists of a single equiva-
lence class. We have
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[ = } 1 (sgn go' ) tr rigo)dz
. . i=1

/ “,50

) = ,’ ’ (sgn g Yo tr 2{go)e(F)

Case ii). Let 7, £; be the eigenvalues of g§” and suppose that we have
'

et (TETE R),

Here z; is the fixed point of g, with Imz°>0(1<i<n). If &, is defined by

(10) Tmz>0
Imz <0
we have
C D g Coagn g
pooed d t , Ta. 11 P E .
]_-/ a({k. (g A\[) © g A TS A

vy

Summing up the above equality for +=1,2,---, 2", we obtain

~ ./__DH tr 7{(10) w gk 7114 -1 . . I3
, \ — i . t('t“ 2
(an | = ey gy 2 < gz dete)

7
o

Case iii). By a calculation similar to the calculation in {6, No. 197, we get

[ =0,

1o

3.3, Case iv), In view of the argument in [6, No. 20] we may assume that
¢s leaves each of oo and 0 fixed, and that hoth of them are parabolic points of
I'. By the remark in the beginning of |6, No. 207 any fixed point of gy other
§2.1, let us

€

than <o and 0 cannot be a parabolic point of /. In the notation in
suppose that x., and @, are ['-equivalent to oo and 0, respectively. Put @, ==¢(c0),
wo=e'(0) with & ¢'el”. If 896 *cBl) for 1507t 57, is a parablic point of I
which is left fixed by g,. Hence 5772, is either « or 0; accordingly 4 is contained
in I'\Ve or in I, Therefore it is enough to caleulate the integrals
a2 / k(z, g42)i(g0, 2) tr %(go)

p 1Y 1do(o.e, 2) 1Kz, 2)

[ fr(z, (qu}j(gﬂ: Z) tr 7(‘70)
I(z)uu(///-' 2z, 2

Iz, ¢o2)i(g0,
(14) f S I 2,

(13) dz,

k(z, z)
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where E=:"'I"0V,={z; HIImz"l>x,, V=g VY, =12, HiImz 2yt FE
= Fy B K, k, ¢ being sultable positive numbers, We now consturct F., in the
following way. Fix, say, §,---, 8t, such that every R.(1=:<2") is mapped by
I'(gy) to one and the only one of §,---, §,. By the remark in §3.1 I'%(g,) is
generated as a group of transformations in i, by n—1 independent elements
Foor o Turt (ra)=2920 (1<izn, 1272n—-1). Set I =logil (1gizgn, 1<i<n
1) and I{=1/n(1<i<n). For zeq,, write 27 =rDe -1 and log y'=u,l{"+- -
4+l with ucR., We can take for F,, the set of all ze CJ.S?,,. such that 0<u; <1
(Isign~1), —co<u,<co. As it i8 proved in {6, No. ZOJj:tlhe integrals (12), (13)
vanish. Now, let §, be given in (10). Writing

we have

2\/ 1 & d t <0y log £ 1T 8in 9% @3-t
=t 1(gw) | des @) 1} B JERLO "f S du,

oty 14y =11 510 600
sin )i~ ,
X) 'l (e s ( au)dcg - _:W{Z?“)‘[ dgP...dg™®
/ 17 (1) . )
S e g 1det (5] - a1k @Dt ldet o £ f . f log (i ' 11 |sin 0| %)
i=1
n )(l) A -2
% 1] (sin )

a, €5
(6“/ =168 __ gD dr-ig~ v~ 10\5‘)&;;(“} .

gzl

The integral on the right hand side is extended over 0<#<=(1<i<p), n<IP <2
(p+1=isn). By [6, (80)] we see that, if #>>1, the integral (15) vanishes for each »

Suppose that »=1. In this case we write simply k;=k, aV=a, dV=d. Since
I'go)=Z(I"), we can assume F,, =8, U or &, according as [I'(go): Z(I")=1or 2.
By a direct caleulation we get

8* tr 2(go)(det go)'~ "(Mm{lal [dipr!
(16) [ = (g0 : Z) la—b]

3.4. Case v). All geGS are written in the form

s €3]
amn ();n\ <z>0 ﬂul‘“(ao 2({)>(I§’i§’n).

We have geG., if and only if e =d°(1gi=<n). Put
A =0g), -+, Ag™N,
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4{1(g):(!1(g<1;), ce, /l(g““))
with 4(g®)=a"d"" ", 1{g @y =bdi 0,
We now state

LemMaA 3.1, Set N:,={:{9); geB:}, Mo, = {u{g); gel VAo = {i(g); g0,
Then M., is a discrete subgroup of R" of rank n. .., is a discrete subgroup
of (R*)* of rank n—1 and we have 1 LA =1 for all gl 1.,. N. iz the

iy

union of a finite number of cosets of M.,. If 1(g)cN:, ig)e.lv,. then

g0 p(gy =g ") lg ). -+, Mg ") elg ™))

is contained in N,

Proor. The first two statements follow from [6, Theorem 8. Since we have

g g)y=19)+n(g") (g, €B.,, g'el’s,),
g9 9 =g)(@) (9€Bs,, giels),
the other statements follow from the definition.

We classify the elements in N., putting 2(g), #(¢")c¢N., into the same class if
2@)=mg(g") with g)ed:,. The class of u(g) is denoted by u(g).

LemMA 3.2. Let L. be a complete system of imequivalent elements in B.,.
Then u(g) (geL.) runs oves all the classes in Nll, each of which being repeated
the same number of times.

PrOOF. Let g, g’ be elements in B.,. We have u(g)=u(g’) if and only if
g=0yg’y™! with yel’, 6¢Z(G). If this is the case, we get 6B=DB, for B=I'gl'=["¢'I".
Let Z, be the group of all 4eZ(G) such that é6B=B. Let B-B'=[¢l o[

= Ljé‘yl’ be a disjoint sum. We can assume that 5.¢Z(G) if 5,I"'NZ(G)*0. Then
P

BB 'NZ(G) is the union of §,Z({") such that 5.¢Z(G). It follows that Z({") is a
subgroup of finite index, say e, in Z,. It is then clear that s(g)(gel.) takes
every class in N., exactly e, times.

By the remark in §3.1, L, (1sv<t) jointly form a complete system of ine-
quivalent elements of type v) in B.

Fix one of the 2.'s, say x;, and assume that x,=oc0, p;=1. Let ¢ be an ele-
ment in B, -I'(g) is generated as a group of transformations in %, by n independent
elements 7y,+- ¢, 7o, Write 2P=2P4+/ =1y and 2P =v,u(1 )+ +v,0057)
with »,cR. Then, the set of all 2¢%, such that 0<», <1(1=i<n) forms a funda-
mental domain F, of I'(g). Set

(18) d(g)=|det (u(r§)!.
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Besides, we put

(19) gy H g )],

1t is to be noted that dig) and F, do not depend cn g so long as g isin B,,. Put

e {2053, ,‘H Imz""{>d,}. Then, the contribution of gclL, to (8) is equal to
. | klz, g2)ilyz) " k{z, g2)ilgz) ) 7
TN tr 2(gydz - i tr 2(avdz |
41.'1'11 Pl / bz, 2) 2y kiz, 2) gez f
1 , i"gf\[,‘

" Kz g2)ilge)

SR ITHEY tr 7(g)dz
ety zf»w_;x. ](2)‘1((?', Z) (
(1
; (=1 li ((ﬁ‘:“" e N I (sgn a‘”""-d(g) tr 1)
T (e DL ’ o ¢ ; tre
allk; D < e\ ARATORES m{g)

Now, Lemmas 3.1, 3.2 haply that the series in the last equality has at most a pole
of order 1 abt 0. 1t follows that w=0 if n>1. If n=1, putting &k, =k, a®=aq,
we can wrile

L 148

o 2z dg)
y ) i e Nt i
(20) w peq hm s ) (sgna) tr%{ f]/\ )

3.5. Case vi), We have
f 0
by the same argument as in (6, No. 227,
We state the result s
Trvorem 1. If ko»20505n), the trace of (el is given in the follow-

ing formulas.
1) n>l.

fRe L
te 3wl Yy ey Ly 7 (md!l(sgn (]u) e )

par D e

. et ¢
:T»,ll(r/)./f( L ‘(.{j”)~ 7{g™) - (etgy”

) nl, In this case we write k for k.

,K -1
Il Y= o) by 2gy) (sgn g )

RO ¢ L) R () A (O
T 1(0) 2] Lgy—-x(g)

2tr x(g) Min{ [P, 9@ H! 1

TS R R A P (det g)'
e L {g)r Z()] (@) —7(e)} (det 9)

&
(det g)'" 2
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.8 /d(g) \ e
o RO a1 e 7{ Redt-£ .

lim 5 2 (sgn (o)) tr \y)( ) )
Here gy is an avbitrary element in Ial 0 Z(G). &, (resp: G.: () is a complete
system of inequivalent elliptic elements (resp: hyperbolic elements leaving a
pvarabolic point of I' fived; parabolic elements) in I'al” with respect to the
equivalence velation (7). [I'(g) s the group of all yeI” such that

g=¢ygr t for some e Z(I).

©(F) denotes the volume of a fundmental domain of I' in ¥, relative to dz (see
(6)). For geGL2R) L(g), 7(9) denote the eigenvalues of g. Lel ¢ be a parabolic
element in I'al” and x the fized point of g. Let o be an element in G such
that px=oco. Then, d(g), m(g) are defined by (17-(19) substituting p jor p.*

§4. A formula for tr 3I(y}.

4.1. Let A be an indefinite quaternion algebra over a totally real number
field @ of degree m over Q. Writing #°(1=¢=5m) for the completion of ¢ with
respect to the infinite valuation V., of @, we get

ARXGR=AYE-- - DA,
AV = AC P,

For acA, a'” is defined by 11'::;\';1_:()4“” with a”eA” and for every acA (resp: A7)
the reduced norm of « from A to & (resp: from AY to ¢) is simply denoted
by N(a). We assume once and for all that A =M,(R) for 1<i<n and A" =K
for n+1<i<m.

We denote by g and E, the ring of all integers in ¢ and the group of all
units in g, respectively. Let P be a prime ideal in q. We put

Au = Ai}lz'@(/)n,

@y being the completion of @ with respect to b. Denote by g the valuation ring
in @p. For a normal g-lattice M in A4, we wrile W, for the g module in A,
generated by W, NN denotes the norm of Pt

Let < be a maximal order in A and I’ the group of all units in ©. The

projecticn from A to M!A“ maps I' isomorphically cnto o subgroup of GLE2R)

i=1
X+ X GLER) (n times), which is again dencted by 7. Then [ saiisfies our
assumption (Al), (AZ2). «G%)/(I") is not compact if and only if A= M.(0).
Let A be an integral two sided C-ideal. Let (%) be the set of all «cA* such

4y d{g)/m{g) does not depend on a choice of ».
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that « is a unit in T, for all P dividing N(). Let p be a unitary representation
of (T/* and ¢, (n+1=5ism) a unitary representation of K*. Since (T/W)* is
the direct product of (Tu/y)*(OINOLY, p may be considered as a representation of
AN in a natural manner., We put

(21 o)== (@), (e PYE - &, {a™)

for -0, Then % satisfies our assumption (R1). We assume that ¥« satisfies
also (R, 2). We can now define the linear transformation T(I"al") in S(I, Lk}, 7)
for any wed(M). If q is an integral ideal in ¢ prime to N(), we put

(22 o, ©)y=223("al?),

the sum being extended over all the double cosets I"wf” such that a is an integral
right T-ideal of norm q.
4.2. Let B(y) be the union of all the double cosets I'al” appearing in (22).

It is clear that we have
(23) Bg)={acl, N(w)g=qa}.

Hence B(q)*¢ only if ¢ is a principal ideal, and Z(B(1))*0 only if qis of the form
q=qo'a with geeg.  Fixing such a g, we get Z(B(q))=q.Es.

We define &,, 6., G, in the same way as in Theorem 1, taking B(y) for I'al’.
In order to obtain an explicit formula for tr3(g, ), we want to determine €, and,
besides, ¢, ¢ in case n=1,

First we are going to determine §,. Since the following argument is quite
analogous to the argument in {6, §6], we shall omit the details.

Let J be the set of all elliptic elements in B(q) and & an element in J. Let
@) denote the subfield of A generated by « over @ and put v=@a)NT. Ola) is
then a totally imaginary maximal subfield of A and o is an order in &@(w). Let
. be another element in J and define v as above by means of &', If o'=¢ray™!
for yel’, ecldy, we have o'=y0y ', Let 7 be the set of all subrings v of A with the
following properties.

1° K=0@) is a totally imaginary maximal subfield of A.

20 p=KnNO.

Let » be the diseriminant of 4 over ¢. Then, we obtain

Lemma 4.1, Let O, be the set of all o (taken up to isomorphisms) with the
Following properties.

1° v is an order in a totally imaginary quadratic extension of @, in which
all the prime divisors of d do not split.

2% the conductor of v is prime to d.
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Then O, forms ¢ full system of representatives of the isomorphism classes in .

The proof is the same as that of {6, Lemima 19]. It is to be noted that, if o Do
o can be embedded in 4 so that we have o=@} T, and hence £, can be thought
of as a subset of 2.

We say that o, 0.¢9 are conjugate if there is a yel” such that o;=yay L
Fixing an » in D,, we now count the number of the conjugate classes contained
in the isomorpeism class of 0. Let o,=g000 (¢ A%) be an element in 0 isomor-
phic to 0. By [4, Satz 7] we have

Loy ="M,

where M is a two sided ideal of © and a is an ideal of o (the word ‘an ideal of
o’ or ‘o-ideal’ should be understood in the sznse stated in [4, §30).

Put K=®(). Let T be the group of all the two sided T-ideals and T7 the
subgroup of T consisting of all two sided ideals generated by o-ideals. Let {9}
be a full system of representatives in T of T/7" and {a} a full system of repre-
sentatives of the ideal classes in . We take and fix an element ¢ in 4 such that
the automorphism x—w@e ! of A induces on K the isomorphism of K over ¢ which
is not the identity. In this notation we can attach to the conjugate class of o
two couples (Mg, ap), (M4, a;) which are defined by

Dy =M 0%, &K, =0, 1.
(Mo, aw) and (IR, a;) coincide if and only if we have
(24) Que=0ms for some &ekX.
Conversely, let ", a be as above and assume that Ma is a principal ideal of O:
Ma=Dwny. Put o,=pput. By [4, Satz 7] we have 0,¢82, and the conjugate class
of », is uniquely determined by (I, o). Now, if (24) holds, the conjugate c¢lass of
o; shall be conuted with a multiplicity 1/2. It turns out that the number of the

conjugate classes (in the above sense) contained in the isomorphism class of » is
equal to

a1 (=(5))

where % is the class number of A, h(v) is the class number of o and (g) stands

(25)

for the Artin symbol (Ig)

4.3. o, being as above, let E(o;) be the group of all units in o,, Let «, « be
elements in o;NJ. If &/ =¢eyayr ! with yel”, seEy, we have 0(a’)=yP{a)y™!, and hence
K t=y Koy y ). Therefore, s 'yuy=% or £ with &K, If (24) does not hold,
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we must have g Yymy=f, hence yooy, re=o’. In this case we see also that I'(a)
=F(,). Assume that (24) holds. There exists a y,2/" such that pye=y,2,, with
&K, Then, we have yoo, or yeyi0;; &’ =+¢e or o =ep ey, ). It follows that

Ewo)yuy Eon)
)= if ao=+yart
Elo)) otherwise.

Note that we have [[(«): E(,)1=2 in the first case.

4.4. Let b be a prime ideal in q. If b is prime to b, every two sided £ -ideal
is a power of ¥, Consequently, if N(W) is prime to d for an integral two sided
©O-ideal %, Nt is contained in 1". We may therefore assume that all M in {M} are
integral two sided $T-ideals such that every prime divisor of N(9)t) divides b. Then,
it NOO is prime to b, N9 is prime N for all 9. We assume also that all o
in {a} are integral o-ideals such that prime to N{().

Suppose that Ma==Ty, and oy=s01,". The elements in oNJ are in one-to-one

correspondence with the elements in 0;NJ by c—a == e

Sinece 1 is contained
in 430 by our choice of {N}, {a}, we have pla;)=p{e). For the sake of simplicity
we write
i((V(h)k‘ml“‘C((}'(:};k‘;bl
o)=L )
for acJ. It is then obvious that ¥(«)=4%(x).
4.5. By the consideration in §4.3, if {&,} denotes a representative system of

k&
(26) V() =tr %) 1T N(e?)' ™
.1

the equivalence classes in p,NJ, we have

o T (1) T
e By N2/ nTgTilf? A Y

‘1

The factor ( o

b

) oppears only if (24) holds. Together with the results in $34.2,
4.4, we get
o e 1 N hiv) w (1‘(‘ D >\ 1 ¥,

WTo W)t B 2R ‘,‘é“!‘jﬂ{ld(n): Eyiis Jamodryag o

4.6. In this gection we assume that n=1. , ¢y are empty if A is a division
algebra. Therefore, we restrict ouselves to the case where A==M.(@). We can
assume O=M(Z); then N is written in the form A=NT with NcZ> In this
case there exists only one equivalence class of para bolic points of 7°, which is

5y If A=MJ{0),any maximal order in 4 is isomorphic {o the ring of all (:l 3) with a, dey,
eca, bea ' o being a certain member of a given representative system of the ideal classes

ing. Cf. {20
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represented by co.

LEMMA 4.2, Write 0=¢Z with geZ, ¢>0. Then we can take for G, the set
of all « such that

fa b .
am(O d), a, b, deZ

ad=q, 0<a<d, 0<b< d;G-

Furthermore, we have

2 2b=0mod{e-d)

() s Bol= { 1 otherwise.

Proor. Let m:(gz 3‘), ag:(ﬁz 2') be elements of type iv) in B(gZ). Let
N\ 1 2

13 ’—“(Z (l> be an element of I". If &¢'yayy'==y: for &=+1, we have

ee'a=ada,—clab,+bd)),
&e'by= —ada,+alab;+bd,),
e'de=—bea, +a(ch, +dd,),

c(da;—eby—dd,)=0.

Here e=ad—bc=+1. Consequently, if ¢=0, then we have ¢'a.=q,, ¢'d:=d,; if
da,—~ca;—dd;=0, then we have ¢a.=d,, ¢'d.=a,. .

Suppose that, for given &, and a», we have ¢a.=d,, ¢d,=a;. Put e=(d,—a,,
b)) and find a, beZ such that

(di—a)b+da=c,

Putting d;=b,/e, c=—(d;~a;)/e, we get da,—ch;~dd;=0, ab—be=1. Hence, after
replacing «; by a suitable element equivalent to «y, we can assume that ¢a.=a,,
&'dy=d;, Then, it is easy to see that a, is equivalent to . if and only if b, = b,
mod (a,—~d,). Putting a,=a:, we see also that there exists a ycI'(a)), y51 if and
only if b;=-—b; mod (a;—d,). Therefore Lemma 4.2 follows.

4.7. Under the same assumptions as in §4.6, ¢&; is not empty if and only if
q is of the form q=¢;*Z with ¢Z, ¢.>0. This being so, we have

LeMMa 4.3, We can take for €; the set of all « such that

(90 b -
a--<0 q0>, beZ, b>0.

Furthermore, d{e)/m{a)=qy/b for all a.
The proof is so easy that we omit it, Since p(«) depend only on b mod N,
we see that the contribution of a¢l; to trT(q, T) is
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d((x)\H’
— — N\ ~
lim 5 T ‘(")<m( )
— Go < (QO b\
2N o r,(xtrp 0 qg

4.8, Summing up, we obtain

THEOREM 2. Suppose k;>2(1=<i=<n). Let b be the discriminant of A over
. If NQ) is prime to d, the trace of 3(q, O) is given in the following formulas.

1) A s either a division algebra or M.(®) with ®=Q.

-1 o
- j(sgn qi" )
in /i( en qi’’)

\ 0
( 1)L @Fm’};i(% <p>> S
2h o7 [E@: Ey]  «c%n

a msd Ky

tr 300, Dy=00e(F) tr1(g0) § (

Here h is the class number of A. Dy and ¥ (a) are defined in Lemma 4.1 and
in (26), respectively. J(o) is the set of all aco such that ae®, N(a)3=. h(o),

E(o) denote the class number of v, the group of all units in o, respectively. <;)

denote the Artin symbol (I§>(K:!/)(o)). =1 if q=q¢’6 for some @, and
otherwise A(P)=0, '
i) A=MQ). In this case we put D=M(Z), A=ND, q=qZ(N, qcZ).

~ . E-1 1
tr (¢ Z, O)=d(q)v(F) tr %(qo) 4 T3 k- [ E(D) - E] AR
i pe, M o ac (\Y

k-1

2 a ‘@b ((Io b
e gyl \‘ . - 1
q (uloq 0 ua ‘/‘l d a trp ( > U(Q) 2N 0% bgﬂtr{) \0 (Io>'

The notation is the same as in i). If q=q% qo i supposed to be positive.

COROLLARY. {r3(), O)=0 if q is not a principal ideal of the form ¢8,q
being a totally positive element in 9.

Remark. 1) If p is the identity representation, our formula ii) coincides
with the formula given in [8, p. 85] up to a factor ¢'*/%. 2) Though & is not
a finite set, there exist only a finite number of 0@, such that J()=¢ for a given
0. 3) Apparently, tr2(q, ©) does not depend on . However, it might not be the
case if p is not the identity representation, for an embedding of 0c2, in A4 is
restricted by a condition p=@{0) D,

4.9. Let Iy be the group of all yeI” with NG)=1. By [8, Satz 5] we have
(I BN\ =2"/{E,: Ey]. Here Ey’ is the group of all eE, such that £©>0
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{n+1=<:1<m). By [6, (63)] we get

21;—1)1*[1) 3‘,(‘2} C 2
27) V()= “*"_:,:;;;l;o o2

T (Nojeb~1),
by

where Dy, ko, {o(s) denote the discriminant of @ over @, class number of @, the
zetafunction of @, respectively.

4.10. Let ¢{1=/<sh) be representatives of the equivalence classes of right
-ideals. Let £, be the left order of ¢; and I7; the group of all units in O, If
we take ¢;p =0y for all b dividing N(X), I, is contained in .J(}). Therefore we
can define I(q, O;) for each 2. Let I(q) be the linear transformation defined in
[7, §3]. It is immediately seen that
k‘

(28) tr T = tr T, O,

(X3
Therefore, we obtain a formula for tr 3(q) by Theorem 2.
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