On Neumann problem for non-symmetric second order
partial differential operators of elliptic type

By Seizo I1o

§1. Introduction. Let M he an m-dimensional orientable manifold of class
C#, and let D be a subdomain of M whose closure D is compact and whose
boundary S=D—D consists of a finite number of (m~1)-dimensional simple hyper-
gurfaces of class €% Let A be an elliptic differential operator of the following
form :

(LD Aulw)= «/a(x) {,V/a@;) {a () "(ff ?)—bm)u(wj} for weCD),

where Ja’(x)} and [b(x)ll (154, j<m) are contravariant tensor of class C* on D,
la¥(z)] is symmetric and strictly positive definite and a()=det g (@)
=detla(z)]"'. We denote by dx and dS; respectively the volume element in D
and the hypersurface element on S with respect to the Riemannian metric defined

ou(s)

by lla:(m). We also denote by one and B(&) respectively the outer normal deriva-

tive of the function u(z) and the outer normal component of the ‘vector’ {b'(x)
at the point £¢ S. The adjoint differential operator A* of A is defined as follows:

(1.1% Aru(z) = {Ja( %) (s )"“( )}+b‘( )“’f(”‘) for weCYD).

1
~a(x)
We shall consider the second boundary value problem

{ Aulx)=f(x) inD

(1.2) u(s)

ons —=pu@)=¢E on S

and also the adjoint problem
Aru{x)=f(x) in D
1.2*
(1.2%) ] ou(c) &) on S
\oong

where f(x) and ¢(¢) are functions continuous on D and on S respectively.

The fundamental solution U, %, ¥) of the initial-boundary value problem of
the parabolic equation:
ou
ot

(1.3) =Andf >0,z D), w|,.o=uy ;:i —pfu=¢ (on S)

S
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is constructed in (3] and is also the fundamental solution of the adjoint initial-

boundary value problem :
ou .

. (U . i
(1.3%) (i =A*uEf (>0, 2¢ D), wlio=u, -~ = lon S
ot on

)

see {27 and [37.

In the present paper, we shall show that there exists a funetion w(x)>0 on
D satisfying

1.4) f o{yyU, ¥, &)dy=w{x) and /‘w(fa‘/)d.2}31

and that ’ ’

(1.5) Ky, )= f (U 9, ) - o)

is well defined whenever x, y ¢ D ;nd 2y, and K(y, 2) is a kernel funetion of the

boundary value problem (1.2) and also that of (1.2%). Similar results in the case
where bi(@)=0 (i=1,--.,m) (and accordingly (1.2%) is identical with (1.2)) are
obtained in [4]; in this case w(x) is constant. Corresponding results in the case
of Dirichlet problem, or in the case where A and A* are replaced by A—c(x) and
A*—c(x) respectively (here e(x) is non-negative and not identically zero), are con-
tained in {3; §107; in these cases w(x)=0.

Our result on the relation between the invariant measure (see §2) and the
second boundary value problems (Neumann problems) is somewhat interesting in
the view-point of probability theory. In fact, N. Ikeda [1] has already obtained
more general results on boundary value problems in two-dimensional domains by
means of purely probabilistic method. The existence of invariant measure is
closely related with mean ergodic theorems, In the present paper, we shall give
the purely analytical proofs of the existence of invariant measure and the exist-
ence of solutions of the second boundary value problems. ‘

§2. Invariant measure. Let U(t, ¥, ) he the fundamental solution of initial-
boundary value problems (1.3) and {1.3*). It is proved in [3} that

2.1) Utt, y, ©)>0 for any ¢>0 and any v, zc [}
and
(2.2) [U(t, y, ®)de=1 for any t>0 and any y«c D.

By definition, a bounded Borel measure # on D is called an invariant measure
of the fundamental solution Ut y, z) if



22 Seizd I
2.3 /A(E)zfdfo(t, Y, 2)dply) for any Borel set ECD.
¥ ¥4

By virtue of (2.1) and (2.2), it follows from (2.3) that such measure y is absolutely
continuous with respect to dz and the density w(x) satisfies that

2.4 w(x)>0 for any ze D,

(2.5) w(x)= f w(UE, y, 2)dy for any t>0 and any 2z¢D.

.1)
and accordingly, by means of the properties of the fundamental solution stated
in [8], that we CHD)NCYD) and

(2.6) Aw=0 in D and ;: —3w=0 on S.

Lemma 2.1, Let p2 be a bounded Borel measure on D, and assume that

~

f A*R(@)dp(x)=0 for any he CXD) satisfying oh =0 on S. Then u is an in-
Vi

on
variant measure of UL, y, x).

Proor. For any continuous funetion f on D), the function
nt, )= [ U, v, Dfwdz
D

satisfies that

b _
ot

A*h (on (0, 0)x D), g’

|

=0 (on (0, o) x8)

=

and that lilm h(t, ¥)=f(y) boundedly in D. Hence, from the assumption of this
210

lemma, we obtain that
0
5_ [ Iz, y) drdy) = f A*h(z, y)du(y)=0.
- .IF 4
Integrating both sides of this equality in 0<: <t and using Fubini’s theorem, we
get
[ s@is [0, v. 9 iy~ [wda=o.
F44 F2l yi

Hence 2 is an invariant measure since f is an arbitrary continuous function on D.
LEMMA 2.2. Let u be a continuous function on D, and assume that

f Ah(@)u(x)dz=0 holds for any heCD)NCYD) such that f lAh(z)|dx<co and
H F2)

’\] .
g,i ~Bh=0 on S. Then u i3 constant on D,
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Proor. By means of the similar argument to the proof of Lemma 1, we may

show that 6(,~ f Uiz, ¥y, D)u(@)dx=0 and accordingly that
) i3

u(y)=fU(t, y, Du(x)dx for any ¢t>0 and any wyeD.
pi)

Hence u(y) must be constant on D (otherwise, (2.1) and (2.2) imply that
Ult, yo, x)ulz)dx <u{y,) at any maximizing point y, of u).

H
THEOREM 1. There exists one and only one (up to a constant factor) in-

variant measure of the fundamental solution U(t, y, x).
Proor. Let © be a countable set which is dense in C(E) with respect to the
norm |fl.=max|f(x)| and satisfies that af+5ge¢®D for any f,9¢® and any
xeD
rational numbers « and 5. We put

F!;(y)=§]§f ”dtf Utt, y, o)fwyde for feC(D) and n=1,2,---.
4 F2]

Then we may easily see that the family of functions {F.;fe®, n=1,2,---} is
uniformly bounded and equi-continuous. Hence, by Ascoli-Arzeld’s theorem, we
may choose a subsequence {n'} of natural numbers such that F(f; y)=lim Fl(y)

exists for any f¢® and the convergence is uniform in yeD, and accordingly F(f; ¥)

is continuous in yeD. For any heCAD)NCYD) such that [ |Ah(x)|dz<oc and
F

Oh —ph=0 on S, we have

on
P L,,l,,,if” f f’G‘U(t' Y, )
;7[ Ah(y)-F, y)dyi—nto dt ) h(y)dy” ot f(a:)dxf

:?1%] f hy)dy f Uln, y, o)f(@)da— f h(y)f(y)dyI
D D o

< 2= [y ay.

Letting n=mn'-c0, we obtain f Ah(y)-F(f; y)dy=0. Hence, by Lemma 2.2, F(f; %)

is independent of y; we heregfter denote the value by F(f). Then [F(NHI =1 fll»
and Flaf+59)=aF(f)+8F(g) for any f, €D and any rational numbers « and 3,
and F(f)=0 if fe¢D and f()=0 on D. Hence F is extended to a positive and
bounded linear functional on C(D), and accordingly there exists a bound Borel
measure #~ on D such that
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F(fy= [ fyda(xy for any [« C(D).
‘I)

Furthermore we may easily show that hm Fly)=F(f) for any feCD). If heCHD)
and 0h/Gn=0 on S, we have

i L (UG o 21ATR
[ (y)yam'[ dtf o0 ahedr < 24 e
4 i

Letting n=n'—c0, we get F(A*h)=0, namely f A*h(x)d(2)=0, Hence, by Lemma

y2l

2.1, 12 is an invariant measure of the fundamental solution U(t, ¥, w).

In order to show the uniqueness of invariant measure, it suffices to prove that,
if
2.7 w (x)== [m,,(y) Utt, 4, x)dy and w;{)>0 on D for j=1,2

lI)

then @ (&)=rw:(x) for some positive constant « (see (2.4) and (2.5)). We put
x=min @ (x)/w:(x) and q(x)= w () —km:(). Then «>0 and q(x)=0 at some point

BEC L

@eD. Hence we obtain from (2.7) that

[awvt, v, wdy=0.

‘;I)

This equality and (2.1) imply that ¢(y)=0 on D, q.e.d.

§3. Kernel function of the boundary value problems. Let w(x) be the density of
the invariant measure « (stated in §2) such that / w(x)dx=1, Then the function

)
3.1 Vi, y, ©y= U, y, ©)—o(x)
satisfies the ‘semi-group property’
(3.2) Vit-+s, o, )= [ Vit, v, 2)V(s, 2, x)dz ;
J)

this fact may be proved by virtue of (2.2), (2.5) and the semi-group property of
the fundamental solution U(, v, x) (stated in [33).

Hereafter we shall denote by div and ¥ respectively the divergent-operator

and the gradient-operator with respect to the metric defined by ia (x)’, and by
b(x) the vector field b'(x)l. Then

3.3) Au=div (vw)—div @b), A*u=div(vu}-+G-vu) in D and ;(E)={d5)-n;) on §
where (- ) denotes the ‘inner product’. We put p(w)=log w{z), and define

(3.4) dau=wtdivwsn), du=J,u—-{{b—Tpl-Tu).
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Then, by simple computation, we obtain that
3.5) w ' Aiv {w(Cp—b)l=w'Aw=0 in D, ?ﬁ =(b-n) on S
¢
and aecordingly that
(3.6) A u=w "Alwu).
We denote the real function space LD, #) simply by L, and define
(u, )= f w(@ye@doee) and  jul.=(, v}
lI)
for any u, ve L. Since 4, is formally szlf-adjoint with respect to the measure 4,
there exists a system of eigenvalues and eigenfunctions {4, ¢.(2); n=0,1,2,---}

of the equation 4,/'=—/4) associated with the boundary condition 4,"/0rn=0, such
that

3.7 Ao=0< A< g E4, 50, limi, =
FIRE B
and
(3.8) I} is a complete orthonormal system in L.

Using these notions, we prove the following

LEMMA 3.1, If ue CDYNCYD), duc L, 6u/on—0 (on S) and (u, 1),=0, then
foulnz Alul.

Proor. It follows from the assumption that u and <J,u are expressible in the

o (<5
form: u= e, and d,u=—"la.",. Hence we have

P ) gra b

<0
¢ 22 2, a2
ICuln= — (4, w), = X danz fiul.

gtk

LEMMA 3.2, Asswme that v=2(t, x) 18 continuous on [0, co)xX D and satisfies
Sv/6t=A,v in (0, oo)x D and that v(t, -) satisfies the assumption in Lemma 3.1
for any fixed t>0, Then

3.9 ).,/ A'Ei‘véi,,dt:_é[ivui?,,<0<>, where vy=v(0, x).
.0

Proor. By means of (3.4), (3.5) and the assumption of this lemma, we may
show that (Th—¢pl-vv), ¥),=0 and accordingly, by Lemma 3.1,

; diivi 1 déf’lfﬂi ! OV ) s s

foll, = o=, =(A4,v, V)= — Vel £ —4ilvi,

Wl gy 9 at {7 v (A, V)= —lIvel; ol
diivll..

dt Hence

which implies Jlv], = —

T
i [ 1ot S Tl = 1T, )l £ el <o for any T3>0,
!0
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Letting T--c0 in the above inequality, we obtain (3.9).
THEOREM 2. K(y, x)= f {U®, y, x)—wiz)}dt is well defined whenever y, zeD
and y>z, and f dtf} Utt, y, x)—w{x)|de M for a suttable constant M.

Proor. By means of (2.6) and properties of U(t, y, x) stated in [3], we may
show that, for any fixed yel), the function
o(t, 2)=V(it+1, 9, 2)w@) ' =Ult+], ¥, )w(@) 1 —1 (see (3.1))
satisfies all assumptions of Lemma 3.2. Hence

[ {flv(t+1 RS ( 2) dts{flV(l ¥, @)% ('a,)}%<oo

Accordingly, by means of (3.2) and Schwarz’s inequality, we have

X [”l V(t+2, y, 2)|dt
'0

g);[ {f|V(t+1 v 2 {fxvu 2 @) oz} ' dt
[ [iva e 2 [1va,m oreeas) <

for some constant M,. On the other hand, it is clear from the construction of

U(t, y, x) (stated in [3]) that f “U(t, Y, 2)dt <co Whenever Y, 2eD and y>2, From

these facts and (2.2), the assertion of Theorem 2 follows immediately.
THEOREM 3. 1) If the boundary value problem (1.2) has a solution, then

(3.10) [ fr)dx= f ¢(&)dS..
.I) 8
iy If the boundary value problem (1.2*) has a solution, then
(3.10%) j F@)w@)de= f o(&)(@)dS:.
i 8

This theorem may be proved by means of Green’s formula and by (3, 3), (3.4)

and (3.5).
THEOREM 4. Assume that f(®) and ¢(§) are Holder-continuous on D and on

S respectively. Then:—
1) Under the condition (3.10), any function of the form

(3.11) ()= — f FW) K@, 2)dy+ f COKE, ©)dS:+cal(@)
yal >
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(¢ being an arbitrary constant) is a solution of the boundary value problem (1.2),
and the difference of any two solutions of (1.2) is a constant multiple of w{x).
il) Under the condition (3.10%), any function of the form

(3.11%) a(y)=— f Ky, @) fz)dz+ fK(y, e(5)dS: +e

(¢ being an arbitrary constant) is a solution of the boundary wvalue problem
(1.2*%), and the difference of any two solutions of (1.2*%) 1s comstant.

Proor. We shall prove that the function u(x) given by (3.11) is a solution
of (1.2) in the case where ¢(2)=0; the proof of general case may be achicved by
similar technics used in the proof of Theorem 2 in [4].

We put

)=~ f FEy, ©)dy
and ?

ot, )= — f d f F Vi, y, ©dv.
[i] D

Then it follows from (3.2) and Theorem 2 that
[o(t, 2)—u(@)|

(3.10) §f|f(y)ldyfmdrflV(r-l, % )| V(L 2, 2)|dz—0 (as t—o0)
pe) ¢ D

uniformly in «. Since f fleydz= f ¢(£)dSe=0, we have
Il 8

ot 5=~ [ @ [ F) UG, v, )y,

and hence
3.11) o7 =Av—f in (0, )X D, g”’l —fv=0on S
and

(3.12) v(t+s, x)
. f d f F)Uts, y, 2)dy— f a= [ [ 10U, 3, 2UG 2 Ddydz
0 b 0 F2 sl

=(t, x)— f (s, 2)U(t, 2, x)dz.

Letting s—co0 in (3.12), we get
u(x)y=v(t, z)+ f w(z)U(t, 2, x,)dz by (3.10).
yZd
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Hence, by means of (3.11), we get du/on—p3Fu=0 on S and
0="" = Autt, )~ f(x)+A{ w2, 2, a;)dz} — Au(x)~fl#) in D.
'} .
D
This result and (2.6) imply the first part of the assertion i).
To prove the second part of i), it suffices to show that, if Au=0in D and
du/on—pfu=0 on S, then wu=cw for some constant ¢, If we put v==w-lu, then,
by virtue of (3.4), (3.5) and (3.6), we have

0=(w tAu, u)y=(w"'A(wv), ov)=(J,v-—([b—Tp]-rv), VY= — vl e

Hence w(x)s=¢ on D for some constant ¢, and accordingly wu=cu.
The assertion ii) may be proved similarly.

University of Tokyo
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