A generalization of secondary composition and applications

By Kunio OcucHr

Introduction

Professor H. Toda introduced in [1] a construction the secondary composition.
denoted by {a, §, 7}, to give the generators of homotopy groups of spheres. He sug-
gested in [13] that this construction can be generalized into a higher construction.

The purpose of the first part of this paper (§1~§8) is to give an explicit
description of this higher construction. To distinguish between these two construc-
tions, I shall call {w, 3 7} the first derived composition, and {w, d, 7, 0} the sccond
derived composition. Most properties of the first derived composition analogously
hold for the second. To make this point clear, some of the properties of the first
derived composition shall be proved again. In the second part of this paper (§9
~§12), I shall give the generators of the 2-primary components of =,/(SO(n)),
7, SUMY), and =,(Sp(n)) for ¢<13 as in [1), and I shall investigate the relations
among them. (Thes2 results were announced in [16] and [17}). They are very
complicated, but not so difficult.

T am deeply grateful to Professor Y. Kawada and Professor S. Sasao who read
the manuscript and suggested many improvements,

81 Preliminaries

Throughout this paper, we shall use the notation.
Vi={{m, B2y e 00, )5 @F 240 42,2510

S'={my, @e ey Ben); BT 4T, 1)
E*"x{(xl’ Tay e vy Ty, 1) GS”; &y 120}

B =y, @0, 0,1) €S} 2,50}
=(-1,0,---0) ¢S*
I=[0, 13

Let X be a CW-complex with basic point 2°. We shall denote by CX the cone
over X ([2], p. 20), which is the topological product Ix X with identifications:
0, 2)==, and (1, z)=(t, a%=a° for all tcl. The identification map is denoted by

ey IXX - CX

Let Y be another CW-complex with basic point %% and let a map® f: (X, 29 -

(1) ““map’’ means always a continuous map.
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(Y, 4°) be given. The cone Cf over f is a map (CX, z°) -+ (CY, y,) which is given
by
Cf(C\(t, x))‘:cl’(ty f(x))

for all z¢X and tel.

The cone Ce* over an n-cell ¢* of X is decomposed into an n-cell {0} xe"=¢"
and an (n+1)-cell (0, 1)xe*. The cone CF over the characteristic map F : (V7 S*1
(X, X, )" of the cell ¢* determines a map CF:(CV", (CV") — (CX, (CX).),
which maps CV"<(CV™")" homeomorphically onto (0, 1)xe". Let f=6F=F|S"".

Then (0, 1)xe" is attached to CX by a map which represents the homotopy
class d(F, Cf)ex,(CX). Thus, CX is also a CW-complex, and X is a sub-complex
of CX.

Let X be a CW-complex and 2% X. The suspension space EX of X is the to-
pological product Xx V! with identification: (z, 0)=z and (x, —1)=(x, 1)=(z", )=
x° for all xcX and teV!. The identification map is denoted by

di: XxV'—- EX,
A map f: (X, 2% — (Y, ¥°) induces a map Ef:(EX, 2° — (EY, ¥°) given by
Ef:(dxz, )=d(f(x), 1)

for all zeX and teV!. We identify X with Xx{0}.

The suspension space EX of X is clearly a CW-complex.

Since (IX X)x V* may be identified with IX (X x V1), we may identify E(Ix X)
with IX(EX), so that E(CX) with C(EX) i.e.

dex(Cr(t, 2), $)=Crx(t, dx(, $))

for all acX, tel, sc V',

We shall use the notations:

CCX=C*X, FEEX=E*X,
cex(s, ex(t, a))=cy(s, t; @) xeX, s, tel,
d]:«'.l'(d’a\'(mr t)! S)zd_,::(ﬂ'; t! S) :CQX, t} 8¢ Vl-

More generally, C'X, E"X, ¢k, d%, C'E"X, ete.®
Let (X, 2% and (Y, ¥°) be CW-complexes with basic points, and let f be a map
(X, #°) (Y, y°). A space which is obtained from topological sum YUCX of ¥
and CX by identifying
S(@)=Cx(0, )

(1) ““X.” indicates the n-skelton of X.
(2) Define EYX=X.
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for all zeX will be denoted by YUCX. ({13, p. 13). In particular, if X=S8" then
CX is homeomorphic with V»*!, SZ) that YUCX is the space obtained by attach-
ing Y an n-cell e**! with the attaching map!f. Hence it will be denoted by Ys)e"“‘
as usual. In general, YUCX is a CW-complex, if X and Y are CW-complexes.

We may identify
E(YUCX)=EYUCEX
7 Ef

Given a homotopy H: (IX X, Ixa%-—(Y, y°) between Hy=f and H,=g, where
H(x) indicates H({, «), we define maps ¢: YI}JCXHYU CXand ¢: YU CX“»YEVJCX
a o

by

¢/ Y=1d.

ve(t, z)= {H(I—Zt, x) 0sts1/2, 2cX

et =2t —1, @) 1/25t<1, xeX
and by

¢/ Y=1d.

oot x)_{H(Zt, ) 0st=1/2, @cX
Foaih = cy(2t—1, x) 125t xeX,
We see that ¢-Jd~id. and ¢-¢=id., so that the homotopy type of YE{JCX

does not depent on choice of representatives of the homotopy class « of f, which
allows us the notation YUCX. ({1]. p. 13)
The space obtained from YUCX by shrinking the subspace ¥ of YUCX into

a point 2° is clearly homeomorphic with EX, so we denote the shrinking map by
p: (YUCX, Y)—(EX, 2%, which is given by

(L.3) {p( Y)=2a°

pex(t, a)=dx(zx, 2t—1)

for all weX and tel.
Suppose we have a commutative diagram

Ko, 2L (X, o)
h { ’ A
(Yo, 49 - (Y o)

where X; and Y; are CW-complexes and 2%X,, ¥%Y, (1=0,1).
Define 2 map (hUk): XoyCXl—éYoUCYl by
F4
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(1.4) {(h Uk)/ Xy=h

(RUR)ex (t, x)y=c(t, kx) zeX, tel.

Now, suppose we have a homotopy commutative diagram

(X, @) 1 (X, o)

‘3] 12

3

(Y ) (T 4D i, hof=g-k,
and let {f}=«, {¢g}=p, {h}=y and {k}=4"", We define a map
U X %'J CX, — Y, L?J cY, by
(FUD=AUR) ¢ (hUT),

where 1 indecates the idehtity map and ¢ the homotopy equivalence Y,UCX, ~
her
YoUuCX,.
gk

In the diagram
XouCx -~ EX,
s

Il ! f rE
1

i :
YOUCY1 ’EY}

"
commutativity holds.
Let (X, 2% and (Y, 3° be CW-complexes with basic points. Given maps f,

g:(E"X, 2% —— (Y, 9% (n=1), the sum f+g of f and ¢ is 2 map (E"X, «%) —.
(Y, ¥°) defined by

y fdg’(ﬂ?; tly Tty t:z—h 2tn+1) —lét“é(}
Ldi(@; t, e t)=
(‘f ) g) A( ! t ) {fldf{(-’c; t!c ttty tn«-ly Ztu"l) ngngl
for all X and teVi(I<ig<n-1). If »=2, f+g~g+f. Let f+.¢ be the sum of
S and g on the i-th coordinate, then

L7 frg=f+,9 (1<, j<n).

Set of homotopy classes of maps (E"X, 2%) — (Y, %°) is denoted by =((E"X, 2%,
(Y, "), or simply by =(X, Y), which is a group if #21, and is an abelian group if
72, In general, set of homotopy classes of maps (X, 4) —— (Y, B) will be denoted
by =((X, 4), (Y, B)), where A and B are subspaces of X and Y respectively.
The shrinking map p : (CX, X) —— (EX, 2% induces a one by one correspondence
Pt 2((EX, 2%, (Y, ) — =((CX, X), (Y, ) ({21, p. 206)
Let 4,: =X, B)——=(X, Y), and

(1) {r} indicates the homotopy class of f.
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Jei =(CX, X), (Y, wo) ——=(CX, X), (Y. B)

be correspondences induced by the inclusion maps i:(B, " —(Y, ") and j:
(Y, ¥°) — (Y, B), where y*<BCY. j. may be regarded as j,:=(EX, ¥) —
~((CX, X)) (Y, B).

Define an operation 6: =((CX, X). (Y, B))--—— =(X, B) by restriction on X, as
usual. 7., 7. and & are all homomorphisms if X is a suspension space.

A sequence of sets and correspondences

3 i

(18) =(X, ¥)—-=(X, B)-

2-((CX, X)’ (Y’) B))(

~(EX, V)< z(EX, B)
is exact in the sense that .
(0 =1,0,
6A1(0):Imj*y
j;&l(o):lmi*-
Let G be a group, G and G its subgroups, and let 3, and M. be cosets of
G, and G, in G, respectively. If M, and M. have a common element, we shall
describe as M,~M.. Note that this relation is not transitive.
If a map /: (X, 29— (¥, % is homotopic to a constant map, then it is ex-
tended to a map A;:(CX, 2% — (Y, ¥°, which gives a null homotopy of f. Let
B; be another null homotopy of f. Define a map

d(B;, Ap):(EX, 2°)— (Y, ¥°) by
Arcy(—t, @), —15t50, zeX

d(By, Andx(@ ”:{ch.y(t, 2, 0st=l, weX

which is a generalization of “‘separation element’’ in the sense of [6]. Homotopy
class of d(B;, Ay) is denoted by o(B;, Ay).

82 Category of n-tuples
Let 7 be an integer =1. n-tuple (v) is a set of CW-complexes (X, z)(wcX,
0<i<n) and homotopy classes aen(X;, X;.))(1£i=n), and is described as
¢): Xoin Xy e i e— X, X

A representative (N) of () is a set of representatives f; of fa; 1=ism), and
is also described as

In
P e Xn»l A Xn-

(N): Ko Xy Ko
Let

hz fn

YZ A 7 Yn’

(‘/!) : Ya "_ﬁi' Y1 «
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be another n-tuple. A set H of maps h,: (X, &)~ (Y, ¥) (0<i<n) is called a
map (v) — (), if there exist representatives (N) and (N') of () and (-’) such
that the diagram

11 Iz
V) s Xt X Ky X, S X,
(2.1) %o ] ’ 31 i Az f Ten-y : hin
(N): Y, oo Y o Yicom onn Y, i« P Y,

is homotopy commutative, i.e.

hiofii=giichey (O£isn--1).

[Nore] If His a map (v) ('), the diagram is homotopy commutative for any
representatives of (v) and (o).

If, further, there exists a map K:(v/) — () such that for each %, h,oki=~id,
and «;0h;=id (0S1<n), we then say that () and (»') are homotopically equivalent
({(\)=()). The equivalence cleass of v is denoted by {.}.

For example, if X;~ Y, for some ¢, then n-tuples

Aiey Gar

ag i
(v Xy Xje— ver e i—l"’““‘Xt““"Xia.i(”“_“““_‘“Xzzvl‘

X,
and

i1 Paai RECINS

.
(W) Koo Xy vre o X, o Y Xisgem—— v — X,

>

are homotopically equivalent, where ¢: X,
equivalences,
Suppose that for each n-tuple (), an (n-k)-tuple (Tv) is given and that for
each map H:(») —— (), a map
TH:(Tv)— (Tv) is given such that
1)y if H:()-~ (/) is a homotopy equivalence, then so is
TH : (Tv)y— - (TW).
(2) if H:(@)-— () is the identity, then so is TH.
We then say that the pair of functions T+, TH forms a (covariant) functor

» Y, and ¢: ¥; — X, are homotopy

of degree k on the category of n-tuples with values in the category of (n-k)-tuples
0skzn-—-1).

T is a functor on the category of homotopy equivalence classes of n-tuples
with values in that of (n-k)-tuples.

For example, the suspension operation EX, Ef forms a functor of degree 0.
The n-tuple
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Eay

EX, ™ EXye— +or o— EX, 1 - EX,

(Bv): EXo+

is called the suspension of the n-tuple (o).
For each n-tuple

asz Pn

G X Xyt Xy e e X 2 X,

define

LRI ES B H

(T): Xoe= Xy« m Koo oee o X, 0 0K,

and for each map H: () — (), define TH: (T») — (1Y) by TH=(hy he, ---,
hi_s, k), then T is a functor of degree 1.

Now, let % be an integer=2. Null n-tuple (») is an n-tuple such that e on;,;
=0(1<i<n-—1). A representative (N) of () is a set of representatives f: of
a; (1£15n) and null homotopies
A (CXiyyy 2%) (X 28)) of finfi, (1£isn—1), and is described

fn

'!l ‘X'I é”j__ Xl G e o Xn——l A Xny (Ah Ail R An~l)'

as  (N): Xo-
Consider a homotopy commutative diagram

I f2
Xo« e Xy X,
!

Yoo Vi Y,
248 Y3

kg

such that fiof:~0, and g,og.~0. Let A and B be null homotopies of fiof, and
g1°9-, respectively, and let C, and D, be homotopies such that Co=g,0h;, Ci=hye
fi, Ds=g:ohs, and D,=h,of. then, a null homotopy G: (CX,, a3) - (Ys #3) of
gicgaohs is induced by ho4, as follows:
gioDax), 0<t<1/3, wcXe,
Geya(t, 2)=1 Cy-1ofa(), 1/35t£2/8, zeX,,
Uhodevo(8E—2, z), 2/3=t£1, xc X,
In the following, G will be denoted by hsA. Similarly, a null homotopy
BoChs of hgofiof: is induced by B:-Ch:. It can easily be seen that

{2.2) ' d(B-Chs, hoA)=d(B:Chs, hy»A).
Let

@

. ay o
(./) . XO e Xl pR— - X‘.Z G g 4 6 e g X‘M

and

An

Y! o Y‘..’ D A el 70 T Yn

£1

¢ Yo
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be null n-tuples. A set H of maps h;: (X, z2)— (Y, 32 (0=i<n) is called a
map (v) — ('), if there exist representatives

(N) . Xc) "’[""‘ X1 N f:‘ X’_’ G e G Xlel (/iﬂ_ Xm (A!y A"’y ety A7I~l)y

and
(NY: Yoo v, YooY, Y., (By By -+, B..1),

of () and (v'), respectively, such that
(1) homotopy commutativity holds in the diagram (2.1), and
(2) in the diagram

X, < CXyy

ki I

(2.3) [ Chisy

Yii e CYiy a<isn—1)
the following relation holds:
2.4) i< Ai~B;oCh.., (or heo A;~Bi=Chi. ).V

Homotopy equivalence is defined analogously. The equivalence class of () is
denoted by {v}.

Functor T of degree k on the category of null =n-tuples with values in the
category of null (n-k)-tuples is also defined. Suspension operation EX, Ef also
forms a functor of degree 0.

§3 Coextensions

Let (N): X, LN X AR X,, (A4) be a representative of a null couple

()Xo Xy X,

Define a map (fi, 4, fo): (EX,, &) — (X, UCX,, z3) by
v

AC_\'E(“t, fC), ‘““15t§0. xC‘Xg

¢ - ';, L\ (;" )=
@.1) Ui A, fodxde B {C‘\u(t; A, 0st<1, X,

which is called a coextension of f: (1], p. 13), and is sometimes denoted by (f1.
f2) or f. if there is no ambiguity.

1
Let (N)): Xovf'l« X, L X. (A) be a representative of the null couple (»), and
let f~s1 with a homotopy H.: (X, = »( Xy, ad) (seI) such that Hy=s97 and
H,=fl., Define 2 map B: CX,— X; by
fH:t°f:(x)» 0sts1/2, x2e X,

et Q= ¢
Bexit, @) ldcx,(2t—1, ), 1/25¢t<1, xeXs

(1) In the following sections, we shall say that ‘“homotopy commutativity holds in the dia-
gram (2.3)", if the relation (2.4) holds.
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— i . -
then, (Ny): X, BaN X, LR X, (B) is also a representative of (o).
Next, we define a homotopy G, : (EX., a) — (EX. ab), (s¢I) by

(d@, (t=5)/(1+s), —1St<(s-1)/2,  aekXy,
Gdx(x, )=1dx,(x, t-—5/2), (s—1)/25t<5/2, e X,
\dx,(x, (2t—5)/(2—5)), s/2sts1, re X,

We see that Gy=1d. on EX,, and that
‘r” = (fir Ay j.'_’)::(ftl‘s B’ f.‘) ‘\Gl
» XoUCX, which is defined in § 1.

where ¢ is the homotopy equivalence X,UCX,
fl

Thus, we have proved
LemMA (8.2) If (N)) is a representative of (v), and if fi=fl, then, there exists
a representative (Ny) such that

(f;r Ay fﬁ)("'";!:(f(l)v ‘Bi j‘l)'
Sitmailarly, we have

1 4
LemMa (3.3) Let (N)): X, L Xi<— X, (A) be a representative of the null couple
13
X27

(:), and suppose fi~f}, then, there exists a representative (ﬁu) : Xa L Xy«
(B) of (o) such that

(.fly A, ffl):(fl! A9 fg)'
Proor. Let H,: (X,25) ~ (X;, 20) be a homotopy such that Hy=f%, H,=f{, then,
we define a null homotopy B: CX, —— X, as follows:

. . f1°H_gt(x), 05651/2, ﬂ;EX_g
Bew(t, x)—{Accxg(Zt»l, ¥, 1/2<t=1, xeXe

Next, we define a homotopy G, : (EX., 20— (X,UCX, x3), (scI) by
1

[Acxg(wt, x) —~1Zt<Ls8~-1, xe X,
_NAex (2451, 2) —1)=Zt5(s—1)/2, 2cX>
Gl D=0 8 o) (s-1)/25t20,  zeX.
ex,(t, H/(x) 0=t=1, we Xy
then, we see that G,=(f, 4, f1) and Go=(f1, B, /Y. q.e.d.

Let Xa‘il“Xx‘“"{i'Xz, {A) be a representative of the null couple (2), and let B
be another null homotopy of fiof.. Define a homotopy H,:(EX,, 29— (X,UCX,,
@f) (sel) by
Acex,((—2t+s—1)/(1+8), 2), —-1Z2t=(8-1)/2, xc X
ex,(1—s+2¢, fol)), (s—1)/2=2t=0, ze X,
ex(1—s—2t, fix), 0St<(1—5)/2, ze X
(Bex (2t+s—1)/(1-+s), @), (1—s)/2<t=1, ze X,

Hsdxz(x; t) =
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We see that H gives a homotopy between (fy, 4, fo)—(f1, B, f2) and d(B, A).
Conversely, if a null homotopy A of fiof; and an element Jex(EX: X, are
given, then, there exists a null homotopy B of f,of: such that d(B, A)s.
Together with Lemmata (3.2) and (3.3), we have proved
Proposition (3.4) Set of all homotopy classes of coextensions (3.1) obtained from
any representative of a null couple (v): X, L X ‘“—2X2 is a coset of the sub-
group w.x(EX, Xy) in =(EX,, X(,LHJCXI).
This allows us the notation (a/,l, @s) Or do.

Let (): Xo— X1 X,, and (7): Yot ¥, =2 ¥, be given, and let H:
() — (/) be a map i.e. there exist representatives (N): X, L X S X, (A)
and (N): Yoo ¥, <"~ Yy, (B) of (5) and (/) such that homotopy commutativity
holds in the diagrams

:H

It . T2 4
Xoer Xy X, Xoo— CX,
(3.5) ] [ I [
Yoo Yie— Y, YyemCYe (c.f. @.3).

Proposition (3.6)
GoUrdelay, ax)~(B1, R)eoEr,

where yi={h)ex(X, Y,) (0Z1£2).
Proor. If in the first diagram of (8.5), commutativity holds, then we can see that

(hoUh)=(f1, A, f2)=(g1, hoo A, hyofo)=(g1, hooA, g:0hy),
(Gu B, 92)o Ehy=(gy, BoChy, gsohs).

Hence, it follows that
(h() U hi) © (fl: Ar f".!)“‘“(gh By gl) @ Eh?.:d(B, Ckz, h() o A):O.

Homotopy commutative diagram (8.5) is decomposed as follows :

1

by 1 1 1
Voo Xy oo Xpo— Xo e X,

xlsJ’ 199 A2 Ehx“fz ifz lfs ife

Y, e— Y, « Ve X — X —X,

i i
7 | la; [ o 1‘0‘% lho")‘x Tn
+ v
YQ(“MYQ@*“YQ(—-———YQM—-YO‘ X
1 1 1 1 2y 0

The proposition follows from the diagram
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Ehg 1 1 1 1
EY, —"— EX, —— EXy = EX, v=— EX, e EX,
; : , \
91.92) | RCIRE YN Hon, afD CTIN EY E(’Iafx- LY Ui I

YoUCY, e YoUCY, o YoUCY 1 YoUCK, o Yo UCK; o XoUCX,

71 1 91 1 7 (bwky) 9%y ¢ Aa-fy (gl

where (' is the homotopy equivalence.
COROLLARY (3.7)

If Xy=Yo he=id., then QUyrde(a), @25, f)eEy..
If Xo=Y,, he=id., then (yoUyd)e{ay, a)C(h, &)
If Xo=Y, Xo=Y,, and hy=1id., then (LUy)c(ay, a)=(3, 3.

. f;” - X ];R‘«
Let (N): Xpeie X, oom EX, (A®) and (N9 Xo <2 X, <= EXo, (A) be

representatives of null couples () : Xj« . X, > EX, and () ngL Xy L
EX,, respectively, and let fi®=f"+f5P, AC=A4AV+A4" je.

X fiPd(x, 2t+1), ~1=t£0, welXy,
"‘0’ colly, )= a
Fdxl®, 8 {fé")dxﬁ(x, 2t—1), 0st=1, 2eX,
APepx.s, dx,(x, 2t+1)), —15t£0, sel, 2eX,

®p ; -
APcpy E(s’ d.&z(xy t)) {A@)lexz(s, dl\’z(m, 23_1))’ 0§t§1’ SEI, ng:.

While, the map (fi,, A, i+, A, fi)=g: E"X»:*“*XO}JCXl is given
by (e.f. (1.7)

(fi, AV, fiNdi.(v; 2t+1, 8), —1=t=50, —1s=ss],
(fi, A2, f9)dx,(@; 2t—-1, 8), 0=st=1, —1s=ss],
AV epy,(—s, dx,(z, 2t4+1)), —1=t<0, —1ss=l,

_ex (s, fiPdx(x, 2t41), —1=5(50, 0sssl,
T1A2epx s, dy,(z, 2t—-1)), 0st=1l, —1=850,
cx,(s, fi¥dx(x, dx(x, 26—1)), 05ts], 0=ssl,

_{A(G)C]J,Vz("‘sy d.\'s(xr t))’ —-1§8§0, -—‘l‘gtﬁl,

gdi,(x; t, 8)= {

oxs, fPdxi(m, 1), 0<s<l, —1<t<l
for all zcX,. Thus, we have proved.
ProOPOSITION (3.8) (@, B} +H{a, RYCla, Bitifh).

Ity

Let (EN): EXy EXL«EEE'XZ, (EA) be the suspension of a representative
(N): Xol™ X, <2 X,, (A) of a null couple (): Xp—= X, "= X,. Then the coex-
tension

(Efi, EA, Efy):(E°X., xf) — (EXOIS]J'!CEXh x5)

is given by

EAoCpxl—s, dx,(z, t)), —1s850, —1zig1

(Ef,, EA, Ef)di(@; t, 8= {cm,@, T o
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for all zeX:. Since cey, (8, dx,(folz), 1)) =dex,(cx,(s, f(2)), t), it follows that
(th EA, Ef‘.’)d‘z’i’z(af.; t, S)xE(f], A: fl)di’:(x; 8, t), “‘1§S, t§1

for all zeX,. Let p: (E%X, 2% — (E*X, 2°) be a map defined by pd%.(z; ¢, s)
=d%,(x; 8, t), —1=t, ss1, xzeX. which is a map of degree (~1) if X is a
sphere. Then, we have proved
ProOPOSITION (3.9) FElay, a2)C(Eay, Eas)ep.
ProrositioN (3.10) pula, P)=Ep,
where p is a shrinking map: (X, UCXy, Xo) —— (EX;, a9). ([11 (1.18)
The proposition immediately follows from the definition (3.1).

§4 Extensions

Let (N): Xo(-/'«~X1<»£~X2, (A) be a representative of a null couple (+): X
X, —-X, An extension [fi, 4, f:]: (XxyCXz, x9)—(Xy, @3) of the map f, over
X;UCX; is defined by
Je

{[,fu A, L1 X=F,

4. LFo A, filexd(t, @)= Acx(t, 1) 0St<1, zeXe

[f, A, f.] will be denoted by [fi, fu] or fy if there is no ambiguity.

LEMMA (4.2) Let X(,!LXLJLX-;, (A) be a representative of a null couple
(v): ngi XIPE‘X‘_;, and let f3 be another representative of as.

Then, there exisis a representative XO‘LXfng, (B) of (v) such that
Ufy B, f31og={fi, A, f1), where y: X, LlJf-'gCXr—”XngCXg 18 the homotopy equiva-
lence defined in §1. " "

ProoF. Let H,: (X &9)—(Xy, o0) (scI) be a homotopy such that Hy=/? and
H,=f. 'Then, the null homotopy B of fi=f% is defined as follows:

Bexi(t, )= {{i f(z(?)q @) 2;2515 iifg

and the homotopy G.: (X,UCX:, ad)——{Xy, #}) such that Go=[f), B, f?]-¢ and
Gi=Lfu A, £2] is defined as

{Gxin—'xfx JioHi_u() 0<t<(1—s)/2

Goexo(t, ®)={ f1o Hy g0 5(2) (1—s)/2<t=3(1—9)/4
Acx(@dt—31~—28)/A+3s), ¥) (1-s)/4=t=£l

for all xcX.. q.e.d.

7t .
LemMma 4.3) Let XO‘MMX,F{:X& (A) be a representative of a null couple

() Xg— X=X, and let £} be another representative of ai, then, there exists
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7 2 .
a representative Xy— X“"{“Xg, (B) of (£) such that [f}, B, f-1={r1, 4, f2].
Proor. The null homotopy B of fi:f: is given by

Hs s fo(2), 055172, aeX,

Bev(t, £)=
Cxilt, @) {Acx,{Zt-—l, ©),  1/2<t<1, wcXs,

where H,: (X, a))—{(Xo, #3) be a homotopy such that Hy=f} and H,=f}, and

the homotopy G.: (X,UCXz, aD)—(X,, af) (scI) such that Go=[f}, B, f:] and G
Je

=[fi, 4, f:], is given by

G| X\=H,,
H, o0 fo(2), 0=t=(1-5)/2, e X,
Gyt £)={ Acy(s+2t—1, 1), (1—8)/25t£1~s, acX,,
Acylt, x) 1-s<t<1, 2e X, q.e.d.

Thus the homotopy class of the extension dozs not depend on choice of repre-
sentatives of a; and «,. Classification of homotopy classes of the extensions was
solved by W. D. Barcuss and M. G. Barratt in [3]. We state the results here.

First, let Xo=S", 5o that L=X,UCX=XUe'"", and let Xo 2 X -8 be a

ay

g
X g,

representative of a null couple (v): Xy

Bareuss and Barratt introduced a homomorphism
&y, L HI(X(;Y‘, fl)a_‘k’:q H(XO; ZS),

where X;*' is the space of continuous maps (X;, 2))—(X,, 2)) with compact open
topology. The homomorphism a,, depends on the homotopy class « and the fixed
map fi. Let go and g, be extensions (L, 20)—X,, x}) of f; such that there exists
a homotopy

H: (IxL, Ixa))— (X, 29

from go to g.. Then H=H|(IX X, Ixa}) determines an element {H}ex (X", f).
They proved that the szparation element d{g,, gy) on the cell (¢''?, 2}) belongs to
a{HYem, (X5, 20) and that

PRrOPOSITION (4.4) The homotopy classes of the extensions Fi Xouet, al)y—
(Xo, 23 of fi: (X, )Xy, 2}) are in one to one correspondence J;zith the ele-
ment of the cokernel of ay, i.e. of =4 (Xs, 23/ a; = (X0, ). (181, Th. 3.2)

A conutable CW-complex with only vertex is called a« special complex. ({4]).
Let X, be a special complex and z? be its only vertex, then, CX; is also a special
complex with only vertex 29, which consists of the mutually disjoint cells e%*!
with attaching maps
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g:: (8% &) —((CX2)y, 28)

where (CX.), is the n-skelton of CX, i.c. the subcomplex of CX. whose cells are
of dimensions <n. Then each cell ¢! is attached to X, by the attaching map
Soiogi: (8%, )—(X,, 20) (where f.,=f.|(CX.),) which represents a homotopy
class wier, (X, 29). Let L= X;UCX and let C(L, X)=%"7,,.(X,; %), the direct

sum, Sinnce fixa;=0 for all all 1, the homomorphisms (a;); together define
n’fx :ZI(X&YI’ fl)“‘_’C(L’ x?

such that the coordinate of a,(8) in Ty 1(Xo, @) 18 (@),() for &e(Xi*, fi). Then,
Proposition (4.3) is generalized as
ProrosITION (4.5) The homtopy classes of the extensions f,: (XIUcX x}

(Xo, @3) of f1: (Xy, 28)—{X,, x0) are in one to one correspondence with the elements
of the cokernel «y, e, of CL, X\)/as (X5, f1). ({81. Th. 3.4)

Now a homotopy G : (Ix X, IXal)—(X,, ) from f? to f! is equivalent to a
path G’ in X5 from f? to f!, which defines a homomorphism in the usual way
of the homotopy groups based at f} into those based at f?: we describe for this

(X, =X, £
It was proved that ap=a;0Gy. ({3], Lemma 3)

In view of these Lemmats (4.2), (4.8) and Propositions (4.4), (4.5), we may
denote by [a), @] the set of all homotopy classes of

(Xo, 28 of arbitrary representative of aer (Xl, Xo).

Let (v): X0<"-“X1‘-=-—X>, and () : Y0~—~Y,‘M~Y be gwen and let H: &)—
(+') be a map i.e. there exist repressntatives (N): X’U<~—XI«"~~-X3, (A4) and (N"):
Y‘,‘-i"l - Ypfﬁ‘}’: (B) of () and (/) such that homotopy commutivity holds in the
diagrams

I3 I2 4
X() A Xg R X_: o CXa
(4.6) ?‘ol !/lx lﬁg I k chy
Yy cooe ¥y yr) Yoo CY. fe.f. (2.8)]
PROPOSITION (47) 7o [, ]~ [, 3= 1 U7

wkere y,={h}ex(X,, Y, (0s152).
The proof is similar with that of (3.6).

&l)

Let (N): X\~ —EX, " EX., (A®) and (V). XX EX, (A) e
representatives of null couples (V) : X *—«—EX! “”“"“EXO and () : Xo‘*"‘EXl“‘—
EX,, respectively, and let fi@=F V4 £ 4@=4D L 4>  Then, we see that
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LAY, A BRI+ A9, A, Ef1=(/7, A, Ef,l.

Hence, it follows that

ProrosiTioN (4.8) [ay, B3+ {ay, EZ)C Lo+ az ES.

Let (EW):EXO«ﬂEXIi{f- X:, (EA) be the suspension of a representative
(N): X X;‘ls“Xg, (4) of 2 null couple (5): Xy —- X\ X.. Then, we see that

EUf, A, f:1=[Ef.. EA, Ef.).
Hence, we have
ProrosiTioN (4.9) Elay, a:}C [ Ea, Ea.].

&5 First derived compositions

I
(e

Consider a representative (N): X9<~‘“~ X;‘“‘j—g‘“ Xo—=X,, (A1, A2) of a null triple

() : Xo—~ Xy Xo—X,;. The composition

Xl x, Y cx+Z-EX,
2
of the coextension fy=(fs As fi) of fi followed by the extension fi=[f, 4, /2]
of f1 is denoted by {fi, A, f, A= f3}, which is given by the formula

froAsexy(—t, &) —1<E<0,
<, 9, ( =
5.1) U Ao fi A S}t = Pome 09 = 2120

for all xeX,.

PROPOSITION (5.2) The set [, a:)o(as, as) is o double coset of the subgroups
a(EX., Xo)oEa; and ayjoz(EX; X)) in ~(EX; Xo).

If =(EXs, Xo) is abelian, in particular if Xs=EX, then it is a coset of the
subgroup =(EX,, Xo)o Eas+ta,on(EX,, X)) in =(EXs Xo) (17 p. 9.

The proof of the proposition was given by H. Toda in {11, and is omitted here,

DEFINITION (5.3) The set {ay, az]o(az, ws) 18 called the first derived composi-
tion, and is denoted by {ai, a:, as}.
[Nore] In [1], notation {@), @ o} means the set ~{ay, ay]=(as, as), and is called
secondary composition.

Let (2): Xo— Xy Xp—Xy and (7): Yoo ¥ '™ ¥, ™ ¥, be given, and
let H:(x)—(") be a map, so that there exist representatives (N): X(,"*{!- X;‘*"{L
X" X, (A A 2nd (N) 2 Yol Yo Yo Y, (B, B of () and (), respec
tively, such that homotopy commutativity holds in the diagrams

XO“LXx“"Ii‘Xz‘““f'i" 3 Xixl‘ﬁ”Can
5-4) ol I t 2 3 fii-1 hgy
( nl ln ln ln hy | Ju‘,

YO‘TYI‘ o Yg(y Y3 Yi,1‘£CYi~(.

(2=1,2). (cf. (2.8))
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It follows from (3.6) and (4.7) that
LEMMA (5.5) hoo {f1s A fo A, f3}={g1, By, g2 Bs, 9312 Ehs

i.e. homotopy commutativity holds in the diagram

X X, yCx. L px,

hg | ity } Lha
! -
Yo‘ “““ Y1UCY; ’EY:;‘
91 Y2 73

PrOPOSITION (5.8) Suppose the following diagram is given:

(,,/X“' - Xz\”\i
XoL o 1 Q - 0 1X3,

N | 7
AN Yl P Yg/,

where o ay=0, and 5, 3:=0.
Then, it follows that {«,, as, as}~{3, P2 P}
Proor. Chose representatives (N) ond (N") of the null triples

Aa

O XX X Xy and () XYY X
as follows:

(N): X" X" X ™ X, (AoChs, B)
(N2 XV Y X, (A, o B)
for any representatives of h; and h; of 7, and y; respectively.
Then, H=(id. I, hs, id.) forms a map of (v) into (v/), so that the proposition
follows from (5.5). g.e.d.
Let (M): Xy "j'f~—Xl<~{gz¥:<~~-w«Xﬁ*-LXT be a representative of a 7-tuple

e

‘ . T
(re) X X Xoe o o~ Xy X; such that
rragemy=0 and qgqoasca=0.

Then, H=(f, fs, 5 [+ is a map of a null triple

) : X‘."f;"f X;_‘:f Xﬁ:i'i'.’ X,
into a null triple

agea agean

- ay-ag
) KXo X

Xs.

Indeed, we may chose the representatives (N) and (N') of (2) and ('), res-
pectively as follows:
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ED K

(A\") . X;"_“ Xo{‘.fs

XX, (ACF B-CR)
W) X I IR, (7 AL B)
for any null homotopies A and B of f.-fs fy and fy=fs-fs, respectively.
Hence, it follows that
THEOREM (5.6) «vy: {tvac vy @scavs, avg= it~ {0y o v, evy= vy, (035 (o » Foais,
if ascaycoas=0 and a;caias=0
In particular, taking X,=Xs, X,=X;, Xo=X;, fiz=id., fi=id., and fi=id.,
then we have
COROLLARY (5.8) (1) «<{3y,0rc{apB, 1, 0}
Similaly we have
COROLLARY (5.8) (i) {a=3 7, o} {w, B0y, 6}
(i) {e, poy, 6124, 8, red}
(iv) {a, 8, 72024 B, v} Eb. (fr1] Prop. 1, 2)
According to H. Toda [1], we denote by {a,, E'a. E’as}, (n21) the first
derived composition constructed from a null triple

= I F S Elay . rlg’”as »
O Xl B B R

LS Bl
such that the null couple E"X,——E"X+—E"X, is an n-fold suspension of a null
couple Xi——Xw—-X,  Hence, {a;, E'as, E'ay}, is a coset of the subgroup
aye Ern(EX X)+=(E" X, Xo)E" .

ProrositioN (5.9)

(i) For null triples XU*—T—X,,*-—LXril;EXg (i=1, 2), it follows that
{a, B i) e, B vk D{e, 6 ritrd.

(ii) For null triples Xov»f“Xp g—*EXg-I:LE’X;; (i=1, 2), 1t follows that
{a, Buy Ery+{a, By Ery={a, 818 Er}.

i) For null triples Xo-EX;—~EXw—FEX; (i=1,2), it follows that
{ay, BS, Ev}i+{as BB, Ey}iD{atay BB, By}

The proof of the proposition is given in {1], but it can also be given by using
(3.8) and (4.8) ete.

ProrosITION (5.10) For a null triple Xy i’wawag“ing, it follows that
Ela, 5, r}c{Ea, E3, Ey}-p

where pex(B*X, E*X) 1s defined by pdilz; t, s)=di(z; 8 ) for zcX, and 8, tc V4,
which is of degree —1, if X is8 a sphere. ({1}, Prop. 1.3).
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Proor. The proposition follows from (3.9) and (4.9).

ProrosiTiON (5.11) Let (N): Xy fﬂdegji‘Xg, (A) be a representative of a
null couple (1) Xy-Xy=X,, then homotopy commutativity holds in the fol-
dowing diagram :

ij—i—-Xl H CXz
i ®

X,UCX i —-EX,,

where 1: 18 the inclusion map, and p is the shrinking map defined in (1.3).
Proor. Define 2 map h: (Ix X, IXX)—(X,UCX,, z3) by
1
h(s, x)=cy,(s, x) scl, we X,
and a map H: (IxCX,, Ixal)—(XolCX,, x5) by
I

AC,\’z((S“‘Zt)/($“"2), x)v 3/2§t§1,

Hs, exilt, @)= {cx.(s~2t, fol), 0st=s/2.

for all scl and xcXo.
Consider a map G: (IX(X;LfJCX-.»), I'x zly—— ’(XQ}JCXL, @) defined by

GlIxXy=h and G|IXCX.=H

then, we see that G is continuous. If we denote G|{s}x(X,UCX.,) by G, for scI,
12
we can see that
GO:'I:O}:I and Gl‘:-ﬁgop q.e. d.

ey az

CoROLLARY (5.12) Let () : Xoo Xy X Xy——X, be a null quadruple,
then it follows that eyo{as ay, a0} =—{e;, as, ay}> By ({11 Prop. 1.4)

kL R £ Te
Proor. Let (N): Xp Xy i—«-}ig*»if-Xyl“X;, (A, As, As) be a representative
of the null couple (¢). In the diagram

Xoe o X, XU CX T EX,

\
id. il l .
i

Xo+- —"‘X; UCXy—EX,; ‘):;r E:X.;
R Sf2 e

Nfs

homotopy commutativity holds by (5.11). It follows from (5.6) that a,o {as, a3, a.}
and —{ay, oy, ey} o By have a common element. And besides, these sets are cosets
of the same subgroup ayo=(EX;, X))o Eay in =(EXy, Xo). g.e.d

§6 Seccond derived compositions

Let (N): Xu«itijinia'*ng‘j—‘—-Xb (A, A;, A;) be a representative of a
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ay

X X" X=X, Then, the

.

triples (N): Xo-X,UCXe"~EXy" " EX,, and
J2

null quadruple (&) : Xy

(VD) XeloX Lo X y cx, "t EX,

are called the first derived iriples of (N), where f,=[f, 4y f21, fo==1fo, An f5],
faz(f:, A;, f3), and ﬁ:(fs, As, f3).

DEFINITION (6.1) A representative (N) is called admissible, if f,>fa=0 in (N),
and foofa=0 in (N.), and a null quadruple (o) is called admissible, if it contains
an admissible representative.

Let () Xy—-Xy—Xr Xy X, be anull quadruple such that Oc{m a:as},
and Oc{as, as, oy}, and let

k£ fs

M) X X X0 "X, (An A2, and
M) : XXXl X, (B B,

ay ag ag

Xi—-Xo"=X,, and Xy-Xor

ag

L
}{Zi"‘_'X 49

be representatives of null triples X
respectively, such that

{fb Aly f2r A2» fS}zoy and {.f‘lv Bir fS, B:}v j}}’::().
Denote by G; and G the subgrouvs of =(£X; X)) such that
(6.2) a0 G Cr(EX,, XQ)OECY;;, and GQOE(X4C(¥3°TT(EX3, X]).

Note that for any unll homotopy A} of f.ofs there exixts a null homotopy 4] of
fiofs such that {f,, 44, fs, AL f33=0, if and only if §(4%, A.)eG,, and there exists
a null homotopy A} of fiofs such that {fs, AL fi, A%, fi}=0, if and only if 6(4f,
B,))eG.. Hence, we have a sufficient condition that a null quadruple (») is admis-
sible :

PROPOSITION (6.83) Let (v): X(,JLXL« = Xg‘“" X;;<~3—‘--X4 be a null quadruple
such that 0c{ay, as, a5ty and O0clas, as iy, If Gi+Go==(EX; X)), then, the null
quadruple () 1s admissible.

Indeed, for any representatives (M), and (M) as above, 8(By As)=yi+7. for
some y£G; (1=1,2). Let Al be a null homotopy of f:»f; such that §(4’;, A2)=ry,
then §(AL, B.)=06(4%, A2)+6(As, By)=—7..

Now, let (N): Xl X X X D X, (A A A be a representative of
a null quadruple (5): Xy Xy—Xp—Xy——X,. Then, from (5.12) it follows
that homotopy commutativity holds in the diagram
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);{U (»AIA‘—- X{ <l-2—“~ Xg}) CX;<£:~EX4
, b 3 !

FON ' ;c p;’ E2‘{[.
5( oe—=X U CX24~—:-EX3 apre EVX 5.
f1 fz ~f3 A
If (N) is admissible, then, both of the derived tiriples are null triples. Let Band D

be null homotopies of —(f,-f:) and Feo fu respectively, and consider the null triples

XSt XL XY CXolEX,, (B-Cp, D), and

Xo U X, UCX. " EX " EX, (B,i-D)

where B-Cp and ¢~ D are the null homotopies induced by B-Cp and i-D, res-
pectively (¢f. §2). Then, it follows that

{/\, BCp, 12, D, f:}={f, B, =fs i D, Ef.}.

For a fixed representative (N), the set of all homotopy classes of {71, B-Cp, fo D, f3
is a coset of a subgroup

F=a-=(EX,, X))+ 2(E*Xy, X)) Eay

in 7(E*Xs, Xo). Similarly, the set of all homotopy classes of {fi, B, —f3, i-C, Ef;}
is a coset of the subgroup F in =(E*X,, X,). And, these two cosets coincide with
each other. Denote it by y(4,, 4: As). It is obvious that y(A41, A. As)=7(4,, A,
Ap)=y(Ay, Ay AL  Hence, y(4y, Ay, Ay) =7(4], A, AY).

DERINITION (6.4) Union of the cosets of F which are obtained from all the
X, e X s X ‘
derived composition, and is denoted by {wy, as, s 004}

Let (N): ,’t,vh"Xp “'X_;<~{3'~X3<'!"~X4, (Af, AL, Al) be another admissible repre-
sentative of (v). Then, 5(AL A)=G,NG.. Hence, we have the following.

PropOSITION (6.5) Let () XQ“’R"LX]“"’"'E““Xg‘"f“s_Xg"”i":"X.; be ¢ null quadruple
such that 0clay, e, as}, and 0c{an, as, as}.

(1) If Gi+Gi==(EX, X)) direct), then, (1) is admissible, and {a,, a:, as, a5}
18 a coset of .

(it) If Gi+G==2(FXy, X)), a1~ (G NG)=0, and (G\NG2)ec Eay=0, then, (¥) is
admissible, and

ey {7
<

admissible representatives of (¥): Xy X, 15 called the second

{ay, az ay, i} =2+ m+ F,

(1) We restrict the null homotopies of fiof: to those which are induced by null homotopies
of —(f\ f).
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where pe{a;, GiNGs, Ea.}, and ic{ay, av, as, ay}.

DEFINITION (6.6) Let (2): Xo— =Xy Xo =Xy Xy, and (51 Yoty
ngist—ﬁ-‘«Y; be admuissible quadruples. A map H: ()—() is called admis-
sible, if

(1) there exist admissible representatives

(N1 XX X o X T X, (A Ao Ag), and

3 ED

(N2 Yo ¥ Yol Y "=Y,, (B, B, B).

of (2) and (V') such that homotopy commutativity holds in the diagram (2.1) and
(2.3), and if

(2) there exist null homotopies Ci, Dy, Co, and D of fiofa=0, g1° a0, focfi
=0, and §oo§,=0, respectively, such that

ho+Ci=D,<CEhy, and I,-Co=DscCEh,.
PROPOSITION (6.7) If @ map H: (2)— (") is admissible, then it Sollows that
3’00{&'1, e, Uy, a'4}~{,§,, 32, 83, 194} E EQT; where 7’.'1“’&; (0§i§4).
Proor If follows from the condition (1) and from (5.5) that homotopy com-
mutativity holds in the diagram

X lx oy, u CX. 1 EX,

ho | hewha Ehy
v

Yy—Yi—Y2UCYsEY
et y YQ”UCY:x For 1

3

Hence, by the condition (2) and by (5.5), we have the proposition, q.e. d.
THEOREM (6.8) Let Xy X Xy - v XX, be 9-tuple such that
1) waicaica:,2=0 for i=2,4 and 6,
@) Oe{as, ascoay, asoay), Oc{a, asoaq, avoas},
and (3) G+G.=x(EX;, X,), where G, and G: be the subgroups of =(EX;, X
such that a:caseGCa(EX;s, Xo)o Easo Eay, and Gro Bayo EagC g0 aso n(E Xy, Xo).
Then it follows that

a0 {daoas, Q4o s, Aoy, Ao g}~ {¥1 0 s, 30 aty, oy 0 g, aiz0 s} o Ky,

ag

Proor. 1t is very easy to see that the null quadruples

agag ageay ageag

(vi): Xs‘““““X;’iﬂXa‘“_‘Xf ~Xg. and

ayeay ageag aseay areag
Xy

(vo) 1 Xy Xgo——Xpo—X, ¢

have the admissible representatives as follows:

Ny : Pl x Il x Pl Bl x (A, Cfs, Ao Gy, AssCfy) and
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fif2 ) iDL 34
(N2): Xo‘_Xz‘{'LX4“’“‘X6‘f‘"{“Xay (fie Ay, fac Aa, [0 As),

where A; is a null homotopy of aycas,ican.: for i=1,2 and 3.

Consider a map H=(f1, fs, f5, f, fo) ¢ (21)~——(22), which clearly satisfies the con-
dition (1) of (6.5). Let B, and B; be null homotopies of {f, Ai, facSs, fac Az, fsofo}
and {fi, As, foofo, foo As, f1ofs}, respectivity, then, commutativity holds in the

diagrams
ByCESf BaCESe

Xl"“‘““““’ CEX? Xs“—'"‘”CEXg

o el e

XO“‘}"“"]}T‘*CEXG » Xz**f*—;CEX& -

This means that H is admissible. Hence, the theorem follows from (5.6).

In particular, if Xo=X;, Xi=X;, X=X, Xe=X,, an=1d., as=1d., ar=1d., and
ay=1d., it follows that

COROLLARY (6.9) (1) a-{B, 1,6, e3C{aB 1,0, ¢}.

Similarly, we have

(ii) {a-B, 71,0, e1{a, Bor, 9, £},

(i) {a, Bor,d, e}={a, B, 720, ¢},

(iv) {a,B,7¢d,}D{a, B, 1, 6°¢},

(v) Ha, 8, 7,606} 2{a, B, 7,0} E%.

ProrosItTioN (6.10)

(i) For admissible quadruples Xo——X,——Xy——Xy——EX, (i=1,2), it fol-
lows that {a, B, 7,01} +{a, B, 7, 82} D{ex, B, 7, 01 £5:}.

(i) For admissible quadruples Xo——X,——Xo——EXe——EX, =1,2), it
Sfollows that {w, 3,71, 6} {a, B, v, 0} ={a, B, 11 %72, 6}.

(ii1) For admissible quadruples Xy~ : "

X EX e BXeEX, (i=1,2), it
follows that {a, 3, Ey, E5} +{a, 8, Ey, E3}={a, 31 £3:, Ey, E&}, if ye6=0.

(v) For admissible quadruples Xo——EX\ - EXp - EXy—EX, (=1, 2), it
Sollows that {a, E3, Ey, E§} £ {a:, E3, Ey, E8} D{a1*a», E3, Ey, E5} if foy=0and

ye o=0.

Efs Efs

{8

Proor (iii). Let Xo*fl”Xl<jin~~mEX3<—-EX4, (AP, ASP, EA3) (1=1,2), be
admissible representatives of Xo— X~ —EX;—EXy—EX, (i=1,2), where A,
is a null homotopy of fsofs. Then,
{fu i, Efy, BRY = (£, £, Bfs, Bf} = {fu B30, Bf} £, 7, Bfd =1/, SO 272,
Ef}  (Since, Efi is a suspension element (c.f. 3.9)={f), f&° /5, Ef:} (where
SR =P LAP, AV AP, fi])={f, AL 115", fs, fi}.

The proofs of the other three are left to the reader.
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PROPOSITION (6.11) E{a, 8,7, 0}C{Ea, E3, Ey, E5}<(Ep-p) where (Epep): E*X,
— E%X, is a map defined by
(Epep)d"'_g‘(x; tl, tg, ts):ds.\’;(x H tSy th t2)- xEX-ir tl: t‘lv EV!’

If X, 18 o sphere, then, (Eg-p) is a map of degree +1,
PROOF. Let Xo——Xi XX, X,, (A, As, A;) be an admissible repre-

sentative of Xy X,¢ ’ Xy Xwi—X;. Then,
E{fh [f?; A?.! fﬁji (f3! AS! f4)} = {Efl’ E[.f‘.’s A‘.’v f31) E(va A3s fi)} "f’ (5'10)
={Ef, LEfs, EAs, Ef], (Efs, EAs, Ef)op}ep 3.7

= {th [EfZQ EAZ) Efa]y (Ef3’ EA:%» Ef‘)} < (E{) [+ .0)'
Since, for each fixed representative
Elaon(EX,, X))+ 7(E*X5, Xo)c E*)C Eao =(E*X, EX))+7(E*Xs, EXo)o E%),

the proposition holds. q.e. d.
Now, let Xg‘—"‘:"Xl‘—f‘LXz‘ = Xy::—'Xr—lLXs be a null 5-tuple such that

Oc{as, as,1s sz} (i=1, 2, 3), and let Gy, G, and Gs, G4 be the subgroups of =(EX,, X))

and =(EX., X.), respectively, which are defined in (6.2). Denote by G and G, the

subgroups of G. and Gj, respectively, such that Goo Eay=0 and a0 Ga=0.
PROPOSITION (6.12) I, either (1) Gi+G:==(EXs, X)), Gs+Gi==(EX,, XJ), or

@) Gi+Ga=7(EXs, X)), Gs+Gi==(EX,, X2), then, it follows that

ayo {as, as, au, a5y ~{an, s, as, 0} Bras,

ProoF. Null quadruples (5) 1 Xo—Xio = Xp—Xy——X;, and

&) Xl“lx“‘Xg‘:‘z“X:;“‘a—a“X;‘f:"‘Xs have the admissible representatives as follows:

(N Xl XX e X M Xy (Asy Asy Ad)
(N5 XXl X D X D X, (Au,y Asy As)

Indeed, in the case (1), for a representative (N)) of (+;) and a representative
Xl XL XL Xy, (Bs, BY), 0(As, B=7s+7s for some 7:cGy, 7:cGr.  Let Af be
a null homotopy of fisof. such that 8(Af, As)=rs But, (4, A, Al still is an
admissible representative of (v;), because a:ory=0. Then, A(A44, Bs)=0d(A3, A+
3(As, Bs)=—71£G,. Hence, there exists a null homotopy Ay of fiof; such that
(A, A}, Ay is admissible. The same argument holds in the case (2). It follows from
(5.12) that

{fh [f2; A21f3]) (f3’ Aﬂyf-t)}oEsz:_‘flo{[fﬁh A‘l!ﬂ!j}’ (f:h Aﬂ;fG)r Efﬁ}
=f1o{[fa A2, f31, — (3 As, 10, Efs}.
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Hence, .~ {itz, as, a, o5 and {a, as, s, ad - E*a; have a common element. g.e.d.
. a ay ay @y as
ProrositioN (6.13) (1) Let (v): Koo Xy X g X g X X5 be a 5-tuple

ay

obtained by combining a null couple (v,): Xy XX, and a null triple (&) :
Xl Xy X T X,. Assume that 0caso {as, o, as}, and that Gy +G.==(EXs, X0,
where G, and G, be the subgroups of =(EX,, X\), which are defined in (8.2) Jor
the null quadruple (v): X(,wf"—‘X,EEXEVILXQIE—XM then, there 15 an element
Ac{as, s, asy such that a,-2=0, and that {oy, as, A} ~{an, axras, as, as).

(Briefly, {ay, as, {ao, oy, as))~{oy, G20 aa, @4, Gsh).

Proor. Let (N): Xo"'{i“X]"‘fj"Xg, (4), be a representative of (r\), and let
(N2) X;_,r«!r" >X3~fi’X4' “—’X;,, (Bi, B:) be a representative of (v) such that {fs, By,
fi» By, f2Yed.  Note that {f\, A<Cfs, faofs, fzo By, fi}=0. Hence, it follows that
{1, [fz“fa:ff’ana]y fa Bzrf.':)}z{fh.ﬁz*?’ L f3 By, fs), (fur Bzyfs)}z{fhf'zy [ fs By, fi]
“(fay Ba, f3)}. (5.8 (iii)).

Hence, f{a, azvas, ay, ;) and {ay, az, A} have a common element. Similarly,

we have
PROPOSITION (6.13) (i) Let (1)1 Xg— X - Xp Xy

. Xa‘“{ILX(} be a 5-

ag

XX X5 and a null
couple (v2): X-;L—XgiXs. Assume that Oci{ay, o, as} o Eay and G+ G ==(EX,, X)),
where G, and G. are the subgroups of =(EX,, X), which are defined in (6.2).
Then, there exists an element re{a, az, s} such that ro Ew,=0, and —{z, Ea,, Eas}
~ {aty, o2, (030 U4, s},

(Briefly, —{{a,, as, as}, Eay, Eas} ~{ay, oz, ase s, as}).

ageaz

Now, let (1) XoUCXi— Xy Xy—Xy——X, be an admissible quadruple.

ay

Then, commutativity holds in the diagram

ay

tuple obtained by combining a null triple (v1): Xo

U CK o Xy U CXet EX, M EX,

»

» id. I id.
EX, —EX, EXy—EX,

Fag Fagz Faas

where ¢=(id.) Ua, which is considered to be the homotopy class of an extension
of the inclusion map i. Since pxci+=0, and since p*=(EX, XoUCX)C=(E*X,,
EX), it follows that N

PROPOSITION (6.14) — Dy {4, av1ats, as, a3} C{Eas, Eay, Eag} for an admaissible qua-
druple ().

§ 7 Generalized Hopf-homomorphism

Let f be a map X~— 2 (Y), where 2(Y) indicates the space of loops on ¥
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(with compact-open topology).
Define a map 6f: (EX, 2% — (Y, ¥% by

(7.1) @Nds@, O=fx)((1+8)/2), x=X, —1sts]

The correspondence f«»6f is one to one, and hence it induces a one to one
correspondence
O =X, AY) - =(EX, Y)

which is an isomorphism if X is a suspension space. ({1}, (1.10))
We can easily verify that
PROPOSITION (7.2) For ac=(X,, 9(Y)) and ge=(X, X)),
the following relation holds: Ola-3)=0«-E3.
Given an n-tuple

@y

) ) X Xy e Xy X

we associate an n-tuple
Eay
(@;): Y-

Bay

To a represntative

(V) : Q7)< 2 X, T Xy e

FETES] fn
. e

M_Xngi( AAAAA Xm (Ah AZ» ) An—l)

of a null ntuple (&), we associate a representative
Efy Efn

(BN): Y RS EX,«—EX;e— .-+« EX, — EX,, (A, EA;:, cee, KAL)

of (@v).
LeMMA (7.3) Let (0): y XL EXx, " EX, be the associated nmull couple of
{(v): HY) S X X, Then it Sfollows that

Olay, o2]=10m, Ea:l

This follows directly from the definitions.

PROPOSITION (7.4) Let (8.): Yy 2L gx, S EXJs EX, be the associated
null tripe of (1): .Q(Y)fii—— X, o= Xy X, then, it Sfollows that @f{a, s, ers}
={Ba;, Eas, FEas}icp.

PROOF.  Olay, ay as}l=0({e,, a.]=(or, a))=0la,, )] Blo,, o)

={Ba;, Ea)lo(FEas Eoy)ep={Pa, Ea, Eos}p
While, {€n,, Ea:, Fus} is a coset of the subgroup

O o Ex(EX:, X)+7(E*Xs, Y)o Eray=6a, - =(EXs, X)4 2(EX,, 2Y)) Ewy).

Hence, the proposition holds. q.e. d.
We denote by {a1, E'as, E'as, E°as}, (n=1), the second derived composition
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constructed from an admissible quadruple X R . ¢ { Pl X, Pl "X,
such that the null triple E"X, < E"X,< = FrnX,
null triple of X, el Xy e X, L Xy, so that it is a union of cosets of the sub-
group ajo B'=(E2X,, X)+#=(E"X,, Xo)E" 0.

Let (Bv): Y By . il EX, z EX, bl E X, be the associated null quadruple
of a null quadruple (): £2(Y) < X e X, P X . X;. If () is admissible,
then so0 is (6).

DEFINITION (7.5) The associated null quadruple (Bv) is called admissibe, if

Enag
«

E’!X.L
E"X; is an n-fold suspended

it contains an admissible representative as follows:
< f 2 . Lfs
y-" Ex, " Ex, " Ex,ESEXL (AL EA, EA).

Let ', and G, be subgroups of =(EX; X)) such that a,« EG',Cx(EX,, EY)o E?as,
and E(G'so B Fle, - m(EX,, Xo)). A sufficient condition that the associated null
quadruple (/Py} is admissible is given as follows:
(7.6) 0c{Pw, Euw, Ewyl, 0 {ws, oz a.), and

EG,‘*F ‘} lngﬁ(E 3y X|).

ProrosiTioN (7.7) Under the condition (7.8), it follows that
oy, s, s, as}={0m, Eay, Eoy, Eos}io(Epop)

where (Epop) is the map defind in (6.11).
Proor. Since (v) is adminissible, let

Ny vy xS xS x

X41 (Aly AE: AS)
be its admissible representative. It follows that

U L 1) (B fO}=A{0f, Elfs fi), E(fs 1)} op
= 0N LEf: Efy], (Efs, Efd}e(Epep).

Hence, @{a,, oy evy, vi} and {Ou,, Eavy, Fes, Ees}io(Eoop) have a common element,
For a fixed representative (IV), these two sets are cosets of the same subgroup
oo (B°X,, X=X, QYY) e E0)=0a, Bx(E*X,, X)+x(EXs Y)oE3a,.
Moreover, the admissible representatives of (v) and (@) are in one to one corres-
pondence. Hence, the proposition holds. g.e. d.

In [4], I. M. James introduced the concept of reduced product space Y. of a
special complex Y i.e. a countable CW-complex with only one vertex y° (c.f. §4).
He defined the canonical map

¢: Yo—— 2EY) and he proved that ¢ induces isomorphism of homotopy
groups : @, : 7, (Ye) — ,(EY)), for all ¢. That is to say, Y. and C2(EY) have
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the same homotopy type, and hence @, : =(X, Y.)—— =(X, Q(EY)), is one to one
for arbitrary finite CW-complex X. ((11, (2.1)

Define ¢=060,: =(X, Y.)— =~(EX, EY) for any finite CW-complex X and
special complex Y. ¢ isalso one to one correspondence, and is an isomorphism if
X is a suspended space,

In the following, CW-complexes X,, (=1, 2, ---) are always assumed to be
finite, and Y to be a special complex such that %° is its only vertex.

Consider the following n-tuples:

“

(): Vet X oom Xye— ooee— X, - X,
@) QEY) Xt Ky o eon o X, X,

@): EY &5 EX S EXye— eor — EX,. " EX,

where the (n-1)-tuple EX, i EX e e e— EX, ,f& EX,, is the sespension
of the (n-1)-tuple X e X,e— ++» «— X, , <~ X,. Hence, if one of these three
n-tuples is an n-tuple, so are the other two. We shall call each of these three the
associated null n-tuple of any of the other two.

The following two propositions hold by (7.4) and (7.7).

PROPOSITION (7.8) Let (¢): EY < EX, - EX,+~ EX; be the associated
aull triple of a null triple (¢) Yo S X i X, S X;, then, it follows that
¢lay, az, asy={¢ay, Eo, Ea’a}x“f’-

PROPOSITION (7.9) Let (43): EY <= EX, <% EX, <~ EXy<—~ EX, be the

assoctated null quadruple of a null quadruple () : Yo Sy X, Xy X
Assume the condition (1.6) (substituting ¢ for ©), then, it follows that

dlay, @, as, aiy=¢{a), Eetr, Exs, Ea,}o(Eoop).

Now, m-dimensional sphere S" is considered as a special complex with only
vertex ¢®. Consider a mapping &' : (8%, §™)-—(S*", ¢") defined by shrinking
the subcomplex S™ of Sy=S™Ue*" into the point €, and let h: (S¥, S™) -~ (8,
€% be the canonical extensions of A" ([14]).

Generalized Hopf-homomorphism H: =z(EX, §™'Y) — (EX, S*'*") is defined by

(7.10) H=gohop!

for any finite CW-complex X ({11, [4]).
ProOPOSITION (7.11) If acr(EX, S™Y), pex(X:, X)) and yer.(S7), it follows
that
H(oo Efy=H(a)> Ej3
H(Eyoa)=E(y Xy)> Ha)
H(Ea)=0
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where, in general, ax [ indicates the reduced join of a and 3.
PROPOSITION (7.12) Let (u): S} -~ EX,« EX, > EX; be a null triple,
then it follows that

Hiw,, Eos, Eas}C{H(a), Eeoy, Easti.

Proofs of the propositions (7.11) and (7.12) are given in {1}, so that it is omitted
here.

PROPOSITION (7.13) Let (2): S**' <" EX, < EX, ™ EX,"" EX, be a null
quadruple such that the condition (7.6) (substituting ¢ for ©) holds. Then, it
Sollows that

H{(Y[, E(Y{_f, E{l’g, E{l’q})C{H((‘ﬁ), EO{Q, Ea’g, E&'4}1.

Proof. It follows from the conditions that the null quadruple () is admissible as
well as its associated null quadruple (4 'v): S Sl x i - X, A X, JSLx, Hence,

we have
H{w,, Eevs, Eos, Eshi=¢ohod Hay, Eay, FKey, Bos} (7.10)
=doho{d '\, an as a}e(ooEp) (7.9)
Co{hod oy, ay @n au}o(pe Ep) (6.9)
={¢shod'ev;, Eas Ews, Eay},=(Epep)-(p°Ep) (7.9)
={H(w\), Ea:, Eas, Eas}y. qg.e.d.

Let Y be a CW-complex, and A a subcomplex of Y, and suppose that there
is given a map h; (Y, A) — (Z, 2%, where Z is a CW-complex and 2°€Z. Consider
the exact sequence of (1.8)

(X V) 2( Xy A) o

~(CX, X), (¥, A) = 2(EXy, V)< 2(EX, A)

where X is a CW-complex.
Let aye=(X,, A) and w.ez(X,, X)) such that iu(@;ca:)=0, and let y X,
A X., (A) be a representative of the null couple y < X, . X:. Then there

exists a map ¢; (EX, x)) — (2, Z°) such that commutativity holds in the diagram

[ify, fal

(¥, 4 UCK, X)) (CXs X))

” % 1 n p
(Zy 20) . “;; (EX_’r mg) e

where F' is defined by the identity map CX, — CX.. Since [if), fol " F|X:=f1/s
it follows that g represents an element f&hc0 Ya; az).

Let (¢0): Y«
the diagram

X, <2~ X, - X, be a null triple, then, commutativity holds in
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Y ‘::‘"L Xx U CX; “‘ia'" EX3
ag
F ] » i h2 E e

! :
Z e EXo EX,
E Fag

Hence, h.{i.ai, & asi~h,<6 Ya,, a2)-Ews. Morever, these two sets are cosets
of the same subgroup

hs( o {?:*(,}'1 @ 7(EA:, Xx) + :(EX:, Y) B Eﬂ’;’;}
= h*“(EXQ, 1’) <« Eﬂ"&r

because, hyoieqi=h¢o)cotea@=0. Thus, we have proved

PROPOSITION (7.14) h.{tsci, au @3} =he20 Y a2 @) Eas.

Similarly, let (¢): Y‘iﬂ X R X, <2 X, X, be a null quadruple which
contains an admissible representative (N): viox, Lox L x, <Lx (4;, A
As).

In the diagram

vy yex, - gx, - Ex,
fa2

k !91 lm’.

‘;2 e EX) —— E:X;; e EX4
4 . £fs

- Efs

commutativity holds, and it can easily be seen that
PROPOSITION (7.15) ~hyo{isa;, s a3 ey} C{hyeo0 Y aioas), Fas Fash
The map ¢ : =,(SH)~7,,1(S™*!) induces an isomorphism of the homotopy sequ-
ence of (82, S™) onto the suspension sequence ([5]) of S™ i.e. commutativity holds
in the diagram:
Fea(S™) == m(8B, SN Tz - 7(8™
«.s] ¢ # 16
(S e 7y (8 BLEL) e 7y (S ) e m(S™)
in which, ¢ is identity on =.(S8™) (r=1).
Hence, it means that

<
Es

<
é

(a) 6=d¢¢
(7.16) (b) doge=kiod
(€ ¢otu=FE
Let S’””:ﬂ—EXl 22 EX, be a null couple such that w,cay#0, and let
S st X i X, be its associated null couple.
Applying (7.14) and (7.15) by substituting as (Y, 4)=(S7, 8™, (Z, 2")=(S¥,
€% and h: (S™, S™) —(S¥ ¢%, we have the following propositions.

o ?
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PROPOSITION (7.17) Let S”*'<““ EX, < g1 5™ EX. be a null triple such
that as.ca;=0, then, it follows that
H{Eal, Eag, Eag}lei)‘”(mca'g)cEzagcp

where H and ¢ are homomorphisms as follows:

5 IR
2(S™) 7y S™ 5 B, B
{

:

11t

ﬁqu?(sm+!)

T

7S (1)

PROPOSITION (7.18) Let S™1 “™ gx, &% g 2 gy 2 By be o null
quadruple such that the condition (7.6) holds., Then, 3t follows that

H{E{ll, E&'g, E&':;, Ea,}1C~{H6“‘(moaz), Eza'a, E2a4}o(E'p).

Proor.  H{Ew, Ea:, Ewas, Eadi=¢h{t.a, as as adc(po Ep) (7.10)
C—¢{h<d Y aroas), Eay, Eay}e(poEp) (7.15)
=—{hohod™ed N ayom), Eiay, Ela}o(0?oEo) (7.8
= —{Hod Y aoan), Ect; E'a}o(Ep). q.e.d.

& 8 Boundary operator

Throughout this section, we assume that X and X; (i=1, 2, ---) be finite CW-
complexes. Let Y be a fibre space over X, with a fibre F and a projection
p: (Y, F)ye—— (X, a}). Take the basic point ¥° of Y such that y°=F. Consider
a diagram

a3

(X, Y) " m(X, F)-

- 2(CX, X), (Y, FY) <" =(EX, Y) "~ =(EX, F)
|

fNg

~EX, Xo) ¥

If follows from the covering homotopy theorem that p.’ is a one to one cor-
respondence. We define 4: =(EX, X,)~— z(X, F') by

A= 6 @ pi‘!ml.
The exact sequence

(X, V)

(X, F) '~ =(BX, X)) = =(EX, Y) " 2(EX, F)«—--

is called the homotopy sequence of the fibre space Y.
Let fi: (EX,, &) — (X, 20) be 2 map. Since p,’ is one to one, there exists
a map G: (CX,, X,)— (Y, F) such that commutativity holds in the diagram
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Y, F)—(CX,, X))

:o"§ gp

(Xo, 28— (EX,, ai)
i
PropPOSITION (8.1) May By = da; - o
Proor. Let fia,, f2€a., and consider a commutative diagram

4 Cfe

(Y, Fy«— (CX,, X\) (CX., X2
p’E {‘z) ir)
(X0, xd) « ; (EX,, 29) . (EXs af)
5G=G ! X, represents da;.  While 8(G-Cf)=G-Cf:| X:=0Gf> represents
Moy e Eas). q.e.d.

Let (5): Xo—" EX, < EX, " EX, be a null triple such that a:ay=0, then
the triple (dv): F A ox < x, <™ X, is also a null triple.

ProOPOSITION (8.2) My, Eas, EashiC{day, as oy}

ProorF. Let th EX, S EX, Rl EX, (A, EB) be a representative of (¥).
Let G: (CX,, X)) — (Y, F) be a map such that p'~-G=f1-p. It follows from
the covering homotopy theorem that there exists a homotopy D, of G«Cf: such
that p’<D,=A,op, where A (x)=Ac(t, z) for tcl, and xeEX;. Then, D, maps

CX. into F. Define 3 homotopy h,: (CX:, 2 —(F, ¥ by

he(t, ®)=D;c((1—28)t+s, 2), s, tel, veX,,
and define a null homotopies D, of G-Cf; and A/ of fi-Ef, by

Dc,zp‘az 0§t§1/2,
D/ =ha 4 1/25t 1,
A {Ag,, 0=t=1/2,
C 1/25t<51.
It follows that
poeD/=A°op for tel,

and that D/ | X,=0D, defines a null homotopy of 6Gof..

@ f2 fa

Consider a null triple Y «— CX, e CX, ¢~ CX,y, (IY, CB) which defines a
representative of (4v): F Pt Xy—ﬁ“ X-ylng, (8D, B). Since

o{G, D', Cfs, CB, Cfs}={6G, 6D, fs, B, f3}
and since p'{G, D', Cf:;, CB, Cfs}={f1, A, Efs, EB, Ef;}cp,
it follows that d{a,, Eas, Eas} ~{deay, as, asy. The proposition follows from the
fact that Ar(E*X,, Xyc=(EX,, F). q.e.d.
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Let () Xo- L EX, i EX, Lo EXy—Ff‘» EX, be a null quadruple such that
aros=0, azoas=0. Denote by Gy the subgroup of =(E°X, EX,) such that
G/ n(E*X,, EXy)-E%s and by G, the subgroup of =(EX; X)) such that
Gy B, G (X, Xo).
Assume that

(8 3) {OG {0’], E(,}';), Eﬂ'g}g, OE{{—\"Z; X, a’-}}v
" Gl’+EG2':z(E2X3, E s

Jay

then, it follows that the null quadruple (Zv): F <~
admissible as well as ().
ProposITION (8.4) Under the condition (8.3), it follows that

az g ay .
Xl A Xg G X3 D X4 18

Mevy, Eees, Ews, Ba}yC{day, oy g, asjop
where p: E*X, > E*'X, 1is the map defined wn (3.9).
Proor. It follows from the condition (8.3) that the null quadruple () contains

an admissible representative such that

Efz

X, Ex, xS BX, N EXL (A, EAs, EAY.
Hence, it follows that
AL f, (Ef., EA,, Efy), Efs, EAs Efih

:d({fh E(f‘?v A'li f‘-‘?o)v E[féy A3.~ fé]}CEP)
c{dfy, (fu Ay fo), Ufs, As fillep. q.e.d.

§ 9 Notations and main results
In the following sections, denote by R, (n=2) the special orthogonal group,
U, (n=1) the special unitary group, and Sp, (nz1) the symplectic group. Let
P Ry By s Uy Uy €75 Py Spay (2 m),
and By Sp, - Usyy B U, — Ry, (n21)

be the inclusion maps. Let us denote the projections of the bundles R,, U, and
Sp. by

Y2 Ru _M/’S}é 7‘1 p, . Un

» S-gu «1’ pll . S'p" > 8471—1

Now, let G, be one of these classical groups. A generator of =,(G,) is denoted
by g, and is called original if
(1) Q:;&‘Ei"’ ?bl“‘:q(Gu-l)
2) g, is not represented as gy=ac3 for any
a€x=, (G, and fe=,(S") (¢>7)
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Denote ™ *cg) by ¢h{m) for m=n, where gy(n)=g.

For the generators of the homotopy groups of spheres, we shall use the same
notations as in (11,

Let Z, Q, and C denote the field of complex numbers, algebras of quaternions,
and of Caylay numbers over the field of real numbers, respectively. Then the
spheres S', 82, 8% 895 and S7 are represented as follows:

S'={zeZ: =1}, S'={peq: 9i=1}, S'={ceC, ce=1}
Si={g=xk+r.j+usi+a8Y; €,=0}
St={c=(q, ¢"V=8S7; xy=0}, where ¢ =x:k+a:j4+ 2142,

Define the maps

©.1) ST’% : St—> Uy, 71 St~ Ry, 7} S? s Spi. 5 S U,
lc4: 83— R, 5: ST— R, 43: S¥— Ry, 4: §T— R:
e =z22 (2, 2€8Y, <i=k¥-7},
W) =99 (g, ¢E€8?), =l ti=kiodl,
He)ey=ce' (e, €8),
Bo)g)=q9'q (@83 989,
Ale)e=cce (ce8§°, c'e8%.

It is well known that

2 4 e P S
(9 2) jp*fl—(h PxT3™ 3, PeTi 0t
lp*/:.%:???: p*ﬁ:/}(;y

We shall denote their homotopy classes by the same notations.

In the following sections, we always consider 2-primary components of groups,
For simplicity, we shall denote e.g. =,(G.) to mean the 2-primary components
7,{Gn; 2) of 7,(G.,); and use the terms such as equal, isomorphic, in the sense of
Cx([21], § 10). Denote by ®Z, the 2-primary component of the cyclic group Zs
and by ®m the 2-primary component of an integer m.

Now, we shall state our main results.

PropoSITION (9.3) The original gemerators of =,.Sp.) (£13) are given as
Sfollows :

T”ér (0"%&{‘(‘”%(2), 1/!, 4(6}7 ;llgoe{f‘lili(z), 1”9 VG}:
"L e{i"%2, 7 8o}, where Y'io=my"ly for some odd integer m.
PROPOSITION (9.4) The original generators of =,(U.) (q=13) are given as
Sollows :

ol o5, WRE{TB), ps 2a), uLe{ri@) 75 wioni)
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uh € {r'43), 75 i}, ubE {0, du5 v},

wte{t3, 5B) o, 26}, rEe{i'43, t'i8)o, e},

oS {, YE 8a), Voyh, leoady, uhe {354, vh, 4us),
YRe {5, i lierly, niod, @ LE{iS, ¥, 1601},

ProPOSITION (9.5) The original generators of =,R,) (¢<13) are given as
Jollows :

i, A, kPew’l, ric{zi(B), v, 4},

rie{i®, ti(B)ons, 7i}, rie{i®, i(B)ons

Ay oh e {i9 yl, 26} where yi=1%9)cn,+7§9),
r€{7i(®), v, v}, klouly, rhe{i™ 2v%, 7, 4e},
Koouby, rite{ith, rif, g8}, kPerty,

7}36—5{7:14,12' kl?o),‘(;‘z’ 2“2}.

810 x(Sp(n); 2) q=13

Consider the exact sequence
iy 4 e’
Tyns2(SPusr) Tans2(SDy) - Tgp, 3(SHH8) Zins3(SPne1)

From periodicity of the stable homotopy groups of symplectic groups [8], it follows
that =4,,2(8,,1)=0 and 7,,3(Sp..1)=2Z. Hence,

(10.1) T4 2{(SDn) 18 @ cyclic group generated by Ay, ..

Denote deg,,a by 7imis or simply by 7”, which is the characteristic class of the
bundle Sp,,; in the sense of [7], and we shall see later (§ 11) that vem o is of
order = ®2n+1).
Assume that dyim.=0 for some integer d>0. According to the cellular de-
composition of symplectic groups [8],
(10.2) S’g:),,@)_e“"‘3 18 a subcomplex of Sp..: such that commutativity holds in the
diagram '
Spu S Spn U eUHS
hr
v »
\"S'Ul*s‘/
where p is the map defined in (3.1).
Consider a null couple Sp,B@S"'*ﬂ«'iL- 842 then the coextension (¥, di)

satisfies p.(”, do)=de..s. (¢, d¢) has only one element because %.74n.2(Sp.)=0
(c.f. (3.4)).

(10.3)  Denote (e, desu,s) by o'nils, which generates zm,o(Spn,1) for n=1.
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Since the identity map of Sp,Ue**® on itself is an extension of the enclusion map
Sp, — Sp,uUe*?, it follows that
s
(10.4) W e N, P e, At}

Define an integer »(n) by Py mse=7(®)v,.1 for n=2, and r(n)#0 (r(n) will
be computed in § 11). Then it follows that

trm—1 LT

7o (M) rsn o= (WY in )= APy S 42==0.

e r{ndy .
Consider a null couple Sp,.; «— S*-?—— S**1, then the coextension (", r(n))
satisfies p.(y"’, r(n))=r(N)vi, 1

i

T”?«ne-2e(7’l dar— 2y 7'(’71)!«4,1 2)
r”?ﬁ+2e{inn, " 1’ T”?ﬂ—l.y 7'(72)1"4,:_2}.

(10.5) {
Now, consider the exact sequence

Q— /qn*s(Spn) "‘""' tan‘q(s“wa) "'W 7'4::+4(Sp1u1) T Ty 4(Spn)
(10-6) (““— 7'4»1-@5(S4 +3) ‘_——- “4n45(Spn+l) e 7 4n+o(Spn)
E)
‘-_' 754714»6(S4n+3) ‘M zdn+6(spn+l) ("——' "'4n+6(sp1x) Tgna ?(S‘nﬂi)

According to [1],
Tan a8 Y =Zp= (741”3), T s(SP )= Zyp= (7742n+3)
T4n +8(Sdn*3) = ZS:‘ (V'ln + 3)9 and zhHT(S“Hs) :0’

Let n be odd, then it follows from [9],

7?471+4(Spn + 1) = 01 ;’741t+5(Spn+ 1) = 0; and ﬂ&n\tﬁ(spn + 1) = (T”HHG)
Hence
47“,8(Spn) Zz _— (T ns2® ’7411 pZ))

37471+4(Spn)=Z2:(T 4n+2°74n+2),
73'41“5(8171:):0 (C.f. (11.11)), a-nd

Thns G(Spn) T Tany 6(Spn + l)

(10.7)

Consider the exact sequence,

(10 8) 472*7(84"*3) ‘“““ s 4n+?(Spvul) "—— “41”7(Spn) *““' 76n+8(sm‘ 3)
. Pt
= Tany8(SPns1)  Tsnss(SDR) e Tan o o{SH"3) S Tin19(SDas1)

According to [1],
Zin t(SH =0, 740, s(S*"* =0, 74n,o(S"' ) =2Zo=(4n43),

Hence, it follows that
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(10'9) 7‘:411m?(Spn)zz-in»?(Spn+l) fOr ng.l-
Consider the element r";‘,,?gs%,,ﬁ@i”“"~ oy mmen *(MADvin,e, fea.s), then

DT h e Y+ Drsnes Gunast ~ ity 7+ Doansz, Gun.s) for 22, It follows
from (11.11) that r(n)r(n+1)=+2 for n=0 or 1 mod 4. Since e€{»? 2¢ 3} by
[11, it follows that
(10.10) there exists an element $iu:S{y"iwis Mrsu.o fun.s) Such that p.sh..=
Ean-1r AN Shuar(m+ D) =y"2 e pae for m=0 or 1 mod 4 (n24), where m=2 or 1
according as n=0 or 1 mod 4.
(10.11) 74, +(Sp.)=2Z, for even n, and

it is generated by 847 for n=0 mod 4.
Since 74,,9(Sp.)=0 for even n, and since 7’120 rinie is of order 2 ([11), it follows
that
(10.12) 74, (Sp,) =2+ Zs for even n, and

it 18 generated by Siyrc a7 and y'fui2otings, for n=0 mod 4.
Let n be odd, then 7"s, 600,68 700 0(SPu. 1), and oG milec vin,e)=v3inus, s0 that
A(Vinpa)=0, Le. ¥’ i3 a monomorphism. Hence substituting n for n-+1, we have

147

-1
(10.13) T bt 20 Gan 2= Sea(n) # 0,
o 2 T ) . _ —
T oo Yang e = 84 13(M) 0 44, 3£ 0 for n=2 mod 4.

Since " fur20van,: 18 of order 4 or 8 by (11.11), and since i, s(SPa.1)=Z,
Tanes(SPu 1) =2Zo, and 74, 6(SDu,1)=("tnis) it follows that

Jor n=2 mod 4,

Tans 3(SP0) =2,

TSP = 2o+ Zs,

Fon s(Spu)=Zo+ 2y or L2+ Zs,

Fina6(SD.) 18 @ cyclic group of order d/2 or d, where d s

(10.14)

\the order of y"7¥L.

Hence, from (10.8) it follows that if n=1 mod 4 (n=5)

(10 1{,) {’T-hu T(Spn)::zﬁz(séln T)y
0 ’lTTJMS(SPn)xZ:"r‘Z:@S?m-r LR/t

Now, we shall calculate =,(Sp,) for low dimensional cases.'’ The map "}

(defined in (9.1)) is a homeomorphism, hence (10.16) ="}, : = (S®=z,(Sp) (g=1).
Thus, we have

{1} H. Toda announced the results in [13].
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TI(SPR) = 09 :2(Spn) = 09 :-d(SpJ = (:'";’;(‘?l)) ('H‘ g 1):
A(Sp)=Zo=("n)-73) (n=1),
=58P =Zy=("in)=73) (nz=1).

(10.17

Since 7¢(Spy)=Z,=(z"1=1"), it follows that
(10.18) Pi= iy, 2e(Sp) =0 (n=2)
It follows from (10.4) that

(10.19) e {"42), ¢, 44} mod 4z:(Sp.), and

=4y

{:;(Sp,,) =Z={(w":(n)) n=2), where
¥4

Note that zs(Sp.)=0 (n22), =(Sp,)=0 (n=21) and =(Sp)=0, hence by the homo-
topy sequence of Sp;, »": 7(Sp)=rm1(S:). It follows from (10.5) and (11.11) that
e {i"® Y, 1l mys} for some integer m=+1 or +3. Let 7" {<"}¥2), v, v}
mod (w"52v7), then, 7%, also generates 7,,(Sp.).

[”’10(3272)““25:(7'”?0 s
(10.20) 7€ {z"5(2), v/, vs} mod 4zo(Spy),
Lo ey =4yl =47"%
Since, {/, ve, Ro}=gs ([1], (7.6)), and {V/, 2v¢ w}=¢ ([1], p. 58), it follows that
(10.21) P o po=7"2)ces, 2" Govp=17"32)c¢
Note that 7;0(Sp.)=0 (n=3).
It follows from (10.14) that

21u(Spr)=2Zp=("}(2) < &),
(10.22) 712(SP2)== Lo+ Za == (r"§(2) o 30 5u1) + ('4(2) e 123),
13(sz) Z +Z4 or Z”+Zb ("”(2) flg e /" )-4} (T 1(:“”10)

It follows from (10.4) that

"11(82771)'“2—(")”3 (n)) (n>3)!
(10.23) W'he {2, ", 8o} mod 8, (Sps), and

23
Py = 8{11.

It follows directly that

712{Spn)=Zo=(t"iM)e ) (mZ23),
{, 713(Spn) = Za=(c"}(m)o 115) (n28).

In § 11, we shall show that o} 07,0, Hence, we have
(10.25) i "oy =1"§8)o0 y13.

(10.24)



66 Kunio Ocucui

§11 =(SUM) ¢s13
Consider the exact sequence

iy

7':2n( Un . l) “

4 . e
3271(Un) D 7721:,!(82”‘]) — zi’lul(Uvul)

From periodicity of the stable homotopy groups of unitary groups {97, it follows
that 7. (U,.1)=0 and =, (U..)=Z. It is well known that the homomorphism
ps’ is of degree m! 9], so that

(11.1) ﬁzyg(Uu): (Z)Zu!:(‘d!‘ht«fl)'

173

Denote de,., by 7’5, or simply by 7" or by 7/, which is the characteristic class
of the bundle U,,, [7]. Hence

11.2) {7"§f,,~:i“‘- oty for m=2k+1

Dy =y for even n.

Note that 7752 is of order Z®@2n+1)! (c.f. § 10).

According to the cellular decomposition of unitary groups [8],
(11.3) U,;L;eﬂ’”l i8 a sub-complex of U,,, such that commutativity holds in the
diggram '

Un+l b Un Liey“ t

N o7
SQ"H’I

where p 18 the map defined in (3.1).

Consider a null couple U, L gem S%, where d=®n!, then the coextension
(', do) satisfies p.(y), d)=de,1. (7', de) is a coset of the subgroup iz, (U.),
but since p,’ i8 a monomorphism, %, 7., (U,)=0.
(1L4) (20 de2) comsists of a single clement, which we denote by o2}, for
n=1,

Since the identity map of U,,ge‘””‘ onto itself is an extension of the inclusion
map U, — Unyez"”. substitutiné n for n+1, we have
(ALB) @i {i™ Y ¥, deas} for n=2, where d=®(n—1)!

Consider the exact sequence

F) 0.7
xi;z—l(Un-l) A zﬁ:z(sgn-l) e 5-’21;(Un)-

Since y"*top=(dqj=dy=4p.y’ for even n, the coextension (y"**!, 7) exists, and
PG P=wn.... Henee,
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lgne ’?,;.lg, Tan-oly or
(1L.6) {r (r. 72n-2)
yreld™mry yrel, fa.oo} for even n.
It is well known that {10]

~ AZy=("2a72) for even n,
(11.7) i-2n+!(Un)““ 0 fOT odd n.

11.8
(11.8) ]7;'2,”2((]“):ie)ch,l,!,:"z for odd n.

Let d(n) be the integer defined as follows:

Il if =3, 7 mod 8,

2 if n=l, 2, 6 mod 8§,

11.9 din) =

( ) () 14 if n=4, 5 mod 8,
8 if n=0 mod 8.

According to {14] and [15],

" "n+3(Un) Z{Itn) ('ﬂ 2) where Zd(m—z/d(n)d

- (U )__4 { : Z(vz»f:Z)!xd(n\/lG f07 even ’I’L_~_>;4,
TR D Z apeens 14 for odd nz3.
(2)Z(n»3)!xd<n¢1)/4+Z2 fO"l‘ n=0 mod 4,
B Z nadixdnats 4 for n=2 mod 4 (n=6),
11.10) zansolUn)= ) =
1 Z vmtsacnaty 116+ Ze for n=1 mod 4 (n=5H),
BZ nadbdins 1> /16 Sfor n=3 mod 4,
7ons sl Un) = Zaney (02Z3),
Zanss ¥ Ziy Jor n=0, 1 mod 4 (nz06),
7527:4»7(Un): { —
Zinses 2t Zicny Jor n=2, 3 mod 4 (n=4).

where t(n) is the integer defined as follows:

16 for n=0, 1 mod 8, n=10 mod 16,
8 for n=4, 5 mod 8 mn=2 mod 16,
4 for n=6 mod 8,
2 for n="T mod 8,

t(n)=

2 for n=3 mod 16,
4 for n=11 mod 32,
8 for n=27 mod 64,

16 for n=59  mod 64.

Consider the exact sequence

(Fonso(U) =P Z o+ Zo= (") 501 ) + (G an o 750) for n=2k (k22),

67
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S

0(

4
Tona I(Un I) e Tan g, 2(S2ﬂ~!) « Tan ‘fr2(Un)o

Since my,,o(S* =22y 023), mens(U..)=0, Zs, or Z, according as n=0 mod 4,
n=2 mod 8, or n=6 mod 8, respectively, and since p,/<l1**=p." it follows that

(11113 2" =)o (B=2),
+1or +3 for k=0 mod 2,
where rik)={+2 for k=1 mod 4,

dor0 for k=3 mod 4.

Tet m be odd. Since din—Dvu,. & Imp,/,

; . hid o d{n—=1)v o
P tedn—Dy=d(d(n-1)2)=0, Consider a null couple U, ;<— S 2 220 S,
then the coextension (7, d(n—1)») satisfies .47, dm~D)=d{n—1)r.,_ ;. Hence,
as a generator of ., .(U,) for odd »=5, we can chose an element

Wy € {370 7113:'7;,}3, d(n—1)vs,_»} such that
(11.12) ])*’u.:f,,; ;‘,:d(nﬁl)y‘z"%’ and
Wapa(n+ 1) =270t .

In the case n=3,
(11.13) w'iovs@rg(Us) and py/(w'ioys)=2u;,
It is easily observed that
(11.14) 7o, s(Un) 18 generated by 7'%movs, for m=3.
Now, we deseribe the homotopy sequence of the bundle U, as follows:

1 a9 e i 4 2n -
(l ]:;) : ‘T‘I(S“ ’) A ;7<1(Un) i :‘Trg(Uu—I) D 7?,1,.1(82 l),

w41

It follows from the exact sequence (113} that
Ty 3( Un)z:'.?n + 5( Un i I)::Zdwu 1y

If n=4k (kx1), we consider an element ["o)"®ov&r,,,s(U,), which satisfies
P/ (Pey”HFop)=d, o, and B Mooy ou=y""toy, Consider the exact sequence
(M%) If =8 mod 4, it is as follows:

24 i’

4 n—
(I l:_';n i 4) : 0 e Z(I(n;ﬂ)!x:l{n)/& D Zdur»o~2)!t?ut\/4 A ’-"72114»5(82” l).

LAIES |

Hence, i, =y
p*(rl)z»‘l' p“):wi,, 1.

Summarizing, we have

ev=={, The coextension ("', L), ;(U,) satisfies

@ ey"haove)  for n=4k

11.15 T2nes U, =Z, e :{
(11.15) (U)=Zeaes () for n=38 mod 4
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11

where un,.,& {17, YL, 150 such that

a

1,0 —_
ps« Uop 5= En 1y

243{:,,5(?2, -+ 1) :7,7?

1

Note that if n=1 mod 4, then =, (U)=1 /7. (U..1), and that if n=2 mod 4,
then :Einﬁ(U;'z):O-
Let n=8k+1, then the exact sequence (11%,.;) is as follows:
(050t Zev™ 2o Zok Bng " Zo.
Consider an element 1" tesir o€z, o(U,.1), then it satisfies p./(1* ' o s¥h ) =¢0
Now, let n=4k+8 (k=1), then the exact sequence (112,.:) becomes as follows:
(12,00 0 2o Zy " Zok Zyonry = Znen
Since y"1.2,=0, we consider the first derived composition {y'""!, 2v, v}, which
satisfies that »'.{y’*"%, 2y, v}={s, 2v, v}=¢. Henece, there exists an element

u?;-LJE{Tm t, 2y, v} such that p. ug"’rln_“,-—-h,z 5, and that ul, y‘,(n)_ﬂ,‘)u,m e
Summarizing, we have
lnosgi‘l? H}_ ',“"‘1'70'0-2_" or 712'819 k>1)'
AL16) 7o AU =ZatZioy = {( )+G ) fi (
Ul )+ e, e) for n=2 mod 4 (n26),
where wini: € {15, Yo, vou.a} such that

D Wensr=E2,_1,

u‘n+ (n+1) Zu?,ff)
1t follows from the exact sequence (773,.,) that for n =4, 7o, (U ) =1 5720 (U 1)

- 1

The exact sequence (/3,.¢) and (I3, 0) are as follows: for n=5
J »7 is’
([[ 2046 0 Zlu:«l) D ZIG D :zu,»(;( Un) CIT T2 h( Uu l) G " Z:.”
o N i
(ﬂ:‘;&le) P 0e— ‘N)Z('Il+3)!x(l(n{~l)/4 ¢ -"727146( U,,) "“‘ a Z-;, for even ’n>4,

[ 4 P
0‘ @ Z(mB)'xtl:m 1716 T Ty, .,u(Un) A Z-_g, fOI' Odd %»;3

If t...1,=0 mod 16, then y" 'ot(n~—Dru, o= At 1,02..1)=0, hence we consider
the coextension (/%71 t._1,0) C 7. 6(U,), which satisfies
(777 tn—=Do)=tn—1)oz. 1.
Hence, the generators of =,.4U,.) are as follows:
B Z enemtins s 13+ Le= (Uhie)+ 02l for n=0 mod 4,
("))Z(.-zfpz)!w(nu)ﬂz(u'?naG) Jor n=6 mod 8,
D Z s wrvaonts 1o+ Le= (Wi o)+ (" 01 5) for mz=b mod 8,

D Z s mtednsty 116=(Un 1) Sor n=3 mod 4,

(11.17) 7:2;1,.(}( Un):
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expect for n=11 mod 16, n=60 mod 64, and for n<4, where

u?n\,tﬂew: {im' " l; le'nil‘.l, t(’ﬂ"“ 1)”211—2}1 pltu'.’”ni-ﬁz t(n - 1)0’21%2-

The exact sequence /7. s is as follows:

h 4 »S 7,7
(”?;;Aq) T Qe Z&/rluul) G Z(rua;!‘i"Z:Z ¢ Z{,xuS‘;!!d(na,l)/4 « 0, for even n= 6,
4 7’ i
0 Zs,uoty ™ Zasre Znntamen 16— 0, for odd nz5.

Hence, if follows that for n=6,

dn+Dullls, for odd n, except for n=1 mod 8, n=11 mod 186,

me U2y ok b Y ot o e, for n=8k—2(kz2), m=+tlor £3,
(11.18) Ui +2)== +2 1" 2oy i+ o ghs, for n=8k (k21),

4 oy sy e

or 4 [Pyt forn=8k+4 (k=1), n+60 mod 64.

Now, we shall find out generators of =,(U,) for low dimensional cases.” It
is well known that

=(U,)=0 for n=1,
7(U)=0 for =2,
7(U)=1"57,(S%  for qz2,
m(U)=Z=(c'§(n)) for nz2.

rl(U,,)=Z:(r’i(n)) for nz1,

(11.19)

It follows from the exact sequence (/73) that
(11.20) Yi=t'fon,
(11.21) There exist original generatprs of =,(Us) as follows:
(1) W'z (Us), m'?,e{r’ﬁ(:;), 73y 24} mod 2x5(Us)
D’ 0’5 =21,
(i) ubeExw(Us), uhe{¥(8), 7, vori} mod 0, pule=vsers,
(ii)) ulexn(Us), uhe{d’i@), 7, i} mod ('i(3)-es),
piudi=13, 2ut=7"(3) o
(iv) ubcxip(Uy), uhe {0, 4us, vs} mod 0,

pule=0", 2uiy3)c3"(3) pa.
(i) ~(iii) follow directly from (11.20) and from
(11.22) Wien=1§8)oy, wioti=ciB)oe

Indeed, w?3oy:&c$8)5 {7y 2¢, 7:}, which consists of a unige element z'3(3)os' and

(1) =4(U,) are calculated by H. Toda for ¢=15 in [13].
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a'tori={wtc s, ve, b ={iB) oV, ve, 5ap=73B)={V, vy, va}=2§B)ces ([1], (7.6)).
Next we shall prove (iv). Consider a null quadruple

2
(@): Useo Up el 842870 g0,

13, 2,72

It is very easy to see that {> %], 8.3=0, and {3i, 8, v:}=0, Hence (i) is
admissible. "% 2o (Us)+m U)o ve =320 ma(U)=(2"i(8) o 12g), because =, (Un)=0.
Since {13, tjcve7i, v} 20, it follows from (6.5) (ii) that the second derived com-
position {i'*?, '3, 8;4, pry 1S & coset of the subgroup generated by §(3)oss. It
is observed that Us‘—— U, T2 gr Mgt g i also admissible, and that

{22, Yious, Bey={¢'>2 13, 8uy, i} by (6.9) (iii). It follows from (6.14) that

2 {052, v'ovy, 8, vib={vs, 8¢, vs}=(s"") [1]. Let ud.&=:(U,) be an element such
that ube{7* 2 11, 8w, vi}, then plula=o’". Since mo(Usd=2Z,, {12 1'%, 8ua, v}
consists of two elements, +ud: and —ul, and 2ul;=5(8)0 1.

While, {i'®2, 7%, 8u, i} ={i3), 75, Qeg)o(@w1), v}~ {0, 4v;, v} by (1) and
(6.13) (ii).

(Note that w'lodvs=awio7d=7iB)ov ci=1"5B) e povso =13 2oy'fov0;=0, and that
w 50'1"(80)_{'— Q(US)””Q“‘(“} SOG,I’)”“} 3 {Vﬁy 8(81 1’5} {(U 1) 4V5y 2{6} j1"9:0 (by using
(5.7)).

Hence, we determine the signature of u, so that ule {w'}, 4v;, vs}. q.e.d.
We have proved that
(11.23) wlog™ =0,
It follows from the exact sequences (I7%), and (I7%) that
zs(Un)=Z=(n"}(n))  for nz=3,
(11.24) WG(U:}):Zq:(f’gop'),
yi=r'foy/,
Generators of =,(U,) (¢=13, n=4) are obtained by (11.5), (11.6) and (11.12),
which are listed as follows:

(Ul’§7 “)’gv ")ulily "),;’3; T’E‘S) r'?‘ly 7";078, T,?2O7]‘121
w'lovs, oy, uls, Moy"sovy, which satisfy:
(11.25) P W=20, P 0'§=80, P 1=801, D@ 5=160,
p*’r'?s:’?’ P*'f"x;z“-:'/]u, D' Moy b)) =vr, Dilulz=4v,,
W4 ors=21"s, Ub(6)=2r"%.
Comparing (11.23) with (10.19) and (10.23), it follows that
(11.26) Pow=2u"% Pew"=w"

It is easy to see that
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(11.27)

. I
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(U@ =18 g3 +4l
Vi, (5) =2ui;

Now, we shall prove the following

(11.28)

Proor.
(i)

Note that each of these sets consists of a single element,

(1) otop=4y, (i) aheyy=4i’s $oltey
(iil) uioop0=0, (iv) u}ogu=0,

(V) whove=2ui,, (vi) wioe=78(38)-¢,
(vil) U3povy0=0, (vill) uleoh=0,

( lx) (l)l;0b722l4 (’T“} V]Q“"",Q(‘i) g’ 5

(X)) Uleop=20" 11" v,

(xi) 0)11”‘11“4%’(6)’ (xil) ylervs= ul{4),

(V) efes{i™? @), 26) mod 27(UL),

(i) e {i™*, 75 8k} mod 8zy(Us),

(iii") whie{d’™4, oyl 8t} mod 8z,(Us),
(iv") whe{t™s, ¢, 166.} mod 16z,(U),
(V') rhse{it?, 5(3)-y, 76} mod (w3(4)ows),
(vi') 7he{i®, Foyfs, 70} mod (2uix(6)),

(vii') um&?:{‘b'“ 5, 74 4us} mod (ufy(5)).
(i")~(@iv’) follow directly from (11.5).

wtoq= {3, i)y, 2eetopr=i e {c{(3), 2/, 76}
=140 {2'5(3), 75, v} =72 {3@3), 73, 26} 0 (2vs)

=/} (4) o (2us) =4y}

the reader is expected to examine.

(i)

(i)

Since 7,.*

(iv)

(v)

(()’S-» 7/‘9:‘: {‘IZ’S' 4, )'/:;, 8{3} o ‘//‘9 == 'i's' to {4)',3, 2!3, //'3}
=w'i(5)o 1z, 2t5, s} =3(5)e (2m)
=% A Mow oy,
=470 da S0y,
ulo(4) o Mo=yogi Aoy’ o7y
=4y eritdlio{(@)o gy
== m'é enze V3+4.' 3(4) < 63:: .

’Nz?x“?n::{ffg(?)), 73 vi} L"//‘u=~‘7'f.';(3)0{‘/,"3‘"2/4, Y1y ‘{im}

=@ o o {7, va, Jroy=r§(B)or 0rf=0
WSovg= {4, 7L, 8Beshove= {3, 278, deg}ous
= {4, w'3(d) o v, deg} =1y

(by {13,

(e.f. 11.18)

(by 11.25).

In the following,

(by 11.26)
(by 10.20).
(by 11.27)
(by 10.21)

A z{Us) — =(Uy) is & monomorphism, it follows that ufyo7,=0.

Lemma 5.12).

(by 11.25)
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~ V530 {w], drg, vebe=wl(B) =20,
(vi) ‘*’Ig“’fs:"”g@{%v 2y, votem={w/§:7m, Bue, vols
{z38) 1, 2w, voya=13(8) ¢
(vil) ?&0(4) B Pm:}’lé & /,»'s sy 4 7"':120 crp=0, since =3(U)=2, by (11. 10).
Considering the exact sequence (//%), we see that i *%: =y (Us) —
~1(U,) is a monomorphism, Hence wuj;°v3=0,
(vii)  ui S = {3, 4us, vs} ‘—“l,'m:ft)'?, e {7;3. Ys, T}
(ix) Since p" (wiov)=8v;, w'iov; =210y, or 2Hey" i+ ule(4). Since
udporiy=0, it follows that
wiord=20cy" oy =1"3(4)0 ¢’ (by 10.21).

(v") and (vii)} follow from (11.6), (11.12) and from the facts that

i, 0 mg(Un) 2T o 1= (@) o )+ (o $ 090 = (' 3(4) - 20),
1™ (U +=o(Us) o (dvg) = (ula(5)) + (4’ o o) = (uda(B)).
(x) ubomue={i"4 1§, duglop=>0"4{4"}, vs, i1}
T {(,)'397;7’ Vs, -,?“} {by ()
=3B ori=2¢"% 4o toy"{ o,
(x1) affiop={I%4 toy"i, 810} o

=050 {475 S 11", 200, 70}

=753 {wion, 260, B0} (by @i))

=48 50 (/§(2ro) =4ui:(6) (by (v)).

(xii) Since 2y'icvs=0"34)o 13 (by 11.25)
=2ui,(4), (by 11.22 and 11.21 (iii)

hence, 7'fevg=+u},(4).
(vi) follows from (11.6) and from the fact that
% oz (U +za(Us) o 1= (ud2(8)) + (' 2 711) = 2uio(6)
(by (11.27) and (xi)). g.e.d.

§12 =,(SO(n)) g=13

Let 4: z,(8")~sz,.:(R,) be the boundary operator of the homotopy sequence
of the bundle R..,. Denote i, by - or simply by 7 or by y, which is the
characteristic class of R,,,. It is well known that [7].

T;’:-l:iu' 71‘15kn~10r1:;‘_1 fO?’ n:2k+1,
12.1) Dafn1=20, 1 for even n,
%0 if nx3, 7.
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According to the celluar decomosition of real orthognal groups [8],
(12.2) R.Ue" i3 a subcomplex of R,... such that commutativity holds in the

¥
diagram
Rﬁ 41 Ru U en
y
N/
[N
Sn

If RS 1’8" ig a null couple, the coextension (7", @) satisfies p.(" «)
=FEa. Hence, there exists an element Fe{i**"*, 1", &} such that p.8= Ea.

7,(R,) is caleulated in [12] for ¢<15. In the following, we shall give the
generators of =,(R,) ¢<13, and investigate the behaviour under composition with
the generators of the homotopy groups of spheres.

It is well known that [7]

7Ry = Z=(zi), m((R,) = Z:=(c}(n)) for n=3,

7 (By)=0 for qz2, 7:(R,)=0 for n=2,
(12.3) 7 (Ry) =44t (S%) for ¢z3,

T (B)=75um (S 4+ (47, (S?) for ¢=38,

ri=2r+235(4).

Let 4: 74,(S*)—>z,(R.) be the boundary operator, then A7) =2(4) ong, ey
=}(4) o &5, A1) =23(4) 0 pra, H(E€"y==344) 06"+ 230", hence it follows that

A(B)o3=0, A§(5) 0 e3=0, A3(5) o 113=0,
(12.4) {ftg(s) o8 =2r4(5) o',
Since =¢(R:)=0, we have
12.5) B(5) o/ =24(B) 0/ =0,

Let ¢: Spo—R; and ¢': U——R; be the projections of the well known
coverings, then commutativity holds in the diagrams

Kt "2t irs .8
Use—8py- - Spy Ui Us
’E/ i 522 0’ /
(12.6) /280 GO CR T VS
R R,
46,6 [ 48,8

The original operators of =,(R;) and r,(R,) are obtained by the isomorphisms
Qx 1 7 (Spo)——z(Rs) and ¢%: = (U)——=,(R,) as follows:
"ri=qa(wDe{ri(6), +/, 4} mod 4 z(Ry),
i0=xq« T0e{ri(d), v, ve} mod 4 =o(Rs),
ko i =ql(w'i(4),
az.mn ¢ ri=q4(@Ne{i®®, <i(B)ona, 73} mod 2 =:(Ry),
78=qh(De{i% %, <4(B)oys, vi} mod 2 xe(Ry),
ESeuto=q4(ul(4),
ke ufy=ql(ut:(4)).
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Note that by (12.1) and (11.8) we have
(12.8) ri=13(8)c7s, hence 73(6)-75=0.

Proof of (12.7). Since

Dut m(Be)——x:(S%) and px: ms(Re)—r5(S7)
are eqimorphisms, p.ri=zi and p.ri=my; for some odd m.
While, p.{i®®, ci(5)=73, 7i} =75 and p.{i®%, <3(5) o 75, va} =vs.
It follows from (11.26), and (11.25) that

(12.9) r38) =278, kb w'iovs=20f,

Hence, 1%%0 mi(Rs)+ ms(Be) o 15 =2:(Rs), and %% ¢ xg(Re) + ms(Re) o vs=2z5(Rs), Thus {i%%,
3(B)e 7, 73} and {159, ti(B) o7, v} are cosets of the subgroups 2::(Rs) and 2zs(R).
The other parts of (12.7) are obvious.

We shall show that

peri=duy, Perio=1, Diklo wi=20;,
(12.10) I D =7%%, Pur=vs5, Dakbouy=15073
Dukbouls =0,
Since =4(R;)=0, it follows from the exact seqoence
4
7o(Rs)——ro{Rs)——=:(S*)

that du,=tiey’ or tior/'+28(4)s1'. Since 4v/=0 and Vv oy;=0, it follows from (7.14}
that p*{zi(5), v/, deg} = rhov Yo (der)=4v,, and p{ri(B), v/, ve} =d Hrdo Yo vr=14.
The other parts of (12.10) are obvious.

The other generators of r,(R.) (n=5, 6) which do not belong to ™" z(Fu.1)
(n=>5, 6) are obtained by composition. They are listed as follows:

(12.11) 7300 v10, 74075, ThoVp.
We shall show that:

(i) ri=ktew?, (i) Kooaton=0,r57:=0,
(i) riovr=4ry, (iv) 78ep=4rf,
(12.12) J (V) rhov=£2r, (vi) royi=k®oule+4rio6).
) (vil) 7doone=T1i(d)oes, (viil) 2ri=yious,
(ix) 27rfovg=7i(B)os&y, (x) 2kCoutr=1i(6)ous,
(xi) 2risovie=tiB)oe’, (xil) kPouli=trior

Proor. (i) Consider the exact sequence

(S5 rs(Re)—rs( Ry ——1o(S)
Aro(SY) = ()= (x4(5) o 78) =5(Rs) (by 12.8).
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Hence i
(ii)
(i)
(iv)
(v)

(vi)
(vii)
(viii)
(ix)
(x)
(xi)

(xii)

,
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is a monomorphism. While p.(k®ec @) =2:=p,r%, so that kf-ul=yi.
follows from the fact that =y(Re¢)=0 and =s(R;)=0.

follows from (10.20) and (12.7).

follows from (11.28) (i) and (12.7).

follows from the fact that 2rfor;=¢,2w' 1) =q4(l*> w"Fs17)=4q.G"3)
=47, by using (11.26), (10.20) and (12.7).

follows from (11.27) and (12.7).

follows from (10.21) and (12.6).

follows from (11.25) and (12.7).

follows from (11.25), (11.22) and (12.6).

follows from (11.21) (iv) and (12.6).

follows from (10.21) and (12.6).

koeul, =gl (ul (@)= £ql 4 ve) = ooy (11,28, (xid)).

Note that kScu?, is not an original element.

In the exact sequence ({1], (2.11))

ﬁg(sj}‘A'i"f?“(Sl])"“ILT:“(SG)‘”’L;’VTIQ(SS),

ae)=y;-7s and E is a monomorphism ({11, p. 45).
It follows from (7.17) that H{us, 7, 200}s= +20y, so that [e, ts1€{ve 70, 2010} mod
2:,,(SY, since H{¢, )= £20,.

Now, in the exact sequence

0"’""751o(R.’)‘lL‘foo(RG)“‘L?‘-‘u(SG)‘i‘ﬁl1(R?)y

zio{R1)=Zs, 716{Re)==Zs+ Zs, hence

(12.13)

Tm P j“""’(2[(61 lﬁ])‘z{lfﬂ! 78 4-’10}r
A, 61 =k > wlo+4ri.

Now, we shall show that

(12.14)

(12.15)

A, ko w't, 75} mod 2m:(R:),
2= £ rY(T), Ao vi=mriy(T) for some odd m.

There exists an orginal element

rLe{i7 0, 208, %s, 46} such that p.rir=2{c«, ¢l

Proor or 12.14.

ki w'i=yi, hence p.{i", kP 'S, 73} =7

It follows from p.(243)=0 that 2= +7¥7), and hence pi'(0)=2xz:(R:). Thus, we
have ALe{i"%, kbow's, 55} mod 2z:(Ry), 2 orr=+7{(6) by (12.12 (v)).
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Hence ilcv; generates =,(R:). q.ed
Proor or 12.15.
Consider a null quadruple
N
(12.16) RitRy -85 go g
Note that 2r{(T)=1"%<y8:15=0 by (12.12) (viii).
Since 7 %z10(Re) =r=10(R7), {7; 8, 27§, 7}5}:7?10(12?)30»
While, {27, 7s, 42} D13 {205, 75, 209} = (2e1p) =0,
Let G, and G: be the subgroups of =,,(Rs) such that

’L.?’ 6o G] o T.'g(R?) & 7}9 and G_} 2 (4(10) C27‘§ 2 .’.10(85)20,
e, Gy=(k%<ulo) +(4r}(6)), Ga= (kO uly)+(2r10(6)).

Hence, in this case, we can not apply (6.3), but I assert that the null qua-
druple (12.16) is admissible as follows. Let B be a null homotopy of (2¢)-7s, and
let A,=rfcB. Since {2, 75, 4493 =0, (27§, A, 73, Ay, 461 ~0 for any null homotopy
As of 75°(4e).  While 2{ri(7), 2¢s, 75} =7§(T) = {265, 75, 200} =74(D o3 (c.f. [11, p. 84)
=17 ke uty+4rio(T)=0 or 4r}(7) (c.f. 12.12 (vi) and 12.13)

Hence, {ri(7), 2¢, 5} C@2ri(T) "% Gy, ie. for any null homotopy A; of #3(7)«(2w)
=137 82 2¢% {370, A, 208, Ao, 56} =17 %0« for some aeG.. Let Af be a null homotopy
of (2r§)o7s such that 4(A4}, A-)=a, then we have {i"%, 4, 2%, A%, 93} ={1"%, A,, 2rf,
As, 75y =10 500(AS, A2)=0, and {2, AL, s, Ay, 4o} ={Er, AL, 7, As, 425} —0(4%, AD)
o(4¢10)=0. Thus, (12.16) is admissible. It is a union of cosets of the subgroup
(ri(T) o ve) + 4y (Ry).

It follows from (6.14) that —p.{i"%, 2%, 7y, 4} = — P {7 %, 1 15, 75,463 C {ve, 7, 4010}
Hence, there exists an element r{,e{i"® 24, 25, 4¢} such that p.ri, =2, ol

The other generators of =, (R:) which do not helong to 1%z (2:) are obtained as
follows :

(12.17) Mo, Fogh,
All the generators of r,(Ks) are obtained by the formula
(12.18) 7o(Re)y=them (87) + AH(8),m(ST).
It is well known that

(12.19) ri=2:8424(8).

It follows that

(12.20) 29 =2:%9).
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We shall show that
(1) ke w’fxzr—uz;z(S)

(i) K=y Pom+ri(8),

(12.21) (iii) r°“—7(9) r+7i9), 7i(10)=1:3(10)7,
] (iv) KBl iy=18cr+1(8),
(v) 75(9)= +2:5(9) ovr.

PROOF. (i) Kbca/$=c3pa(kPo ) +i8 %0 g/ (/) =1 (2er) 415 S0 (1) = 23+ 271(8).
(i) Koyi=rip(kbop )1 0c g’ (7 8)=2tey 77+ 73(8).
(iii) follows from (12.1).
(V) Fgolt o7 So==tdopu(k® s U 750 + 1% 2 (7o) = o(va) +770(8).
(v) riovr=2tdour+23(8) s rr=2cF oyt mriy(8) for some odd m, hence, 7,(9)
=2m t§(9) = +2r5o vy, a.e.d.

The original element of =, (Ri)(g<13) is 7i%{3'%9, y2 24},
(12.22) { m(Rw)=2Zi=7on), and
ey =13(10) o vy,

(12.22) follows from the homotopy sequence of the bundle R,;.

(12.23) There exists an original element rile {310, v, 75} mod 0, such that p.ri}
-"?m-

Indeed, 7'-]30071‘32‘(?(10)"Vﬂ""}m:O, and ?:“’mﬂlz(Rm)‘Ff&‘w(Ru)077'120=(’0‘”’10"7’300”9)

+ (=311 oy 075) =0,

purii=7%i, is obvoious by (12.2). qg.e.d.

The other generaters of =,(R,) (11=<n<13) which do not belong to ™" lon,(R..1)

are listed as follows:

(1220 Pl Bort, rieqe, kR, it
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Mitaka, Tokyo



(1]
(2]
£3]
[4]
£s5]
£6]
[73
(8]
Lol
(103
(11]

{12}
(131

(14]
(15]
[16]

(17

Generalization of secondary com position 79

References

H. Toda: Composition Method in homotopy groups, Princeton, 1962.

S. T. Hu: Homotopy theory, Academic Press, 1959.

W. D. Barcus & M. G. Barratt: On the homotopy classification of the extensions of
a fixed map, Trans. Amer. Math. Soc. 88, (1958), 57-74.

I. M. James: Reduced product spaces, Ann. Math. 62 (1955), 170-197.

I. M. James: On the suspension triad, Ann. Math. 63 (1956), 407-429.

I. M. James: On spaces with a multiplication, Pacific Jour. Math. 7 (1957), 1083-1100.
N. E. Steenrod: The topology of fibre bundles, Princton, 1951.

N. E. Steenrod: Cohomology operations, Princeton, 1962.

R. Bott: The stable homotopy of the classical groups, Proe. Nat. Acad. Sci. U.S. A,
43 (1957), 933-935.

M. A. Kervaire: Some nonstable homotopy groups of Lie grotps, lllinois Jour. Math.,
4 (1960), 161-169.

H. Toda: A topological proof of theorems of Bott and Borel-Hirzebruch for homotopy
groups of unitary groups, Memoirs Coll. Sci. Univ. Kyoto, 32 (1959), 103-120.

H. Toda: Sur les groupes d’homotopie des sphéres, C. R. (Paris), 240 (1955), 42-44.
H. Toda: Quelques tables des groupes d’homotopy des groupes de Lie, C. R. (Paris),
241 (1955), 922-923.

H. Matunaga: On the groups man+, (U(n)) for ¢=3,4, and 5. FErrata and Correction,
Memoirs Fae. Sci. Kyushu Univ. 15 (1961), 72-81.

H. Matunaga: Applications of functional cohomology operations to the calculus of
zons 1 (U(n)) for i=6 and 7, n=4, Memoirs Fac. Sei. Kyushu Univ. 17 (1963), 29-62.
K. Oguchi: 2-primary components of the homotopy groups of some Lie groups, Proc.
Japan Acad., 38 (1962), 235-238.

K. Oguchi: 2-primary components of the homotopy groups of sphers and Lie groups,
ibid, 619-620.

(Received July 2, 1963)



